
 1

Developing New Notations for a Learnable
Mathematics in the Computational Era

James Kaput
University of Massachusetts-Dartmouth, USA

Richard Noss
Institute of Education, University of London, UK

Celia Hoyles
Institute of Education, University of London, UK

Since the publication of this chapter, Jim Kaput was killed in a tragic road
accident. We have all lost an energetic, visionary and dedicated colleague.
Mathematics Education research has lost one of its greatest exponents, a
researcher who not only understood the world of education, but knew how to
change it. His theoretical work on the evolution of notational systems – much of it
presented by him in this article – as well as his practical contribution, most
recently through SimCalc, is living testimony to the importance and impact of his
work. And we have lost a friend: a friend with a wonderful sense of humour and
wit, a vibrant sense of fun, and an inspired intelligence. We will miss him.
CH/RN

Not for the first time we are at a turning point in intellectual history. The
appearances of new computational forms and literacies are pervading the social
and economic lives of individuals and nations alike. Yet nowhere is this upheaval
correspondingly represented in educational systems, in classrooms, or in school
curricula. As far as mathematics is concerned, the massive changes to
mathematics that characterize the late twentieth century—in terms of the way it is
done, and what counts as mathematics—are almost invisible in the classrooms of
our schools and, to only a slightly lesser extent, our universities.

The real changes are not technical: they are cultural. Understanding them (and
why some things change quickly and others change slowly) is a question of the
social relations among people, not among things. Nevertheless, there are
important ways in which computational technologies are different from those that
preceded them, and in trying to assess the actual and potential contribution of
these technologies to education, it will help to view them in a historical light.

 2

The notation systems we use to present and re-present our thoughts to ourselves
and to others, to create and communicate records across space and time, and to
support reasoning and computation, constitute a central part of any civilization’s
infrastructure. As with infrastructure in general, it functions best when it is taken
for granted, invisible, when it simply ‘works.’ This paper is being prepared as the
UK ground transportation system has, due to a number of additive causes, almost
totally failed, and when the electricity production and distribution system of
California is likewise in disarray. When the infrastructure either fails or undergoes
changes, the disruptions can be major. Further, they tend to propagate, so that one
change causes another in tightly interconnected systems—when the electricity
goes out, lots of other things go out too. The same is true on the positive side—
when a new technological infrastructure appears, such as the Internet, many
things change, often in unpredictable ways as sequences of new opportunity
spaces open up and old ones close down. Entire industries are born, old ways of
doing things change, sometimes in fundamental ways—how people participate in
the economy changes, the physically-based means for defining and controlling
ownership of intellectual property are challenged, and indeed, the means by which
innovation itself is fostered changes. Lastly, these kinds of infrastructural changes
are typically not the result of systematic planning or central control. They emerge
in unpredictable ways from the mix of existing circumstances.

These general questions of representational infrastructures, may seem far removed
from the apparently more mundane task of learning mathematics; but the central
challenge of mathematical learning for educators is surely the design of learnable
systems. Such systems depend for their learnability (or lack of it) on the
particularities and interconnectedness of the representational systems in which
they are expressed. These, as we stated at the outset, are undergoing rapid change.
In order to understand these changes more fully, we wish to examine the longer-
term sweep of representational infrastructure change across several important
examples in order to provide a long-term perspective on the content choices and
trends embodied in school mathematics. And as we shall see, mathematics enjoys
a particularly interesting role in this story.

The Earliest Quantitative Notation Systems
Most representational infrastructures develop in response to the social needs of
one or more groups, where the needs might be very broad and involve the whole
society, as was the case with the development of writing, or they may serve a
smaller subgroup such as mathematicians and scientists, who needed to express
and reason with general quantitative relationships and hence developed what we
now know as the algebraic system. Indeed, the earliest, pre-phonetic written
language co-evolved with mathematics in the cradle of western civilization some

 3

6–8 thousand years ago to record physical quantities through a gradual process of
semiotically abstracting the physical referents into systems of schematic
representations of those referents (Kaput & Shaffer, in press).

The systematicity initially took the form of separating inscriptions denoting
object-types from inscriptions denoting their properties (identity of owner, size,
color, vintage, etc.), and, gradually over hundreds of years, the numerosity
property. Inscriptions denoting numerosity gradually condensed, from a repetition
model where four instances of an item were represented by four tokens for that
type of item, then four tallies adjacent to a single token for that type of item, to a
modifier model employing symbols denoting numerosity, that is, a symbol for
“four,” replacing the tally marks. This last step required the co-evolution of the
concept of counting number, mainly through the work of those specialists who
were the scribes responsible for producing the records. There is little indication
that such early numbering systems were used for computation other than
incrementing and decrementing.

Distinct from, but certainly not unrelated to the notational system, was the
physical system in which it was instantiated: primarily clay, which afforded the
means to impress tokens of objects (sheepskins, jars of olive oil, etc.) first onto
clay envelopes containing the tokens and then tablets, when the tokens came to be
regarded as redundant (Schmandt-Besserat 1978, 1992). The medium was
temporarily inscriptable, and then hardened to provide stability that enabled the
inscriptions to act as records, indeed, somewhat mobile records. In this way,
evolutionary limitations of human biological memory were finally overcome
through the use of “extracortical” records (Donald, 1991).

The Evolution of Notation Systems Supporting Quantitative
Computation
We now examine the evolution of a second representational infrastructure. In the
several millennia that followed, and across several different societies where
urbanization and commerce developed, various number systems evolved to
support ever better and more compact ways of expressing quantities and abstract
numbers, particularly to express the large numbers required for calendar purposes
and for tracking quantities in the city-states and empires—Babylonian, Egyptian,
and eventually Roman. Importantly for our purposes, while they typically
embodied grouping structures, they tended not to be rigorously positional and
tended not to be fully hierarchical. The most tightly structured and efficient
system was the Babylonian (semi) sexigesimal (base 60) system. It employed a
mix of additive and multiplicative methods of representing numbers as there were
no common symbols for smaller numbers, (as with the Hindu-Arabic numerals). It

 4

did, however, use position to denote powers of 60. Hence a number would be
represented as an array of symbols for units, tens, and powers of 60 (using
cuneiform, or wedge-based signs). As is widely appreciated, this system
supported a rich practical mathematics that served many aspects of society for
more than two millennia, although with the lack of a zero for a placeholder (in its
later years a placeholder system did develop), it did not support efficient
multiplication or division. Further, the lack of compact numerals for the first nine
numbers meant that it was considerably less efficient for writing numbers in the
hundreds and thousands than our current system, and even less efficient,
relatively, for larger numbers. Of course, the contemporaneous writing systems
were likewise ideographic and difficult to learn and hence the tool of specialists—
scribes (Walker, 1987). The later Roman system was less structured and less
multiplicative in its organization, and hence even less efficient for multiplication
and division.

How did these systems survive in supporting the quite extensive calculational
tasks they were called upon to serve? The answer is clear: only a very small
minority of the respective societies were needed to do such calculations, and these
scribes were specially trained in the art of manipulating the symbol systems. In
this respect, the role of the physical medium (e.g. the marks made on clay and so
on) were crucial in supporting the prodigious amounts of human processing
power that would otherwise be engaged. While the structural features of the
notational system were not particularly tuned to calculational ends (anyone who
has ever tried to do long division with Roman numerals will testify to this) the
combination of the physical instantiation of symbols, together with human
processing power on the part of a few, was sufficient to sustain powerful empires
over hundreds and thousands of years. Furthermore, the existing static record-
keeping capacity could be used to record methods, results (especially in the case
of the Babylonians, who made wide use of tables of all sorts to record quantitative
information and mathematical relationships, make astronomical predictions, and
so on), and even instructional materials by which expertise could be extended
across generations (Kline 1953).

Another big representational transformation had roots several centuries earlier, in
the 8th to 11th centuries, preceding Fibonacci’s importation of the Hindu-Arabic
numerals into Europe in the early 13th century. More efficient methods of
computing developed, based on systematic use of specially-marked physical
“counting tables” on which physical tokens were manipulated. In this way, the
technology of the counting tables externalized some of the knowledge and
transformational skill which would otherwise have existed only in the minds of
individuals: the physical instantiation of these skills directly supported, not only

 5

the limited processing capacity of human brains, but the affordance of the
notational system for achieving results.

These results of computations were recorded first in Roman numerals, but then
gradually more often in Hindu-Arabic numerals. These methods are typically
referred to as “abacus” style computations based on the Greek word for slab, on
which the procedures took place. At the same time, and then more intensely
during the 13th century, new and more efficient ways of computing evolved based
on manipulation of the readily inscriptable Hindu-Arabic numerals in the
positional and hierarchical number system that Fibonacci had described. These
were referred to as “algorithm” style computations based on a Latinized version
of the name Abu Ja’far Muhammed ibn Musa al-Khwarizmi, a mathematician
from Baghdad who wrote an arithmetic book describing some of the early
computational schemes using Hindu-Arabic numerals.

It is instructive to see the prominence of commercial needs of the day in his
description of algebra:

... what is easiest and most useful in arithmetic, such as
men constantly require in cases of inheritance, legacies,
partition, lawsuits, and trade, and in all their dealings
with one another, or where the measuring of lands, the
digging of canals, geometrical computations, and other
objects of various sorts and kinds are concerned.

F Rosen (trs.), Muhammad ibn Musa Al-Khwarizmi :
Algebra (London, 1831)

Clearly, al-Khwarizmi conceived algebra as a way of solving pressing practical
problems of the Islamic Empire. Similarly, in response to burgeoning commerce
in the 14th and 15th centuries in northern Italy and elsewhere, the algorithms were
refined and gradually displaced the abacus methods, although not without
controversy1. The efficiency payoff of a positional and exponentially hierarchical
system was enormous because it allowed a person to compute simply by writing
and rewriting the small set of ten symbols according to certain rules (the
algorithms) and, on the basis of the quantitative coherence of the notation system,

1 In fact there was some resistance to writing abacus results in Hindu-Arabic numerals on the
grounds that they could be easily altered, e.g., changing a “6” to an “8” by adding a mark to the
top part of the “6,” or a “9” could be made from a “1” and so on.

 6

be assured of a correct answer based on the rules alone. Computational skill
became encoded in syntactically defined rules on a symbol system.

The algorithmic methods were put forward (anonymously) in what amounts to the
first arithmetic text, the Treviso, named after the city outside Venice where it was
published in 1478, less than 40 years after Gutenberg’s introduction of moveable
type (itself a response to the pressing need to find a way of salvaging religious
texts which contained mistakes, without destroying the entire work). These
algorithms, exploiting the physical positional structure of the notation system and
the paper medium, are essentially the same forms for addition, subtraction,
multiplication and division that have dominated school mathematics to the 20th
century. In the book (translated and appearing in Swetz, 1987) they were
illustrated within the contexts of commerce and currency exchange, and were
passed along from generation to generation as a body of practical knowledge in
what amounted to professional schools for “reckoners”—the accountants of the
time.

Interestingly, the Treviso was written in the vernacular, as opposed to Latin, and
thus was one of the first printed mathematics books intended to serve a “non-
academic” public—or at least that public who needed to know these special
techniques. The new representational infrastructure helped democratize access to
what had previously been the province of a small intellectual elite, since up to that
time numerical computations beyond addition and simple subtraction were a
scholarly pursuit undertaken at the universities. Recall the oft-cited anecdote from
Dantzig (1954):

It appears that a [German] merchant had a son whom he desired to
give an advanced commercial education. He appealed to a prominent
professor of a university for advice as to where he should send his son.
The reply was that if the mathematical curriculum of the young man
was to be confined to adding and subtracting, he perhaps could obtain
the instruction in a German university; but the art of multiplying and
dividing, he continued, had been greatly developed in Italy, which, in
his opinion, was the only country where such advanced instruction
could be obtained.

Indeed, the question of inclusion of these same algorithms in school mathematics,
to support basic shopkeeper arithmetic, currency exchange, and other simple
arithmetic tasks, continued to be the subject of vigorous debate through the 20th
century and even into the 21st. Of course, in the intervening five centuries, the
practical role of arithmetic has broadened with the increasing complexity of

 7

modern life, especially in the workplace, and it has assumed a cornerstone
position in school mathematics. Indeed, the skills of arithmetic are seen, in almost
all developed societies, not only as essential for the efficient operation of
economies, but as an entitlement of an educated individual. We shall return to this
issue below, but for the moment, it is worth delineating two separate skills that
arithmetic teaching in the twentieth century came to serve: the one concerned with
obtaining answers quickly and correctly, and the other as a backdrop against
which the process of executing algorithms could be performed, number
relationships learned, and manipulative methods practiced. While execution was
the preserve of the human mind, this distinction hardly arose, but as we shall see
it becomes more central in this computational era.

The Evolution of Algebraic Notations
We now examine a third example of a representational infrastructure. Algebra
began in the times of the Egyptians in the second millennium BC, as evidenced in
the famous Ahmes Papyrus, by using available writing systems to express
quantitative relationships, especially to “solve equations”—to determine unknown
quantities based on given quantitative relationships. This is the so-called
“rhetorical algebra” that continued to Diophantus’ time in the 4th century of the
Christian era, when the process of abbreviation of natural language statements and
the introduction of special symbols began to accelerate. Algebra written in this
way is normally referred to as “syncopated algebra.” By today’s standards,
achievement to that point was primitive, with little generalization of methods
across cases and little theory to support generalization. Indeed, approximately two
millennia produced solutions to what we would now refer to as linear, quadratic,
and certain cubic equations (of course they were not written as equations), often
based in contrived and stylized concrete situations, and not much more. Indeed, it
appears that, in the absence of a systematic symbol system, the stylized situation
provided a kind of semi-abstract conceptual scaffolding for the quantitative
reasoning that constituted the methods. The accumulated skill was encoded in
illustrative examples rather than in syntactically defined rules for actions on a
symbol system.

Then, in a slow, millennium-long struggle involving the co-evolution of
underlying concepts of number (see especially Klein, 1968), algebraic symbolism
gradually freed itself from written language in order to support techniques that
increasingly depended on working with the symbols themselves according to
systematic rules of substitution and transformation—rather than the quantitative
relations for which they stood. Just as the symbolism for numbers evolved to yield
support for rule-based operations on inscriptions taken to denote numbers, so the
symbolism for quantitative relations likewise developed. Bruner (1973) refers to

 8

this as an “opaque” use of the symbols rather than “transparent” use: the former
implies attention to actions on the inscriptions, while the latter implies that actions
are guided by reasoning about the entities to which the inscriptions are assumed to
refer.

In effect, algebraic symbolism gradually freed itself from the (highly functional)
ambiguities and general expressiveness of natural language. The newly developed
and systematic semiotic structures embodied hard-won understandings of general
mathematical relations and, by the 17th century, functions. This symbol system
also embodied forms of generality, (particularly through the use of symbols for
variables), and the dual use of operation symbols (so symbols such as “+” could
be applied to symbols for variables ranging over sets of numbers as well as for the
numbers themselves). Hence general statements of quantitative relations could be
expressed efficiently.

However, the more important aspects of the new representational infrastructure
are those that involved the rules, the syntax, for guiding operations on these
expressions of generality. These emerged in the 17th century as the symbolism
became more compact and standardized in the intense attempts to mathematize
the natural world that reached such triumphant fruition in the “calculus” of
Newton and Leibniz. In the words of Bochner (1966):

Not only was this algebra a characteristic of the century, but a certain
feature of it, namely the “symbolization” inherent to it, became a
profoundly distinguishing mark of all mathematics to follow. ...
(T)his feature of algebra has become an attribute of the essence of
mathematics, of its foundations, and of the nature of its abstractness
on the uppermost level of the “ideation” à la Plato (pp. 38–39).

Beyond this first aspect of algebra, its role in the expression of abstraction and
generalization, he also pointed out the critical new ingredient:

... that various types of ‘equalities,’ ‘equivalences,’ ‘congruences,’
‘homeomorphisms,’ etc. between objects of mathematics must be
discerned, and strictly adhered to. However this is not enough. In
mathematics there is the second requirement that one must know how
to ‘operate’ with mathematical objects, that is, to produce new objects
out of given ones (p. 313).

Indeed, Mahoney (1980) points out that this development made possible an
entirely new mode of thought “characterized by the use of an operant symbolism,
that is, a symbolism that not only abbreviates words but represents the workings

 9

of the combinatory operations, or, in other words, a symbolism with which one
operates” (p. 142).

This second aspect of algebra, the syntactically guided transformation of symbols
while holding in abeyance their potential interpretation, flowered in the 18th
century, particularly in the hands of such masters as Euler. At the same time, this
referral of interpretation led to the further separation of algebraic and natural
language writing and hence the separation from the phonetic aspects of writing
that connect with the many powerful narrative and acoustic memory features of
natural language. Indeed, as is well known from such examples as the “Students-
Professors Problem” (Clement, 1982; Kaput & Sims-Knight, 1983), the algebraic
system can be in partial conflict with features of natural language.

Thus, over an extremely long period, a new special-purpose operational
representational infrastructure was developed that reached beyond the operational
infrastructure for arithmetic. However, in contrast with the arithmetic system, it
was built by and for a small and specialized intellectual elite in whose hands,
quite literally, it extended the power of human understanding far beyond what
was imaginable without it. In the hands of an extremely small community over the
next 250 years, the expressive and operational aspects of this narrowly-scoped
representational infrastructure made possible a science and technology that
irreversibly changed the world, as well as of our views of it and of our place in it.

Calculus and the Idea of “a Calculus”
Our last example of representational infrastructure evolution involves Calculus.
The notion of an automatic computing machine to carry out numeric calculations,
as we have seen, is very old. Leibniz, however, wanted to go further and be able
to compute logical consequences of assumptions through an appropriate symbol
system. He understood, perhaps more clearly than anyone before him, not only
that choice of notation system was critically important to what one could achieve
with the system, but also and more specifically, that a well-chosen syntax for
operations on the notation system could support ease of symbolic computation.
Hence, as reflected in correspondence with contemporaries, especially Huygens
(Edwards, 1979), he was very careful in the design of a notation to represent his
findings regarding how a function was related to what we now call its derivative
or integral. His goal was that his new notation would support a “calculus” for
computing such new functions in the general sense that the word “calculus” was

 10

used in those times2. His nicely compact and mnemonic notation also allowed a
direct expression of the relations between derivatives and integrals, relations
expressed in the Fundamental Theorem of Calculus.

Indeed, diSessa (2000), reminds us that Leibniz’ notation, which dominated the
way calculus was used more than 300 years later, was at least as important as the
insights that it encoded. After all, these ideas were also created by Newton. But
Newton’s brilliant insights and methods have come to be learned and used for
generations in Leibniz’ notation, and the reluctance of his British followers to
adopt Leibniz’ notation was likely a significant factor in the century-long lag of
British mathematics behind that of the Continent (Boyer, 1959; Edwards, 1979).
diSessa points out that Leibniz’ notation became “infrastructural (p. 11)—in the
same sense that we have been using the phrase “representational infrastructure” in
this chapter. Incidentally, it is pointed out by diSessa that the achievement of
infrastructural status for Leibniz’s notation was in no small part due to the fact
that it was easier to teach.

So once again, as in the case of arithmetic and then algebra, the development of a
compact, efficient notation system turned out to be a critical factor in what
followed.

Computational Media and the Separation of outcome from Process
The foregoing provides a brief overview of the structural changes in
the semiotics of mathematical expression over time, leading to the
emergence of complex and strongly supportive systems which
sustain and expand the possibilities of human calculation and
manipulation—at least for the few who were inducted into its use.
We will argue that there are two key developments in a
computational era: first that human participation is no longer
required for the execution of a process and second, access to the
symbolism is no longer restricted to a privileged minority. In order
to elaborate on the points, we will need just a little more historical
perspective, before we focus our attention on the digital media
themselves. As recounted in Shaffer & Kaput (1999), the
development of computational media required three elements: the
existence of discrete notations without fixed reference fields (that is,

2 As a way of computing (derived, of course, from the Roman word for pebble, since pebbles were
used for computation, ironically, because the Roman numeral system was so inefficient).

 11

the idea of formalism), the creation of syntactically coherent rules of
transformation on such notations, and a physical medium in which
to instantiate these transformations outside the human cortex and
apart from human physical actions. Hence in the 20th century a
profound shift has occurred, from operable notation systems
requiring a suitably trained human partner for execution of the
operations, to systems that run autonomously of a human partner.

On Changing Representational Infrastructures
Our starting point is the assertion that the extent to which a medium becomes
infrastructural is the extent to which it passes as unnoticed. This is fine, until one
needs to be aware of the structural facets of the medium, in order to learn either
how to express oneself within it, or understand what might be expressed within it
(or both). From the point of view of the learner, this can be confusing. For
example, Leibniz’ notation is a 2nd order notation built on top of algebra because it
guides actions on expressions built in algebraic notation (a fact that confuses
many students even today who do not distinguish between “taking the derivative”
and simplifying the result—after all, they are both ways of transforming strings of
symbols into new strings of symbols). Since the ideas, constructions and
techniques of Calculus are written in the language of algebra, knowledge of
Calculus has historically depended on knowledge of algebra. This in turn means
that this knowledge has historically been the province of a small intellectual
elite—despite the fact that the key underlying ideas concerning rates,
accumulations, and the relations between them are far more general than the
narrow algebraic representations of them in most curricula (Kaput, 1994).

Representational forms are often transparent to the expert. Musicians do not
‘think’ about musical notation as they play an instrument, any more than expert
mathematicians have to (except when they are constructing a new notation or
definition). But when one is learning or constructing something new, one needs to
think explicitly about the representational system itself—we require, in other
words, that the representational system is simultaneously transparent and opaque.
This ‘coordinated transparency’ (Hancock, 1995) represents a synthesis of
meaning and mechanism, a situation (desirable but not always easily achievable)
in which fluency with and within the medium can temporarily be replaced by a
conscious awareness of its (usually invisible) internal structures. Grammar
checking (human rather than computational) is a good example.

As noted above, the development of algebraic representational forms which
generated fluency among the cognoscenti, took place within the semiotic
constraints of static, inert media, and largely without regard to learnability

 12

outside the community of intellectual elite involved. Over the past several
centuries this community’s intellectual tools, methods and products (the
foundations of the science and technology upon which we depend) were not only
institutionalized as the structure and core content of school and university
curricula in most industrialized countries and taken as the epistemological essence
of mathematics (Bochner, 1966; Mahoney, 1980), but in most countries became
the yardstick against which academic success was defined. Thus the close
relationship of knowledge and its culturally-shared preferred representations,
precisely the coupling that has produced such a powerful synergy for developing
scientific ideas since the Renaissance, became an obstacle to learning, and even a
barrier which prevented whole classes from accessing the ideas which the
representations were so finely tuned to express.

While the execution of processes was necessarily subsumed within the individual
mind, decoupling knowledge from its preferred representation was difficult.3 But
as we have seen, this situation has now changed. The emergence of a virtual
culture has had far-reaching implications for what it is that people need to know,
as well as how they can express that knowledge. We may, in fact, have to
reevaluate what knowledge itself is, now that knowledge and the means to act on
it can reside inside circuits that are fired by electrons rather than neurons. Key
among these implications is the recognition that algorithms, and their instantiation
in computer programs, are now a ubiquitous form of knowledge, and that they—
or at least the outcomes of their execution—are fundamental to the working and
recreational experiences of all individuals within the developed world.

Many individuals and social groups have suffered a massive deskilling of their
working lives precisely because of this devolution of executive power to the
machine. But not all. Indeed many occupations (or at least parts of them) have
becoming more challenging and enriching because of the introduction of digital
technologies. What is common, however, is that the relationship between
computational systems and individuals has become much more intimate than was
ever envisaged. In part, this is a simple maturation of the technology—three of the
more obvious and striking aspects are its miniaturization, the power of graphical
displays and, of course, its connectivity (in 1982, the idea of communication as a

3 But not impossible: indeed, a considerable amount of mathematical education research has tried
to study—and encourage—the ways in which people form conceptual images of mathematical
ideas independently of—and sometimes in conflict with—the preferred algebraic or formal
representation.

 13

central functionality of computers was the preserve of only a few experts in
universities).

These technical facets of computer systems and the ways we use them, have
reshaped our relationship with them. On the one hand, they have reduced even
further the necessity for ‘users’ to make sense of how computational systems do
what they do. The intimacy that, for example, a painter has with her brush—or
perhaps much more relevant analogy, the relationship between a musician and her
instrument—is rarely (currently) possible with the computer, despite the close
proximity and personal relationship which many people have with their machines,
especially hand-held ones.

An accepted (but, as we shall see, fundamentally false) pedagogical corollary is
that since mathematics is now performed by the computer, there is no need for
‘users’ to know any mathematics themselves (for a well-publicized but
disappointing set of arguments propounding this belief, see Brammall and White,
2000). Like most conventional wisdoms, this argument contains a grain (but only
a grain) of truth. Purely computational abilities beyond the trivial, for example,
are increasingly anachronistic. Low level programming is increasingly redundant
for users, as the tools available for configuring systems become increasingly high-
level. Taken together, one might be forgiven for believing that the devolution of
executive power to the computer removes the necessity for human expression
altogether (or at least, for all but those who program them).

In one sense this is true. Precomputational infrastructures certainly make it
necessary that individuals pay attention to calculation: and generations of
'successful' students can testify to the fact that calculational ability can be
sufficient (e.g. for passing examinations) even at the expense of understanding
how the symbols work. In fact, quite generally, the need to think creatively about
representational forms arises less obviously in settings where things work
transparently (cogs, levers, pulleys have their own phenomenology). Now the
devolution of processing power to the computer has generated the need for a new
intellectual infrastructure; people need to represent for themselves how things
work, what makes systems fail and what would be needed to correct them. This
kind of knowledge is increasingly important; it is knowledge that potentially
unlocks the mathematics that is wrapped invisibly into the systems we now use,
and yet understand so little of. Increasingly, we need—to put it bluntly—to make
sense of mechanism.

Yet the need to make sense of mechanism is not fundamentally new. Indeed, the
syntax of the numerical, algebraic and calculus representation systems can be
regarded as mechanisms, and the bulk of mathematics schooling has been devoted

 14

to teaching and learning that form of mechanism. However, there is a further
complexity to the present situation. It is true that fewer and fewer people need to
program computers, at least in the usual sense of the term ‘program’. But more
and more people need to know something of how the machines and the systems
(social, professional, financial, physical) operate—not just the few who are
responsible for building them. We cannot adduce evidence for this assertion here
(for a convincing selection of papers on this theme, see Hoyles, Morgan &
Woodhouse, 1999).

We share a vision of a mathematics curriculum that assumes mathematical
understanding should be built around the construction and interpretation of
quantitative and semi-quantitative models, where students explore mathematical
technologies and analyze methods in contexts that show how they can be used and
why they work in the way they do. We can also refer the interested reader to a
series of papers, which have studied the mathematics of professional practices in a
number of areas (aviation pilots, nurses, bank employees, and most recently,
engineers). (See, for example, Noss and Hoyles (1996), Pozzi, Noss, and Hoyles
(1998), Noss, Pozzi, and Hoyles (1999), Hoyles, Noss, and Pozzi S. (2001).

We restrict ourselves to two observations. First, at critical moments of their
professional practice, people try to make sense out of complex situations by
building mental models, or, if they do not have access to the raw material of
model-building, by circumventing them. Circumvention (ignoring inconvenient
data) can be a dangerous strategy. To gain access to underlying models, to make
them visible, is to focus on the quantities that matter, and on the relationships
among them. In order to gain such a sense of mechanism, one needs interpretative
knowledge about, for example, graphs, about parameters and variables, about
continuity, and a broad range of representational abilities that are different from,
but no less important than, calculational and manipulational skills we have
inculcated in young people until now.

The second observation concerns the complexity of interaction between
professional and mathematical practices. It is true that more and more
professional practice devolves calculational expertise to the computer. But it is
not true (or if it is, it is dangerously so) that the computers can be left to make
judgment (one of our examples concerns a life-and-death decision on a pediatric
ward—see Noss, 1998). Judgment in the presence of intimate computational
power requires new kinds of representational knowledge: distinguishing between
what the computer is and is not doing; what can be easily modified in the model
and what cannot; what has been incorporated into the model and why; and what
kinds of model have been instantiated. As examples, we may consider the

 15

difference between parallel and serial computational models, how different kinds
of knowledge are encoded with them, and what kinds of interpretation they allow;
and, not least, the communicative value of representational knowledge, in terms of
sharing knowledge with others who interact with other parts of the same system,
or other, linked systems.

The new element in the situation is, of course, that the systems that control our
lives are now built on mathematical principles. This is a major—perhaps the
major—property of the virtual culture. The devolution of execution to the
machines means more than this: not only do the machines now do mathematical
execution, it implies that any consequential appreciation of what the machines do
must itself be based on mathematical principles. If an individual does not have the
means formally to relate his or her intellectual model of the mathematical
principles with those inside the machine, then appreciation of the model must
necessarily be partial.

Of course, this does not mean that such models need to be expressed in the same
languages as used inside the machine. Quite the reverse. It means that we have to
find ways to help people to capture the dynamics of the system, so they can
follow the consequences of particular actions while maintaining a realistic sense
of the structures of relationships between them. We now turn to some examples
which begin to address the issues raised, and then show how students can be
stimulated to explore mathematical mechanisms and in so doing rebuild the
synergy of knowledge and representation.4

A New Representational Infrastructure for Cartesian Graphs Coupled
with Embedded Derivatives and Integrals Linked to Phenomena
Over the past two decades, the character string approaches to the mathematics of
change and variation have been extended to include and to link to tabular and
graphical approaches, yielding the “the Big Three” representation systems,
algebra, tables, and graphs frequently advocated in mathematics education.
However, almost all functions in school mathematics continue to be defined and
identified as character-string algebraic objects, especially as closed form
definitions of functions—built into the technology via keyboard hardware. In the

4 The former provides a putative enhancement of experiential phenomena, and thus a richer base
for intuitive knowledge. This is hardly unique to digital technologies: when mechanized transport
was first invented, people for the first time, found it ‘obvious’ that centrifugal force was
something to do with changing direction (the fact that it feels like centrifugal force rather than
centripetal acceleration just shows that intuitions don’t always give the whole picture!).

 16

SimCalc Project, we have identified five representational innovations, all of
which require a computational medium for their realization but which do not
require the algebraic infrastructure for their use and comprehension. The aim in
introducing these facilities is to put phenomena at the center of the representation
experience, so children can see the results, in observable phenomena, of their
actions on representations of the phenomenon, and vice versa. These are:

♦ The definition and direct manipulation of graphically defined and editable
functions, especially piecewise-defined functions, with or without algebraic
descriptions. Included is “snap-to-grid” control, whereby the allowed values
can be constrained as needed (to integers, for example) allowing a new
balance between complexity and computational tractability. This facility
means that students can model interesting change situations while avoiding
degeneracy of constant rates of change, and postponing (but not ignoring!) the
messiness and conceptual challenges of continuous change.

♦ Direct, hot-linked connections between functions and their derivatives or
integrals. Traditionally, connections between descriptions of rates of change
(e.g., velocities) and accumulations (positions) are mediated through the
algebraic symbol system as sequential procedures employing derivative and
integral formulas, which is the main reason that Calculus sits at the end of a
long sequence of curricular prerequisites

♦ Direct connections between these new representations and simulations to
allow immediate construction and execution of variation phenomena.

♦ Importing physical motion-data (via MBL/CBL) and reenacting it in
simulations, and exporting function-generated data to define LBM (Line
Becomes Motion) to drive physical phenomena (including cars on tracks).

We also employ hybrid physical/cybernetic devices embodying dynamical
systems, whose inner workings are visible and open to examination and control,
and whose quantitative behavior is symbolized with real-time graphs generated on
a computer screen.

We will risk real danger by providing grayscale snapshots of colorful, dynamic,
interactive lessons, especially by superimposing multiple problems and solutions
on the same graphs. We will provide some basic activities to illustrate concretely,
albeit thinly, how this new representational infrastructure can work. First note that
the various graphs appearing in the figures below are created piecewise simply by
clicking, dragging and/or stretching segments, although in other activities it is

 17

also possible to specify the graphs algebraically, or by importing data, or by
(partially constrained) drawing. (A similar set appears in Kaput, 2000.)

Variation, Area, Average, Approximation, Slope, Continuity, and Smoothness for
Jerky Elevators: Suppose we are given a staircase velocity function (see Figure 1),
which drives the motion of the left-hand elevator to its left (these are color-coded
in the software). The following kinds of lesson snippets are usually preceded by
context-rich work that involves moving elevators around to accomplish various
tasks, such as delivering pizzas to various floors, etc.

(1) How will the elevator move if driven by Plot #1 (the piece-wise downward
staircase velocity function in Figure 1), and where will it end its trip? (It
starts on the 0th floor.)

(2) Does there exist a constant velocity function for the 2nd elevator (just to the
right of the 1st) that gets to the same final floor at exactly the same time as
the 1st? If so, build it. (Plot #2—the one-piece constant velocity function)

(3) Make a linear velocity function for the 3rd elevator that provides a
smoothly decreasing velocity approximating the motion of the 1st
(staircase) elevator. Before running it, predict how far apart the 1st and 3rd
elevators will finish their trips. (Plot #3—the linear decreasing velocity
function)

(4) For the staircase velocity function (Plot #1) in Figure 1, what is the
corresponding position graph, and what is its slope at 3.5 seconds? (Plot
#4—the piece-wise increasing position function)

(5) While the average-velocity function for the staircase has exactly the same
area under it as the staircase, what is an easy way to draw its
corresponding position graph? (Plot #5—the linear increasing position
function)

(6) What is the key difference between the position graph for the staircase and
the position graph of the 3rd velocity function? (Plot #6—the quadratic
position function)

 18

Figure 1. Lesson-snippets.

Question (1) involves interpreting variation via a variable velocity function whose
integral, to determine the final position, can be determined with whole number
arithmetic. Such step-wise varying rate-functions are intensively used in SimCalc
instructional materials to build the notion of area as accumulation. Such functions
also raise issues of continuity, acceleration, and physical realizability of
simulations that are explored in depth using MBL and LBM technologies. Of
course they also occur in economic situations with great frequency—tax rates, pay
rates, telephone rates, etc.

Question (2) introduces the key idea of average, which, via our ability to use
snap-to-grid to control the available number system also enables examination of
when the average “exists” and whether it must inevitably equal the value of the
varying function at some point in its domain. In traditional instruction, most
students only experience continuously changing rates and hence never really
confront the issue since the average always hits the continuously varying
intermediate values.

Question (3) points up the reversal of the usual relationship between step
functions and continuous ones (usually, the former are used to approximate the
latter), and highlights the integration of fraction and signed number arithmetic in
the MCV. Position graphs and linearly changing velocity are developed over
many lessons in many ways, including the differences between physical motion

 19

(including force-acceleration issues), and economic functions, so the glimpse here
may be misleading in its abruptness.

Question (4) introduces the idea of slope as height of velocity segment, and is part
of an extensive study of slope as rate of change.

Question (5) illustrates the power of a “2nd opinion” since the position description
of the average velocity motion is merely a straight line joining the start and end of
the position graph. These two ways of describing change-phenomena are treated
as complementary throughout SimCalc instructional materials.

Question (6) deals with smoothness, and is part of an extended introduction to
quadratic functions as accumulations of linear ones that weaves back to issues of
acceleration and physical motion, and their physical realizability. An
accompanying set of investigations examine non-physical motion, e.g., price or
other money rates that change discontinuously such as tax rates, phone rates,
royalty rates, etc.

Activities Linking Velocity & Position Descriptions of Motion in the Context of
Signed Numbers and Areas: The earlier parts of the next lesson, from which these
snippets are taken, involve students in creating graphs to move Clown and Dude
around, switching places at constant speed, coming together and then returning to
their original positions, and so on. (Only step-wise constant velocities have been
made available here, although other function types could have been used, and, in
fact are used in SimCalc materials.)

Challenge: Clown and Dude are to switch their positions so that they pass by
each other to the left of the midpoint between them and stop at exactly the
same time. First, after marking off a line about 12 feet long, you and a
classmate walk their motions! Now make a position graph for Clown and a
velocity graph for Dude so that they can do this.

The student needs to construct graphs similar to Plot #1 (on the position graph)
and Plot #2 (on the velocity graph) in Figure 2. We have also shown the
respective corresponding velocity and position graphs, Plots #3 and #4, which can
be revealed and discussed later. Note that velocity and position graphs are hot-
linked, so changes in the height of a velocity segment are immediately reflected in
the slope of the corresponding position segment, and vice-versa. Importantly, the
activity requires interpretations of positive and negative velocities, and hence
provides meaningful work with signed number arithmetic, as well as the
representation of simultaneous position—paving the way for simultaneous
equations. Later activities involve a story-line where Dude is patrolling the area

 20

(periodic motion) and Clown gets “interested” in Dude, follows him at a fixed
distance, “harasses” him, & eventually, they dance—where the student, of course,
is responsible for making the dance.

Figure 2. You, and then Clown & Dude, cross to the left of the center

Extensions to MBL and LBM: The above representational innovations can be
combined with the principals illustrated by Questions #5 & #6, mentioned
earlier, to create opportunities to study the Math of Change & Variation. For
example, we can import and display motion data in the classic Micro Computer
Based Lab or Calculator Based Lab (MBL/CBL) ways, but in addition, we can
now attach this physically-based data to the objects in a simulation and replay
their motion, compare it with motions defined synthetically, so that a student
can perform and import a physical motion that can lead an entire group of
dancers whose motions are created synthetically. Further, a student can define
a motion using a mathematical function (position or velocity) in any of the
ways one might care to define a function and then “run” it physically in a
linked LBM miniature car on a track. The forms of learning supported by these
kinds of devices and activities, especially how they relate to one another and to
physical intuition, are under active investigation, and the study of this richly
populated space of interrelated inscriptions, and the new connections among

 21

physical, kinesthetic, cybernetic and notational phenomena, will continue for
years to come—and will be instantiated in increasingly networked contexts
(Kaput, 2000; Nemirovsky, Kaput, & Roschelle, 1998).

The result of using these systems, particularly in combination and over an
extended period of time, is a qualitative transformation in the mathematical
experience of change and variation. However, short term, in less than a minute,
using either rate or totals descriptions of the quantities involved, or even a mix
of them, a student as early as 6th–8th grade can construct and examine a variety
of interesting change phenomena that relate to direct experience of daily
phenomena. And in more extended investigations, newly intimate connections
among physical, linguistic, kinesthetic, cognitive, and symbolic experience
become possible.

♦ Preliminary Reflections on the New Representational Infrastructure
A key aspect of the above representational infrastructure is revealed when we
compare how the knowledge and skill embodied in the system relates to the
knowledge and skill embodied in the usual curriculum leading to and including
Calculus. At the heart of the Calculus is the Fundamental Theorem of Calculus,
the bidirectional relationship between the rate of change and the accumulation of
varying quantities. This core relationship is built into the infrastructure at the
ground level. Recall that the hierarchical placeholder representation system for
arithmetic and the rules built upon it embody an enormously efficient structure for
representing quantities (especially when extended to rational numbers) which in
turn supports an extremely efficient calculation system for use by those who
master the rules built upon it. This is true of the highly refined algebraic system as
well. Similarly, this new system embodies the enormously powerful idea of the
Fundamental Theorem in an extremely efficient graphically manipulable structure
that confers upon those who master it an extraordinary ability to relate rates of
change of variable quantities and their accumulation. In a deep sense, the new
system amounts to the same kind of consolidation into a manipulable
representational infrastructure an important set of achievements of the prior
culture that occurred with arithmetic and algebra.

Developing a sense of mechanism
In this, penultimate section, we focus on a corpus of work which is emerging from
the Playground project (see www.ioe.ac.uk/playground). Like the SimCalc
examples above, our interest focuses on new ways to express mathematical
relationships, bringing children into contact with mathematized descriptions of
their realities at ages much younger than we would normally countenance with

 22

static technologies. Unlike the SimCalc example, which typically involves
students beginning at ages 11-12 (although it is also used at the university level),
we are trying to explore what might be gained by very young children (aged
between 4 and 8) building their own executable representations of relationships—
in effect, we are redefining the idea of programming.
The rationale for programming has a long and distinguished history, stretching
back some thirty years or more (see, for example, Feurzeig, 1969). We have no
intention of rehearsing the argument here (see Noss & Hoyles, 1996 for a history
and rationale for programming in the context of mathematical learning). What is
new is that programming has begun to change its character, having been
expressed in various forms—as text (still the dominant form) as icons, and now,
as we shall see, as animated code. We believe that this last change of expressive
form marks a significant shift in what is possible for young children.

Our central focus is to open possibilities for children to design, construct and
share their own video games. We are designing computational environments for
children to build and modify games using the formalization of rules as creative
tools in the constructive process. We call these environments ‘Playgrounds’. We
are working with two new and evolving programming systems, ToonTalk—an
animated programming language (Kahn, 1999)—and Imagine a concurrent
object-oriented variant of the Logo programming language (Blaho et al, 1999:
note, at this point, the language was named “OpenLogo”). Each of our two
Playgrounds represents a layer we have built on top of these platforms,
incorporating elements that allow multiple entry points into the ideas of
formalizing rules. In this paper we concentrate on our work with ToonTalk.

Our objective has a strong epistemological rationale. The challenge is to find
ways for very young children to use non-textual means to express and explore the
knowledge which underpins the genre of video games: what it means for objects
to collide, how 2-dimensional motion of an object (or a mouse, or a joystick) can
be thought about, the construction of animation, and the hundreds of little pieces
of knowledge which go to make up the workings of video games. We see this as
an instantiation of a much broader class of knowledge, which, quite simply, we
call developing a sense of mechanism.

Our choice of video games builds on established work by, for example, Kafai
(1995) in that it has chosen a domain which seems to be naturally attractive for
many children. We have no ulterior pedagogical or epistemological motive: we do
not ask the children with whom we work to design games for any purpose other
than their own amusement. Testing our intuitive belief that games themselves
form a sufficiently-rich backdrop against which to explore mathematical

 23

relationships forms part of our studies with children, and forms a central element
of our design brief.

ToonTalk is a world in which animations themselves are the source code of the
language; that is, programs are created by directly manipulating animated
characters, and programming is by example (see Cypher, 1993). A full description
can be found in Kahn, 1999). ToonTalk is constructed around the metaphor of a
city, populated by houses (in which programs or methods are built), trucks are
dispatched to build new houses (new processes spawned), robots are trained (for
new programs or methods), and birds fly to their nests (message passing). A
helicopters allows the user to navigate around the city, or to hover above it
watching trucks move around (as an aside, and to emphasize that ToonTalk is a
Turing equivalent language, it is both instructive and surprising to watch a city
recursively grow and shrink as a quicksort is being executed).

Robots are trained to carry out tasks inside houses (defining the body of a
method). A user trains a robot by entering its “thought bubble” and controlling it
to work on concrete values (see Figure 3). The robot remembers the actions in a
manner that can easily be abstracted to apply in other contexts by later removing
detail from the robot’s thought bubble (see Figure 4). Message passing between
methods (robots) is represented as a bird taking a message to her nest, and
changing a tuple is achieved by taking items out of compartments of a box and
dropping in new ones.

Figure 3. A robot is trained to add one value to another

 24

Figure 4. Relaxing constraints by removing details.

It is quite difficult in text and static graphics to convey the feel of programming
with ToonTalk. The metaphor of moving around in a city is pervasive, and the
sense of object-oriented programming in an environment by direct manipulation,
is a novel experience for those of us who believed that symbolic formalism of
programming made interaction on a textual level inevitable.

The nature of the platform is paramount. Our choice of ToonTalk implied that any
layers we built above it had to mesh with the metaphors of the platform. Our aim
was to design a permeable abstraction barrier between ready made pieces of open
code with multi-modal representations (we call these ‘behaviors’: some examples
will be given below) and the ToonTalk language itself lying underneath. This
stands in marked contrast to some modern programming languages such as Java
and C++ which by default enforce these abstraction barriers and do not allow
programmers using predefined objects to discover their underlying
implementation. But the crucial dimension, which dictated the design of the
playground layer, was that of openness. At any level of granularity, an element
should be decomposable into smaller pieces down to the lowest level of the
animated ToonTalk programming language. Indeed as we began to see children
decomposing the games and sharing their parts across sites and countries it
became clearer that we were working in a design paradigm akin to component
software architecture (CSA). While some (but not all) of the component

 25

community are concerned to a greater or lesser extent with the adaptability of
their components, for us it central. We are concerned with designing software for
investigating mechanism; individual components therefore need to have intuitive
windows to their workings and a means for modification. (For more information
on the role of behaviors in playgrounds, see Hoyles, Noss and Adamson,
submitted paper).

In the design of an environment where the opening of mechanisms is the primary
objective, it is not only desirable that pieces are easily opened but that they afford
access to their workings through an intuitive interface. In traditional CSA, the
user interacts with the interface model provided by the architecture but not the
implementation of individual components. In our open component model, we
require both. Users should be able to work at several levels simultaneously; a)
composing components where necessary as wholes relying solely on the interface
for component manipulation and b) opening a component to reveal the source
code whenever modification or inspection of the component is desired. To
facilitate this, we need to ensure that components interoperate at a technical level
but also that manipulation at interface and implementation levels is made intuitive
by a high degree of semantic interoperability. In other words, if users are to use,
share and manipulate components in the construction of larger pieces of software,
consistency of interface and multiple ways of accessing the functionality become
important criteria in their design.

♦ An Illustration: The Space Behaviors Game
We start with a game based loosely on the space invaders genre of shooting
games. The player controls a space ship that can fire white bullets in four
directions. If a white bullet hits an invader, it blows up, but if an invader hits the
spaceship, the spaceship is destroyed. The aim is to destroy the three ‘invaders’
before they hit you!

 26

Figure 5. The original ‘space behaviors’ game.

The two boys in our case study wanted to change the appearance of the spaceship.
Working at the surface level of changing the appearance of objects is relatively
simple. Objects and behaviors are interoperable, so they simply had to select their
new object and transfer all the behaviors across by placing the old object on the
back of the new one. They chose a Pokémon character called Pikachu as their new
representation of the space ship. Pikachu is associated with lightning so the boys
wanted it to shoot bolts of lightning rather than white bullets. Turning over
Pikachu to reveal its robots and behaviors, they could immediately identify the
firing mechanism through its visual representation (see Figure 6). The specific
representation here is quite subtle, as the actual white bullets are not immediately
visible. A modular visually represented architecture is required to give the clues
for further inspection (see Figure 7)

The orange
space invader

The green
space invader

The blue space
invader

The spaceship

The white bullets fired
by the spaceship

 27

Figure 6. The behaviors on the spaceship.

At each level, the level below is visible. In Figure 7, the firing behavior is shown
is successive stages of exposure.

Figure 7a. The complete firing mechanism
with four firing components.

Figure 7b. The firing up component only.

 28

Figure 8. Successive revelation of the ToonTalk code

Taking apart the behavior down to the lowest level reveals the white bullet. We
are hardly in a position to claim that the boys fully understood the meaning of all
the inputs to the firing robot or how the robot actually worked, but they could
simply home in the bullet. They knew that its functionality had to be taken over
by lightning. The boys removed the bullet picture and put it on the back of a
lightning picture and did this four times—one for each direction. Having modified
the input to these four behaviors in this way and put them all back together on the
back of Pikachu, the boys were ready to try out their modified game.

 29

Figure 9. The game after changes made at the surface level and input level.

But would it work? The boys thought so, but, as it turned out, they were wrong.
The changes to the spaceship worked as expected and Pikachu could fire lightning
in four directions, but now the boys noticed that the ‘invaders’ appeared to be
indestructible. They were not sure why and guessed that it was because the
destroy behavior had somehow gone missing from the back of the invaders. So
they decided to check this out and took off the blue ‘invader’ from the scene and
turned it over to investigate its behaviors.

Pikachu now fires
out lightnings

Pikachu replaces
the spaceship.

 30

Figure 10. The back of the blue invader.

They recognized the relevant behavior by first noticing the explosion icon and the
written rule, “I disappear when I touch a white bullet”. They removed this
behavior from the back of the invader so they could study the next level and look
at the actual code (see Fig. 11). They would now ‘see’ the concrete representation
of the condition for the robot, i.e. that it would perform its action (destroy object)
when hit by a white bullet.

 31

Figure 11: The exposed ToonTalk code showing the white bullet condition.

Seeing how the rule worked helped the boys debug what had gone wrong: the
lightning picture had to appear in the place of the white bullet. Again, without
having to appreciate how all the pieces of the mechanism worked, the boys could
make this replacement and so achieve their rule change (see Figures 11 and 12).

The white bullet condition in
the robot’s thought bubble.

 32

Figure 12. The code after changing the condition to lightning

It might be that some readers will be wondering what this has to do with
mathematics. Our reply is that it is about rules expressed formally and their
implications, and that—as we have argued earlier—this is a central aspect of what
it means to think mathematically in the computational era. At a more detailed
level, this claim breaks down into two subclaims. First, it is about children
learning that there are rules that have implications for what is modeled and what
is observed and these rules are something over which they have some control.
Second, these rules embody and are built upon a previously-constructed
representational infrastructure that offers extraordinary power to those who
master it. Over the two years of the Playground project we have collected
numerous examples of children taking apart a scene and exploring how it worked,
why it worked and how it could be changed. Often, a teacher was involved: in
fact, a key aspect of the claim is that such an approach was more teachable than
other programming environments, as the things that mattered are visible and
easily manipulable and the granularity of the pieces customized by the teacher for
the learner. As with the SimCalc infrastructure, increasing learnability and
expressive power for all students are fundamental goals.

The condition now
changed to lightning

 33

Conclusions
In this chapter we have attempted to show how in the evolution of
representational infrastructures and associated artifacts and technologies have,
over long periods of time, gradually externalized aspects of knowledge and
transformational skill that previously existed only in the minds and practices of a
privileged elite. We have sought to show how changes in representational
infrastructure are intimately linked to learnability and the democratization of
intellectual power. We have illustrated this point by reference to the development
of number and algebraic notation, calculus, SimCalc graphs and ideas of open,
manipulable mechanism. In each example the physical instantiation of these
notations directly enlarged the limited processing power of human minds as well
as affording experience of new domains of knowledge to solve new problems
among populations who previously had no access to that knowledge and
intellectual capacity. Computational media have provided a next step in the
evolution of powerful, expressive systems for mathematics.

We have endeavored to illustrate our major contention: that mathematicians and
mathematics educators need to turn their attention to defining these newly
empowering representational infrastructures for children. In the past, beginning
with writing itself (Kaput, 2000) more powerful representational infrastructures
have been a source of intellectual and mathematical power, but at a cost of
learnability and hence access. Hence they tended to remain the province of an
elite minority who were inducted into their use. New computational media offer
the opportunity to create democratizing infrastructures which will redefine school
knowledge (for a fuller discussion of these issues, see Noss and Hoyles, 1996).
Viewed optimistically, these will exploit the processing power of the new media
while at the same time ensuring that students maintain an intuitive feel of the
central knowledge elements at work and how they relate to each other. Yet if the
power and potential of computers is to be exploited in school mathematics,
attention must be paid to this level of representational infrastructure. A
companion need is to develop sustained curricula and modes of teaching and
learning that incorporate and exploit these new representations and that encourage
students to develop their meta-representational abilities (diSessa, 2000) so they
become fluent with new systems of expression as they arise, to create and modify
such systems themselves, and to make wise choices among them as these systems
proliferate in the coming decades.

Thus we wish to challenge our community to focus attention on the design and
use of representational infrastructures that intimately link to students’ personal
experience. This is a necessary step if we are to move away from a 19th century
school mathematics concentrating on isolated skills based on static

 34

representational systems in a tightly-defined curriculum (with only a minority
able to engage in independent problem solving). Our contention is that knowledge
produced in static, inert media can become learnable in new ways, and new
representational infrastructures and systems of knowledge become possible,
serving both the learnability of previously constructed knowledge and the
construction of new knowledge.

References

Bochner, S. (1966). The role of mathematics in the rise of science. Princeton, NJ:
Princeton University Press,

Boyer, C. (1959). The history of calculus and its historical development. New
York, NY: Dover Publications.

Brammall, S., & White, J. (2000). Why Learn Maths? Bedford Way Papers,
Institute of Education.

Bruner, J. (1973). Beyond the information given. New York: Norton & Co.

Clement, J. (1982). Algebra word problem solutions: thought processes
underlying a common misconception. Journal for Research in Mathematics
Education, 13(1), 16-30.

Cypher, A. (ed) (1993). Watch What I Do: programming by demonstration.
Cambridge, MA: MIT Press.

Dantzig, T. (1954). Number: The language of science. New York: Macmillan &
Co.

DiSessa, A. (2000). Changing minds, computers, learning and literacy.
Cambridge, MA: MIT Press.

Donald, M. (1991). Origins of the modern mind: Three stages in the evolution of
culture and cognition. Cambridge, MA: Harvard University Press.

Edwards, C. (1979). The historical development of the calculus. New York:
Springer-Verlag, Inc.

Feurzeig, W., S. Papert, et al. (1969). Programming Languages as a Conceptual
Framework for Teaching Mathematics. Report No.1889. Cambridge,
Massachusetts, Bolt, Beranek and Newman.

 35

Hancock, C. (1995). The medium and the curriculum: reflections on transparent
tools and tacid mathematics. In DiSessa, A.A., Hoyles, C. & Noss, R. (eds)
Computers and Exploratory Learning. Berlin Heidelberg: Springer-Verlag. pp.
221-241.

Hoyles, C., Morgan, C. & Woodhouse, G. (Eds). (1999). Rethinking the
mathematics curriculum. London: Falmer Press.

Hoyles C., Noss R., & Pozzi S. (2001). Proportional reasoning in nursing practice
Journal for Research in Mathematics Education, 32(1), 42.

Hoyles, C., Noss, R. and Adamson, R. (submitted). Rethinking the microworld
idea. Submitted to Journal of Education Computing Research Special Edition.

Kafai, Y.B. (1995). Minds in Play: Computer game design as a context for
children’s learning. Lawrence Erlbaum Associates.

Kahn, K. (1999). Helping children learn hard things: computer programming with
familiar objects and activities. In Druin, A. (ed) The Design of Children’s
Technology. San Francisco: Morgan Kaufman Publishers Inc. 223-241.

Blaho, A., Kalas, I. and Tomcsányi, P. (1999). OpenLogo—a new implementation
of Logo. In: Nikolov, R., Sendova E., Nikolova, I. and Derzhanski, I. (1999)
Proceedings of the Seventh European Logo Conference. 95-102.

Kaput, J. (1994). The representational roles of technology in connecting
mathematics with authentic experience. In R. Bieler, R. W. Scholz, R. Strasser, &
B. Winkelman (Eds.) Mathematics didactics as a scientific discipline. Dordecht,
Netherlands: Kluwer.

Kaput, J. (1999, October). Algebra and technology: New semiotic continuities and
referential connectivity. In F. Hitt, T. Rojano, & M. Santos (Eds.), Proceedings of
the PME-NA XXI Annual Meeting, Cuernavaca, Mexico.

Kaput, J., & Shaffer, D. (in press). On the development of human representational
competence from an evolutionary point of view: From episodic to virtual culture.
In K. Gravemeijer, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing,
modeling and tool use in mathematics education. London: Kluwer.

Kaput, J. (2000). Implications of the shift from isolated, expensive technology to
connected, inexpensive, ubiquitous, and diverse technologies. In M. O. Thomas

 36

(Ed.) TIME 2000: An international conference in Mathematics Education. (pp. 1–
25). University of Auckland, New Zealand.

Kaput, J., & Sims-Knight, J. E. (1983a). Errors in translations to algebraic
equations: Roots and implications. Focus on Learning Problems in Mathematics,
5(3), 63–78.

Klein, J. (1968). Greek mathematical thought and the origins of algebra.
Cambridge, MA: MIT Press.

Kline, M. (1953). Mathematics in western culture. New York: Oxford University
Press.

Mahoney, M. (1980). The beginnings of algebraic thought in the seventeenth
century. In S. Gankroger (Ed.), Descartes: Philosophy, mathematics and physics.
Sussex, England: Harvester Press.

Nemirovsky, R., Kaput, J., & Roschelle, J. (1998). Enlarging mathematical
activity from modeling phenomena to generating phenomena. Paper presented at
the 22nd Psychology of Mathematics Education Conference, (Vol. 3., 287–294).
Stellenbosch, South Africa.

Noss, R. (1998). New numeracies for a technological culture. For the Learning of
Mathematics, 18, 2, 2-12.

Noss R., & Hoyles. C (1996) The visibility of meanings: modeling the
mathematics of banking. International Journal of Computers for Mathematical
Learning 1,1(17), 3–31.

Noss R. & Hoyles, C. (1996). Windows on Mathematical Meanings: Learning
Cultures and Computers. Dordrecht: Kluwer.

Noss R., Pozzi, S. & Hoyles, C. (1999). Touching epistemologies: statistics in
practice. Educational Studies in Mathematics 40, 25–51

Pozzi S., Noss R,. & Hoyles C. (1998). Tools in practice, mathematics in use.
Educational Studies in Mathematics.36, 105–122.

Schmandt-Besserat, D. (1978). The earliest precursor of writing. Scientific
American, 238.

Schmandt-Besserat, D. (1992). Before Writing, From Counting to Cuneiform
(Vol. 1). Houston, TX: University of Texas Press.

 37

Shaffer, D.& Kaput, J. (1999), Mathematics and virtual culture: An evolutionary
perspective on technology and mathematics education, Educational Studies in
Mathematics, 37, 97–119.

Swetz, F. (1987). Capitalism and arithmetic: The new math of the 15th century. La
Salle: Open Court.

Walker, C. B. F. (1987). Cuneiform. London: British Museum Publications.

