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a b s t r a c t

We propose a utopia-tracking strategy to handle multiple conflicting objectives in model predictive
control. The controller minimizes the distance of its vector of objectives to that of the compromise
solution: the point along the steady-state Pareto front closest to the utopia point, where all the objectives
are independently minimized. We establish conditions for asymptotic stability and propose numerical
implementation variants. One of the key advantages of the approach is that it avoids the computation
of Pareto fronts in real-time environments. In addition, the approach can handle general objectives of
different nature such as economic and regularization.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Conflicting objectives arise naturally in model predictive
control (MPC). Trade-offs include tracking performance and
robustness or economic performance and sustainability. Specific
domains where reconciling objectives is critical include chemical
and energy systems (Tsoukas, Tirrell, & Stephanopoulos, 1982;
Zambrano & Camacho, 2002; Zavala, 2012). A key technical
challenge in dealing with multiple objectives is that the Pareto
front is computationally expensive to build, particularly in
multiple dimensions. In addition, even when such a front is built,
expert knowledge is still needed to obtain a preferred solution.
Traditional approaches such as weighting and expert systems are
limited because system conditions and priorities change under
different operating modes. It is thus desired to allow the MPC
controller to handle trade-offs automatically as conditions change.

Stability is another technical issue arising in multiobjective
MPC. In Bemporad and Munoz de la Peña (2009), the MPC control
action is chosen among the set of Pareto optimal solutions based on
a time-varying, state-dependent decision criterion. In De Vito and
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Scattolini (2007), the control action minimizes the maximum of a
finite number of objectives. InMagni, Scattolini, and Tanelli (2008),
the MPC controller switches objectives depending on the value of
the state vector under stabilizing constraints. This type of expert
knowledge is also used in Kerrigan, Bemporad, Mignone, Morari,
and Maciejowski (2000), where a lexicographic formulation and
logic are used to prioritize the objectives. In these works, the
multiple objectives are assumed to be Lyapunov functions, as in
traditional MPC formulations.

We propose a new strategy to handle multiple objectives. We
call this utopia-tracking MPC. We establish conditions for nominal
asymptotic stability and propose numerical implementation
schemes. The key idea is to minimize the distance of the cost
function to that of the steady-state utopia point (an unreachable
point given by the intersection of the minima of the independent
objectives). A key property of the controller is that it can exploit
the system dynamics to leave the steady-state Pareto front and
get closer to the utopia point compared with any solution along
the steady-state Pareto front. Stability is ensured by using a
terminal constraint to a reachable point along the Pareto front. Our
proposed approach is novel because it can handle general
cost functions (e.g., economic, regularization, tracking) that are
required to satisfy only a Lipschitz continuity property. In addition,
the strategy does not require the construction of the Pareto front,
nor does it require the selection of weighting factors.

The paper is structured as follows. We start with basic defini-
tions in Section 2. Definitions of steady-state multiobjective opti-
mization are presented in Section 3. In Section 4 we analyze the
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stability of the utopia-tracking controller. In Section 5 we discuss
computational issues. We present a numerical study in Section 6
and close in Section 7 with conclusions and directions for future
work.

2. Preliminaries

Weconsider a discrete-time dynamic systemof the form xk+1 =

f (xk, uk), where xk ∈ ℜ
nx are the states and uk ∈ ℜ

nu are the con-
trols. The mapping f : ℜ

nx×nu → ℜ
nx is assumed to be Lipschitz

in both arguments with constant Lf ≥ 0 and is assumed to satisfy
f (xs, us) = xs at an equilibriumpoint (xs, us). The state and controls
are required to satisfy the constraints xk ∈ X, uk ∈ U ∀k. The sets
X ⊆ ℜ

nx and U ⊆ ℜ
nu are assumed to be compact and to con-

tain the equilibrium point. We define the vector uT
N := [uT

0, . . . ,

uT
N−1]

T
∈ ℜ

N×nu .

Definition 1 (Admissible Set).GivenN+1 time steps k = 0, . . . ,N ,
the admissible set is given by

WN := {(x,uN) | xk ∈ X, uk ∈ U, xN = xs}. (1)

We note that the admissible set depends on the equilibrium point
and the horizon length. The set of admissible states ZN is given by

ZN := {x | ∃ uN s.t. (x,uN) ∈ WN}. (2)

Definition 2 (K-Function (Keerthi & Gilbert, 1988)). A continuous
function α : ℜ → ℜ is called a K function if α(s) = 0 for s = 0
and α(s) > 0 for s > 0, and it is strictly increasing.

The p-norm ∥ ·∥p with p ≥ 1 has the form ∥s∥p =
ns

i=1 |si|p
 1

p

for vector s ∈ ℜ
ns with elements si, i = 1, . . . , ns. We have that

∥s∥p = 0 if s = 0 and ∥s∥p > 0 otherwise for all p ≥ 1. In addition,
the p-norm is Lipschitz continuous with constant equal to 1. Well-
known norms are theL1, L2 and theL∞ norms: ∥s∥1 =

ns
i=1 |si|,

∥s∥2 =

ns
i=1(si)2, and ∥s∥∞ = max{|s1|, . . . , |sns |}.

Definition 3 (Lyapunov Function (Magni & Scattolini, 2007)). A
continuous function V (·) : ℜ

nx → ℜ is called a Lyapunov function
if there exist an invariant set X and K functions αL(·), αU(·), and
∆α(·) such that, ∀x ∈ X,

αL(∥x∥p) ≤ V (x) ≤ αU(∥x∥p) (3a)

∆V (x) ≤ −∆α(∥x∥p). (3b)

3. Steady-state multiobjective optimization

Consider the multiobjective steady-state problem

min
x,u

[Φ1(x, u), Φ2(x, u), . . . , ΦM(x, u)] (4a)

s.t. x = f (x, u), x ∈ X, u ∈ U, (4b)

where the objective (cost) functions Φi : ℜ
nx×nu → ℜ, i ∈ M :=

{1, . . . ,M} are assumed to be Lipschitz continuous in both argu-
ments. We define the objective vector as

Φ(·, ·)T := [Φ1(·, ·), Φ2(·, ·), . . . , ΦM(·, ·)]T , (5)

with Lipschitz constant LΦ . No further assumptions are needed
about the properties of these functions. This is an important
advantage over existing multiobjective MPC implementations
(Bemporad & Munoz de la Peña, 2009; De Vito & Scattolini, 2007).
The cost functions can be conflicting, so one cannot be minimized
without increasing the other. This situation gives rise to the
concept of a Pareto solution.
Fig. 1. Schematic representation of Pareto front, compromise solution, and utopia
point.

Definition 4 (Steady-state Pareto solution (Chinchuluun & Pardalos,
2007)). A feasible point (xp, up) for the multiobjective problem (4)
is said to be Pareto optimal if and only if there exists no other
feasible point (x, u) such that Φi(x, u) ≤ Φi(xp, up), ∀i ∈ M, and
Φi(x, u) < Φi(xp, up) for at least one index i ∈ M.

The family of Pareto solutions forms the so-called Pareto front,
which represents a limiting curve of performance in the cost
space. In this work, we will not follow the traditional approach of
constructing the Pareto front and then choosing a suitable point
along it (Kerrigan et al., 2000). The first reason is that this seems
impractical in real-time environments. The second reason is that
expert knowledge is needed to select the point and the selection
criterion might need to be changed as the conditions of the system
change (e.g., prices). We overcome some of these limitations by
following a utopia-tracking approach.

Definition 5 (Steady-State Utopia Point (Grossmann, Drabbant, &
Jain, 1982)). The steady-state utopia point is a point given by the
solution (xL,si , uL,s

i )with coordinatesΦi(x
L,s
i , uL,s

i ), i ∈ M in the cost
space. The coordinates are given by the solution of problems i ∈ M,

min
x,u

Φi(x, u) s.t. x = f (x, u), x ∈ X, u ∈ U. (6)

The utopia cost vector will be denoted as ΦL,s. The utopia point
is unattainable because the costs are conflicting; however, it can
still be used as a reference point. For instance, one can compute
the closest point along the Pareto front to the utopia point (also
known as the compromise solution).

Definition 6 (Steady-State Compromise Solution). The steady-state
compromise solution is a point (xs, us) with cost vector Φ(xs, us)
given by the solution of the minimum distance problem

min
x,u

∥Φ(x, u) − ΦL,s
∥p s.t. x = f (x, u), x ∈ X, u ∈ U. (7)

The individual costs of the compromise solution are given by
Φi(xs, us), i ∈ M. We denote the above problem as the steady-state
utopia-tracking problem. A schematic representation of the utopia-
tracking approach is presented in Fig. 1. Note that for the single-
objective case, the compromise solution and the utopia point
coincide so that Φ1(xs, us) = Φ

L,s
1 . The choice of the compromise

solution as the equilibrium point is not strictly necessary. Other
choices include the Kalai–Smorodinsky solution, the egalitarian
solution, and the Nash solution (Gambier, 2008). The compromise
solution is attractive, however, because it can be easily computed.

4. Multiobjective predictive control

We start by making an assumption about controllability (Diehl,
Amrit, & Rawlings, 2011; Huang, Harinath, & Biegler, 2011).
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Definition 7 (Weak Controllability). There exists aK-function γ (·)
such that for every x ∈ X, there exists (x,uN) ∈ WN such that

N−1
k=0

∥uk − us
∥p ≤ γ (∥x − xs∥p). (8)

Lemma 1. Consider the general MPC problem

min
xk,uk

N−1
k=0

ϕ(xk, uk, xs, us) (9a)

s.t. xk+1 = f (xk, uk), k ∈ N − (9b)
x0 = xℓ (9c)

xT = xs (9d)
xk ∈ X, uk ∈ U, k ∈ N . (9e)

Here, ℓ is the current time instant. The solution of this problem is
given by the vector uT

ℓ := [uT
0, . . . , u

T
N−1] from where the control

uℓ := u0 is injected into the system. We have N := {0, . . . ,N}

and N −
:= N \ {N}. The cost ϕ : ℜ

nx×nu → ℜ is assumed to be
non-negative and Lipschitz continuous such that there exists L ≥ 0
satisfying

ϕ(x, u, xs, us) ≤ L(∥x − xs∥p + ∥u − us
∥p). (10)

If weak controllability and Lipschitz continuity of the system f (·, ·)
hold, then there exists a K-function αU(·) such that for all (x,u)
∈ WN ,

N−1
k=0

ϕ(xk, uk, xs, us) ≤ αU(∥x − xs∥p). (11)

Proof. The proof is an extension of the upper bounding strategy
used in Diehl et al. (2011) and Huang et al. (2011). Applying the
Lipschitz property assumed, the system is propagated forward in
time and substituted in the objective. Under Lipschitz continuity
of the system the result follows. �

Wepropose three strategies to dealwithmultiple objectives. In the
first strategy (state-tracking MPC), the controller tracks directly
the state of the compromise solution. In the second strategy (cost-
tracking MPC), the controllers track the compromise solution in
the cost space. The third strategy (utopia-tracking MPC) tracks the
steady-state utopia point in the cost space using the compromise
solution as terminal condition.Wewill see that tracking the costs is
advantageous because it is possible to leave the Pareto front during
the dynamic transition and get closer to the steady-state utopia
point, thus maximizing economic performance.

4.1. State-tracking MPC

We consider the state-tracking (ST) problem

min
xk,uk

N−1
k=0

∥xk − xs∥p + ∥uk − us
∥p (12a)

s.t. (9b)–(9e). (12b)

The control law resulting from the closed-loop solution of this
problem is uℓ = hST (xℓ), and the optimal cost is used as the value
functionVST (xℓ). Stability results for this controller arewell known.

Theorem 2 (Stability of Tracking MPC). The minimum-distance
steady-state point xs under the control law hST (xℓ) given by the
trackingMPC formulation (12) is an asymptotically stable equilibrium
with region of attraction ZN .
We note that the state-tracking MPC does not reach the steady-
state point in an economically optimal manner. We interpret
economic performance as the distance to the utopia point since this
is the limiting point. The proposed multiobjective formulations of
the following subsections can be used to avoid this limitation.

4.2. Cost-tracking MPC

To address the limitations of tracking MPC in dealing with
multiple objectives, we first propose the cost-tracking (CT) MPC
controller:

min
xk,uk

N−1
k=0

Φ(xk, uk) − Φ(xs, us)

p (13a)

s.t. (9b)–(9e). (13b)
The closed-loop control law is given by uℓ = hCT (xℓ)with the value
function VCT (xℓ). The objective of the controller is to minimize the
cost distance to the compromise steady-state solution. We will
now prove that the value function can be used as a Lyapunov
function to establish stability.

Assumption 1. There exists a K-function αL(·) such that ∥Φ(x,
u) − Φ(xs, us)∥p ≥ αL(∥x − xs∥p).

Theorem 3. Under weak controllability and Assumption 1, the
steady-state xs under the control law hCT (xℓ) given by the multiob-
jective MPC formulation (13) is an asymptotically stable equilibrium
point with region of attraction ZN .
Proof. From Assumption 1, the value function is bounded from
below by a K-function. Under weak controllability, Lemma 1
holds immediately with L = LΦ . Consequently, the value function
is bounded from above by a K-function. To show that the value
function is nonincreasing, we establish

VCT (xℓ+1) − VCT (xℓ) =

ℓ+N
k=ℓ+1

Φ(xk, uk) − Φ(xs, us)

p

−

ℓ+N−1
k=ℓ

Φ(xk, uk) − Φ(xs, us)

p

≤ −
Φ(xℓ, uℓ) − Φ(xs, us)


p

≤ −αL(∥xℓ − xs∥p).

The last inequality also follows from Assumption 1. The proof is
complete. �

A key property of the cost-tracking approach is that the nature
of the cost functions does not affect the upper bound property.
Assumption 1 is the most restrictive assumption we have found
that requires the stage cost to have a unique minimizer at (xs, us).
The lower bound condition can be guaranteed to hold locally under
the satisfaction of the so-called strong second order condition. This
condition requires that the optimal solution be well defined and
locally unique. In other words, the cost is zero only at x = xs
and strictly positive and nondecreasing for nonzero ∥x − xs∥p. In
Huang et al. (2011), the authors propose to add a regularization
term for the case in which the condition does not hold because of
ill-conditioning of the cost function.

4.3. Utopia-tracking MPC

We now propose the utopia-tracking (UT) formulation that
minimizes directly the distance to the utopia point:

min
xk,uk

N−1
k=0

Φ(xk, uk) − ΦL,s

p (14a)

s.t. (9b)–(9e). (14b)
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The closed-loop control law is given by uℓ = hUT (xℓ), and the
value function is VUT (xℓ). Because this controller minimizes the
distance to the utopia directly, it can exploit the system dynamics
to leave the steady-state Pareto front and get closer to the utopia
point. The main technical difficulty in establishing stability of the
UT controller is that the value function VUT (x) is nonzero at x = xs

because the utopia point ΦL,s is unreachable. Consequently, the
value function does not qualify as a Lyapunov function. To establish
stability for this formulation, we follow the approach proposed in
Diehl et al. (2011). We define the partial Lagrange function of the
steady-state utopia-tracking problem (7):

L(x, u, λ) := ∥Φ(x, u) − ΦL,s
∥p + (x − f (x, u))Tλ, (15)

where λ ∈ ℜ
nx is a Lagrange multiplier. At xs, us, λs we have

that the partial Lagrange function reaches a minimum given by
L(xs, us, λs) = ∥Φ(xs, us) − ΦL,s

∥ since 0 = xs − f (xs, us). With
this, an artificial origin is introduced if (x, u) = (xs, us). We need
the following assumption.

Assumption 2 (Strong duality). There exists a multiplier λs such
that the pair us, xs uniquely solves

min
x,u

L(x, u, λs), s.t. (x, u) ∈ X × U. (16)

From strong duality we have that L(x, u, λs) − L(xs, us, λs) ≥

0, ∀(x, u) ∈ X × U. We also have that there exists a K-function
αL(·) such that

L(x, u, λs) − L(xs, us, λs) ≥ αL(∥x − xs∥p). (17)

We can now define the utopia-trackingMPC problem (14) in terms
of the partial Lagrange function:

min
uk

N−1
k=0


L(xk, uk, λ

s) − L(xs, us, λs)


(18a)

s.t. (9b)–(9e). (18b)

As shown in Diehl et al. (2011) (see Lemma 2), formulations (18)
and (14) are equivalent. Consequently, we can nowuse the optimal
objective value of (18) as the value function VUT (xℓ).

Theorem 4. Under weak controllability and strong duality, the
steady-state xs under the control law hUT (xℓ) given by utopia-tracking
MPC formulation (18) is an asymptotically stable equilibrium point
with region of attraction ZN .

Proof. From strong duality, the value function is bounded from
below by a K-function. We now prove that it is bounded from
above. From strong duality we have that

N−1
k=0 L(xk, uk, λ

s) −

L(xs, us, λs) =
N−1

k=0 |L(x, u, λs) − L(xs, us, λs)|. We also
have

|L(x, u, λs) − L(xs, us, λs)|

=
∥Φ(x, u) − ΦL,s

∥p + (x − f (x, u))Tλ

−

∥Φ(xs, us) − ΦL,s

∥p + (xs − f (xs, us))Tλs
≤
∥Φ(x, u) − ΦL,s

∥p − ∥Φ(xs, us) − ΦL,s
∥p


+ |(x − f (x, u))Tλs
− (xs − f (xs, us))Tλs

|

≤ (LΦ + (Lf + 1)∥λs
∥q)


∥x − xs∥p + ∥u − us

∥p


where the last inequality follows from Hölder’s inequality, ∥ · ∥q is
the q-norm, and 1/p + 1/q = 1. Consequently, Lemma 1 holds
with L = LΦ + (Lf + 1)∥λs

∥q. To show that value function is
nonincreasing, we establish the following:

VUT (xℓ+1) − VUT (xℓ)

=

ℓ+N
k=ℓ+1


L(xk, uk, λ

s) − L(xs, us, λs)


−

ℓ+N−1
k=ℓ


L(xk, uk, λ

s) − L(xs, us, λs)


≤ −

L(xℓ, uℓ, λ

s) − L(xs, us, λs)


≤ −αL(∥x − xs∥p).

The last inequality follows from strong duality. The proof is
complete. �

The most restrictive assumption that we have found is strong
duality, which is difficult to check in practice. This property
guarantees that the Lagrange function has a unique minimizer
at (xs, us). In Huang et al. (2011) the authors propose to add
a regularization term to the cost function to promote local
uniqueness.

5. Computational considerations

We highlight that the coordinates of the utopia point can be
computed off-line and in parallel. Consequently, this computation
does not involve additional on-line costs for the controller.We also
note that the UT controller does not need to compute the entire
Pareto front, which is a significant computational advantage over
existing multiobjective approaches.

The choice of the norm has implications on computational
performance. For instance, the L2 norm is smooth, whereas L1
and L∞ are not. Another issue is that the cost functions can have
drastically different values. The solution of the individual problems
(6) yields upper bounds Φ

U,s
i , i ∈ M, given by the maximum of

the costs not minimized. Consequently, we can use these to scale
the controller cost without affecting its properties. The scaled L2
problem has the form

min
xk,uk

N−1
k=0

Φ(xk, uk) − ΦL,s

ΦU,s − ΦL,s


2

(19a)

s.t. (9b)–(9e). (19b)

The square root in the objective function can introduce numerical
ill-conditioning because the first derivative diverges as the
argument approaches zero. To deal with this problem, we consider
the following formulation:

min
xk,uk

N−1
k=0

zk (20a)

s.t. (9b)–(9e) (20b)

z2k =


i∈M


Φi(xk, uk) − Φ

L,s
i

Φ
U,s
i − Φ

L,s
i

2

(20c)

zk ≥ 0, k ∈ N −, (20d)

which is better-conditioned. An alternative is to minimize the
squared norm. To reformulate the L1 variant, we introduce vari-
ables y+

k,i, y
−

k,i ≥ 0, i ∈ M, and define the absolute value y+

k,i−y−

k,i =
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Φi(xk,uk)−Φ
L,s
i

Φ
U,s
i −Φ

L,s
i

. After scaling we have

min
xk,uk

N−1
k=0


i∈M

(y+

k,i + y−

k,i) (21a)

s.t. (9b)–(9e) (21b)

y+

k,i − y−

k,i =
Φi(xk, uk) − Φ

L,s
i

Φ
U,s
i − Φ

L,s
i

(21c)

y+

k,i, y
−

k,i ≥ 0, k ∈ N −, i ∈ M, (21d)

where
N−1

k=0

Φ(xk,uk)−ΦL,s

ΦU,s−ΦL,s


1

=
N−1

k=0


i∈M(y+

k,i + y−

k,i). We can
reformulate the L∞ variant as

min
xk,uk

N−1
k=0

ηk + ρ

N−1
k=0


i∈M

(y+

k,i + y−

k,i) (22a)

s.t. (9b)–(9e) (22b)

y+

k,i − y−

k,i =
Φi(xk, uk) − Φ

L,s
i

Φ
U,s
i − Φ

L,s
i

(22c)

y+

k,i + y−

k,i ≤ ηk, k ∈ N −, i ∈ M, (22d)

where
N−1

k=0

Φ(xk,uk)−ΦL,s

ΦU,s−ΦL,s


∞

=
N−1

k=0 ηk and ρ > 0 is a penalty
parameter.

6. Numerical case study

We simulated the performance of the three proposed con-
trollers using a free-radical polymerization reactor (Maner, Doyle,
Ogunnaike, & Pearson, 1996). The dynamic model has the form

Ċm(t) = −(kp + kfm)Cm(t)P0(t) +
F
V

(Cm,in − Cm(t)) (23a)

Ċi(t) = −kiCi(t) +
Fi(t)
V

Ci,in −
F
V
Ci(t) (23b)

Ḋ0(t) = (0.5ktc + ktd)P0(t)2

+ kfmCm(t)P0(t) −
F
V
D0(t) (23c)

Ḋ1(t) = Mm(kp + kfm)Cm(t)P0(t) −
F
V
D1(t). (23d)

Here, Cm(t) is the monomer concentration, Ci(t) is the initiator
concentration, D0(t) is the zeroth moment, and D1(t) is the first
moment. These are the states. The control variable is the initiator
flowrate Fi(t), and P0(t) =

√
2ηikiCi(t)/(ktd + ktc). The parameter

values can be found in Maner et al. (1996). We assume that it is
desired to maximize conversion Φ1(t) = X(t) = (Cm,in − Cm(t))/
Cm,in while simultaneously maximizing the profit Φ2(t) = 2500+

3500X(t)0.6 + 9 × 10−4Mw(t)0.65 − 3000Fi(t)0.5 where Mw(t) =

D1(t)/D0(t) is the polymer molecular weight. We converted
the model into discrete time form using Euler discretization
and solved the resulting problems using IPOPT (Wächter &
Biegler, 2006). All the controller implementations are available
at http://www.mcs.anl.gov/~vzavala. Since the L∞ formulation
proved to be computationally more robust, it was used in all the
experiments. We verified that the solutions were locally unique by
monitoring the second-order conditions with IPOPT.

We tested the ST, CT, and UT controllers under two initial
points at the extremes of the Pareto front. The two-dimensional
cost trajectories for the CT and UT controllers are presented in
Fig. 2. In the transition from the lower end of the Pareto front,
both controllers leave the Pareto front because they can exploit
Fig. 2. Phase plot of utopia-tracking (gray line) and cost-tracking controllers
(dotted line). The utopia point is the large dot.

Fig. 3. Time evolution of the distance of the controllers trajectories to the utopia
point.

the system dynamics to get to the compromise solution. The UT
controller is able to get much closer to the utopia point during the
transition, and then converges to the compromise point. In other
words, UT has much better performance than the CT counterpart.
In the transition from the second initial point, the difference in
performance is less pronounced. The reason is that the controllers
are physically unable to visit the region surrounding the upper
end of the Pareto front. This situation suggests that performance
improvements depend on the initial state of the system and on
the shape of the Pareto front. We also found that ST is stable but
its performance is not competitive. In Fig. 3 we present the time
evolution of the distance for the three controllers to the utopia
point (∥Φ − ΦL,s

∥∞). The performance of UT is superior, while the
poorest performance is that of ST. The distance for UT to the utopia
point is negligible during the dynamic transition and then it settles
at it reaches the utopia point. The accumulated distances over time
for UT, CT, and ST are 1.49 × 104, 1.69 × 104, and 2.25 × 104,
respectively. The performance improvement of UT over ST is 33%.

7. Conclusions and future work

Weproposed a utopia-tracking strategy to handlemultiple con-
flicting objectives in model predictive control, established condi-
tions for nominal asymptotic stability, and proposed numerical
variants. The approach can handle general objectives that are re-
quired to satisfy only a Lipschitz continuity property. In addition,
it does not require the construction of the Pareto front and avoids
the need for adjusting weights. Directions of future work include
stability under different terminal conditions and in the face of un-
certainty. In addition, we plan to explore strategies to enlarge the
region of attraction. Recent work presented in Ferramosca, Rawl-
ings, Limon, and Camacho (2010) can be extended to this case.

http://www.mcs.anl.gov/~vzavala
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