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ABSTRACT: This paper applies self-consistent field theory
(SCFT) to discrete polymer chains consisting of a finite number
of beads, N, joined together by freely jointed bonds of arbitrary
potential, b(R). The numerics of this SCFT can be performed
efficiently using spectral or pseudospectral algorithms, permitting
its application to complex morphologies. To demonstrate its
effectiveness, we examine diblock copolymer melts where the
polymer bonds have a fixed length, a, and the nonbonded
interactions have a finite range, σ, with a strength controlled by
the standard Flory−Huggins χ parameter. Although the results
reduce to those of the usual SCFT for Gaussian chains in the limit
of large N and small χ, there are some notable differences for
short chains with strong interactions. The most significant
involves the internal interfaces, which in turn affects the size of the domains. Furthermore, the finite range of the nonbonded
interactions, necessary to properly treat the internal interfaces, causes a noticeable shift of the ODT toward larger χN. As χ
becomes very large, particularly at small N, the finite extensibility of the freely jointed chains restricts the size of the domains,
which leads to a preference for the lamellar phase.

■ INTRODUCTION
Self-consistent field theory (SCFT)1 has proven to be a
remarkable theory for predicting the equilibrium behavior of
structured polymers.2−4 This has been well demonstrated by its
success regarding diblock copolymer melts.5 Vavasour and
Whitmore6 produced the first SCFT phase diagram, but it was
limited to the classical lamellar (L), cylindrical (C) and bcc
spherical (S) phases. Matsen and Schick7 then extended it to
include complex phases, predicting the gyroid (G) phase8,9 to
be more stable than the perforated-lamellar (PL) phase10 as
confirmed later by experiment.11 In a subsequent calculation by
Matsen and Bates,12 a narrow closed-packed spherical (Scp)
phase was predicted along the order−disorder transition
(ODT), which has since been associated with a region of
densely packed spherical micelles.13,14 Most recently, the Fddd
(O70) phase15 was predicted by Tyler and Morse16 and later
observed in experiment.17−19

The standard SCFT applies mean-field theory to coarse-
grained Gaussian chains, for which the statistical mechanics of a
single chain in external fields is evaluated by solving a simple
modified diffusion equation in three-dimensional space. This
simplicity results because the polymers are treated as ideal
elastic threads, where the elasticity accounts for the entropy
associated with the microscopic degrees of freedom integrated
out of the system by the coarse graining. However,
approximating polymers by elastic threads results in a number
of unphysical properties such as an unbounded end-to-end
length of the molecules and a diverging entropic penalty for
narrow interfaces. As such, the Gaussian chain model must be
limited to situations to where the average end-to-end length of

a polymer is much shorter than its contour length and where
the local environment changes slowly on the monomer scale.
These conditions are satisfied by polymers of high molecular
weight,20 but not necessarily by ones of low molecular
weight.21−23

These limitations can, in principle, be overcome by applying
SCFT to the worm-like chain model,24,25 where the polymers
are treated as semiflexible threads of fixed contour length.
While the worm-like chain reduces to the Gaussian chain as its
flexibility increases, the unphysical behavior described above is
avoided so long as the rigidity of the worm-like chain remains
finite. Unfortunately, the statistical mechanics of a worm-like
chain in external fields involves a much more complicated
diffusion equation that couples the orientation of the chain to
spatial variations in the field. For simple problems where the
field only varies in one direction such as the lamellar phase, the
diffusion equation involves just two coordinates (one spatial
and one orientational) and thus it can be readily solved.26−28 In
the general case, however, there are three spatial and two
orientational coordinates, resulting in a five-dimensional
diffusion equation that has so far remained numerically
intractable.
Another alternative is to apply SCFT to discrete chains

involving a finite number of beads joined together by freely
jointed bonds. In this case, the diffusion equation is replaced by
an iterative equation involving an integration over the three
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spatial coordinates. Although the dimensionality of the problem
does not increase because the orientations of the bonds are not
coupled, the triple integral is difficult to evaluate accurately in
real space. Consequently, this model has so far been restricted
to systems in which the fields vary in only one direction.29,30

However, we will demonstrate that if the numerics are solved
using spectral7 or pseudospectral31 methods, then the SCFT of
freely joined chains becomes equally efficient to that of
Gaussian chains. This then allows us to examine the effects of
finite molecular weight on the full range of periodic
morphologies exhibited by diblock copolymer melts.

■ THEORY
Here we formulate the freely jointed chain version of SCFT for
a melt of n AB diblock copolymers, each with an A-block of NA
monomers joined to a B-block of NB monomers giving a total
polymerization of N ≡ NA + NB and an A-monomer
composition of f = NA/N. We assume a uniform monomer
density, ρ0, such that the total volume of the melt is V = nN/ρ0.
The monomers are treated as featureless beads connected by a
bonded potential, b(R). The natural length of a bond, a, is
given by

∫≡a R g R R( ) d2 2
(1)

where g(R) ∝ exp(−b(R)/kBT) is normalized so that ∫ g(R) dR
= 1. Because the N − 1 bonds of the molecule are freely
jointed, the natural end-to-end length of the entire molecule is
R0 = a(N − 1)1/2.
We specify the strength of the nonbonded interactions by the

usual Flory−Huggins χ parameter, but we also include a finite
range, σ, to the interactions. This is done by expressing the
internal energy, U, as5

∫χ ϕ ϕ= | − ′| ′ ′U
nk T

N
V

u r r r r r r( ) ( ) ( ) d d
B

A B
(2)

where ϕγ(r) is the dimensionless concentration of the γ-type
monomers (γ = A or B) and u(R) is selected such that ∫ u(R)
dR = 1 and

∫σ ≡ R u R R( ) d2 2
(3)

From the internal energy, it follows that the self-consistent
conditions for the external fields acting on the A and B
monomers are

∫χ ϕ ξ= − +w N u Rr r R R r( ) ( ) ( ) d ( )A B (4)

∫χ ϕ ξ= − +w N u Rr r R R r( ) ( ) ( ) d ( )B A (5)

respectively, where ξ(r) is the usual pressure field that enforces
incompressibility, ϕA(r) + ϕB(r) = 1.
The first step in SCFT involves solving the statistical

mechanics of a single molecule in the external fields, wγ(r). This
is done by calculating two partial partition functions, q(r,i) and
q†(r,i) for i = 1/2, 1,

3/2, ..., N + 1/2. The first one is obtained by
starting from q(r,1/2) = 1 and iterating

= −γ ⎜ ⎟
⎛
⎝

⎞
⎠q i h q ir r r( , ) ( ) ,

1
2 (6)

∫+ = −⎜ ⎟
⎛
⎝

⎞
⎠q i g R q ir r R R,

1
2

( ) ( , ) d
(7)

for i = 1, 2, ..., N, where

≡ −γ γh w Nr r( ) exp( ( )/ ) (8)

with γ = A for i ≤ NA and γ = B for i > NA. The complementary
partition function is obtained starting from q†(r,N + 1/2) = 1
and applying the same iterations, eqs 6 and 7, but with i
decreasing by a half at each step (i.e., the same equations but
with i − 1/2 ⇔ i + 1/2). Once the partial partition functions
are known, the concentration of A monomers is given by

∑ϕ = −
=

†⎜ ⎟
⎛
⎝

⎞
⎠

V
QN

q i q ir r r( ) ,
1
2

( , )A
i

N

1

A

(9)

where the sum is over the integers i = 1, 2, ..., NA and Q =
∫ q(r,N) dr is the full partition function for a single diblock
copolymer in the external fields. The expression for ϕB(r) is the
same except that the sum is over i = NA + 1, NA + 2, ..., N.
The convolutions in eqs 4, 5, and 7 would be computation-

ally costly to perform in real space for triply periodic
morphologies, but they become simple multiplications in
Fourier space. Therefore, we express our periodic functions as

∑= ·f f ir k k r( ) ( ) exp( )
k (10)

where the Fourier coefficients are given by

∫= − ·f
V

f ik r k r r( )
1

( ) exp( ) d
(11)

For the nonperiodic function g(R), we define the Fourier
transform

∫
∫π

= − ·

=
∞

g k g R i

k
g R kR R R

k R R( ) ( ) exp( ) d

4
( ) sin( ) d

0 (12)

where the second expression uses the fact that g(R) only
depends on the magnitude of R. The Fourier transform of u(R)
is defined analogously. In the spectral representation, the field
equations become

χ ϕ ξ= +w Nu kk k k( ) ( ) ( ) ( )A B (13)

χ ϕ ξ= +w Nu kk k k( ) ( ) ( ) ( )B A (14)

and q(k,i) is obtained by iterating

∑= − ′ ′ −γ
′

⎜ ⎟
⎛
⎝

⎞
⎠q i h q ik k k k( , ) ( ) ,

1
2k (15)

+ =⎜ ⎟
⎛
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⎞
⎠q i g k q ik k,

1
2

( ) ( , )
(16)

from q(k,1/2) = δk,0. Once this and the analogous function,
q†(k,i), have been calculated, the Fourier coefficients of the A-
monomer concentration are given by

∑ ∑ϕ = − ′ − ′
= ′

†⎜ ⎟
⎛
⎝

⎞
⎠

V
QN

q i q ik k k k( ) ,
1
2

( , )
i

N

k
A

1

A

(17)

where Q = Vq(k = 0,N). Again the expression for the B-
monomer concentration is the same except that i is summed
from NA + 1 to N. The free energy is also given by a simple
expression
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∑ χ ϕ ϕ

ϕ ϕ

= − +
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The last step in the SCFT calculation is to minimize the free
energy with respect to the domain size, D, which is done by
satisfying

∑χ ϕ ϕ∂
∂

− ′ ∂
∂

=
Q

Q
D

N u k
k
D

k k
1

( ) ( ) ( ) 0
k

A B
(19)

For morphologies with more than one independent length scale
(e.g., PL and Fddd), this has to be satisfied separately for each
length.
Although the use of Fourier space simplifies convolutions by

transforming them into simple scalar multiplications, it actually
complicates the first step of the iteration for the partial partition
functions by changing it from a scalar multiplication, eq 6, to a
matrix multiplication, eq 15.32 This complication could be
avoided by using a pseudospectral strategy,31 where the first
step is performed in real space with eq 6 and the second step is
done in Fourier space with eq 16, using fast Fourier transforms
(FFTs) to switch back and forth between the two spaces. For
many problems, the pseudospectral method is faster than the
full-spectral approach, but generally not when it comes to
ordered periodic morphologies.33 This is because the symmetry
of a morphology is easily incorporated into the calculation
greatly reducing the number of independent Fourier
coefficients.34 Therefore, we opt for the full-spectral approach
using symmetrized basis functions.12

For weakly segregated morphologies that can be accurately
represented by ≲100 basis functions, we generally use the
Broyden method to solve the self-consistent field equations. If a
greater number of basis functions is required, then it becomes
more efficient to use the Anderson mixing method.34 Both
methods, however, have difficulty in converging to a self-
consistent solution when the molecules become highly
stretched, which limits the segregation to which we can solve
the SCFT. Nevertheless, so long as we are able to converge on
a solution, our numerical accuracy is never compromised; the
inaccuracies are always smaller than the resolution of our plots.

■ RESULTS
This section presents the SCFT for diblock copolymers with a
fixed bond length, where

π
δ= −g R

a
R a( )

1
4

( )2 (20)

=g k
ka

ka
( )

sin( )
(21)

As such, the total contour length of each molecule is L = a(N −
1), which means that a is both the statistical segment length
and Kuhn length, defined by limN→∞R0/√N and limN→∞R0

2/
√L, respectively. (Note that for Gaussian chains, a is just the
statistical segment length; the Kuhn length is zero because the
contour length of a Gaussian chain is infinite.) For the
nonbonded A/B interactions, we select the potential

πσ σ
= −

⎛
⎝⎜

⎞
⎠⎟u R

R
( )

1
(2 )

exp
22 3/2

2

2
(22)

σ= −
⎛
⎝⎜

⎞
⎠⎟u k

k
( ) exp

2

2 2

(23)

In the limit σ → 0 where the range of the interaction vanishes,
u(R) reduces to a Dirac delta function resulting in the usual
contact force normally used in SCFT.
To begin, we first illustrate the importance of having a finite

range for the A/B interactions. This is done in Figure 1, where

we compare predictions for the period, D, and interfacial width,
wI, of the lamellar (L) phase calculated for Gauusian chains and
freely jointed chains with the interaction range set to σ = 0.
(The width of the interface is defined by wI = |ϕA′ (zI)|−1 where
its location, zI, is specified by ϕA(zI) = 1/2.) The results for the
freely jointed chains (solid curves) closely follow those for
Gaussian chains (dashed curves),35 but only while the
interfacial width remains wI ≳ a. Beyond these points, denoted
by solid dots, the interfacial width for the freely jointed chains
rapidly narrows and the period plateaus. This is because there is
no entropic penalty for further narrowing of the interface once
the two unlike monomers at the diblock junction (i.e., i = NA
and i = NA + 1) are able to simultaneously reside in the
relatively pure regions of their respective domains. Likewise,
there is no further advantage for reducing the interfacial area
per molecule, and thus the domain size ceases to increase.
The root of the problem that leads to the unphysical

behavior in Figure 1 is that the unlike monomers, even those at
the diblock junctions, are able to avoid unfavorable contact
once wI ≲ a. Of course, this should not happen since real
nonbonded interactions have a finite range, σ, similar to the
bond length, a, and thus the unfavorable interactions should
extend across the narrow interfaces. In Figure 2, we repeat the
calculation again, but with the interaction range set to σ = a.
Now that the unlike monomers are unable to avoid unfavorable

Figure 1. (a) Period and (b) interfacial width of the lamellar (L) phase
for symmetric diblock copolymers with simple contact forces between
the A and B monomers. The dots denote the points where wI = a. The
dashed curves are calculated with the Gaussian chain model, which
corresponds to the N → ∞ limit.
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interactions across the interface, the interfacial width decreases
gradually and the period continues to increase with χ. In fact,
the rate of increase becomes substantially faster than that of
Gaussian chains for which D ∼ χ1/6. The exponent for the freely
jointed chains seems to approach 1/3 beyond the points where
the interface is narrower than the bond length (denote by solid
dots). The short N = 10 diblocks are an exception, but this is
because they are becoming fully stretched.
Unlike for Gaussian chains, the lamellar phase for freely

jointed chains has a maximum period of Dmax = 2L due to the
finite length, L, of the molecules. To gauge the degree of chain
stretching in Figure 2, we evaluate Dmax/R0 = 2(N − 1)1/2 to be
6.0, 12.49, and 25.22 for N = 10, 40 and 160, respectively.
Hence, the short N = 10 diblocks in Figure 2 are indeed
approaching their full extension, whereas the two longer
molecules are not. The extension of the N = 10 diblocks is
further illustrated in Figure 3, where we plot the concentration
profiles of the individual A monomers for three consecutive
values of χ. By χ = 20, the separation between the adjacent
peaks is nearly a implying that the bonds are perpendicular to
the lamellae.
Although the details of the model modify the scaling of D

with respect to χ, this does not alter the scaling with respect to
N. The discreteness of the freely jointed chains affects the
interface and its tension, but nevertheless the properties of the
interface should become independent of N in the high-
molecular-weight limit. Thus, the usual D ∼ N2/3 scaling
predicted by strong-stretching theory (SST)36 must continue to
hold at large N, since all it assumes is a fixed interfacial tension.
Figure 4 confirms that D does indeed increase as N2/3, and that
the width (and presumably all other features) of the interface
become independent of N.
The advantage of the freely jointed chain model, as

compared to for example the worm-like chain model, is that

the SCFT can be readily solved for complex morphologies. We
illustrate this fact by calculating the full phase diagrams for N =
40 and 80 in Figure 5. Although the discreteness of the freely
jointed chain model has a considerable impact on the internal
interfaces causing a substantial rise in interfacial tension and
thus larger domains, all the ordered phases are affected to a
similar extent. Consequently, the topology of the phase diagram
is unaffected. In particular, the gyroid (G) phase remains the
most stable of the complex phases, apart from the Fddd (O70)
phase at weak segregations.
The main effect of finite N is to produce an upward shift in

the phase boundaries, as demonstrated in Figure 6a where we
plot the position of the phase boundaries at f = 0.4 as a function
of N. In order to ascertain the source of this shift, we repeat the
calculation in Figure 6b but this time with only contact forces
(i.e., σ = 0). Evidently the shift is due to the finite range of the
nonbonded interactions, given that it vanishes as σ → 0. In fact,
without the finite range, there is a slight downward shift, but
this only becomes noticeable for N ≲ 30.
At the weak to intermediate levels of segregation in Figures 5

and 6, the diblock copolymers are not stretched enough for the
differences between freely jointed and Gaussian chains to
become appreciable. However, considerable differences are
certain to emerge in the strong-segregation regime as the freely
jointed chains start to become fully stretched. To illustrate this,

Figure 2. Analogous plots to those of Figure 1, but with finite-range, σ
= a, interactions between the A and B monomers. The straight-line
segments in part a show the slopes corresponding to D ∝ χ1/3 and D ∝
χ1/6 scaling.

Figure 3. Concentration profiles of the individual A-type monomers in
the lamellar (L) phase of a symmetric N = 10 diblock copolymer melt,
plotted at several values of χ. The dashed curves show the combined
concentrations, ϕA.
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Figure 7 compares the free energies of the lamellar (L) and
cylindrical (C) phases up to large χN for asymmetric f = 0.3

diblock copolymers of various polymerizations, N. (The gyroid
(G) phase is omitted from this calculation because of its high
computational cost at these levels of segregation.) For Gaussian
chains (dashed curve), the C phase remains stable up to χN →
∞.36,37 For the freely jointed chains (solid curves), however,
the C phase becomes less stable as the segregation increases,
particularly as N becomes small. In the case of N = 10, the
stability of L overtakes that of C at χN = 103.19, and
presumably the same happens for the larger values of N at
higher values of χN.
In order to explain the transition from C to L, Figure 8 plots

the monomer distributions in the C and L phases for the N =
10 diblock copolymers at the point where their free energies are
equal. In the C phase, the minority A blocks (red curves) are

Figure 4. (a) Period and (b) interfacial width of the lamellar (L) phase
for symmetric diblock copolymers. The short line segment in part a
denotes the slope corresponding to D ∼ N2/3 scaling.

Figure 5. Phase diagrams for freely jointed diblock copolymers of (a)
N = 40 and (b) N = 80 monomers, showing the stability regions of the
ordered lamellar (L), cylindrical (C), bcc spherical (S), hcp spherical
(Scp), gyroid (G) and Fddd (O70) morphologies. The dashed curves,
obtained using the Gaussian chain model, correspond to the N → ∞
limit.

Figure 6. Phase boundaries for asymmetric f = 0.4 diblock copolymers
with (a) finite-range interactions, σ = a, and (b) simple contact forces,
σ = 0. Note that the bcc spherical (S) regions are difficult to resolve on
this scale.

Figure 7. Free energy difference between the lamellar (L) and cylinder
(C) phases of asymmetric f = 0.3 diblock copolymers of various
polymerizations. The dashed curve, obtained using the Gaussian chain
model, corresponds to the N → ∞ limit.
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highly stretched, almost to their fully extended length. This
limits the radius of the cylinders to approximately 3a, which in
turn restricts the size of the whole unit cell through the
incompressibility constraint. Indeed the ratio of the nearest-
neighbor distances between cylinders and lamellae is 0.997 for
the N = 10 freely joint chains, whereas the ratio is 1.049 for
Gaussian chains at the same value of χN. The only way that the
system can continue to increase the domain size so as to reduce
interface area is to switch to the L phase.

■ DISCUSSION
We have shown that SCFT can be applied to freely jointed
chains as easily as it can to the usual Gaussian chains. Although
we have referred to the beads of the freely jointed chain as
individual chemical monomers albeit without any atomic detail,
it is more accurate to regard them as Kuhn segments. Each
Kuhn segment will generally contain a few chemical units (the
actual number depends on the chain flexibility) and thus a
freely jointed chain is still a coarse-grained model, just not to

the same extent as a Gaussian chain. A Gaussian segment needs
to have about 10 Kuhn segments in order to acquire its elastic
behavior.3 Because the level of coarse graining is less, the freely
jointed chain model has a greater range of applicability. As
always though, there is a price to pay for this, which is the
increased number of parameters. For instance, the behavior of
the freely jointed chains depends on the individual values of χ
and N, rather than just their product.
The most stringent restriction on the validity of the Gaussian

chain model is that the interfacial width should remain large
relative to the segment size. As we have seen, inaccuracies in
the treatment of the interfacial region indirectly impact the
domain size. This follows from the strong-segregation theory
(SST),36 which predicts the period of the lamellar phase to be

π
=

Γ⎛
⎝⎜

⎞
⎠⎟D a

N
2

4 I
2

2

1/3

(24)

in the N → ∞ limit, where ΓI ≡ γI/kBTaρ0 is a dimensionless
measure of the interfacial tension, γI. For Gaussian chains, the
dimensionless tension is approximately

χ χΓ = + =
w
a

a
w4 6 6I

I

I (25)

where the first term is the enthalphic penalty of mixing unlike
segments and the second term is the entropic penalty of
stretching chains across the interface. Their combination is
minimized by an interfacial width of wI = 2a/(6χ)1/2 resulting in
ΓI ∼ χ1/2, which in turn leads to the usual D ∼ aχ1/6N2/3 scaling
for the domain size. Fitting the curves in Figure 4a to eq 24
gives ΓI = 0.21, 0.66, and 2.41, while eq 25 predicts ΓI = 0.18,
0.41, and 0.91 for χ = 0.2, 1.0, and 5.0, respectively. Although
there is reasonable agreement at small χ, eq 25 gradually
becomes invalid as the interface narrows. This is because the
entropic penalty no longer increases once the interface is
narrower than the Kuhn length.
The freely jointed chain model does continue to treat the

interface properly for wI < a, but only if the nonbonded
interactions have a finite range. Once the entropic penalty in eq
25 ceases too increase, it becomes necessary to account for the
fact that the unlike monomers cannot avoid interacting by
simply letting wI → 0. With our current choice of u(R), the
enthalpic penalty of an infinitely sharp interface becomes

∫ ∫χ σ

πσ
σχ

π

=
− ′

′

=

′=−∞ =

∞U
nk T

N
D

z z
z z

N
D

2 exp(( ) /2 )

2
d d

2

z zB

0

0

2 2

2

(26)

which remains positive so long as σ > 0. If we use this to
approximate the enthalpic penalty and assume that the entropic
penalty is relatively insignificant, then we get an interfacial
tension of

σχ
π

Γ =
a 2I (27)

This implies that the domain size should scale as D ∼ aχ1/3N2/3

once wI ≪ a, so long as the chains are not too extended so as to
invalidate eq 24. Indeed, the results in Figure 2a show that the
exponent of χ increases from 1/6 toward 1/3 as the interface
narrows, apart from the one example for N = 10 where the
diblocks are highly extended. Returning to the case of χ = 5.0

Figure 8. Concentration profiles for the 3 A-type (red) and 7 B-type
(blue) monomers of an asymmetric N = 10 diblock copolymer in the
coexisting lamellar (L) and cylinder (C) phases at χN = 103.19. The
dashed curves show the combined concentrations, ϕA and ϕB. The top
plots are for two different paths through the C phase, and the bottom
plot is for the L phase.
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with σ = a, eq 27 now predicts ΓI = 1.99, which is much closer
to the value of ΓI = 2.41 extracted from Figure 4a. The
prediction is still a bit too small, partly because eq 26
underestimates the enthalpy and partly because we ignored the
entropic penalty.38

According to SST,36 the free energy of a strongly segregated
morphology scales as F ∼ ΓI

2/3 regardless of its geometry, and
thus the relative stability of the ordered phases should not be
significantly affected by changes in ΓI. Indeed, the position of
the complex phase region in Figure 5 is reasonably insensitive
to N in the intermediate-segregation regime, but there is a
sizable shift of the ODT at weak segregations. As we have
already seen in Figure 6, the upward shift in the ODT results
from the finite range, σ, of the nonbonded interactions. In the
weak-segregation regime, concentration profiles are well
approximated by the first harmonics of the principle wave-
vector, k*. Consequently, the finite range simply reduces the
fields, eqs 13 and 14, by a factor of u(k*), which must then be
compensated for by an increase in χN in order to induce the
ODT. At f = 0.5, this implies

χ σ≈ *

=

N k

N

( ) 10.495 exp(( ) /2)

10.495 exp(11.35/ )
ODT

2

(28)

where we have used the RPA predictions, (χN)ODT = 10.495
and k*aN1/2 = 4.765, for Gaussian chains.39 Eq 28 predicts
(χN)ODT = 12.09 for freely jointed chains of N = 80, which
agrees well with the actual value 11.92 from Figure 5b. For the
shorter N = 40 chains, the prediction (χN)ODT = 13.94 is
naturally less accurate, but it is still close to the value 13.25
obtained from Figure 5a.
Although the behavior of the freely jointed chains has

remained surprisingly similar to that of Gaussian chains in the
weak to intermediate segregation regimes, things will certainly
become very different as χ → ∞. This is because the fixed
contour length of the freely jointed chains limits their extension
and thus restricts the domain size, whereas Gaussian chains can
be extended indefinitely allowing the domain size to diverge.
Admittedly it takes an exceptionally large χ for the freely
jointed chains to approach their full extension, even when N is
as small as 10. Nevertheless, as this happens, they will begin to
behave as rods (i.e., liquid-crystalline molecules), and therefore
they will at some point self-assemble into the lamellar (i.e.,
smectic-C) phase regardless of their composition, f.
We can now estimate the conditions under which our freely

jointed chain model reduces to the Gaussian chain model.
Polymeric behavior presumably requires the diblock copoly-
mers to have 10−20 coarse-grained segments, which must each
contain at least 10 beads as explained above. This turns out to
be about the same number of beads necessary for us to ignore
the finite range of the nonbonded interactions. Assuming σ ≈ a,
eq 28 requires N ≳ 200 for the shift in the ODT of symmetric
diblocks to be ≲5%. Lastly, we must ensure that the Gaussian
estimate of the interfacial width, wI = 2a/(6χ)1/2, is at least a
couple Kuhn lengths, which requires χ ≲ 0.2. Significant
deviations from the Gaussian chain model should only occur
when one or both of these conditions are violated.
The SCFT for freely jointed chains is exceptionally versatile.

Not only can the calculation be performed for arbitrary
potentials, b(R) and u(R), between bonded and nonbonded
monomers, respectively, one could also allow for different
potentials between the different monomer types. For instance,
the A−A and B−B bonds could be assigned different lengths,

which would result in conformational asymmetry.40 The strict
incompressibility condition, ϕA(r) + ϕB(r) = 1, may not be
particularly appropriate at the monomer length scale, but there
is no problem to relax this constraint. One can easily introduce
a finite compressibility,5 although it adds another parameter to
the model.
We should point out that the R dependence in the potentials,

b(R) and u(R), refers to the center-to-center distance between
monomers. Furthermore, ϕγ(r) is the distribution of the
monomer centers as opposed to the actual concentration of
material. The concentration of material, assuming spherical
monomers, is given by the convolution30

∫ϕ ρ ϕ̅ = −γ γRr r R R( ) ( ) ( ) d
(29)

where ρ(R) is the individual monomer profile normalized such
that ∫ ρ(R) dR = 1. Rather than including a finite-range
interaction, u(R), between nonbonded monomers, we could
have instead replaced ϕγ(r) by ϕ̅γ(r) in the usual SCFT
expressions2 for the internal energy, U, and the self-consistent
fields, wγ(r). However, this ends up being exactly equivalent to
what we have done. In Fourier space, ϕ̅γ(k) = ρ(k)ϕγ(k), and
so it follows that this modification simply corresponds to the
substitution u(k)⇒ ρ2(k). Even switching the incompressibility
condition to ϕ̅A(r) + ϕ̅A(r) = 1 changes nothing, provided that
both monomer types have the same profile, ρ(R). This is
because, in Fourier space, the alternative incompressibility
condition becomes ρ(k)[ϕA(k) + ϕB(k)] = 0 for k ≠ 0, which
equates to our present condition given that ρ(k) ≠ 0.
Because of its computational tractability, the standard SCFT

is often used to model systems of surfactant or lipid
molecules,41−44 even though these small molecules are clearly
not large enough to justify the coarse-grained Gaussian chain
model. It is far more sensible, for example, to model a
phospholipid of a biological membrane as two short freely
jointed chains, representing the hydrocarbon tails, connected to
a large sphere, representing the polar headgroup. Although the
hydrocarbon tails could be treated even more realistically by
assigning a bending energy to the bonds, the iterative equations
for the partial partition functions would then involve
integrations over the bond orientations.45 Provided one sticks
with freely jointed bonds, the calculation would remain as
simple as that of the standard SCFT. In fact, if the calculation
was being done pseudospectrally, then it would just be a trivial
modification to switch from Gaussian chains to freely jointed
chains. Furthermore, the computational cost would be greatly
reduced, because the modified diffusion equation for Gaussian
chains can require hundreds of FFTs for an accurate solution33

whereas the iterative equations for freely jointed chains, eqs 6
and 16, only require two FFTs per bead. Given the huge
numerical advantage, researchers might also consider using
short freely jointed chains for computationally challenging
polymeric problems, especially since their behavior is much the
same as that of Gaussian chains.

■ SUMMARY
We have performed self-consistent field theory (SCFT) for
melts of AB diblock copolymer, where the molecules are
modeled as freely jointed chains with a finite number of beads,
N, joined together by bonds of fixed length, a, and where the
nonbonded interactions between A and B beads have a finite
range, σ. The freely jointed chains are more appropriate for
low-molecular-weight polymers than the usual Gaussian chains,
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and they may even provide a reasonable model for surfactant or
lipid molecules. Although the SCFT for freely jointed chains
involves a number of convolutions, which are computational
costly to evaluate in real space for multidimensional
morphologies, they become simple multiplications in Fourier
space. Consequently, the SCFT can be applied to freely jointed
chains as readily as it can to Gaussian chains, and in fact the use
of freely jointed chains can greatly reduce the numerical cost of
SCFT calculations, which would be particularly useful for
computational challenging problems.
The most significant consequence of using freely jointed

chains instead of Gaussian chains is the χ-dependence of the
interfacial tension and its effect on domain size, D. With freely
jointed chains and finite-range interactions, the usual D ∼ χ1/6

scaling gradually switches to D ∼ χ1/3 as the interfaces become
narrow relative to the Kuhn length. Nevertheless, the standard
D ∼ N2/3 scaling still holds in the limit of large N regardless of
how narrow the interfaces are. Since changes in interfacial
tension affect all well-ordered morphologies similarly, the phase
diagram is relatively unaffected by the discreteness of the freely
jointed chain in the intermediate-segregation regime. The finite
range of the nonbonded interactions does, however, affect the
weakly segregated phases, shifting the phase boundaries toward
higher χN. In the strong-segregation limit, the finite
extensibility of the freely jointed chains eventually limits the
size of the minority domains, forcing diblock copolymers to
adopt the lamellar morphology regardless of their asymmetry.
On the basis of our calculations, these finite molecular-weight
effects will remain quantitatively significant for copolymers with
N ≲ 200 Kuhn segments or with strong interactions of χ ≳ 0.2.
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