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Abstract: High-resolution CFD simulations and full-scale measurements have 
been performed to assess the dispersion of air pollutants (CO2) from the large 
semi-enclosed Amsterdam ArenA football stadium. The dispersion process is 
driven by natural ventilation by the urban wind flow and by buoyancy, and by the 
interaction between outdoor wind flow and indoor airflow which are only connected 
by the relatively small ventilation openings in the stadium facade. The CFD 
simulations are performed with the 3D Reynolds-averaged Navier-Stokes equations 

supplemented with the realizable k-ε model to provide closure. The full-scale 
measurements include reference wind speed, wind direction, and outdoor and 
indoor air temperature, water vapor and indoor CO2 concentration. In particular, the 
focus is on CFD simulations and measurements for the few hours immediately after 
a concert, when the stadium roof remains closed and when indoor air temperature, 
water vapor and CO2 concentration have reached a maximum level due to the 
attendants. The removal of the sources/attendants allows an assessment of the 
natural ventilation rate using the concentration decay method. The CFD simulations 
compare favorably with the measurements in terms of mean wind velocity in the 
main ventilation openings and in terms of the CO2 concentration decay after the 
concerts. The validated CFD model will in the future be used for a detailed 
evaluation of indoor concentration gradients and the interaction between wind-
induced and buoyancy-induced natural ventilation.  
 
Keywords: Computational Fluid Dynamics (CFD); natural ventilation; buoyancy; 
stadium aerodynamics.   
 
 
1 INTRODUCTION 

 
The removal of contaminants from buildings is important for indoor air quality and 
for the comfort and health of the occupants. Natural ventilation by wind and 
buoyancy is a sustainable approach for removal of contaminants [e.g. Linden 1999, 
Hunt and Linden 1999, Li and Delsante 2001]. One of the available methods to 
analyze natural ventilation of buildings is Computational Fluid Dynamics (CFD) [e.g. 
Heiselberg et al. 2004, Chen 2009, van Hooff and Blocken 2010, Ramponi and 
Blocken 2012]. However, the accuracy and reliability of CFD are important 
concerns. Therefore, CFD verification and validation are imperative [e.g. Casey and 
Wintergerste 2000, Jakeman et al. 2006, Franke et al. 2004, 2007, Tominaga et al. 
2008, Chen 2009, Blocken et al. 2012, Blocken and Gualtieri 2012]. This requires 
high-quality experimental data, either wind tunnel data or field data. These data in 
turn need to satisfy certain quality criteria [Schatzmann et al. 1997, Schatzmann 
and Leitl 2011]. This paper presents a case study in which the dispersion of CO2 in 
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the Amsterdam ArenA football stadium and its removal by natural ventilation are 
modeled using CFD, and in which the CFD simulations are validated by comparison 
with full-scale experiments. The validated CFD model can be used in future studies 
to assess indoor pollutant concentration gradients. These gradients indicate how 
good the enclosure is ventilated and provides information on stagnant regions, 
short-circuiting, etc.  The Amsterdam ArenA is a multifunctional stadium that hosts 
a wide variety of activities, such as football games, concerts, conferences and 
festivities. During these activities, the roof is closed, and natural ventilation can only 
occur through the relatively small ventilation openings in the stadium facade. The 
CFD simulations in this paper are performed in a fully coupled way, i.e. outdoor and 
indoor air flow are modeled simultaneously in the same computational domain. This 
study is an extension of the earlier study with the same computational model [van 
Hooff and Blocken 2010]. It presents a further validation of this model for the 
specific complex situation after the concerts, when different physical processes 
such as heat and mass (water vapor and CO2) transfer interact and where this 
interaction determines the natural ventilation rate.  
    
 
2 DESCRIPTION OF STADIUM AND SURROUNDINGS 
 
The ArenA stadium is surrounded by several medium and high-rise buildings, with 
heights varying from 12 m to a maximum of 95 m for the “ABN-AMRO” office 
building, which is located on the south-west side of the ArenA. The aerodynamic 
roughness length y0 of the surroundings, which is needed for the CFD simulations, 
is determined from the updated Davenport roughness classification [Wieringa 
1992]. The area on the north side of the ArenA can be classified as “closed terrain” 
due to the urban character that is present in a radius of 10 km upwind. The 
estimated y0 for this area is 1.0 m. The area on the south side can be characterized 
with y0 = 0.5 m. The Amsterdam ArenA is a so-called oval stadium (Fig. 1a). The 
roof is dome shaped, semi-transparent and can be closed by moving two large 
panels with a projected horizontal area of 110 x 40 m

2
 (L x W). The stand consists 

of two separate tiers and runs along the entire perimeter. Figures 1a-c show a 
detailed plan view and the two cross-sections αα’ and ββ’. The exterior stadium 
dimensions are 226 x 190 x 72 m

3
 (L x W x H). The stadium has a capacity of 

51,628 seated spectators and an interior volume of about 1.2 x 10
6
 m

3
.  

 

 
Figure 1. (a) Horizontal cross-section of stadium. The arrows indicate the four large 

openings (gates) in the corners of the stadium. (b) Cross-section αα’. (c) Cross-
section ββ’. The four measurement positions (⊗) for air temperature, CO2 and 
water vapor concentration inside the stadium are indicated. Dimensions in m. 

 
In absence of HVAC (Heating, Ventilation and Air-Conditioning) systems, natural 
ventilation is the only means to ensure indoor air quality. Natural ventilation can 
occur through the openings that are present in the envelope of the stadium. The 
ArenA has several of such openings. The roof is the largest potential opening. 
During concerts and other festivities however, which are usually held in the summer 
period, the roof is closed most of the time to provide shelter to the spectators and 
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the technical equipment. When the roof is completely open, it is the largest opening 
(4,400 m

2
) in the stadium envelope. When it is closed, natural ventilation of the 

stadium can only occur through a few smaller openings. The four gates in the 
corners of the stadium (Fig. 1a) together form the second largest (potential) 
opening (4 x 41.5 m

2
). They are generally completely open. Additionally, two 

relatively narrow openings are present in the upper part of the stadium (Fig. 2). The 
first one is situated between the stand and the steel roof construction, and runs 
along the entire perimeter of the roof (Fig. 2a). It has a total surface area of 130 m

2
. 

The other one is situated between the fixed and movable part of the roof (Fig. 2b). 
This opening is only present along the two longest edges of the stadium and has a 
total surface area of about 85 m

2
. Of these openings, only the roof and gates can 

be opened/closed. In the basic configuration analyzed in this study, the roof is 
closed, and all other openings are open. More information on the geometry of the 
stadium and its surroundings can be found in van Hooff and Blocken [2010]. 
 

 
Figure 2. (a) Ventilation opening between the stand and the roof construction.  

(b) Ventilation opening between the fixed and the movable part of the roof. 
 
3 FULL-SCALE MEASUREMENTS 
 
3.1 Wind velocity 

 
For CFD validation purposes, the 3D wind velocity in and around the stadium was 
measured in the period September-November 2007, on days with strong winds 
(reference wind speed above 8 m/s). Measurements were made with ultrasonic 
anemometers, positioned on mobile posts, at a height of 2 m above the floor. The 
measurement positions included the four openings (gates) in the corners of the 
stadium. Reference wind speed (Uref; meas) was measured on top of a 10 m mast on 
the roof of the 95 m high ABN-AMRO office building, which is the highest building in 
the proximity of the stadium. The data were sampled at 5 Hz, averaged into 10-
minute values and analyzed. Only data with at least 12 different 10-minute values 
per wind direction sector of 10° were retained. The measurement results will be 
reported together with the simulation results in section 5.1. 
 
 
3.2 CO2, temperature and vapor concentration decay 

 
To assess the natural ventilation in the stadium, CO2 measurements were 
performed at four different locations (Fig. 1a-c) and converted to air change rates 
per hour (ACH) using the concentration decay method: 

( ) ( )0 1

1 0

ln lnC C
ACH

−
=

−

τ τ

τ τ
 (1) 
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where ACH is expressed in h
-1

, C(τ0) is the concentration at time 0 in ppm, C(τ1) the 
concentration at τ1 in ppm and (τ1-τ0) the time between the two measurements. The 
CO2 concentration at the four positions was measured during three consecutive 
days on which concerts took place: June 1

st
, 2

nd
 and 3

rd
. The analysis of the 

measurements is focused on the period following each of the concerts (0:00 – 2:30 
am), when the CO2 concentration had reached a maximum level caused by the 
attendants. The indoor air temperature and vapor concentration were measured 
simultaneously at the same four locations (Fig. 1). Furthermore, the outdoor air 
temperature and vapor pressure were measured. The outdoor temperature during 
the CO2 measurements on all evenings was about 19˚C and the indoor air 
temperature was about 26˚C at the end of the concerts and decayed to about 19˚C 
at 2:30 am. The water vapor concentration decayed from 15 g/kg to 10 g/kg. From 
0:00 – 2:30 am, the potential mean wind speed U10 measured by the Dutch 
Meteorological Institute (KNMI) at Schiphol airport was about 3.5 m/s and the wind 
direction on the three days was about 40° from north. Because of the similar 
conditions, the measured ACH values for these three nights were averaged. 
Although differences are present between the four measurement positions, and 
also between the three consecutive evenings, the total average ACH was around 
0.67 h

-1
 with a relatively small maximum deviation of about ±10% for the values at 

each individual position. The ACH values based on the CO2 concentration decay 
curves on three consecutive evenings were within 8% of the average ACH value for 
each particular position. 
 

 
4 CFD SIMULATIONS: COMPUTATIONAL MODEL AND PARAMETERS 
 
4.1 Model geometry and computational domain 

 
The computational model of the stadium reproduces its geometrical complexity with 
high resolution, down to details of 0.02 m. This is required to accurately model the 
flow through the narrow ventilation openings (Fig. 2a,b). The computational domain 
has dimensions L x W x H = 2,900 x 2,900 x 908.5 m³. The maximum blockage 
ratio is 1.6%, which is well below the recommended maximum of 3-5% [Franke et 
al. 2007, Tominaga et al. 2008]. The distance from the building to the sides, to the 
inlet and to the top of the domain is at least five times the height of the building and 
the distance from the building to the outlet is fifteen times the height [Franke et al. 
2007, Tominaga et al. 2008]. 
  
4.2 Computational grid 
 
The computational grid consists of 5.6 million prismatic and hexahedral cells. The 
grid is a hybrid grid; it is partially structured and partially unstructured. Special 
attention was paid to the precise modeling and high grid resolution of the ventilation 
openings of the stadium. A high grid resolution is used in the proximity of these 
openings in order to accurately model the flow. A grid-sensitivity analysis was 
performed with grids containing 3.0 million, 5.6 million and 9.2 million cells, 
indicating that the 5.6 million grid provides fairly grid-independent results. The 
specific procedure that was used to construct this body-fitted grid and the grid-
sensitivity analysis are reported in van Hooff and Blocken [2010]. Some parts of the 
computational grid are displayed in Figure 3a,b. 
 
4.3 Boundary conditions 
 
At the inlet of the domain a logarithmic mean wind speed profile representing a 
neutral atmospheric boundary layer is imposed with an aerodynamic roughness 
length y0 of 0.5 m and 1.0 m, depending on the wind direction, and a reference wind 
speed U10 at 10 m height of 3.5 m/s. The corresponding turbulent kinetic energy 
and the turbulence dissipation rate profiles are also imposed [van Hooff and 
Blocken 2010]. Note that no time-dependent velocity fluctuations are imposed at 
the inlet. The roughness of the bottom of the domain is taken into account by 
imposing appropriate values for the sand-grain roughness kS and the roughness 
constant CS in the standard wall functions [Launder and Spalding 1974, Cebeci and 
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Bradshaw 1977]. For Fluent 6, these parameters are calculated from the 
aerodynamic roughness length using kS = (9.793y0)/CS [Blocken et al. 2007]. The 
value for CS is set equal to 7 with a user defined function (UDF) in the Fluent 6.3.26 
code and the sand-grain roughness kS is taken equal to 0.7 m. More information on 
this matter is provided in [Blocken et al. 2007]. For the ground surface in the direct 
vicinity of the explicitly modeled buildings and the stadium, y0 = 0.03 m, which is 
imposed by setting kS = 0.59 m and CS = 0.5. Zero static pressure is set at the 
outlet of the domain and the top is modeled as a slip wall (zero normal velocity and 
zero normal gradients of all variables). The boundary conditions for the CO2 
dispersion simulation will be presented in section 5.2.  
 

 
Figure 3. (a) View from north showing part of the computational grid on the 
surfaces of the stadium and its surroundings. (b) Bird-eye view of the grid 

on the southeast side of the stadium. 
   
4.4 Other computational parameters 
 
The 3D steady and unsteady RANS equations are solved in combination with the 
realizable k-ε turbulence model [Shih et al. 1995] using the commercial CFD code 
Fluent 6.3.26 [2006]. The realizable k-ε turbulence model is chosen because of its 
general good performance for wind flow around and inside buildings [Linden 1999, 
Franke et al. 2004]. Pressure-velocity coupling is taken care of by the SIMPLE 
algorithm, pressure interpolation is standard and second-order discretization 
schemes are used for both the convection terms and the viscous terms of the 
governing equations. The Boussinesq approximation is used for thermal modeling. 
 
 
5 CFD SIMULATIONS: RESULTS 
 
5.1 Wind velocity 
 
For validation purposes a set of steady RANS simulations is performed without 
thermal effects and without incorporation of CO2 and vapor concentration, because 
the conditions during the wind velocity measurements (i.e. strong wind conditions) 
are reproduced. The simulated and measured mean wind speed ratio and mean 
wind direction in the four gates (A, B, C, D) are compared. The mean wind speed 
ratio is defined as the magnitude of 3D mean velocity vector at the measurement 
position divided by the reference mean wind speed Uref measured on top of the 
ABN-AMRO office building. This ratio is also calculated with CFD and both ratios 
are compared in Figure 4. For brevity, results are only shown for wind direction φ = 
228˚. The computed mean wind speed ratio in general lies within 25% of the 
measured mean wind speed ratio. Given the complexity of the stadium and its 
surroundings, this can be regarded as a fair to good agreement. The same holds 
for the computed  local mean wind directions in the gates (Fig. 4b), which generally 
are within 10° of the measured wind directions, except for gate D. In this gate, the 
CFD simulation predicts a flow parallel to the opening, whereas the measurements 
showed flow directed into the stadium (90° deviation). This can probably be 
attributed to the presence of slender columns close to this measurement position, 
which were not included in the CFD model. Overall, a fair agreement between 
simulations and measurements is obtained. 
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5.2 CO2 dispersion and removal 
 
These simulations are intended to reproduce the conditions at the end of the 
concerts (0:00 – 2:30 am), as described in section 3.2. Two consecutive 
simulations are performed. First, steady RANS is used to calculate the steady-state 
wind-flow pattern in and around the stadium, to be used as initial condition for the 
transient simulations. Next, unsteady RANS CFD simulations of wind flow and the 
decay of air temperature, CO2 and water vapor concentration are performed. The 
initial values for temperature, vapor and CO2 concentration outside and inside the 
stadium are set to the measured values at the beginning of the CO2 
measurements. The indoor air temperature at the beginning of the CO2 decay 
simulation is set to 26ºC, the outdoor temperature is set equal to the measured 
value of 19°C. The surface temperatures are assumed to be equal to the indoor 
temperature, which is a simplification of the real surface temperatures that will have 
been slightly higher. The CO2 concentration inside the stadium is set to the 
measured maximum value of 2000 ppm (uniformly distributed) and the 
concentration outside the stadium is set to 400 ppm. The indoor water vapor 
pressure is set on 15 g/kg whereas the ambient water vapor pressure is set on 10 
g/kg. To incorporate the effect of changing air temperatures and water vapor 
concentrations on the flow field the momentum equations are solved 
simultaneously with the species transport and energy equations. The time step is 
30 seconds. Note that the overall decay of air temperature, water vapor and CO2 
concentration are of primary interest in this study, and not the short-term velocity 
fluctuations, which would have required smaller time steps. 
 

 

Figure 4. Comparison between numerical and experimental results in the four 
gates A, B, C and D, for closed roof and reference wind direction φ of 228º.  

(a) Dimensionless mean wind speed ratio U/Uref; (b) local mean wind direction φ. 
 
5.3 Results 
 
Figure 5 shows the measured CO2 concentration decay at position N2 as well as 
the simulated CO2 concentration decay for five different positions: the four 
measurement positions and the middle of the stadium interior. The CO2 
concentration decay curve at N2 obtained with the CFD simulations shows a fair 
agreement with the measured decay curve. The average deviation in CO2 
concentration amounts 8.2%. Furthermore, the ACH based on the CFD simulations 
is 0.64 h

-1
, which corresponds well to the measured averaged ACH value of 0.67 h

-1
 

(difference < 5%). Positions N1, SE1 and “Middle” show a larger deviation, but 
overall these curves show a fair to good agreement with the measurements as well. 
One possible explanation for the larger deviations at these three positions is that 
they are all located at a relatively large distance from the ventilation openings, while 
positions N2 and SE2 are located in the close vicinity of the ventilation openings 
near the gutter. In this area the wind will dominate the flow, whereas inside the 
stadium buoyancy will be more important. Since the surface temperatures inside 
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the stadium are slightly lower than the ones in reality, small deviations can be 
present with respect to the buoyancy-driven flow inside the stadium. 
 

 
Figure 5. (a) Measured CO2 decay (dotted line) for position N2 and simulated CO2 

decay (continuous lines) using URANS for five different positions inside the 
stadium. (b) Positions for the measurements and/or simulations. 

 
6 SUMMARY AND CONCLUSIONS 
 
High-resolution CFD simulations and full-scale measurements have been 
performed to assess the dispersion of air pollutants from the large semi-enclosed 
Amsterdam ArenA football stadium. The following conclusions are made: 

• Wind velocity measurements have been used as a first validation step for the 
CFD model of the stadium and its surroundings and a fair agreement between 
simulations and measurements has been found.  

• A grid-sensitivity analysis for the wind velocity through the gates as main 
ventilation openings has been performed, which has resulted in a grid with 5.6 
million cells.  

• CFD simulations of CO2 concentration decay have been made and they have 
been compared with measurement results, and a fair to good agreement has 
been obtained. 

• This study is only a first step. Further research will consist of additional 
investigations into the sensitivity of CFD indoor dispersion and natural ventilation 
results to the wide range of computational parameters. 

• The validated CFD model will be used in future research for a detailed 
evaluation of indoor concentration gradients and the interaction between wind-
induced and buoyancy-induced natural ventilation. 

 
  
ACKNOWLEDGEMENTS 
 
Twan van Hooff is currently a PhD student funded by both Eindhoven University of 
Technology in the Netherlands and Fonds Wetenschappelijk Onderzoek (FWO) - 
Flanders, Belgium (FWO project number: G.0435.08). The FWO Flanders supports 
and stimulates fundamental research in Flanders. Its contribution is gratefully 
acknowledged. 
 
 
REFERENCES 
 
Blocken, B., T. Stathopoulos, and J. Carmeliet, CFD simulation of the atmospheric 

boundary layer: wall function problems, Atmospheric Environment, 41(2), 238-
252, 2007. 

Blocken, B., W.D. Janssen, and T. van Hooff, CFD simulation for pedestrian wind 
comfort and wind safety in urban areas: General decision framework and case 



T. van Hooff and B. Blocken / Air Pollutant Dispersion from a Large Semi-enclosed Stadium in an 
Urban Area 

 

study for the Eindhoven University campus, Environmental Modelling & 
Software, 30, 15-34, 2012.  

Blocken, B., and C. Gualtieri, 2012. Ten iterative steps for model development and 
evaluation applied to Computational Fluid Dynamics for Environmental Fluid 
Mechanics, Environmental Modelling & Software, 33, 1-22, 2012. 

Casey, M., and T. Wintergerste, Best Practice Guidelines, ERCOFTAC Special 
Interest Group on Quality and Trust in Industrial CFD, ERCOFTAC, Brussels, 
2000.  

Cebeci, T., and P. Bradshaw, Momentum transfer in boundary layers, Hemisphere 
Publishing Corporation, New York, 1977. 

Chen, Q., Ventilation performance prediction for buildings: A method overview and 
recent applications, Building and Environment 44(4), 848-858, 2009. 

Fluent Inc., Fluent 6.3 User’s Guide. Fluent Inc., Lebanon, 2006. 
Franke, J., A. Hellsten, H. Schlünzen, and B. Carissimo, Best practice guideline for 

the CFD simulation of flows in the urban environment, COST 732: Quality 
Assurance and Improvement of Microscale Meteorological Models, 2007. 

Franke, J., C. Hirsch, A.G. Jensen, H.W. Krüs, M. Schatzmann, P.S. Westbury, 
S.D. Miles, J.A. Wisse, and N.G. Wright, Recommendations on the use of CFD 
in wind engineering. Proceedings of the International Conference on Urban Wind 
Engineering and Building Aerodynamics, COST Action C14, Impact of Wind and 
Storm on City Life Built Environment. Von Karman Institute, Sint-Genesius-
Rode, Belgium, 5–7 May 2004. 

Heiselberg, P., Y. Li, A. Andersen, M. Bjerre, and Z. Chen, Experimental and CFD 
evidence of multiple solutions in a naturally ventilated building, Indoor Air, 
14(1), 43-54, 2004. 

Hunt, G.R., and P.F. Linden, The fluid mechanics of natural ventilation - 
displacement ventilation by buoyancy-driven flows assisted by wind, Building 
and Environment, 34(6), 707-720, 1999. 

Jakeman, A.J., R.A. Letcher, and J.P. Norton, Ten iterative steps in development 
and evaluation of environmental models. Environmental Modelling & Software, 
21(5), 602-614, 2006. 

Launder, B.E., and D.B. Spalding, The numerical computation of turbulent flows. 
Computer Methods in Applied Mechanics and Engineering, 3, 269-289, 1974. 

Li, Y.G., and A. Delsante, Natural ventilation induced by combined wind and 
thermal forces, Building and Environment, 36(1), 59-71, 2001. 

Linden, P.F., The fluid mechanics of natural ventilation, Annual Reviews of Fluid 
Mechanics, 31: 201-238, 1999. 

Ramponi, R., and B. Blocken, CFD simulation of cross-ventilation for a generic 
isolated building: impact of computational parameters, Building and 
Environment, 53, 34-48, 2012. 

Schatzmann, M., S. Rafailidis, and M. Pavageau, Some remarks on the validation 
of small-scale dispersion models with field and laboratory data, Journal of Wind 
Engineering and Industrial Aerodynamics 67&68, 885-893, 1997. 

Schatzmann, M., and B. Leitl, Issues with validation of urban flow and dispersion 
CFD models. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 
169-186, 2011. 

Shih, T.H., J. Zhu, and J.L. Lumley, A new Reynolds stress algebraic equation 
model, Computer Methods in Applied Mechanics and Engineering, 125, 287–
302, 1995. 

Tominaga, Y., A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, and T. 
Shirasawa, AIJ guidelines for practical applications of CFD to pedestrian wind 
environment around buildings, Journal of Wind Engineering and Industrial 
Aerodynamics 96(10-11), 1749-1761, 2008. 

van Hooff, T. and B. Blocken, B., Coupled urban wind flow and indoor natural 
ventilation modelling on a high-resolution grid: A case study for the Amsterdam 
ArenA stadium, Environmental Modelling & Software, 25(1), 51-65, 2010. 

Wieringa, J., Updating the Davenport roughness classification, Journal of Wind 
Engineering and Industrial Aerodynamics, 41-44, 357-368, 1992. 


