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Since the publication of this chapter, Jim Kaput was killed in a tragic road 
accident. We have all lost an energetic, visionary and dedicated colleague. 
Mathematics Education research has lost one of its greatest exponents, a 
researcher who not only understood the world of education, but knew how to 
change it. His theoretical work on the evolution of notational systems – much of it 
presented by him in this article – as well as his practical contribution, most 
recently through SimCalc, is living testimony to the importance and impact of his 
work. And we have lost a friend: a friend with a wonderful sense of humour and 
wit, a vibrant sense of fun, and an inspired intelligence. We will miss him. 
CH/RN 

----- 

Not for the first time we are at a turning point in intellectual history. The 
appearances of new computational forms and literacies are pervading the social 
and economic lives of individuals and nations alike. Yet nowhere is this upheaval 
correspondingly represented in educational systems, in classrooms, or in school 
curricula. As far as mathematics is concerned, the massive changes to 
mathematics that characterize the late twentieth century—in terms of the way it is 
done, and what counts as mathematics—are almost invisible in the classrooms of 
our schools and, to only a slightly lesser extent, our universities. 

The real changes are not technical: they are cultural. Understanding them (and 
why some things change quickly and others change slowly) is a question of the 
social relations among people, not among things. Nevertheless, there are 
important ways in which computational technologies are different from those that 
preceded them, and in trying to assess the actual and potential contribution of 
these technologies to education, it will help to view them in a historical light. 
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The notation systems we use to present and re-present our thoughts to ourselves 
and to others, to create and communicate records across space and time, and to 
support reasoning and computation, constitute a central part of any civilization’s 
infrastructure. As with infrastructure in general, it functions best when it is taken 
for granted, invisible, when it simply ‘works.’ This paper is being prepared as the 
UK ground transportation system has, due to a number of additive causes, almost 
totally failed, and when the electricity production and distribution system of 
California is likewise in disarray. When the infrastructure either fails or undergoes 
changes, the disruptions can be major. Further, they tend to propagate, so that one 
change causes another in tightly interconnected systems—when the electricity 
goes out, lots of other things go out too. The same is true on the positive side—
when a new technological infrastructure appears, such as the Internet, many 
things change, often in unpredictable ways as sequences of new opportunity 
spaces open up and old ones close down. Entire industries are born, old ways of 
doing things change, sometimes in fundamental ways—how people participate in 
the economy changes, the physically-based means for defining and controlling 
ownership of intellectual property are challenged, and indeed, the means by which 
innovation itself is fostered changes. Lastly, these kinds of infrastructural changes 
are typically not the result of systematic planning or central control. They emerge 
in unpredictable ways from the mix of existing circumstances. 

These general questions of representational infrastructures, may seem far removed 
from the apparently more mundane task of learning mathematics; but the central 
challenge of mathematical learning for educators is surely the design of learnable 
systems. Such systems depend for their learnability (or lack of it) on the 
particularities and interconnectedness of the representational systems in which 
they are expressed. These, as we stated at the outset, are undergoing rapid change. 
In order to understand these changes more fully, we wish to examine the longer-
term sweep of representational infrastructure change across several important 
examples in order to provide a long-term perspective on the content choices and 
trends embodied in school mathematics. And as we shall see, mathematics enjoys 
a particularly interesting role in this story. 

The Earliest Quantitative Notation Systems 
Most representational infrastructures develop in response to the social needs of 
one or more groups, where the needs might be very broad and involve the whole 
society, as was the case with the development of writing, or they may serve a 
smaller subgroup such as mathematicians and scientists, who needed to express 
and reason with general quantitative relationships and hence developed what we 
now know as the algebraic system. Indeed, the earliest, pre-phonetic written 
language co-evolved with mathematics in the cradle of western civilization some 
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6–8 thousand years ago to record physical quantities through a gradual process of 
semiotically abstracting the physical referents into systems of schematic 
representations of those referents (Kaput & Shaffer, in press). 

The systematicity initially took the form of separating inscriptions denoting 
object-types from inscriptions denoting their properties (identity of owner, size, 
color, vintage, etc.), and, gradually over hundreds of years, the numerosity 
property. Inscriptions denoting numerosity gradually condensed, from a repetition 
model where four instances of an item were represented by four tokens for that 
type of item, then four tallies adjacent to a single token for that type of item, to a 
modifier model employing symbols denoting numerosity, that is, a symbol for 
“four,” replacing the tally marks. This last step required the co-evolution of the 
concept of counting number, mainly through the work of those specialists who 
were the scribes responsible for producing the records. There is little indication 
that such early numbering systems were used for computation other than 
incrementing and decrementing. 

Distinct from, but certainly not unrelated to the notational system, was the 
physical system in which it was instantiated: primarily clay, which afforded the 
means to impress tokens of objects (sheepskins, jars of olive oil, etc.) first onto 
clay envelopes containing the tokens and then tablets, when the tokens came to be 
regarded as redundant (Schmandt-Besserat 1978, 1992). The medium was 
temporarily inscriptable, and then hardened to provide stability that enabled the 
inscriptions to act as records, indeed, somewhat mobile records. In this way, 
evolutionary limitations of human biological memory were finally overcome 
through the use of “extracortical” records (Donald, 1991).  

The Evolution of Notation Systems Supporting Quantitative 
Computation 
We now examine the evolution of a second representational infrastructure. In the 
several millennia that followed, and across several different societies where 
urbanization and commerce developed, various number systems evolved to 
support ever better and more compact ways of expressing quantities and abstract 
numbers, particularly to express the large numbers required for calendar purposes 
and for tracking quantities in the city-states and empires—Babylonian, Egyptian, 
and eventually Roman. Importantly for our purposes, while they typically 
embodied grouping structures, they tended not to be rigorously positional and 
tended not to be fully hierarchical. The most tightly structured and efficient 
system was the Babylonian (semi) sexigesimal (base 60) system. It employed a 
mix of additive and multiplicative methods of representing numbers as there were 
no common symbols for smaller numbers, (as with the Hindu-Arabic numerals). It 
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did, however, use position to denote powers of 60. Hence a number would be 
represented as an array of symbols for units, tens, and powers of 60 (using 
cuneiform, or wedge-based signs). As is widely appreciated, this system 
supported a rich practical mathematics that served many aspects of society for 
more than two millennia, although with the lack of a zero for a placeholder (in its 
later years a placeholder system did develop), it did not support efficient 
multiplication or division. Further, the lack of compact numerals for the first nine 
numbers meant that it was considerably less efficient for writing numbers in the 
hundreds and thousands than our current system, and even less efficient, 
relatively, for larger numbers. Of course, the contemporaneous writing systems 
were likewise ideographic and difficult to learn and hence the tool of specialists—
scribes (Walker, 1987). The later Roman system was less structured and less 
multiplicative in its organization, and hence even less efficient for multiplication 
and division. 

How did these systems survive in supporting the quite extensive calculational 
tasks they were called upon to serve? The answer is clear: only a very small 
minority of the respective societies were needed to do such calculations, and these 
scribes were specially trained in the art of manipulating the symbol systems. In 
this respect, the role of the physical medium (e.g. the marks made on clay and so 
on) were crucial in supporting the prodigious amounts of human processing 
power that would otherwise be engaged. While the structural features of the 
notational system were not particularly tuned to calculational ends (anyone who 
has ever tried to do long division with Roman numerals will testify to this) the 
combination of the physical instantiation of symbols, together with human 
processing power on the part of a few, was sufficient to sustain powerful empires 
over hundreds and thousands of years. Furthermore, the existing static record-
keeping capacity could be used to record methods, results (especially in the case 
of the Babylonians, who made wide use of tables of all sorts to record quantitative 
information and mathematical relationships, make astronomical predictions, and 
so on), and even instructional materials by which expertise could be extended 
across generations (Kline 1953). 

Another big representational transformation had roots several centuries earlier, in 
the 8th to 11th centuries, preceding Fibonacci’s importation of the Hindu-Arabic 
numerals into Europe in the early 13th century. More efficient methods of 
computing developed, based on systematic use of specially-marked physical 
“counting tables” on which physical tokens were manipulated. In this way, the 
technology of the counting tables externalized some of the knowledge and 
transformational skill which would otherwise have existed only in the minds of 
individuals: the physical instantiation of these skills directly supported, not only 
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the limited processing capacity of human brains, but the affordance of the 
notational system for achieving results. 

These results of computations were recorded first in Roman numerals, but then 
gradually more often in Hindu-Arabic numerals. These methods are typically 
referred to as “abacus” style computations based on the Greek word for slab, on 
which the procedures took place. At the same time, and then more intensely 
during the 13th century, new and more efficient ways of computing evolved based 
on manipulation of the readily inscriptable Hindu-Arabic numerals in the 
positional and hierarchical number system that Fibonacci had described. These 
were referred to as “algorithm” style computations based on a Latinized version 
of the name Abu Ja’far Muhammed ibn Musa al-Khwarizmi, a mathematician 
from Baghdad who wrote an arithmetic book describing some of the early 
computational schemes using Hindu-Arabic numerals.  

It is instructive to see the prominence of commercial needs of the day in his 
description of algebra: 

... what is easiest and most useful in arithmetic, such as 
men constantly require in cases of inheritance, legacies, 
partition, lawsuits, and trade, and in all their dealings 
with one another, or where the measuring of lands, the 
digging of canals, geometrical computations, and other 
objects of various sorts and kinds are concerned.  

F Rosen (trs.), Muhammad ibn Musa Al-Khwarizmi : 
Algebra (London, 1831) 

Clearly, al-Khwarizmi conceived algebra as a way of solving pressing practical 
problems of the Islamic Empire. Similarly, in response to burgeoning commerce 
in the 14th and 15th centuries in northern Italy and elsewhere, the algorithms were 
refined and gradually displaced the abacus methods, although not without 
controversy1. The efficiency payoff of a positional and exponentially hierarchical 
system was enormous because it allowed a person to compute simply by writing 
and rewriting the small set of ten symbols according to certain rules (the 
algorithms) and, on the basis of the quantitative coherence of the notation system, 

                                                

1 In fact there was some resistance to writing abacus results in Hindu-Arabic numerals on the 
grounds that they could be easily altered, e.g., changing a “6” to an “8” by adding a mark to the 
top part of the “6,” or a “9” could be made from a “1” and so on. 



 6 

be assured of a correct answer based on the rules alone. Computational skill 
became encoded in syntactically defined rules on a symbol system. 

The algorithmic methods were put forward (anonymously) in what amounts to the 
first arithmetic text, the Treviso, named after the city outside Venice where it was 
published in 1478, less than 40 years after Gutenberg’s introduction of moveable 
type (itself a response to the pressing need to find a way of salvaging religious 
texts which contained mistakes, without destroying the entire work). These 
algorithms, exploiting the physical positional structure of the notation system and 
the paper medium, are essentially the same forms for addition, subtraction, 
multiplication and division that have dominated school mathematics to the 20th 
century. In the book (translated and appearing in Swetz, 1987) they were 
illustrated within the contexts of commerce and currency exchange, and were 
passed along from generation to generation as a body of practical knowledge in 
what amounted to professional schools for “reckoners”—the accountants of the 
time. 

Interestingly, the Treviso was written in the vernacular, as opposed to Latin, and 
thus was one of the first printed mathematics books intended to serve a “non-
academic” public—or at least that public who needed to know these special 
techniques. The new representational infrastructure helped democratize access to 
what had previously been the province of a small intellectual elite, since up to that 
time numerical computations beyond addition and simple subtraction were a 
scholarly pursuit undertaken at the universities. Recall the oft-cited anecdote from 
Dantzig (1954): 

It appears that a [German] merchant had a son whom he desired to 
give an advanced commercial education. He appealed to a prominent 
professor of a university for advice as to where he should send his son. 
The reply was that if the mathematical curriculum of the young man 
was to be confined to adding and subtracting, he perhaps could obtain 
the instruction in a German university; but the art of multiplying and 
dividing, he continued, had been greatly developed in Italy, which, in 
his opinion, was the only country where such advanced instruction 
could be obtained. 

Indeed, the question of inclusion of these same algorithms in school mathematics, 
to support basic shopkeeper arithmetic, currency exchange, and other simple 
arithmetic tasks, continued to be the subject of vigorous debate through the 20th 
century and even into the 21st. Of course, in the intervening five centuries, the 
practical role of arithmetic has broadened with the increasing complexity of 
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modern life, especially in the workplace, and it has assumed a cornerstone 
position in school mathematics. Indeed, the skills of arithmetic are seen, in almost 
all developed societies, not only as essential for the efficient operation of 
economies, but as an entitlement of an educated individual. We shall return to this 
issue below, but for the moment, it is worth delineating two separate skills that 
arithmetic teaching in the twentieth century came to serve: the one concerned with 
obtaining answers quickly and correctly, and the other as a backdrop against 
which the process of executing algorithms could be performed, number 
relationships learned, and manipulative methods practiced. While execution was 
the preserve of the human mind, this distinction hardly arose, but as we shall see 
it becomes more central in this computational era. 

The Evolution of Algebraic Notations  
We now examine a third example of a representational infrastructure. Algebra 
began in the times of the Egyptians in the second millennium BC, as evidenced in 
the famous Ahmes Papyrus, by using available writing systems to express 
quantitative relationships, especially to “solve equations”—to determine unknown 
quantities based on given quantitative relationships. This is the so-called 
“rhetorical algebra” that continued to Diophantus’ time in the 4th century of the 
Christian era, when the process of abbreviation of natural language statements and 
the introduction of special symbols began to accelerate. Algebra written in this 
way is normally referred to as “syncopated algebra.” By today’s standards, 
achievement to that point was primitive, with little generalization of methods 
across cases and little theory to support generalization. Indeed, approximately two 
millennia produced solutions to what we would now refer to as linear, quadratic, 
and certain cubic equations (of course they were not written as equations), often 
based in contrived and stylized concrete situations, and not much more. Indeed, it 
appears that, in the absence of a systematic symbol system, the stylized situation 
provided a kind of semi-abstract conceptual scaffolding for the quantitative 
reasoning that constituted the methods. The accumulated skill was encoded in 
illustrative examples rather than in syntactically defined rules for actions on a 
symbol system. 

Then, in a slow, millennium-long struggle involving the co-evolution of 
underlying concepts of number (see especially Klein, 1968), algebraic symbolism 
gradually freed itself from written language in order to support techniques that 
increasingly depended on working with the symbols themselves according to 
systematic rules of substitution and transformation—rather than the quantitative 
relations for which they stood. Just as the symbolism for numbers evolved to yield 
support for rule-based operations on inscriptions taken to denote numbers, so the 
symbolism for quantitative relations likewise developed. Bruner (1973) refers to 
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this as an “opaque” use of the symbols rather than “transparent” use: the former 
implies attention to actions on the inscriptions, while the latter implies that actions 
are guided by reasoning about the entities to which the inscriptions are assumed to 
refer.  

In effect, algebraic symbolism gradually freed itself from the (highly functional) 
ambiguities and general expressiveness of natural language. The newly developed 
and systematic semiotic structures embodied hard-won understandings of general 
mathematical relations and, by the 17th century, functions. This symbol system 
also embodied forms of generality, (particularly through the use of symbols for 
variables), and the dual use of operation symbols (so symbols such as “+” could 
be applied to symbols for variables ranging over sets of numbers as well as for the 
numbers themselves). Hence general statements of quantitative relations could be 
expressed efficiently. 

However, the more important aspects of the new representational infrastructure 
are those that involved the rules, the syntax, for guiding operations on these 
expressions of generality. These emerged in the 17th century as the symbolism 
became more compact and standardized in the intense attempts to mathematize 
the natural world that reached such triumphant fruition in the “calculus” of 
Newton and Leibniz. In the words of Bochner (1966):  

Not only was this algebra a characteristic of the century, but a certain 
feature of it, namely the “symbolization” inherent to it, became a 
profoundly distinguishing mark of all mathematics to follow. ... 
(T)his feature of algebra has become an attribute of the essence of 
mathematics, of its foundations, and of the nature of its abstractness 
on the uppermost level of the “ideation” à la Plato (pp. 38–39). 

Beyond this first aspect of algebra, its role in the expression of abstraction and 
generalization, he also pointed out the critical new ingredient: 

... that various types of ‘equalities,’ ‘equivalences,’ ‘congruences,’ 
‘homeomorphisms,’ etc. between objects of mathematics must be 
discerned, and strictly adhered to. However this is not enough. In 
mathematics there is the second requirement that one must know how 
to ‘operate’ with mathematical objects, that is, to produce new objects 
out of given ones (p. 313).  

Indeed, Mahoney (1980) points out that this development made possible an 
entirely new mode of thought “characterized by the use of an operant symbolism, 
that is, a symbolism that not only abbreviates words but represents the workings 
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of the combinatory operations, or, in other words, a symbolism with which one 
operates” (p. 142). 

This second aspect of algebra, the syntactically guided transformation of symbols 
while holding in abeyance their potential interpretation, flowered in the 18th 
century, particularly in the hands of such masters as Euler. At the same time, this 
referral of interpretation led to the further separation of algebraic and natural 
language writing and hence the separation from the phonetic aspects of writing 
that connect with the many powerful narrative and acoustic memory features of 
natural language. Indeed, as is well known from such examples as the “Students-
Professors Problem” (Clement, 1982; Kaput & Sims-Knight, 1983), the algebraic 
system can be in partial conflict with features of natural language. 

Thus, over an extremely long period, a new special-purpose operational 
representational infrastructure was developed that reached beyond the operational 
infrastructure for arithmetic. However, in contrast with the arithmetic system, it 
was built by and for a small and specialized intellectual elite in whose hands, 
quite literally, it extended the power of human understanding far beyond what 
was imaginable without it. In the hands of an extremely small community over the 
next 250 years, the expressive and operational aspects of this narrowly-scoped 
representational infrastructure made possible a science and technology that 
irreversibly changed the world, as well as of our views of it and of our place in it. 

Calculus and the Idea of “a Calculus” 
Our last example of representational infrastructure evolution involves Calculus. 
The notion of an automatic computing machine to carry out numeric calculations, 
as we have seen, is very old. Leibniz, however, wanted to go further and be able 
to compute logical consequences of assumptions through an appropriate symbol 
system. He understood, perhaps more clearly than anyone before him, not only 
that choice of notation system was critically important to what one could achieve 
with the system, but also and more specifically, that a well-chosen syntax for 
operations on the notation system could support ease of symbolic computation. 
Hence, as reflected in correspondence with contemporaries, especially Huygens 
(Edwards, 1979), he was very careful in the design of a notation to represent his 
findings regarding how a function was related to what we now call its derivative 
or integral. His goal was that his new notation would support a “calculus” for 
computing such new functions in the general sense that the word “calculus” was 
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used in those times2. His nicely compact and mnemonic notation also allowed a 
direct expression of the relations between derivatives and integrals, relations 
expressed in the Fundamental Theorem of Calculus.  

Indeed, diSessa (2000), reminds us that Leibniz’ notation, which dominated the 
way calculus was used more than 300 years later, was at least as important as the 
insights that it encoded. After all, these ideas were also created by Newton. But 
Newton’s brilliant insights and methods have come to be learned and used for 
generations in Leibniz’ notation, and the reluctance of his British followers to 
adopt Leibniz’ notation was likely a significant factor in the century-long lag of 
British mathematics behind that of the Continent (Boyer, 1959; Edwards, 1979). 
diSessa points out that Leibniz’ notation became “infrastructural (p. 11)—in the 
same sense that we have been using the phrase “representational infrastructure” in 
this chapter. Incidentally, it is pointed out by diSessa that the achievement of 
infrastructural status for Leibniz’s notation was in no small part due to the fact 
that it was easier to teach. 

So once again, as in the case of arithmetic and then algebra, the development of a 
compact, efficient notation system turned out to be a critical factor in what 
followed. 

Computational Media and the Separation of outcome from Process  
The foregoing provides a brief overview of the structural changes in 
the semiotics of mathematical expression over time, leading to the 
emergence of complex and strongly supportive systems which 
sustain and expand the possibilities of human calculation and 
manipulation—at least for the few who were inducted into its use. 
We will argue that there are two key developments in a 
computational era: first that human participation is no longer 
required for the execution of a process and second, access to the 
symbolism is no longer restricted to a privileged minority. In order 
to elaborate on the points, we will need just a little more historical 
perspective, before we focus our attention on the digital media 
themselves. As recounted in Shaffer & Kaput (1999), the 
development of computational media required three elements: the 
existence of discrete notations without fixed reference fields (that is, 

                                                

2 As a way of computing (derived, of course, from the Roman word for pebble, since pebbles were 
used for computation, ironically, because the Roman numeral system was so inefficient). 
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the idea of formalism), the creation of syntactically coherent rules of 
transformation on such notations, and a physical medium in which 
to instantiate these transformations outside the human cortex and 
apart from human physical actions. Hence in the 20th century a 
profound shift has occurred, from operable notation systems 
requiring a suitably trained human partner for execution of the 
operations, to systems that run autonomously of a human partner. 

On Changing Representational Infrastructures  
Our starting point is the assertion that the extent to which a medium becomes 
infrastructural is the extent to which it passes as unnoticed. This is fine, until one 
needs to be aware of the structural facets of the medium, in order to learn either 
how to express oneself within it, or understand what might be expressed within it 
(or both). From the point of view of the learner, this can be confusing. For 
example, Leibniz’ notation is a 2nd order notation built on top of algebra because it 
guides actions on expressions built in algebraic notation (a fact that confuses 
many students even today who do not distinguish between “taking the derivative” 
and simplifying the result—after all, they are both ways of transforming strings of 
symbols into new strings of symbols). Since the ideas, constructions and 
techniques of Calculus are written in the language of algebra, knowledge of 
Calculus has historically depended on knowledge of algebra. This in turn means 
that this knowledge has historically been the province of a small intellectual 
elite—despite the fact that the key underlying ideas concerning rates, 
accumulations, and the relations between them are far more general than the 
narrow algebraic representations of them in most curricula (Kaput, 1994). 

Representational forms are often transparent to the expert. Musicians do not 
‘think’ about musical notation as they play an instrument, any more than expert 
mathematicians have to (except when they are constructing a new notation or 
definition). But when one is learning or constructing something new, one needs to 
think explicitly about the representational system itself—we require, in other 
words, that the representational system is simultaneously transparent and opaque. 
This ‘coordinated transparency’ (Hancock, 1995) represents a synthesis of 
meaning and mechanism, a situation (desirable but not always easily achievable) 
in which fluency with and within the medium can temporarily be replaced by a 
conscious awareness of its (usually invisible) internal structures. Grammar 
checking (human rather than computational) is a good example. 

As noted above, the development of algebraic representational forms which 
generated fluency among the cognoscenti, took place within the semiotic 
constraints of static, inert media, and largely without regard to learnability 
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outside the community of intellectual elite involved. Over the past several 
centuries this community’s intellectual tools, methods and products (the 
foundations of the science and technology upon which we depend) were not only 
institutionalized as the structure and core content of school and university 
curricula in most industrialized countries and taken as the epistemological essence 
of mathematics (Bochner, 1966; Mahoney, 1980), but in most countries became 
the yardstick against which academic success was defined. Thus the close 
relationship of knowledge and its culturally-shared preferred representations, 
precisely the coupling that has produced such a powerful synergy for developing 
scientific ideas since the Renaissance, became an obstacle to learning, and even a 
barrier which prevented whole classes from accessing the ideas which the 
representations were so finely tuned to express. 

While the execution of processes was necessarily subsumed within the individual 
mind, decoupling knowledge from its preferred representation was difficult.3 But 
as we have seen, this situation has now changed. The emergence of a virtual 
culture has had far-reaching implications for what it is that people need to know, 
as well as how they can express that knowledge. We may, in fact, have to 
reevaluate what knowledge itself is, now that knowledge and the means to act on 
it can reside inside circuits that are fired by electrons rather than neurons. Key 
among these implications is the recognition that algorithms, and their instantiation 
in computer programs, are now a ubiquitous form of knowledge, and that they—
or at least the outcomes of their execution—are fundamental to the working and 
recreational experiences of all individuals within the developed world. 

Many individuals and social groups have suffered a massive deskilling of their 
working lives precisely because of this devolution of executive power to the 
machine. But not all. Indeed many occupations (or at least parts of them) have 
becoming more challenging and enriching because of the introduction of digital 
technologies. What is common, however, is that the relationship between 
computational systems and individuals has become much more intimate than was 
ever envisaged. In part, this is a simple maturation of the technology—three of the 
more obvious and striking aspects are its miniaturization, the power of graphical 
displays and, of course, its connectivity (in 1982, the idea of communication as a 

                                                

3 But not impossible: indeed, a considerable amount of mathematical education research has tried 
to study—and encourage—the ways in which people form conceptual images of mathematical 
ideas independently of—and sometimes in conflict with—the preferred algebraic or formal 
representation. 
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central functionality of computers was the preserve of only a few experts in 
universities).  

These technical facets of computer systems and the ways we use them, have 
reshaped our relationship with them. On the one hand, they have reduced even 
further the necessity for ‘users’ to make sense of how computational systems do 
what they do. The intimacy that, for example, a painter has with her brush—or 
perhaps much more relevant analogy, the relationship between a musician and her 
instrument—is rarely (currently) possible with the computer, despite the close 
proximity and personal relationship which many people have with their machines, 
especially hand-held ones. 

An accepted (but, as we shall see, fundamentally false) pedagogical corollary is 
that since mathematics is now performed by the computer, there is no need for 
‘users’ to know any mathematics themselves (for a well-publicized but 
disappointing set of arguments propounding this belief, see Brammall and White, 
2000). Like most conventional wisdoms, this argument contains a grain (but only 
a grain) of truth. Purely computational abilities beyond the trivial, for example, 
are increasingly anachronistic. Low level programming is increasingly redundant 
for users, as the tools available for configuring systems become increasingly high-
level. Taken together, one might be forgiven for believing that the devolution of 
executive power to the computer removes the necessity for human expression 
altogether (or at least, for all but those who program them). 

In one sense this is true. Precomputational infrastructures certainly make it 
necessary that individuals pay attention to calculation: and generations of 
'successful' students can testify to the fact that calculational ability can be 
sufficient (e.g. for passing examinations) even at the expense of understanding 
how the symbols work. In fact, quite generally, the need to think creatively about 
representational forms arises less obviously in settings where things work 
transparently (cogs, levers, pulleys have their own phenomenology). Now the 
devolution of processing power to the computer has generated the need for a new 
intellectual infrastructure; people need to represent for themselves how things 
work, what makes systems fail and what would be needed to correct them. This 
kind of knowledge is increasingly important; it is knowledge that potentially 
unlocks the mathematics that is wrapped invisibly into the systems we now use, 
and yet understand so little of. Increasingly, we need—to put it bluntly—to make 
sense of mechanism. 

Yet the need to make sense of mechanism is not fundamentally new. Indeed, the 
syntax of the numerical, algebraic and calculus representation systems can be 
regarded as mechanisms, and the bulk of mathematics schooling has been devoted 
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to teaching and learning that form of mechanism. However, there is a further 
complexity to the present situation. It is true that fewer and fewer people need to 
program computers, at least in the usual sense of the term ‘program’. But more 
and more people need to know something of how the machines and the systems 
(social, professional, financial, physical) operate—not just the few who are 
responsible for building them. We cannot adduce evidence for this assertion here 
(for a convincing selection of papers on this theme, see Hoyles, Morgan & 
Woodhouse, 1999).  

We share a vision of a mathematics curriculum that assumes mathematical 
understanding should be built around the construction and interpretation of 
quantitative and semi-quantitative models, where students explore mathematical 
technologies and analyze methods in contexts that show how they can be used and 
why they work in the way they do. We can also refer the interested reader to a 
series of papers, which have studied the mathematics of professional practices in a 
number of areas (aviation pilots, nurses, bank employees, and most recently, 
engineers). (See, for example, Noss and Hoyles (1996), Pozzi, Noss, and Hoyles 
(1998), Noss, Pozzi, and Hoyles (1999), Hoyles, Noss, and Pozzi S. (2001). 

We restrict ourselves to two observations. First, at critical moments of their 
professional practice, people try to make sense out of complex situations by 
building mental models, or, if they do not have access to the raw material of 
model-building, by circumventing them. Circumvention (ignoring inconvenient 
data) can be a dangerous strategy. To gain access to underlying models, to make 
them visible, is to focus on the quantities that matter, and on the relationships 
among them. In order to gain such a sense of mechanism, one needs interpretative 
knowledge about, for example, graphs, about parameters and variables, about 
continuity, and a broad range of representational abilities that are different from, 
but no less important than, calculational and manipulational skills we have 
inculcated in young people until now. 

The second observation concerns the complexity of interaction between 
professional and mathematical practices. It is true that more and more 
professional practice devolves calculational expertise to the computer. But it is 
not true (or if it is, it is dangerously so) that the computers can be left to make 
judgment (one of our examples concerns a life-and-death decision on a pediatric 
ward—see Noss, 1998). Judgment in the presence of intimate computational 
power requires new kinds of representational knowledge: distinguishing between 
what the computer is and is not doing; what can be easily modified in the model 
and what cannot; what has been incorporated into the model and why; and what 
kinds of model have been instantiated. As examples, we may consider the 



 15 

difference between parallel and serial computational models, how different kinds 
of knowledge are encoded with them, and what kinds of interpretation they allow; 
and, not least, the communicative value of representational knowledge, in terms of 
sharing knowledge with others who interact with other parts of the same system, 
or other, linked systems. 

The new element in the situation is, of course, that the systems that control our 
lives are now built on mathematical principles. This is a major—perhaps the 
major—property of the virtual culture. The devolution of execution to the 
machines means more than this: not only do the machines now do mathematical 
execution, it implies that any consequential appreciation of what the machines do 
must itself be based on mathematical principles. If an individual does not have the 
means formally to relate his or her intellectual model of the mathematical 
principles with those inside the machine, then appreciation of the model must 
necessarily be partial.  

Of course, this does not mean that such models need to be expressed in the same 
languages as used inside the machine. Quite the reverse. It means that we have to 
find ways to help people to capture the dynamics of the system, so they can 
follow the consequences of particular actions while maintaining a realistic sense 
of the structures of relationships between them. We now turn to some examples 
which begin to address the issues raised, and then show how students can be 
stimulated to explore mathematical mechanisms and in so doing rebuild the 
synergy of knowledge and representation.4 

A New Representational Infrastructure for Cartesian Graphs Coupled 
with Embedded Derivatives and Integrals Linked to Phenomena 
Over the past two decades, the character string approaches to the mathematics of 
change and variation have been extended to include and to link to tabular and 
graphical approaches, yielding the “the Big Three” representation systems, 
algebra, tables, and graphs frequently advocated in mathematics education. 
However, almost all functions in school mathematics continue to be defined and 
identified as character-string algebraic objects, especially as closed form 
definitions of functions—built into the technology via keyboard hardware. In the 
                                                
4 The former provides a putative enhancement of experiential phenomena, and thus a richer base 
for intuitive knowledge. This is hardly unique to digital technologies: when mechanized transport 
was first invented, people for the first time, found it ‘obvious’ that centrifugal force was 
something to do with changing direction (the fact that it feels like centrifugal force rather than 
centripetal acceleration just shows that intuitions don’t always give the whole picture!). 
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SimCalc Project, we have identified five representational innovations, all of 
which require a computational medium for their realization but which do not 
require the algebraic infrastructure for their use and comprehension. The aim in 
introducing these facilities is to put phenomena at the center of the representation 
experience, so children can see the results, in observable phenomena, of their 
actions on representations of the phenomenon, and vice versa. These are: 

♦ The definition and direct manipulation of graphically defined and editable 
functions, especially piecewise-defined functions, with or without algebraic 
descriptions. Included is “snap-to-grid” control, whereby the allowed values 
can be constrained as needed (to integers, for example) allowing a new 
balance between complexity and computational tractability. This facility 
means that students can model interesting change situations while avoiding 
degeneracy of constant rates of change, and postponing (but not ignoring!) the 
messiness and conceptual challenges of continuous change. 

♦ Direct, hot-linked connections between functions and their derivatives or 
integrals. Traditionally, connections between descriptions of rates of change 
(e.g., velocities) and accumulations (positions) are mediated through the 
algebraic symbol system as sequential procedures employing derivative and 
integral formulas, which is the main reason that Calculus sits at the end of a 
long sequence of curricular prerequisites 

♦ Direct connections between these new representations and simulations to 
allow immediate construction and execution of variation phenomena.  

♦ Importing physical motion-data (via MBL/CBL) and reenacting it in 
simulations, and exporting function-generated data to define LBM (Line 
Becomes Motion) to drive physical phenomena (including cars on tracks). 

We also employ hybrid physical/cybernetic devices embodying dynamical 
systems, whose inner workings are visible and open to examination and control, 
and whose quantitative behavior is symbolized with real-time graphs generated on 
a computer screen. 

We will risk real danger by providing grayscale snapshots of colorful, dynamic, 
interactive lessons, especially by superimposing multiple problems and solutions 
on the same graphs. We will provide some basic activities to illustrate concretely, 
albeit thinly, how this new representational infrastructure can work. First note that 
the various graphs appearing in the figures below are created piecewise simply by 
clicking, dragging and/or stretching segments, although in other activities it is 
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also possible to specify the graphs algebraically, or by importing data, or by 
(partially constrained) drawing. (A similar set appears in Kaput, 2000.) 

Variation, Area, Average, Approximation, Slope, Continuity, and Smoothness for 
Jerky Elevators: Suppose we are given a staircase velocity function (see Figure 1), 
which drives the motion of the left-hand elevator to its left (these are color-coded 
in the software). The following kinds of lesson snippets are usually preceded by 
context-rich work that involves moving elevators around to accomplish various 
tasks, such as delivering pizzas to various floors, etc. 

(1) How will the elevator move if driven by Plot #1 (the piece-wise downward 
staircase velocity function in Figure 1), and where will it end its trip? (It 
starts on the 0th floor.) 

(2) Does there exist a constant velocity function for the 2nd elevator (just to the 
right of the 1st) that gets to the same final floor at exactly the same time as 
the 1st? If so, build it. (Plot #2—the one-piece constant velocity function) 

(3) Make a linear velocity function for the 3rd elevator that provides a 
smoothly decreasing velocity approximating the motion of the 1st 
(staircase) elevator. Before running it, predict how far apart the 1st and 3rd 
elevators will finish their trips. (Plot #3—the linear decreasing velocity 
function) 

(4) For the staircase velocity function (Plot #1) in Figure 1, what is the 
corresponding position graph, and what is its slope at 3.5 seconds? (Plot 
#4—the piece-wise increasing position function) 

(5) While the average-velocity function for the staircase has exactly the same 
area under it as the staircase, what is an easy way to draw its 
corresponding position graph? (Plot #5—the linear increasing position 
function) 

(6) What is the key difference between the position graph for the staircase and 
the position graph of the 3rd velocity function? (Plot #6—the quadratic 
position function) 
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Figure 1. Lesson-snippets. 

Question (1) involves interpreting variation via a variable velocity function whose 
integral, to determine the final position, can be determined with whole number 
arithmetic. Such step-wise varying rate-functions are intensively used in SimCalc 
instructional materials to build the notion of area as accumulation. Such functions 
also raise issues of continuity, acceleration, and physical realizability of 
simulations that are explored in depth using MBL and LBM technologies. Of 
course they also occur in economic situations with great frequency—tax rates, pay 
rates, telephone rates, etc. 

Question (2) introduces the key idea of average, which, via our ability to use 
snap-to-grid to control the available number system also enables examination of 
when the average “exists” and whether it must inevitably equal the value of the 
varying function at some point in its domain. In traditional instruction, most 
students only experience continuously changing rates and hence never really 
confront the issue since the average always hits the continuously varying 
intermediate values. 

Question (3) points up the reversal of the usual relationship between step 
functions and continuous ones (usually, the former are used to approximate the 
latter), and highlights the integration of fraction and signed number arithmetic in 
the MCV. Position graphs and linearly changing velocity are developed over 
many lessons in many ways, including the differences between physical motion 
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(including force-acceleration issues), and economic functions, so the glimpse here 
may be misleading in its abruptness. 

Question (4) introduces the idea of slope as height of velocity segment, and is part 
of an extensive study of slope as rate of change. 

Question (5) illustrates the power of a “2nd opinion” since the position description 
of the average velocity motion is merely a straight line joining the start and end of 
the position graph. These two ways of describing change-phenomena are treated 
as complementary throughout SimCalc instructional materials. 

Question (6) deals with smoothness, and is part of an extended introduction to 
quadratic functions as accumulations of linear ones that weaves back to issues of 
acceleration and physical motion, and their physical realizability. An 
accompanying set of investigations examine non-physical motion, e.g., price or 
other money rates that change discontinuously such as tax rates, phone rates, 
royalty rates, etc. 

Activities Linking Velocity & Position Descriptions of Motion in the Context of 
Signed Numbers and Areas: The earlier parts of the next lesson, from which these 
snippets are taken, involve students in creating graphs to move Clown and Dude 
around, switching places at constant speed, coming together and then returning to 
their original positions, and so on. (Only step-wise constant velocities have been 
made available here, although other function types could have been used, and, in 
fact are used in SimCalc materials.) 

Challenge: Clown and Dude are to switch their positions so that they pass by 
each other to the left of the midpoint between them and stop at exactly the 
same time. First, after marking off a line about 12 feet long, you and a 
classmate walk their motions! Now make a position graph for Clown and a 
velocity graph for Dude so that they can do this. 

The student needs to construct graphs similar to Plot #1 (on the position graph) 
and Plot #2 (on the velocity graph) in Figure 2. We have also shown the 
respective corresponding velocity and position graphs, Plots #3 and #4, which can 
be revealed and discussed later. Note that velocity and position graphs are hot-
linked, so changes in the height of a velocity segment are immediately reflected in 
the slope of the corresponding position segment, and vice-versa. Importantly, the 
activity requires interpretations of positive and negative velocities, and hence 
provides meaningful work with signed number arithmetic, as well as the 
representation of simultaneous position—paving the way for simultaneous 
equations. Later activities involve a story-line where Dude is patrolling the area 
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(periodic motion) and Clown gets “interested” in Dude, follows him at a fixed 
distance, “harasses” him, & eventually, they dance—where the student, of course, 
is responsible for making the dance. 

 

Figure 2. You, and then Clown & Dude, cross to the left of the center 

Extensions to MBL and LBM: The above representational innovations can be 
combined with the principals illustrated by Questions #5 & #6, mentioned 
earlier, to create opportunities to study the Math of Change & Variation. For 
example, we can import and display motion data in the classic Micro Computer 
Based Lab or Calculator Based Lab (MBL/CBL) ways, but in addition, we can 
now attach this physically-based data to the objects in a simulation and replay 
their motion, compare it with motions defined synthetically, so that a student 
can perform and import a physical motion that can lead an entire group of 
dancers whose motions are created synthetically. Further, a student can define 
a motion using a mathematical function (position or velocity) in any of the 
ways one might care to define a function and then “run” it physically in a 
linked LBM miniature car on a track. The forms of learning supported by these 
kinds of devices and activities, especially how they relate to one another and to 
physical intuition, are under active investigation, and the study of this richly 
populated space of interrelated inscriptions, and the new connections among 
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physical, kinesthetic, cybernetic and notational phenomena, will continue for 
years to come—and will be instantiated in increasingly networked contexts 
(Kaput, 2000; Nemirovsky, Kaput, & Roschelle, 1998). 

The result of using these systems, particularly in combination and over an 
extended period of time, is a qualitative transformation in the mathematical 
experience of change and variation. However, short term, in less than a minute, 
using either rate or totals descriptions of the quantities involved, or even a mix 
of them, a student as early as 6th–8th grade can construct and examine a variety 
of interesting change phenomena that relate to direct experience of daily 
phenomena. And in more extended investigations, newly intimate connections 
among physical, linguistic, kinesthetic, cognitive, and symbolic experience 
become possible. 

♦ Preliminary Reflections on the New Representational Infrastructure 
A key aspect of the above representational infrastructure is revealed when we 
compare how the knowledge and skill embodied in the system relates to the 
knowledge and skill embodied in the usual curriculum leading to and including 
Calculus. At the heart of the Calculus is the Fundamental Theorem of Calculus, 
the bidirectional relationship between the rate of change and the accumulation of 
varying quantities. This core relationship is built into the infrastructure at the 
ground level. Recall that the hierarchical placeholder representation system for 
arithmetic and the rules built upon it embody an enormously efficient structure for 
representing quantities (especially when extended to rational numbers) which in 
turn supports an extremely efficient calculation system for use by those who 
master the rules built upon it. This is true of the highly refined algebraic system as 
well. Similarly, this new system embodies the enormously powerful idea of the 
Fundamental Theorem in an extremely efficient graphically manipulable structure 
that confers upon those who master it an extraordinary ability to relate rates of 
change of variable quantities and their accumulation. In a deep sense, the new 
system amounts to the same kind of consolidation into a manipulable 
representational infrastructure an important set of achievements of the prior 
culture that occurred with arithmetic and algebra. 

Developing a sense of mechanism 
In this, penultimate section, we focus on a corpus of work which is emerging from 
the Playground project (see www.ioe.ac.uk/playground). Like the SimCalc 
examples above, our interest focuses on new ways to express mathematical 
relationships, bringing children into contact with mathematized descriptions of 
their realities at ages much younger than we would normally countenance with 
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static technologies. Unlike the SimCalc example, which typically involves 
students beginning at ages 11-12 (although it is also used at the university level), 
we are trying to explore what might be gained by very young children (aged 
between 4 and 8) building their own executable representations of relationships—
in effect, we are redefining the idea of programming. 
The rationale for programming has a long and distinguished history, stretching 
back some thirty years or more (see, for example, Feurzeig, 1969). We have no 
intention of rehearsing the argument here (see Noss & Hoyles, 1996 for a history 
and rationale for programming in the context of mathematical learning). What is 
new is that programming has begun to change its character, having been 
expressed in various forms—as text (still the dominant form) as icons, and now, 
as we shall see, as animated code. We believe that this last change of expressive 
form marks a significant shift in what is possible for young children.  

Our central focus is to open possibilities for children to design, construct and 
share their own video games. We are designing computational environments for 
children to build and modify games using the formalization of rules as creative 
tools in the constructive process. We call these environments ‘Playgrounds’. We 
are working with two new and evolving programming systems, ToonTalk—an 
animated programming language (Kahn, 1999)—and Imagine a concurrent 
object-oriented variant of the Logo programming language (Blaho et al, 1999: 
note, at this point, the language was named “OpenLogo”). Each of our two 
Playgrounds represents a layer we have built on top of these platforms, 
incorporating elements that allow multiple entry points into the ideas of 
formalizing rules. In this paper we concentrate on our work with ToonTalk.  

Our objective has a strong epistemological rationale. The challenge is to find 
ways for very young children to use non-textual means to express and explore the 
knowledge which underpins the genre of video games: what it means for objects 
to collide, how 2-dimensional motion of an object (or a mouse, or a joystick) can 
be thought about, the construction of animation, and the hundreds of little pieces 
of knowledge which go to make up the workings of video games. We see this as 
an instantiation of a much broader class of knowledge, which, quite simply, we 
call developing a sense of mechanism.  

Our choice of video games builds on established work by, for example, Kafai 
(1995) in that it has chosen a domain which seems to be naturally attractive for 
many children. We have no ulterior pedagogical or epistemological motive: we do 
not ask the children with whom we work to design games for any purpose other 
than their own amusement. Testing our intuitive belief that games themselves 
form a sufficiently-rich backdrop against which to explore mathematical 
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relationships forms part of our studies with children, and forms a central element 
of our design brief.  

ToonTalk is a world in which animations themselves are the source code of the 
language; that is, programs are created by directly manipulating animated 
characters, and programming is by example (see Cypher, 1993). A full description 
can be found in Kahn, 1999). ToonTalk is constructed around the metaphor of a 
city, populated by houses (in which programs or methods are built), trucks are 
dispatched to build new houses (new processes spawned), robots are trained (for 
new programs or methods), and birds fly to their nests (message passing). A 
helicopters allows the user to navigate around the city, or to hover above it 
watching trucks move around (as an aside, and to emphasize that ToonTalk is a 
Turing equivalent language, it is both instructive and surprising to watch a city 
recursively grow and shrink as a quicksort is being executed).  

Robots are trained to carry out tasks inside houses (defining the body of a 
method). A user trains a robot by entering its “thought bubble” and controlling it 
to work on concrete values (see Figure 3). The robot remembers the actions in a 
manner that can easily be abstracted to apply in other contexts by later removing 
detail from the robot’s thought bubble (see Figure 4). Message passing between 
methods (robots) is represented as a bird taking a message to her nest, and 
changing a tuple is achieved by taking items out of compartments of a box and 
dropping in new ones. 

 

Figure 3. A robot is trained to add one value to another 
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Figure 4. Relaxing constraints by removing details. 

It is quite difficult in text and static graphics to convey the feel of programming 
with ToonTalk. The metaphor of moving around in a city is pervasive, and the 
sense of object-oriented programming in an environment by direct manipulation, 
is a novel experience for those of us who believed that symbolic formalism of 
programming made interaction on a textual level inevitable.  

The nature of the platform is paramount. Our choice of ToonTalk implied that any 
layers we built above it had to mesh with the metaphors of the platform. Our aim 
was to design a permeable abstraction barrier between ready made pieces of open 
code with multi-modal representations (we call these ‘behaviors’: some examples 
will be given below) and the ToonTalk language itself lying underneath. This 
stands in marked contrast to some modern programming languages such as Java 
and C++ which by default enforce these abstraction barriers and do not allow 
programmers using predefined objects to discover their underlying 
implementation. But the crucial dimension, which dictated the design of the 
playground layer, was that of openness. At any level of granularity, an element 
should be decomposable into smaller pieces down to the lowest level of the 
animated ToonTalk programming language. Indeed as we began to see children 
decomposing the games and sharing their parts across sites and countries it 
became clearer that we were working in a design paradigm akin to component 
software architecture (CSA). While some (but not all) of the component 
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community are concerned to a greater or lesser extent with the adaptability of 
their components, for us it central. We are concerned with designing software for 
investigating mechanism; individual components therefore need to have intuitive 
windows to their workings and a means for modification. (For more information 
on the role of behaviors in playgrounds, see Hoyles, Noss and Adamson, 
submitted paper). 

In the design of an environment where the opening of mechanisms is the primary 
objective, it is not only desirable that pieces are easily opened but that they afford 
access to their workings through an intuitive interface. In traditional CSA, the 
user interacts with the interface model provided by the architecture but not the 
implementation of individual components. In our open component model, we 
require both. Users should be able to work at several levels simultaneously; a) 
composing components where necessary as wholes relying solely on the interface 
for component manipulation and b) opening a component to reveal the source 
code whenever modification or inspection of the component is desired. To 
facilitate this, we need to ensure that components interoperate at a technical level 
but also that manipulation at interface and implementation levels is made intuitive 
by a high degree of semantic interoperability. In other words, if users are to use, 
share and manipulate components in the construction of larger pieces of software, 
consistency of interface and multiple ways of accessing the functionality become 
important criteria in their design. 

♦ An Illustration: The Space Behaviors Game 
We start with a game based loosely on the space invaders genre of shooting 
games. The player controls a space ship that can fire white bullets in four 
directions. If a white bullet hits an invader, it blows up, but if an invader hits the 
spaceship, the spaceship is destroyed. The aim is to destroy the three ‘invaders’ 
before they hit you! 

 



 26 

 

Figure 5. The original ‘space behaviors’ game. 

The two boys in our case study wanted to change the appearance of the spaceship. 
Working at the surface level of changing the appearance of objects is relatively 
simple. Objects and behaviors are interoperable, so they simply had to select their 
new object and transfer all the behaviors across by placing the old object on the 
back of the new one. They chose a Pokémon character called Pikachu as their new 
representation of the space ship. Pikachu is associated with lightning so the boys 
wanted it to shoot bolts of lightning rather than white bullets. Turning over 
Pikachu to reveal its robots and behaviors, they could immediately identify the 
firing mechanism through its visual representation (see Figure 6). The specific 
representation here is quite subtle, as the actual white bullets are not immediately 
visible. A modular visually represented architecture is required to give the clues 
for further inspection (see Figure 7) 

The orange 
space invader 

The green 
space invader 

The blue space 
invader 

The spaceship 

The white bullets fired 
by the spaceship 
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Figure 6. The behaviors on the spaceship. 

At each level, the level below is visible. In Figure 7, the firing behavior is shown 
is successive stages of exposure. 

  

Figure 7a. The complete firing mechanism 
with four firing components. 

Figure 7b. The firing up component only. 
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Figure 8. Successive revelation of the ToonTalk code 

Taking apart the behavior down to the lowest level reveals the white bullet. We 
are hardly in a position to claim that the boys fully understood the meaning of all 
the inputs to the firing robot or how the robot actually worked, but they could 
simply home in the bullet. They knew that its functionality had to be taken over 
by lightning. The boys removed the bullet picture and put it on the back of a 
lightning picture and did this four times—one for each direction. Having modified 
the input to these four behaviors in this way and put them all back together on the 
back of Pikachu, the boys were ready to try out their modified game.  
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Figure 9. The game after changes made at the surface level and input level. 

But would it work? The boys thought so, but, as it turned out, they were wrong. 
The changes to the spaceship worked as expected and Pikachu could fire lightning 
in four directions, but now the boys noticed that the ‘invaders’ appeared to be 
indestructible. They were not sure why and guessed that it was because the 
destroy behavior had somehow gone missing from the back of the invaders. So 
they decided to check this out and took off the blue ‘invader’ from the scene and 
turned it over to investigate its behaviors. 

Pikachu now fires 
out lightnings 

Pikachu replaces 
the spaceship. 
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Figure 10. The back of the blue invader. 

They recognized the relevant behavior by first noticing the explosion icon and the 
written rule, “I disappear when I touch a white bullet”. They removed this 
behavior from the back of the invader so they could study the next level and look 
at the actual code (see Fig. 11). They would now ‘see’ the concrete representation 
of the condition for the robot, i.e. that it would perform its action (destroy object) 
when hit by a white bullet.  
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Figure 11: The exposed ToonTalk code showing the white bullet condition. 

Seeing how the rule worked helped the boys debug what had gone wrong: the 
lightning picture had to appear in the place of the white bullet. Again, without 
having to appreciate how all the pieces of the mechanism worked, the boys could 
make this replacement and so achieve their rule change (see Figures 11 and 12). 

The white bullet condition in 
the robot’s thought bubble. 
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Figure 12. The code after changing the condition to lightning 

It might be that some readers will be wondering what this has to do with 
mathematics. Our reply is that it is about rules expressed formally and their 
implications, and that—as we have argued earlier—this is a central aspect of what 
it means to think mathematically in the computational era. At a more detailed 
level, this claim breaks down into two subclaims. First, it is about children 
learning that there are rules that have implications for what is modeled and what 
is observed and these rules are something over which they have some control. 
Second, these rules embody and are built upon a previously-constructed 
representational infrastructure that offers extraordinary power to those who 
master it. Over the two years of the Playground project we have collected 
numerous examples of children taking apart a scene and exploring how it worked, 
why it worked and how it could be changed. Often, a teacher was involved: in 
fact, a key aspect of the claim is that such an approach was more teachable than 
other programming environments, as the things that mattered are visible and 
easily manipulable and the granularity of the pieces customized by the teacher for 
the learner. As with the SimCalc infrastructure, increasing learnability and 
expressive power for all students are fundamental goals. 

The condition now 
changed to lightning 
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Conclusions 
In this chapter we have attempted to show how in the evolution of 
representational infrastructures and associated artifacts and technologies have, 
over long periods of time, gradually externalized aspects of knowledge and 
transformational skill that previously existed only in the minds and practices of a 
privileged elite. We have sought to show how changes in representational 
infrastructure are intimately linked to learnability and the democratization of 
intellectual power. We have illustrated this point by reference to the development 
of number and algebraic notation, calculus, SimCalc graphs and ideas of open, 
manipulable mechanism. In each example the physical instantiation of these 
notations directly enlarged the limited processing power of human minds as well 
as affording experience of new domains of knowledge to solve new problems 
among populations who previously had no access to that knowledge and 
intellectual capacity. Computational media have provided a next step in the 
evolution of powerful, expressive systems for mathematics. 

We have endeavored to illustrate our major contention: that mathematicians and 
mathematics educators need to turn their attention to defining these newly 
empowering representational infrastructures for children. In the past, beginning 
with writing itself (Kaput, 2000) more powerful representational infrastructures 
have been a source of intellectual and mathematical power, but at a cost of 
learnability and hence access. Hence they tended to remain the province of an 
elite minority who were inducted into their use. New computational media offer 
the opportunity to create democratizing infrastructures which will redefine school 
knowledge (for a fuller discussion of these issues, see Noss and Hoyles, 1996). 
Viewed optimistically, these will exploit the processing power of the new media 
while at the same time ensuring that students maintain an intuitive feel of the 
central knowledge elements at work and how they relate to each other. Yet if the 
power and potential of computers is to be exploited in school mathematics, 
attention must be paid to this level of representational infrastructure. A 
companion need is to develop sustained curricula and modes of teaching and 
learning that incorporate and exploit these new representations and that encourage 
students to develop their meta-representational abilities (diSessa, 2000) so they 
become fluent with new systems of expression as they arise, to create and modify 
such systems themselves, and to make wise choices among them as these systems 
proliferate in the coming decades. 

Thus we wish to challenge our community to focus attention on the design and 
use of representational infrastructures that intimately link to students’ personal 
experience. This is a necessary step if we are to move away from a 19th century 
school mathematics concentrating on isolated skills based on static 
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representational systems in a tightly-defined curriculum (with only a minority 
able to engage in independent problem solving). Our contention is that knowledge 
produced in static, inert media can become learnable in new ways, and new 
representational infrastructures and systems of knowledge become possible, 
serving both the learnability of previously constructed knowledge and the 
construction of new knowledge.  
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