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1 IntroductionTwo of the main cost factors in embedded multimedia applications are the chip area and thepower consumption. Especially for data-intensive algorithms, between 50 and 80% of the chiparea is occupied by memories [1]. Moreover, most of the power is consumed by memory accesses[1, 2, 3]. We have demonstrated this on several important multimedia applications includinga H263 video decoder [4] and a motion estimation kernel [5]. Therefore the reduction of thebackground memory size is a crucial task in a multimedia system context. Due to the recentintroduction of parallelism in the multimedia domain, optimization of memory related issueshas become even more important.In this paper we present novel techniques for reducing the memory sizes by reusing mem-ory locations for arrays as much as possible through (the equivalent of) data-transformations.Our reduction strategy is based on an exact mathematical modeling of memory usage that wepresented earlier [6]. The size reduction we obtain also inuences the power consumption ina positive way (due to the decreased capacitive load during memory transfers), but here wemainly focus on size aspects. However, this task is part of our ATOMIUM data storage andtransfer exploration environment [7]. Other tasks in this environment focus more on the powerreduction issues (e.g. memory hierarchy decisions). Moreover the e�ectiveness of the memorysize reduction task is heavily inuenced by preceeding tasks (e.g. loop transformations), whichenable memory reuse.The strategies presented in this paper are applicable to a large class of parallel processingapplications and architectures (SIMD, MIMD) with either shared and/or local memories, butare equally well suited for mono-processor applications. The strategy that we have selected forimplementation consists of two major phases: in a �rst phase we optimize the internal storageorder for each array separately, in order to increase the memory reuse between elements ofthe same array. In the second phase we exploit the remaining freedom to globally optimize thememory reuse between elements of the di�erent arrays. In this paper we will mainly concentrateon the �rst phase, and only briey discuss the second phase. The second phase is the maintopic of a future paper [8]. In neither phase the memory access ordering is a�ected in any way,so these strategies do not interact with other issues of the parallel compilation process such asmemory contention or real-time constraints, as only the address expressions are altered.This paper is organized as follows: in section 2 we discuss some related work. In section 3,we briey review our memory occupation models, followed by a discussion of our assumptions insection 4. Next, in section 5, we present several possible optimization strategies, and discuss themost promising one more in-depth in section 6. Finally, we present some experimental resultsin section 7, and draw some conclusions in section 8.2 Related WorkIn [9] the concept of using an address reference window in order to reduce the memory sizerequirements for multi-dimensional arrays was introduced. However, the presented method forcalculating the window is not exact, as it provides only an upper bound. Moreover, no methodis provided to optimize the storage order in order to minimize the windows. In this paper, wepresent an exact method to calculate the window and a method to obtain a good storage order.In [10] and [11], the memory reuse problem is also discussed. These methods do not take intoaccount the exact storage order of the arrays though, and only provide estimates on memory



usage to steer other optimization tasks.The problem of reducing memory size requirements is strongly related with the problem ofoptimizing data locality in (parallel) programs. In [12] a technique for calculating an approx-imate index reference window and a local memory data management strategy are presented.Also, in [13], an algorithm for performing both loop and data transformations to improve local-ity is presented. However, these locality improvement techniques are targeted towards improvedperformance and therefore concentrate on single loop nests. The problem of memory size min-imization cannot be tackled by looking at individual loop nest though, and requires a strategythat takes a global view.The problem of large storage requirements for single-assignment programs has also attractedthe attention of other researchers. In [14] and [15], the principle of memory reuse throughprojection of multi-dimensional arrays is described. However, only a memory reuse analysismodel is provided, together with a set of necessary and su�cient constraints that have to besatis�ed, but no strategy for obtaining a good projection is presented. Moreover, memory reusebetween di�erent arrays is not considered, as in our approach.3 Memory OccupationIn [6] we have presented some formal models describing in closed forms the exact memoryoccupation for each individual array element of single assignment static control programs witha (piece-wise) a�ne execution order and a (piece-wise) a�ne storage order. We will now brieypresent these models and illustrate the concepts by means of a simple example.int A[3N][N];...for ( i = 0; i < 2*N; ++i )for ( j = 0; j < N; ++j )S1: A[i][j] = f(...);...for ( k = N; k < 3*N; ++k )for ( l = 0; l < N; ++l )S2: ... = g(A[k][l]);...First of all, we can describe the iteration domains (ID) of statements S1 and S2. Eachintegral point inside these domains corresponds to an operation, i.e. an execution of a statement.Similarly, we can describe the elements of array A by means of a variable domain (VD). Eachintegral point inside this domain corresponds to an element of A. The descriptions of ID1, ID2and V DA of our example are the following1:ID1 = f (i; j) j 0 � i � 2N � 1; 0 � j � N � 1 gID2 = f (k; l) j N � k � 3N � 1; 0 � l � N � 1 gVDA = f (a1; a2) j 0 � a1 � 3N � 1; 0 � a2 � N � 1g1Note that in this paper, we implicitly assume that all mathematical variables are integral.



Given a (piece-wise) a�ne execution order, we can calculate the execution date of everyoperation. Similarly, for a given (piece-wise) a�ne storage order of array A in a linearly addressedmemory, we can calculate the memory addresses of each of the array elements. For the example,we assume the following time order functions: tS1(i; j) = iN + j and tS2(k; l) = C + kN + l,where C is a constant, and storage order function: aA(a1; a2) = N � a1 + a2.Next, we can mathematically describe the elements of A that are being accessed by thedi�erent statements. Write and read accesses are described by means of de�nition domains(DD) and operand domains (OD) respectively. For the example, we have the following DD'sand OD's2:DD11A = f (a1; a2) j 9i; j s:t: a1 = i; a2 = j; 0 � i � 2N � 1; 0 � j � N � 1 gOD21A = f (a1; a2) j 9k; l s:t: a1 = k; a2 = l; N � k � 3N � 1; 0 � l � N � 1 gFor a static control single-assignment program, we can detect the value-based ow depen-dences by intersecting the OD's and DD's of each array. In the example, there is a ow depen-dence from statement S1 to statement S2. By intersecting DD11A and OD21A, we can �nd outwhat elements of A contribute to the ow dependence. We also know that we have to store theseelements in memory from the moment that they have been produced by statement S1 until atleast3 the moment they are being consumed by statement S2. So for each ow dependence, wecan derive when the contributing elements are being produced and consumed (via the executionorder of the corresponding iteration domains) and where they will be stored in memory (via thestorage order of the array). Consequently, we can describe the set of address-time tuples beingoccupied by the ow dependence as follows4:BOATD1121A = f (a; t) j 9 i; j; k; l; a1; a2 s:t:a = aA(a1; a2); a1 = i = k; a2 = j = l;0 � i � 2N � 1; 0 � j � N � 1;N � k � 3N � 1; 0 � l � N � 1;tS1(i; j) � t � tS2(k; l) gThis domain, which consists out of address-time tuples that are occupied due to a ow-dependence, is called a binary occupied address-time domain (BOATD). A graphical represen-tation of the domains corresponding to the example is given in �gure 1 (for the case where Nequals 3).If we know the BOATD for each dependence in the program, then we exactly know wheneach memory location is occupied. In general, di�erent dependences of the same array can haveoverlapping BOATD's (i.e. when an array element contributes to several dependences). We willrefer to the union of the di�erent BOATD's of an array as the occupied address-time domain(OATD) of that array.2The second subscript corresponds to the number of the de�nition or operand; for the example we have only1 operand/de�nition per statement.3At least, because other statements may consume the same elements later on too.4Note that this equation can easily be further simpli�ed.
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t      (i,j) = 3i + jS1Figure 1: The di�erent domains corresponding to the example.In [6], we also describe a set of necessary and su�cient conditions that have to be satis�edby the execution order of the program and the storage order of each of the arrays in order tobe valid. Due to space limitations, we only provide an intuitive summary here:� Each array element should be produced before it is consumed.� No array element should be written at a memory location that is being occupied by anotherarray element at that time.An ideal execution and storage order optimization strategy for area and power would have totake these conditions into account to arrive at a global optimum. Unfortunately, although theseconditions may seem fairly obvious in textual form, their mathematical counterparts can berelatively complex and quite hard to evaluate in practice (especially the second set) and wetherefore have to relax them to simpler (su�cient) ones in order to be able to obtain a goodsolution (see section 5).4 AssumptionsIn the sequel we assume that the relative execution order has been �xed, and that we haveassigned each (part of an) array to a memory. The storage order of the arrays inside thesememories on the other hand, is the subject of our optimizations. There is no direct interactionwith other parallel compiler tasks, provided that the relative order of the memory accesses hasbeen �xed already5.These are realistic assumptions, as we have applied this approach successfully in the pastto obtain a memory-e�cient SIMD-type architecture for implementing block-oriented videoalgorithms such as motion estimation [16]. An overview of the obtained architecture is shownin �gure 2.The architecture contains a few shared frame memory banks and several processing elements(PE's) with local memories. We �rst decided on a detailed data-distribution and a detailed data-transfer schedule, both for the transfers between the shared memory and the local memoriesand for the transfers between the local memories and the PE's.5In the future we also intend to extend our techniques to take into account (hardware-controled) caches.
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Figure 2: A parallel architecture template for block-oriented video algorithms.Note that each of the PE's has also access to the local memories of its left and right neighbors.By using a slightly di�erent (i.e. phase-shifted) execution and transfer schedule for the odd andeven PE columns, we were able to avoid access conicts for the local memories.After deciding on the detailed execution order and data-distribution, we exactly knew whichdata where stored in what memory, and when these data where accessed. Given this information,we have then successfully (manually) applied storage order optimization techniques as describedin this paper to obtain minimal sizes for each of the memories (both shared and local). Thiswas done for each memory separately, as there is no interference between di�erent memories fora given schedule6.For MIMD-type architectures with shared memories similar observations can be made, pro-vided that the memory accesses can be synchronized and that their relative order is known atcompile time.5 A Pragmatic ApproachOur intention is to optimize the storage order for each array, such that the required size ofeach memory is minimal. However, as stated above, the constraints that have to be satis�edcan be very hard to evaluate in practice. Therefore, an optimization strategy that takes themexplicitly into account would probably not be feasible for realistic problems, so we have to usea more pragmatic approach that avoids the evaluation of these constraints, but that may leadto suboptimal results.Without loss of generality, we will concentrate on the size reduction of only one (shared)memory. In general, multiple memories can be present, but our techniques can be appliedto each memory separately, as there is no interference between the optimizations for di�erentmemories for a given data-distribution and execution order.6Of course, due to symmetry reasons, it was su�cient to perform this step only for a few memories, and applythe results to the similarly accessed memories.



5.1 ObservationsWe can identify two components in the storage order of arrays:� the intra-array storage order, which refers to the internal organization of an array inmemory (e.g. row-major or column-major layout);� the inter-array storage order, which refers to the relative position of di�erent arrays inmemory (e.g. the o�sets, possible interleaving, ...).This observation has stimulated us to come up with a two-phase approach. In a �rst phase,we try to �nd an optimal intra-array storage order for each array separately. This storage orderthen translates into a partially �xed address equation, which we will refer to as the abstractaddress equation (AAE). In the second phase, we look for an optimal inter-array storage order,resulting in a fully �xed address equation for each array. This equation will be referred to asthe real address equation (RAE).We will now outline a few strategies that can be used to obtain a RAE for each array, giventheir AAE's and corresponding OATD's (i.e. the second phase). However, in this paper weconcentrate on the �rst phase, while a detailed discussion of the techniques and heuristics beingused for tackling the second phase will be available in a future paper [8].5.2 Inter-array storage orderIn general, the exact shape of the (B)OATD's is not known, as we only have implicit descriptions.It is however possible to extract certain properties (e.g. the width or the height of an OATD)which allow us to approximate the shape of the OATD's. These approximations can then beused in several ways, depending on their accuracy, as indicated next.In �gure 3a, the OATD's of 5 di�erent arrays are shown. The simplest way to allocatememory for these arrays is to assign a certain address range to each array in such a way thatthe di�erent address ranges do not overlap. The RAE then equals the AAE, shifted by a constanto�set, as illustrated in �gure 3b. We will refer to this �rst strategy as static allocation. Note thatthis approach results in no memory savings at all. The required memory size actually equalsthe sum of the sizes of the arrays. This is also the approach taken by traditional compilers.A potentially better strategy is illustrated in �gure 3c. Here a certain address range isallocated for each array, but only during the time that the array is in use. This allows sharingof certain address ranges by more than one array. We will refer to this strategy as dynamicallocation7. In general, a dynamic strategy requires less memory. Also note that this strategyactually approximates the OATD's of the arrays by rectangles8.These �rst two strategies have in common that the size of the address range assigned to anarray equals the size of the array, and that the intra-array storage order (which inuences theshape of the OATD's) has no e�ect on the total memory size.However, in general an array does not use its complete address range all the time. This haslead to the de�nition of an (address reference) window [9] as the maximum distance betweentwo addresses being occupied by the array during its life-cycle. This address reference windowis indicated for each of the arrays in �gure 3a by means of a vertical arrow. If we know the size7Note that this allocation strategy can be performed at compile time, in contrast to the traditional run-timedynamic allocation provided by certain languages such as C.8In [8], we discuss some extensions though.
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Figure 3: Di�erent allocation strategiesof the window, we can \fold" the OATD's of the arrays by applying a modulo operation to theAAE's. After the folding, we can apply either the static or the dynamic allocation strategy, asindicated in �gure 3d and �gure 3e. Note that the windowed strategies in general require lessmemory than the non-windowed ones. They require the calculation of the address referencewindow though. Moreover, the internal storage order of the arrays inuences the shape of theOATD's and hence the size of the address reference window. In section 6 we describe techniquesfor exact evaluation of the window and optimization of the intra-array storage order to obtainminimal window sizes.A possibly even better strategy is depicted in �gure 3f. In a �rst step, the OATD's are shifted(and possibly even vertically scaled or ipped) such that their common window is minimal. Afterthat, the complete address range is folded by this one window. Note that for this example,the last strategy is the best one, but this is not true in general. The strategy with separatewindows can sometimes yield better results (e.g. when the OATD's don't \�t" together verywell). Moreover, the common window strategy requires the evaluation of the abovementionedvery complex constraints, i.e. one has to make sure that the OATD's do not overlap, otherwise



di�erent arrays would simultaneously use the same memory locations, which is obviously illegal.Therefore, we will concentrate on the strategy with separate windows for each array, asdepicted in �gure 3e, as it o�ers the best compromise between optimality and complexity. Ourdetailed placement strategy is discussed in [8], but some of the results we obtained are alsopresented in section 7.5.3 Intra-array storage orderFrom the discussion of the inter-array storage order strategies, we can derive that we have totry to �nd the intra-array storage orders that result in OATD's that are as \thin" as possible,i.e. that have the smallest address reference window. The number of possible storage orders ishuge however, even if we restrict ourselves to the a�ne ones. Moreover, checking whether a stor-age order is valid generally requires the evaluation of the abovementioned complex constraintsand to our knowledge no practically feasible strategy exist for choosing the best order.Therefore, we will restrict the number of possibilities drastically. First of all, we will requirethat each element of an array is mapped onto an abstract address that is unique w.r.t. theaddress of the other elements of the same array. In that way, we can avoid checking for intra-array memory occupation conicts9. Another requirement we impose is that the storage ordershould be dense, i.e. the set of abstract addresses occupied by a rectangular array should be aclosed interval. A row-major order as in C for instance, satis�es this requirement. However, formulti-dimensional arrays, we will consider all possible orders of the dimensions, and also bothdirections (i.e. positive and negative) for each dimension. Consequently each AAE will have thefollowing format and properties:AAEx = N1x(�Bn1x � an1x) +N2x(�Bn2x � an2x) + :::+NDx(�BnDx � anDx) (1)N1x = max(N2x(�Bn2x � an2x) + :::+NDx(�BnDx � anDx)) = N2xN3x:::NDx � 1N2x = max(N3x(�Bn3x � an3x) + :::+NDx(�BnDx � anDx)) = N3x:::NDx � 1:::NDx = 1Here, anix and Bnix represent the index and the upper or lower bound of dimension ni ofarray x respectively. The Nix coe�cients are constants, obeying certain criteria to obtain densestorage orders. The signs depend on the chosen dimension directions and D equals the totalnumber of dimensions of the array. An example of the possible orders we consider for a 2x3 2-Darray is given in �gure 4.In general, for a N-dimensional array, we consider 2NN ! possibilities. For a 6-D array10 forinstance, there are no less than 46080 possibilities! It must be clear that even though this isonly a very limited subset of all possible storage orders, evaluating this set will be infeasible forarrays with many dimensions. So we have to come up with a more intelligent search strategy.But �rst we will describe how we can evaluate the size of a window for a given storage order.9Note that we only require this for the abstract addresses. Later on, due to the possible folding, severalelements may use the same real addresses, provided that they have non-overlapping life-times. Moreover, onecan always split arrays at the speci�cation level to provide more freedom (or merge/interleave them to limit thefreedom).10A 6-D array is not unusual for single-assignment code.
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array with N dimensions and D dependences, at most 2NN !D(D+ 1) ILP problems have to besolved.A better strategy can be based on the following observation: given that we have �xed theorder and direction of some of the dimensions, we can already calculate an upper and a lowerbound on the window, no matter what the order and direction of the remaining dimensions is.This is possible due to the special properties of the AAE presented in equation 1 and can beunderstood as follows.Supposing that we have already chosen the �rst dimension and its direction, we can calculatea window for the corresponding partial AAE: W1x = window(N1x(�Bn1x � an1x)). One caneasily prove that W1x �N1x + 1 � window(AAEx) � W1x. Similarly, if we have �xed the �rsttwo dimensions, then W2x �N2x + 1 � window(AAEx) � W2x. Due to the decreasing valuesof the Nix constants, the distance between the upper and lower bounds will gradually decreaseas we �x more dimensions. Eventually, when all dimensions have been �xed, the upper andlower bound will coincide. This property is ideally suited for being used in a branch-and-bound(B&B) strategy, because large parts of the search tree can usually be pruned. Of course theworst-case complexity (N !PNi=1 2i(N�i)! alternatives) of a full B&B strategy is worse than thatof a full search (2NN ! alternatives), but in practice it is highly unlikely that the complete B&Btree will have to be searched as there are usually some dominant dimensions. In our experiments(see section 7), the number of evaluated nodes in the search tree was always reasonable.We have also evaluated a more greedy, but heuristic B&B search strategy, in which we followonly the most promising branch at each node in the search tree. In that case, only N(N + 1)window evaluations are necessary, and even that has always lead to very good and most of thetime even optimal results (within the boundaries of our search space).In our implementation for each of the considered search strategies, we have introduced severaloptimizations (usually based on common data-ow analysis techniques) that enable us to reducethe number of ILP problems to be solved and/or their complexity drastically in practice13, butdue to space limitations, we cannot discuss them here.7 Experimental ResultsOur size reduction strategy is intended to be applied to each memory separately after thetraditional data-distribution and transfer scheduling steps, i.e. when we know the relative orderof the accesses to each (shared) memory. The actual nature of the execution order (i.e. parallelor sequential) is not relevant for our techniques, as we are only interested in the relative memoryaccess order. We therefore assumed in each of our experiments that all of the arrays had to bestored in one (shared) memory, and that the applications had to be executed sequentially, butthe techniques would work equally well in case of a parallel execution order.In table 1 we present the most relevant properties of a the multimedia applications and ap-plication kernels that we used as test vehicles, namely an updating singular value decompositionalgorithm, a 2-D wavelet compression algorithm, an edge detection algorithm, a 3-D volume ren-dering algorithm, a voice coder algorithm, and a public domain GSM autocorrelation algorithm.The table contains a.o. the required array memory sizes for the original multiple-assignmentversions and the single-assignment versions of the algorithms (with the same assumptions: one13E.g. for the B&B strategies, if the bound is exceeded during the evaluation of the window for a certain node,we simply abort the evaluation.



memory and a sequential execution order). The last column also indicates the maximal numberof scalars that is simultaneously alive during the execution of the algorithms (obtained by sym-bolic simulation). This column represents a lower bound on the required memory sizes, i.e. thesize that would be required if all the arrays would be split in scalars, a solution that is obvi-ously unacceptable for realistic multimedia applications, as the control and address generationoverhead would be prohibitively large14.Application # Max. Max. Multiple Single ScalarArrays #Depend. #Dimens. Assignment Assignment Minimumper Array per Array [words] [words] [words]Updating 6 27 4 6013 6038 211SVD2D 11 18 5 1186 8704 514waveletEdge 18 17 4 724 5647 116detection3D volume 22 11 8 26581 216M infeas.renderingReduced 3D 22 11 8 166 6976 134volume rend.Voice 201 41 6 2963 314K 905coderGSM 17 35 3 532 1279 209autocorrelation Table 1: Relevant application propertiesWe then let our prototype tool decide on an optimal storage order for each array (usingdi�erent strategies). The resulting memory sizes (in terms of the number of words) and theoptimization run-times of our prototype tool are indicated in table 2. We compared �ve staticwindowed allocation strategies and a dynamic approach. In the �rst two static strategies, weassumed a �xed internal storage order (i.e. row-major or column-major) that we combined withan address reference window. In the remaining three static strategies, we also explored otherintra-array storage orders, using di�erent search techniques. Finally, the last column containsthe results for a dynamic strategy which is based on the full branch-and-bound static one. Theadditional techniques and heuristics used in our dynamic allocation strategy are described in afuture paper [8].From this table, we can see that the savings in memory size for the windowed strategiescan be considerable, especially for the dynamic strategy, while the run-times are certainlyacceptable in an embedded application design context. It also shows that an arbitrary choiceof the storage order (i.e. row-major or column-major) can easily lead to suboptimal results.The row-major storage order performs quite well for most of the experiments, but this can beexplained by the fact these examples have been written manually, and humans seem to tendto access arrays in a row-major manner. In our ATOMIUM memory and power optimizationcontext [7] however, the memory size reduction step follows several other steps that make14For larger examples, such as the 3D volume rendering, even symbolic simulation is infeasible.



Static Windowed Allocation (only intra-array optimization) DynamicRow-major Col.-major Full Search Full B&B Heur. B&B Wind. All.Applic. [words] [words] [words] [words] [words] [words][seconds] [seconds] [seconds] [seconds] [seconds] [seconds]Updating 3067 484 314 314 314 312SVD 59 59 84 74 73 742D 3500 8348 3038(1024) 3038(1024) 3038(1024) 2846(832)wavelet 47 49 66 57 56 72Edge 580 1021 576 576 576 189detection 45 45 46 45 45 473D vol. 26576 216M 26576 26576 26576 25603render. 263 267 355 292 282 295Reduc. 3D 166 4756 166 166 168 147vol. rend. 199 197 227 213 208 216Voice 2417 38537 2403 2403 2403 1130coder 942 928 1032 1004 997 1624GSM 667 1096 529 529 529 248autocorr. 58 56 61 59 59 78Table 2: Experimental results: memory sizes and optimization run-times.extensive use of loop transformations. After these loop transformations, the array access ordercan be changed drastically and consequently the row-major order is in general no longer likelyto be near-optimal. The updating SVD algorithm is such an example that has been subject toloop transformations before our optimizations.In contrast to what might be expected, the full search and B&B techniques have comparablerun-times, even for applications with arrays with a large number of dimensions. The reason whythe full search strategy run-times do not explode even in these cases, is that we �rst perform ananalysis which can detect dimensions that can be completely \collapsed", i.e. dimensions thatwould have no e�ect on the window size for the optimal storage order, as they would always\end up on the outside". Usually only a few dimensions remain, such that an explosion of thenumber of combinations does not occur. Nevertheless, the B&B techniques tend to be faster andthey are probably the best choice. The full B&B version is probably preferable as it guaranteesthe optimal solution (within the search space), in contrast to the heuristic B&B.The optimization run-times also turn out to be relatively independent of the size parametersof the applications (e.g. the sizes of the loop bounds), as indicated by the results obtained for the3D volume rendering application. The run-times for the original speci�cation are comparableto those obtained for a version with (heavily) reduced size parameters, even though the numberof array elements di�ers orders of magnitude.Also note that in most cases we were able to e�ectively remove the single-assignment over-head, and that for these cases we usually obtain results that are substantially better than whatwould be obtained by a standard compiler (i.e. the multiple assignment column in table 1).Only for one example, namely the 2D wavelet algorithm, we could not remove the overhead.Detailed inspection of the example revealed that for two arrays one of the dimensions could notbe \collapsed" with our techniques due to a special access pattern. By extending our techniques



with a projection approach as described in [14], or by applying a loop transformation in advance,this overhead can be removed too, and this would result in a memory size of 1024 words for thebest static approaches and 832 words for the dynamic approach (indicated between brackets).Apart from the single-assignment overhead removal, the additional size reductions are de�-nitely worthwhile. For the updating SVD example for instance, no \trivial" collapsing could bedone. The tool \s2p", that implements the strategy described in [9], and to our knowledge theonly other tool that tries to perform our type of optimizations15, could not reduce the memoryusage to less than 3285 words16, while we were able to reduce it to 312 words.Finally, the table also shows that a dynamic approach can result in a considerable gaincompared to a static approach that is also taken by other researchers [14].8 ConclusionIn this paper we have presented a two-phase strategy that is able to reduce the memory sizerequirements for arrays in static control single assignment programs with a static schedule.We have concentrated on the �rst phase which deals with intra-array storage reduction. Thee�ectiveness and feasibility this strategy has been demonstrated on several relevant multimediaalgorithms and can be very valuable in an embedded (parallel) multimedia application context.References[1] F. Catthoor, W. Geurts, and H. De Man. Loop transformation methodology for �xed-rate video, image and telecom processing applications. In Proc. Int. Conf. on ApplicationSpeci�c Array Processors, pages 427{438, San Francisco, CA, Aug. 1994.[2] R. Gonzalez and M. Horowitz. Energy dissipation in general-purpose microprocessors.IEEE J. Solid-state Circ., SC-31(9):1277{1283, Sep. 1996.[3] T. H. Meng, B. Gordon, E. Tsern, and A. Hung. Portable video-on-demand in wirelesscommunication. Proc. of the IEEE, special issue on Low power electronics, 83(4):659{680,April 1995.[4] L. Nachtergaele, F. Catthoor, B. Kapoor, S. Janssens, and D. Moolenaar. Low powerstorage exploration for H.263 video decoder system. In W. Burleson, K. Konstantinides,and T. Meng, editors, VLSI Signal processing IX, pages 115{124. IEEE press, October1996.[5] S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man. Power exploration for datadominated video applications. In Proc. Int. Symposium on Low Power Electronics andDesign, pages 359{364, Monterey, USA, August 1996.[6] E. De Greef, F. Catthoor, and H. De Man. Reducing storage size for static control programsmapped onto parallel architectures. In Dagstuhl Seminar on Loop Parallelization, Dagstuhl,Germany, Apr. 1996.15Of course, several scalar memory/register reuse approaches exist, but it must be clear that these approachesare infeasible for data-intensive multimedia applications, where the number of scalars is huge.16The tool actually calculates an upper-bound for the windowed row-major storage order.
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