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ABSTRACT
With the progress of mobile devices and wireless broadband, a
new eMarket platform, termed spatial crowdsourcing is emerging,
which enables workers (aka crowd) to perform a set of spatial tasks
(i.e., tasks related to a geographical location and time) posted by a
requester. In this paper, we study a version of the spatial crowd-
sourcing problem in which the workers autonomously select their
tasks, called the worker selected tasks (WST) mode. Towards this
end, given a worker, and a set of tasks each of which is associated
with a location and an expiration time, we aim to find a schedule for
the worker that maximizes the number of performed tasks. We first
prove that this problem is NP-hard. Subsequently, for small number
of tasks, we propose two exact algorithms based on dynamic pro-
gramming and branch-and-bound strategies. Since the exact algo-
rithms cannot scale for large number of tasks and/or limited amount
of resources on mobile platforms, we also propose approximation
and progressive algorithms. We conducted a thorough experimen-
tal evaluation on both real-world and synthetic data to compare the
performance and accuracy of our proposed approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS

General Terms
Algorithms

Keywords
crowdsourcing, spatial crowdsourcing, spatial task assignment

1. INTRODUCTION
The ubiquity of mobile devices with high-fidelity sensors and

recent decreases in the cost of ultra-broadband wireless networks
(e.g., 4G) enable mobile users to easily sense, collect and transmit
quality data from real-world locations. The main feature of these
collected datasets is that they are tagged automatically with the time
and location of their collection. In turn, such geo-tagged datasets
can be used in many applications, such as location-aware image
collection (e.g., Picasa [1]), road traffic monitoring (e.g., Waze [2]),
and geographical data generation (e.g., OpenStreetMap [3]). One
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way to generalize and harness these capabilities is to develop a mar-
ket for anyone to submit requests for real-world data collections
tasks, tagged with time and location, and then distribute these tasks
among people with smart phones at the vicinity of the tasks, who
are willing to collect the required data. Such a spatial crowdsourc-
ing market platform was first detailed in [15] where each requester
submits a set of spatial tasks (tasks related to a location and time)
to be performed by a set of workers. The workers must physically
travel to the tasks’ locations to perform time-sensitive spatial tasks.

In [15], Kazemi and Shahabi focused on the problem of op-
timally assigning tasks to workers, assuming that the server has
the global knowledge about locations of all the workers and tasks,
termed Server Assigned Tasks (SAT) mode. In this paper, how-
ever, we focus on the scenario where workers autonomously select
their desired tasks from a list of published tasks posted by the spa-
tial crowdsourcing server, termed Worker Selected Tasks (WST)
in [15]. Consequently, our optimization objective is to maximize
the number of performed tasks per worker. The extra complexity of
our problem comes from the fact that we consider: 1) the variable
cost of traveling from one task to the other, and 2) the expiration
time of a task after which the task cannot be completed; neither of
which were considered in [15]. Moreover, note that the WST mode
is more privacy-friendly than the SAT mode.

In sum, given a set of spatial tasks and a worker, our goal is
to find a schedule which maximizes the number of tasks that can
be completed by the worker while both travel cost and expiration
time of the tasks have been taken into consideration. We refer to
this problem as the Maximum Task Scheduling (MTS) problem.
To illustrate, consider a simple MTS problem in Figure 1 where
there is one worker w with five available tasks, namely, A, B, C,
D and E. Each task is associated with a location (x, y) and an
expiration time d. For instance, Task A is located at (4, 3) and will
expire after 9 time units. The objective of the worker is to complete
as many as tasks while conforming to the expiration time of the
tasks. Obviously the worker needs to make a plan to finish these
tasks. Assume that in Figure 1 the worker starts from time 0, the
travel cost for one grid is one time unit and the distance between
the tasks is Manhattan distance. The worker can finish four tasks
by following the order A → E → C → D, whereas, he can only
complete one task if he chooses to start with taskB. Therefore, the
task schedule A → E → C → D is a better solution to our MTS
problem than the schedule B.

At first glance MTS may look similar to the class of job schedul-
ing problems [20]. In particular, given a single machine and a set
of jobs with processing time, release time and expiration time, the
objective of job scheduling problem is to find a schedule which
allocates one time interval for each job on the machine and maxi-
mizes the number of jobs completed before their expiration times.
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Figure 1: Running example

However, the processing time of each job is known in advance and
is independent of the schedule. In contrast, with MTS the cost to
travel from one task to the other depends on the order that the tasks
are scheduled. Hence, the time to complete a task, which includes
the travel time to the task, is not known a priori and depends on the
task schedule itself, which renders MTS a new and more complex
problem. Moreover, while other variations of the job scheduling
problem may come close to MTS, with crowdsourcing we need
an algorithm (running on a smart phone) to provide a schedule for
the worker in milliseconds, which is different than solving a job-
scheduling problem as a one time optimization problem (see Sec-
tion 6 for more detailed explanation).

In this paper, we first prove that MTS is NP-hard by reduction
from a specialized version of Traveling Salesman problem. Given
that in real applications the number of available tasks for one worker
may be relatively small, we propose two exact algorithms based on
dynamic programming and branch-and-bound algorithm to find the
optimal solution. Our dynamic programming approach reduces the
search space by iteratively expanding the sets of tasks in the ascend-
ing order of the number of tasks. We also incorporate the Apriori
principle [6] to our dynamic programming that further improves
the performance by reducing the search space. With our branch-
and-bound algorithm, we calculate the candidate task set for each
branch which filters the unpromising tasks and then derive bounds
for ordering and pruning. However, the running time of our dy-
namic programming and branch-and-bound algorithm grows expo-
nentially as the number of tasks increases. Therefore, we propose
three approximation algorithms to accomplish efficient processing
of MTS with large number of tasks and/or limited amount of re-
sources on mobile platforms. Our approximation algorithms are
based on three different heuristics, namely Least Expiration Time
Heuristic (LEH), Nearest Neighbor Heuristic (NNH) and Most Pro-
mising Heuristic (MPH). The main idea of LEH and NNH is to
exploit expiration time and spatial proximity of the tasks to expe-
dite response time and minimize the memory consumption. On the
other hand, MPH takes advantage of branch-and-bound algorithm
to greedily choose the tasks with the highest upper bound. Finally,
we propose a class of progressive algorithms, where they first use
one of the approximation algorithms to suggest a small set of ini-
tial tasks (e.g., 1 or 2 task(s)) and then while the worker is busy
performing those initial tasks, the progressive algorithm chooses
one of the optimal algorithms to provide the rest of the schedule.

We conducted extensive experiments with real-world and syn-
thetic datasets to compare the performance of our various algo-
rithms. Our results show that the exact algorithms are feasible for
real-world applications only when the number of tasks is small (i.e.,
less than 20). Meanwhile, the response time of all the three approx-
imation algorithms are within milliseconds, which makes them in-
teractive and suitable for running on mobile platforms. However,
their accuracy varies depending on the location of tasks and their
expiration times. Finally, progressive algorithms have the best of
the two worlds as they can achieve near-optimum results, while be-
ing as efficient and interactive as the approximate algorithms.

The remainder of this paper is organized as follows. In Sec-
tion 2, we formally define our maximum task scheduling problem

and study its computation complexity. In Section 3, we establish
the theoretical foundation and present two exact algorithms to solve
MTS. We propose our approximation and progressive algorithms
in Section 4. Section 5 reports the results of our experiments. In
Section 6, we review the related work and Section 7 concludes the
paper and discusses some of our future directions.

2. PRELIMINARIES
In this section, we define the terminology used throughout the

paper, and analyze the complexity of the MTS problem.
2.1 Problem Definition

Definition 1. A spatial task s is a query to be answered at loca-
tion ls with expiration ds, where ls is a point in the 2D space.

With spatial crowdsourcing, a spatial task s can be answered
only if the worker is physically located at that location ls. Besides,
considering the expiration time, a spatial task s can be completed
only if the worker arrives at ls before its deadline ds. For simplicity
and without loss of generality, we assume that the processing time
of each task is 0, which means that a worker will go to the next task
upon finishing the current task.

Definition 2. A worker, denoted by w, is a person who volun-
teers to perform spatial tasks. A worker can be in an either online
or offline mode. A worker is online when he is ready to accept
tasks. An online worker is associated with location lw, his current
time instance tw and a spatial region Dw.

In worker selected tasks mode, once a worker is online, he sends
a task inquiry to the server which includes his spatial region Dw

1.
The server returns all available tasks in the worker’s vicinity for
him to perform. For instance, Figure 1 shows an example of one
worker w and all available tasks A, B, C, D, E in his spatial re-
gion. The worker located at (6, 5) starts from time zero; each task
is associated a location and deadline: Task A located at (4, 3) will
expire after 9 time units. The worker can choose any subsets of the
tasks to finish. Considering the travel cost and expiration time of
the task, the worker needs to make a plan to finish these tasks. Next
we define task sequence and arrival time of a task.

Definition 3. Given an online worker w and a set of n tasks S
in Dw, R = (s1, s2, ..., sr) is a task sequence if and only if r ≤
n, si ∈ S, si 6= sj for i 6= j. The arrival time at task si in R is
defined as:

a(si) =

{
a(si−1) + c(si−1, si) if i 6= 1
tw + c(w, s1) if i = 1

where c(a, b) is the travel cost from the location of a to the location
of b.

Task sequence represents the sequence of how a worker finishes
these tasks and determines the number of tasks a worker can com-
plete. For example, in Figure 1 by following (A,E,C,D), worker
w finishes 4 tasks, since a(A) = 4, a(E) = 4 + 11 = 15, a(c) =
15+4 = 19 and a(D) = 19+5 = 24 are less than their deadlines.

Definition 4. A Valid Task Sequence is a task sequence in which
all of its tasks can be finished, i.e., a(si) ≤ dsi for each task si ∈
R. A Maximum Valid Task Sequence is a valid task sequence in
which none of its super sequences is valid.

Definition 5. Given a worker w and a set of n tasks S in his
vicinity, the maximum task scheduling (MTS) problem is to find
the longest maximum valid task sequence.
1We note thatDw is an optional parameter that represents worker’s
preferred working area (e.g., city of Los Angeles). Our proposed al-
gorithms are not restricted by Dw and they can schedule any num-
ber of tasks in the vicinity of the worker. We use Dw as a stop
condition for our algorithms to stop scheduling more tasks. We
could use other restrictions such as "available time" or "maximum
number of tasks" as stop conditions instead.



In Figure 1, (C,D,E), (A,E,D) and (A,E,C,D) are valid
task sequences, but (A,E,C,D,B) is not a valid task sequence
since taskB cannot be finished on time. Notice that both (C,D,E)
and (A,E,C,D) are maximal valid task sequences, however, only
(A,E,C,D) is the optimum solution for the MTS problem since
it contains 4 tasks instead of 3.
2.2 Problem Complexity

We prove that the MTS problem is NP-hard by reduction from
a specialized version of Traveling Salesman Problem (TSP) called
sTSP. First, we give the definition of sTSP and prove it as NP-C.

Definition 6. Given a complete graphG(V,E) with weight func-
tion c : V × V → Z, a source vertex x and cost k ∈ Z, where
k ≥ 2 · c(x, y) for any y 6= x, the sTSP problem < G, c, x, k > is
to determine whether there exists a tour which visits each and every
vertex exactly once and finishes at the source vertex x from which
the tour has started with the cost of at most k.

THEOREM 1. sTSP is NP-C.
PROOF. The proof is shown in Appendix A. �
THEOREM 2. Given a worker w, a set of n tasks S and number

z, deciding whether there exists a valid task sequence R, st. |R| =
z is NP-C. That is, the decision problem of MTS < w,S, z > is
NP-C.

PROOF. The proof is shown in Appendix B. �
Since we have proved that the decision version of MTS is NP-C,

we can conclude that the MTS problem is NP-hard.

3. EXACT ALGORITHMS
Even though we proved that the MTS problem is NP-hard, if the

number of tasks is relatively small, the exponential time complex-
ity might still be affordable. A straightforward method is to use
brute-force approach, which enumerates all permutations of a set
of tasks, finds the permutation with the maximum number of com-
pleted tasks, and then returns the corresponding valid task sequence
as the solution. It is trivial to see that this brute-force approach is
computationally expensive since there are O(n!) permutations in
total. To address this issue, we design two types of exact algo-
rithms based on dynamic programming strategy and branch-and-
bound strategy.

3.1 Dynamic Programming
3.1.1 Naïve Dynamic Programming

Compared to the brute-force search, the superiority of dynamic
programming is due to the fact that it ignores the order of task se-
quence and examines the sets of tasks. Specifically, it iteratively
expands the sets of tasks in the ascending order of set size. For
each task in one set, we consider the scenario that it is finished
in the end, and find the maximum number of completed tasks by
utilizing the best sets of its subsets. We present the details of the
algorithm as follows.

Given a worker w, and a set of tasks Q ⊆ S (for simplicity,
we just use the index to denote a specific task, i.e., S = {1, 2,
· · · , n}), we define opt(Q, j) as the maximum number of tasks
completed by scheduling all the tasks in Q with constraints start-
ing from w and ending at the task j, and R as the corresponding
task sequence 2 to achieve this optimum value. We also use i to
denote the second-to-last task before arriving at j in R, and R′ to
denote the corresponding task sequence for opt(Q−{j}, i). Then
the computation of opt(Q, j) has the recursive solution shown in
Equation 1.

opt(Q, j) =

{
1 if |Q| = 1
max

i∈Q,i6=j
{opt(Q− {j}, i) + δij} otherwise

(1)2R contains |Q| tasks, and is not necessary to be a valid task se-
quence.

Algorithm 1 MST_DP()
1: for each task i in {1, 2, ..., n} do
2: opt({i}, i)← 1
3: pre({i}, i)← null
4: for len← 2 to n do
5: for all subsets of Q ⊆ {1, 2, ..., n} of size len do
6: for all j ∈ Q do
7: opt(Q, j)← max

i∈Q,i6=j
{opt(Q− {j}, i) + δij}

8: pre(Q, j)← arg max
i∈Q,i6=j

{opt(Q− {j}, i) + δij}

9: |R∗|=max
j

opt({1, 2, ..., n}, j)
10: compute R∗ based on opt and pre

11: return R∗

δij =

{
1 if j can be finished after connecting j in the end of R′

0 otherwise

When Q contains only one task j, the problem is trivial; we can
set opt({j}, j) = 1 since we know the worker can succeed to
finish any task starting from w (c(w, j) ≤ d(j)). When |Q| >
1, assuming that we have known the second-to-last task i and R′,
then we can get the solution for opt(Q, j) by concatenating j in
the end of R′, and then check whether j can be finished after R′.
Obviously, the assumption that i is known does not hold, and hence
we need to search through Q to examine all possibilities and find
the particular i that achieves the optimum value of opt(Q, j).

With Equation 1, now we can compute the longest maximum
valid task sequence, which is presented in Algorithm 1. Note that
we introduce another notation pre(Q, j) for recording the last-to-
second task i before achieving opt(Q, j) to facilitate the recon-
struction of the maximum valid task sequenceR∗. It first initializes
the optimum value when Q contains one task (lines 1–3). Subse-
quently, it generates and processes sets in the increasing order of
their size from 2 to n (lines 4–5). For each task j ∈ Q, it com-
putes opt(Q, j) and pre(Q, j) according to Equation 1 (lines 7–
8). Note that in order to compute δij , for each subproblem we also
need to record the least travel time when the worker arrives at j by
scheduling tasks inQ. In this way we can efficiently check whether
task j can be finished after schedulingQ−{j} ends with i. To save
space, the procedure of constructing R∗ from tables opt and pre

is omitted here (lines 9–10).
PROPOSITION 1. Algorithm 1 correctly computes the maximum

valid task sequence R∗ in O(n2 · 2n) time and O(n · 2n) space.
Proof (Sketch): The correctness is straightforward to derive from
Equation 1. For the time complexity, there are at most (

(
n
1

)
+(

n
2

)
+ · · · +

(
n
n

)
) · n = O(2n · n) subproblems, and each one

takes linear time to solve, thus the total running time is O(n2 · 2n),
which is much faster than O(n!). For each subproblem opt(Q, j),
we record the previous task from which it comes, thus the space
complexity is O(n · 2n). �

Example: In Figure 1, for the sets with one task, opt({A}, A) =
1, · · · , and opt({E}, E) = 1. For all the sets with size from 2 to 5,
we iteratively calculate the opt value. For instance, opt({A,E},
A) = 1 since by following the task sequence (E,A), onlyE can be
finished, but opt({A,E}, E) = 2 because by following (A,E),
both A and E can be finished. For set {A,C,E} with end task C,
the second-to-last task could be either A or E, thus,

opt({A,C,E}, C) = max

{
opt({A,E}, E) + δEC = 2 + 1 = 3,
opt({A,E}, A) + δAC = 1 + 0 = 1,

= 3
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Figure 2: Search space for the naïve dynamic programming

Figure 2 shows the lattice of all the task sets that needs to be
checked by naïve dynamic programming when dealing with the ex-
ample of Figure 1. In the end opt({A,B,C,D,E}, D) = 4 is
one optimum answer with its corresponding valid task sequence
(A,E,C,D).
3.1.2 Optimization of Naïve Dynamic Programming

Even though our proposed naïve dynamic programming is faster
than the brute-force approach, it suffers from the issue that it needs
to examine all the 2n−1 sets of tasks in the ascending order of their
sizes. As shown in Figure 2, when S = {A,B,C,D,E}, the naïve
dynamic programming checks 31 sets in total. In the following, we
alleviate this cost by adopting the Apirior principle [6]. Specifi-
cally, we introduce the definition of invalid set and further show
that all supersets of any invalid set can be pruned safely. Thus, we
avoid enumerating all of the sets, and hence improve the efficiency.

Definition 7. Given a worker w and a task set Q, Q is an invalid
set if and only if none of its permutations is a valid task sequence;
otherwise, Q is valid.

Let us use the same example in Figure 1 to elaborate further on
invalid set. For instance, {A,B} is invalid since neither (A,B)
nor (B,A) are valid task sequences, whereas, {A,C} is a valid set
since (A,C) is a valid task sequence.

Based on this definition, we present the following lemma:
LEMMA 1. If a task set is invalid, then all of its supersets must

be invalid. Furthermore, all invalid sets can be safely pruned dur-
ing sets generation (lines 5–6) of Algorithm 1.

PROOF. Obvious from its definition. �
Based on Lemma 1, we can trim the exponential search space.

As illustrated in Figure 2, {A,B} and all the supersets of {A,B}
(the shaded task sets) are invalid sets, thus can be pruned. The
integration of Lemma 1 to our dynamic programming is as fol-
lows. In each iteration, instead of considering each set with the
same size, we just focus on the valid sets. In particular, in the sub-
set generation phase, we generate candidate sets with size x from
the valid sets with size x − 1. If two valid sets with size x − 1
share the first x − 2 tasks, we join them and form a candidate set.
If none of the candidate sets is generated, we can terminate the
loop. Otherwise, for each candidate set Q, we use the same equa-
tion in Algorithm 1(lines 7–8) to compute table opt and pre. In
this process, for any of the task j ∈ Q, if it can be finished from
any second-to-last task i by following the optimum subsequence to
achieve opt(Q− {j}, i) (which means δij = 1), then Q is a valid
set because at least one valid task sequence exists for Q. If all of
the candidate sets with size l are invalid, the loop terminates. We
omit the pseudo-code here.
One drawback of the optimization strategy is that it incurs an extra

cost for the generation of the valid sets. Specifically, to generate x-
element candidate set, pairs of valid (x−1)-element set are merged

w

AB AC AD AE BC BD BE CD CE DE

A B C D E

ACD ADE CDEACE

ACDE

Figure 3: Pruned search space for optimized dynamic programming

to determine whether they have at least x− 2 tasks in common. In
the best case scenario, every merging step produces a feasible can-
didate set. In the worst case, the algorithm must merge every pair
of valid (x − 1)-element set. Thus, the overall cost of generating
candidate sets is (Qx−1 is the (x− 1)-element set):

n∑
x=1

(x− 2)|Qx| < Cost of Generating <
n∑

x=1

(x− 2)|Qx−1|2

Therefore, when most of the sets are valid, the optimization strategy
may not be effective because the cost of set generation surpasses its
benefits.
Example: Figure 3 illustrates the corresponding sets examined af-
ter using the pruning technique and the invalid sets are shaded.
Initially, all sets with one task such as {A}, {B} are valid. Sub-
sequently, it checks the candidate sets with 2 tasks and finds that
{A,B}, {B,C}, {B,D} and {B,E} are invalid, and hence be
discarded in the next iteration. Next, it generates the 3-element
sets using only the remaining six 2-element sets. This is because
Lemma 1 ensures that all the supersets of the invalid 2-element
sets must also be invalid. Consequently, four valid 3-element sets
are generated and only two of them can be used to form 4-element
subset. Finally, {A,C,D,E} is generated from {A,C,D} and
{A,C,E}, then the program terminates. With the pruning using
Lemma 1, only 5+10+4+1 = 20 task sets are examined instead
of 31, which reduces the search space by 35%.

3.2 Branch-and-Bound Algorithm
In this section, we propose a branch-and-bound algorithm to

compute the exact solution of MTS. Assume that the search space
of a branch-and-bound algorithm is represented as a tree, then the
general idea is to conduct a depth-first search on this search tree
but with a carefully designed pruning strategy. In particular, for
each node of the search tree we maintain a candidate task set which
filters out the unpromising branches, and thus reduce the search
space. Moreover, the size of the candidate task set can be used
to derive an upper bound for ordering and pruning. Finally, we
can use this candidate set to compute a lower bound as another or-
dering and pruning metric. Figure 4 illustrates the high-level idea
of our branch-and-bound algorithm: starting from the worker (i.e.,
the root of the search tree), at each level we branch the tasks in the
candidate task set according to their ordering metrics (e.g., upper
bound). The process is repeated recursively until we find a feasi-
ble solution. When backtracking to the upper level, we prune the
branches whose upper bound is lower than the length of the current
best solution or lower bounds of other branches. Before presenting
the details of our branch-and-bound algorithm, we first discuss the
merits of using candidate task set.
3.2.1 Candidate Task Set

For each node in the search tree, the candidate task set (cand)
keeps the promising tasks to be expanded for the next level. For
example, in Figure 4, for nodeC at Level 1, originally there are four
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branches, i.e., {A,B,D,E}, but onlyD andE are promising. This
is because the arriving time of A and B by following C is greater
than their deadlines. Therefore, if we know the candidate task set
of one node, we can focus on this smaller subset of tasks instead
of blindly choosing any of the remaining branches. To efficiently
calculate one node’s candidate task set, we present an important
property in the following:

PROPOSITION 2. A node’s candidate task set in the search tree
is the subset of its parent’s candidate task set.

PROOF. This is trivial to show using the triangle inequality. �
For example, in Figure 4, the candidate task set of node C at

Level 1 contains {D, E}, its children node (C, D)’s candidate task
set only containsE at Level 3, and excludes tasksA andB because
we already know that task A (or B) cannot be completed after C,
and thus after (C, D).

Therefore, to compute the candidate task set of a node, we go
through each task in its parent’s candidate task set and keep the
task as promising only if it is available from the current node. Al-
gorithm 2 outlines the computation of the candidate task set of Rs

when we are branching from node R to a task s for the next level
(we denote the children node of R, whose next branches is s as
Rs), given R’s candidate set cand_R and s ∈ cand_R. The algo-
rithm first finds R’s current task and the task’s arriving time (line
1). Initially, the candidate task set of Rs (i.e., cand_Rs) is empty
(line 2). Subsequently, we examine each of the remaining tasks
s′ in cand_R and its possibility to be finished after Rs (lines 3–
5). If the arriving time of s′ is less than its deadline, we add s′ to
cand_Rs.

3.2.2 Using the Candidate Task Set for Pruning
The candidate task set not only directs our search space into a

much smaller and more promising subset, but also helps to derive
an upper bound (ub) for that node. The upper bound represents the
maximum number of tasks that can be finished by following the
corresponding branch. Formally, node R’s upper bound ub_R can
be computed using the following equation:

ub_R = |R|+ |cand_R| (2)

where cand_R denotes the candidate task set of node R.
Intuitively, the upper bound is the number of already finished

tasks by arriving at R plus the maximum possible number of tasks
that can be completed after R. Let us consider the same example
in Figure 4, for node C at Level 1, its candidate task set is {D,E},
thus its upper bound is 1 + 2 = 3. Similarly, for node B at Level
1, its upper bound is 1 since its candidate task set is empty. With
this upper bound, one branch can be pruned if its bound is less than
the length of the current best solution found so far. Specifically, we
have:

LEMMA 2. Assume that the length of the best known solution
found so far (local best) is curMax and the current branch is R,
then R can be pruned if and only if ub_R ≤ curMax.

Algorithm 2 Calculate_Cand(R, cand_R, s)
Input: R is the current task sequence, cand_R is the current candi-
date set for expansion, s ∈ candR is the next task to be expanded.
Output: A candidate task set cand_Rs for node Rs.

1: get curTask and its arriving time curTime of R
2: cand_Rs ← ∅
3: for each task s′ ∈ cand_R \ s do
4: if curTime +c(s, s′) ≤ d(s′) then
5: cand_Rs ← cand_Rs ∪ s′
6: return cand_Rs

PROOF. Obvious from the definition. �
For example, in Figure 4, by following A→ E → C → D, we

obtain the current best valid task sequence with length 4. Then, if
we are back to the node C at Level 1, since its upper bound is 3
which is less than curMax, we can safely skip this branch.

3.2.3 Branching Strategy
Clearly, the larger the value of curMax, the stronger the pruning

power of Lemma 2. For example, in Figure 4, suppose that node B
at Level 1 is visited first, which produces a local best curMax=1;
then Lemma 2 is not efficient in terms of pruning since none of the
other branches’ upper bounds are greater than one. On the contrary,
assume that initially we choose node A at Level 1, we can find a
local best solution with 3 tasks finished and thus curMax=4. The
other branches such as B, C, D, E can be pruned accordingly.
Consequently, in the search tree, if nodes which leads to a larger lo-
cal best curMax can be accessed in order, then more nodes can be
pruned using Lemma 2. Unfortunately, it is impossible to know the
local best curMax in advance. Intuitively, a node with higher up-
per bound is more likely to result in a better solution and larger val-
ues of curMax. Towards this end, at each level of the search tree,
we visit the nodes in the decreasing order of their upper bounds.

Even though branching from a node with larger upper bound has
a higher likelihood of obtaining a larger value of curMax, there
is no guarantee. As a result, we further propose the other ordering
metric: the lower bound of a node (lb), which denotes the mini-
mum number of tasks that can be finished by following this node.
Intuitively, the upper bound is the most optimistic choices possible,
while the lower bound results in the most pessimistic ordering. In
addition, the lower bound can also be used for pruning. Specifi-
cally, if the upper bound of one node is less than the lower bound
of any other nodes, it can be discarded safely. In order to calculate
the lower bound for the node R, we first use any approximation al-
gorithm introduced in Section 4 that computes the number of tasks
that can be completed in its candidate task set. Next, we compute
the lower bound as the number of tasks finished at R, plus the least
number of tasks that can be finished in cand_R.

3.2.4 Algorithm and Complexity
We explain our branch-and-bound algorithm using a depth-first

search. We use the upper bound as the ordering metric, and use
the lower bound only for pruning. The details are outlined in Al-
gorithm 3. Initially, we search from the root node, where the task
sequence R is empty, cand_R=S (i.e., all the tasks are consid-
ered as candidates), and curMax is 0, and then recursively call
Algorithm 4. For each node at the next level, the algorithm first
calculates its corresponding candidate task set and its upper and
lower bound (lines 1–3). All the tasks in the current candidate set
cand_R are sorted in the decreasing order of their upper bounds,
and the branches with its upper bound less than the lower bound of
other branches are discarded in cand_R (line 4). For each candi-
date task s, if the upper bound is larger than curMax, we continue



Algorithm 3 MST_Branch_Bound(S, w)
Input: A set of tasks S and a worker w
Output: Optimum solution R∗

1: MST_Branch_Bound_Search(∅, S, 0)

Algorithm 4 MST_Branch_Bound_Search(R, cand_R, curMax)
Input: R is the current task sequence, candR is a set of candidate
tasks, curMax is the length of current best solution.
Output: Optimum solution R∗

1: for each task s ∈ cand_R do
2: cand_Rs ← Calculate_Cand(R, cand_R, s)
3: calculate ub_Rs and lb_Rs

4: sort cand_R in the descending order of ub, prune branches
based on ub and lb

5: for each task s ∈ cand_R do
6: if ub_Rs > curMax then
7: MST_Branch_Bound_Search(R∪s, cand_Rs,curMax)
8: else
9: if |R| > curMax then

10: curMax← |R|
11: R∗ ← R

our search in the next level using its candidate task set cand_Rs

(lines 6–7). Otherwise, we examine whether we need to update the
current best solution (lines 9–11). In the following we discuss and
compare the space and time complexity of our dynamic program-
ming and branch-and-bound algorithm.
Space complexity: The branch-and-bound algorithm is more effi-
cient than dynamic programming algorithm in terms of space re-
quirements. The reason is that the recursive depth is bounded by
the number of tasks n, and in each call of Algorithm 4, we only
need to store R and cand_R with maximum size n. Therefore,
the space complexity for the branch and bound algorithm is O(n2),
which is much smaller than the exponential space requirement of
our dynamic programming approach.
Time complexity The time complexity of the branch-and-bound
algorithm is proportional to the size of the search tree. Gener-
ally speaking, with a good branching and pruning strategy, the
branch-and-bound algorithm can discard significant number of un-
necessary nodes and achieve much better efficiency than dynamic
programming. Unfortunately, there is no tight bound as the prun-
ing power depends on the distribution of the location of tasks and
their deadlines. It is possible that the branch-and-bound algorithm
searches the entire tree without eliminating any branch. Thus, the
worst case time complexity of the branch-and-bound algorithm is
still O(n!).
Example: Figure 5 illustrates the corresponding search space of
our branch-and-bound algorithm for solving the problem of Fig-
ure 1. For each task A, B, C, D and E, at the first level, it
first computes the candidate task sets and their upper bounds. The
node B is pruned since its upper bound is 1, which is lower than
A’s lower bound. Subsequently A is searched first since its upper
bound is 4. At the second level, we only check tasks C,D,E ∈
cand_(A). Similarly, after calculating their candidate task sets and
upper bounds, we consider branch (A,E) because its bound is
largest among the three branches. We continue our search until we
reach a candidate solution (A, E, C, D) and update the value of
curMax to 4. Subsequently, we observe that all of the remaining
branches can be pruned based on Lemma 2.

4. APPROXIMATION ALGORITHMS
Considering the real-world application scenario and the resource
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Figure 5: An illustration of the branch-and-bound algorithm

limitations of mobile platform in spatial crowdsourcing, we would
like to achieve faster response time as well as less memory con-
sumption. However, the time complexity of both dynamic pro-
gramming and branch-and-bound algorithms grow exponentially as
the number of tasks grows. Therefore, in this section, we present
three approximation algorithms based on three different heuristics
and a class of progressive algorithms to enable real-world applica-
tions.

Algorithm 5 Least_Expiration_Heuristic(S, w)
Input: A set of tasks S and worker w.
Output: Optimum solution R∗.

1: R∗ ← ∅, curTime← 0, last← w
2: sort S in the ascending order of tasks’ expiration time
3: for each task s ∈ S do
4: if curTime +c(s, last) ≤ ds then
5: R∗ ← R∗ ∪ s
6: curTime← curTime +c(s, last)
7: last← s
8: return R∗

4.1 Least Expiration Time Heuristic (LEH)
The main idea of LEH is to form a task sequence by greedily

choosing the task with the least expiration time. We explain LEH
in Algorithm 5. Initially a worker w starts from time unit 0 with
an empty task sequence R∗ (line 1). The tasks in S are sorted in
the increasing order of their expiration time (line 2). Subsequently,
in each iteration, the current task s with the least expiration time
is examined. If s can be completed, we add it to the current task
sequence R∗ (line 5), and update the last task in R∗ as well as
its arrival time (lines 6–7); otherwise, we continue to examine the
next task in S. Consider the example in Figure 1, with LEH, the
worker w chooses task B to start with since it is the most "urgent"
with expiration time 8. Then he will consider A, E, C and D
respectively based on their expiration times. Unfortunately, none of
these tasks can be completed afterwards and thus onlyB is returned
to the worker.
4.2 Nearest Neighbor Heuristic (NNH)

NNH exploits the spatial proximity between the tasks by itera-
tively choosing the nearest available task to the last task added in
the task sequence. For example, in Figure 1, worker w initially
chooses task A which is nearest to him. Next task B is considered
since B is the closest task to A. However, B cannot be reached on
time, hence A’s second nearest task E is checked. We find E is
available and add it to the task sequence. Subsequently task D is
examined and added to the task sequence. In the end we find task
C cannot be completed after D, thus task sequence (A,E,D) is
returned. We omit the pseudo-code here.
4.3 Most Promising Heuristic (MPH)

The third approximation algorithm is MPH, which is based on



the branch-and-bound algorithm presented in Section 3.2. Like
branch-and-bound, MPH iteratively chooses the most promising
branches (i.e., nodes with the highest upper bound at the same
level); however, instead of exploiting the entire search tree, MPH
terminates when the first candidate task sequence is found. For in-
stance, consider the search tree of the branch and bound algorithm
in Figure 5, by following the most promising branches, it retrieves
the first candidate task sequence (A,E,C,D). With MPH, the
search stops here and task sequence (A,E,C,D) is returned. We
omit the pseudo-code here.

4.4 Progressive Algorithms
In real-world applications, sometimes it is sufficient to report a

small number of spatial tasks to a worker quickly and then continue
to solve the remaining problem off-line, i.e., the complete solution
is computed in the background while the worker is performing the
initial tasks. In response to it, we present a class of progressive al-
gorithms. Given a worker and a set of tasks, the idea is to use any of
the approximation algorithms (e.g., NNH) to identify a small num-
ber of initial tasks quickly. Subsequently we use the exact branch
and bound algorithm to find the optimum task sequence for the re-
maining tasks.

The advantage of the progressive algorithms is obvious: quicker
response time as compared with the exact algorithms, and higher
accuracy as compared with the approximation algorithms. How-
ever, there are several drawbacks. One drawback is that a worker’s
potential tasks may be preempted by other workers when the worker
is on the way to process the initial tasks. In addition, workers may
prefer to see the entire task sequence before starting to work.
5. EXPERIMENTS
5.1 Experimental Setup
Datasets. We conducted our experiments with both synthetic (SYN)
and real (REAL) data. For synthetic data generation, we used
two distributions: uniform (SYN-UNIFORM) and skewed (SYN-
SKEWED). In order to generate SYN-SKEWED data set, 99% of
the tasks were generated into four Gaussian clusters (with δ = 0.05
and randomly chosen center) and the other 1% of the tasks were
uniformly distributed. Given a worker and his region, we varied
the average number of spatial tasks inside his spatial region, de-
noted by tasks per worker (T/W), from 10 to 40. In addition, given
a worker and a set of tasks,the expiration time of the tasks was gen-
erated as follows: starting from the worker’s location, we greedily
chose the next nearest task to form a task sequence and got the to-
tal travel cost t, which was used as the upper bound for expiration
time generation. Subsequently we defined a range [dl, du], where
0 < dl < du < 1, and the expiration time was generated from
the uniform distribution [dl · t, du · t]. With SYN, we used 5 pairs
of values for dl and du, which were [0.2, 0.3], [0.3, 0.4], [0.4, 0.5],
[0.5, 0.6] and [0.6, 0.7]. Basically range [dl, du] determines the
percentage of the tasks that can be completed.

The real data was obtained from Gowalla [4], a location-based
social network, where users are able to check in at different loca-
tions in their vicinity. The check-ins include the location and the
time that the users enter the locations. For our experiments, we
used the check-in data over a period of one month (i.e., August,
2010). We defined the tasks as the locations of restaurants, in the
area of Los Angeles, CA. For each day during that month, we found
all the check-ins within a time range (e.g., three hours) from differ-
ent uses and removed the duplicate tasks for the same user. The
remaining check-ins were used as spatial tasks. For each check-in,
we used its location and time as the location and expiration time
of the task. Intuitively checking in a spot is equivalent to finishing
a spatial task at that location. The travel cost was calculated by

the Euclidian distance divided by the average travel speed (i.e., 30
miles/hour). The user with the earliest check-in time in one time
range was treated as the spatial worker.
Algorithms. We compared the performance for both exact and ap-
proximation algorithms. Specifically, we consider three exact so-
lutions namely dynamic algorithm (DA), dynamic algorithm with
optimization strategy (DA_OPT) and branch-and-bound algorithm
(B&B), and three approximation algorithms, namely nearest neigh-
bor heuristic (NNH), least expiration time heuristic (LEH) and most
promising heuristic (MPH).

Besides, we studied the performance of the progressive algo-
rithm. We consider NNH-1 (NNH-2, NNH-3) which uses nearest
neighbor heuristic to return one (two, three) task(s) to the worker
initially, and then uses the exact branch-and-bound algorithm for
the remaining tasks.
Configuration and Measures. We evaluated the scalability of the
algorithms by varying both the number of tasks per worker (T/W)
and range [dl, du] for tasks’ expiration time generation. For each
of the experiments, we ran 50 cases and reported the average of the
results. The CPU cost (in milliseconds) was reported 3. In addition,
for the approximate algorithms, we also reported their accuracies
(i.e., approximation ratio).

All experiments were run on an Intel Core i5-2400 CPU @ 3.10G
HZ with 8 GB RAM.

5.2 Experiments on Synthetic Data Sets
5.2.1 Effect of Number of Tasks Per Worker(T/W)

In the first set of experiments, we evaluated our approaches by
varying the number of tasks per worker (T/W) with range [0.3, 0.4]
for the expiration time generation.
Efficiency of Different Algorithms. Figure 6(a) shows the runtime
(i.e., response time) of all of the algorithms on SYN-UNIFORM.
As expected, the running time of all three exact algorithms is much
slower than those of approximation algorithms. In addition, we ob-
serve the runtime of the exact algorithms increases exponentially
as T/W increases. Among them, DA is the slowest since it enumer-
ates the entire subsets of tasks. DA_OPT is faster than DA because
it avoids examining the invalid subsets. When T/W is larger than
25, both DA and DA_OPT are very time-consuming within more
than hours response time, thus we do not report their results here.
B&B performs better than both DA and DA_OPT. It demonstrates
the usefulness of the pruning and ordering strategies of B&B. How-
ever, note that in real-world applications the mobile platforms have
limited resources, which is much inferior than our experimental
platform. Moreover, in general, waiting for the answer more than
300 ms makes users feel non-interactive. As our experiment set-
ting, more than 100 ms response time could make it non-interactive
environment in practical scenario. Therefore, B&B cannot scale
either and it turns out that the exact algorithms are only applicable
when T/W is relatively small (i.e., less than 20).

The runtime of the approximation algorithms increases almost
linearly with the increase of T/W. For NNH (LEH), it keeps search-
ing the next available tasks with nearest distance (least expiration
time) until no tasks are left, hence it is very efficient. For MPH, it
runs relatively slower than NNH and LEH because before choos-
ing the next task, it needs to calculate the candidate task set, then
choose the next branches based on their upper bounds.
Accuracy of Approximation Algorithms. Figure 6(b) shows the
accuracy of the three approximation algorithms on SYN-UNIFORM.
The accuracy of different approximation techniques varies signifi-
cantly. NNH achieves the best accuracy and LEH performs worst.

3For progressive algorithms we did not report the response time
since it was not the concern.
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Figure 6: Effect of T/W on synthetic data with range [0.3, 0.4]
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Figure 7: Effect of range [dl, du] on synthetic data (du = dl + 0.1) with T/W =20

Table 1: Avg. No. of completed tasks by the exact and progressive
algorithms of varying T/W on SYN-UNIFORM
PPPPPPPAlg.

T/W 10 15 20 25 30 35 40

Exact Alg. 4.5 6.7 10.4 13 15.3 18.2 19.3
NNH-1 4.5 6.6 10.3 13 15.2 17.6 18.6
NNH-2 3.6 6.2 10.3 12.9 14.9 17.2 18.4
NNH-3 3.5 5.7 10.3 12.3 14.9 17 17.8

The reason is that LEH does not consider the spatial proximity of
the tasks, the worker may miss many tasks located far from the
most "urgent" task he chooses. We also list the number of com-
pleted tasks by the exact algorithm on SYN-UNIFORM in Table 1,
from which we can observe the difference between the exact and
approximation algorithms in terms of number of completed tasks.
Taking T/W = 25 as an example, the exact algorithms can com-
plete 13 tasks on average. Thus, the worker is able to complete
almost 3 more tasks (i.e., 13×20%, the best ratio is around 80%
in Figure 6(b)) than the approximation algorithm. Therefore, the
difference between exact and approximation algorithms might still
be significant when T/W increases.
Accuracy of Progressive Algorithms. Table 1 shows the number
of completed tasks by the progressive algorithms on SYN-UNIFORM.
NNH-1, NNH-2 and NNH-3 all achieve near-optimum task num-
ber, hence they are superior than the approximation algorithms in
terms of accuracy. In addition, NNH-1 performs better than NNH-2
and NNH-3. This is because the more tasks fetched at the begin-
ning, the more deviation from the optimum task sequence.
Experiments on SYN-SKEWED. The set of experiment studied
the efficiency and accuracy of our algorithms on SYN-SKEWED
when T/W varies. Figure 6(c) shows the runtime and Figure 6(d)
depicts the accuracy. Table 2 depicts the number of completed tasks
by the exact and progressive algorithms. The results are qualita-
tively similar with that of on SYN-UNIFORM. From Tables 1 and
2, we observe that the average number of tasks that can be com-
pleted in the skewed distribution is greater than that of the uniform

Table 2: Avg. No. of completed tasks by the exact and progressive
algorithms of Varying T/W on SYN-SKEWED
PPPPPPPAlg.

T/W 10 15 20 25 30 35 40

Exact Alg. 5.4 7.9 10.7 14.3 18.4 19.85 22.5
NNH-1 5.4 7.4 10.7 14.3 18.3 18.5 21.75
NNH-2 4.9 7.3 10.5 14.3 17.7 17.2 21.2
NNH-3 4.1 7 9.3 14 16.8 16.4 21

distribution. This is because in skewed data, many tasks resides in
one cluster which increases the possibilities to be completed before
their expiration. With more tasks completed in SYN-SKEWED,
it also affects the running time of the exact algorithms. For exam-
ple, DA_OPT performs much worse than on SYN-UNIFORM. The
reason is that the valid sets in DA_OPT increases significantly with
more tasks completed, which makes the cost of valid set generation
surpasses its benefit. With respect to accuracy, MPH achieves bet-
ter performance than on SYN-UNIFORM. This is because in uni-
form distribution, each task is equally promising, while in skewed
distribution, naturally some tasks are more promising than the oth-
ers, which makes MPH more effective. In addition, both MPH and
NNH perform worse as T/W grows. Finally, the progressive al-
gorithms achieve near optimal results as on SYN-UNIFORM and
NNH-1 is better than NNH-2 and NNH-3. In the remaining sec-
tion, we do not report the results of progressive algorithms as they
are similar due to the stability of progressive algorithms.

5.2.2 Effect of Range [dl, du]

In this set of experiments, we evaluated the scalability and accu-
racy of our proposed approaches by varying range [dl, du] for the
tasks’ deadline generation. The number of tasks per worker (T/W)
was fixed at 20.
Efficiency of Different Algorithms. With this set of experiment,
we studied the efficiency as range [dl, du] varies. Figure 7(a) illus-
trates the runtime of our approaches on SYN-UNIFORM. Clearly,
this range has significant influence on the runtime of DA_OPT and
B&B, whereas has little influence on DA. When dl grows, the dead-



Table 3: Avg. No. of completed tasks by the exact algorithms of vary-
ing dl (du = dl + 0.1, W/T = 20)

PPPPPPPData set
dl 0.2 0.3 0.4 0.5 0.6

SYN-UNIFORM 7.8 10.4 12.5 14.7 16.3
SYN-SKEWED 8.8 10.8 13.3 15.6 17.7
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line of tasks increases, and hence the number of tasks that can be
completed also increases. Table 3 shows this trend. For DA_OPT
more tasks that can be completed results in a significant growth
of the number of valid sets, which makes the additional cost in-
curred for valid sets generation surpasses its benefit. Therefore, the
performance of DA_OPT degrades significantly as dl grows. As
shown in Figure 7(a), the runtime of B&B increases almost expo-
nentially. The reasons is twofold. First it takes longer time for
B&B to find a good candidate solution with more tasks that can
be completed as curMax. In addition, this increase leads to more
candidate branches that needs to be explored. However, the run-
ning time of DA stays almost the same as range increases. This is
because DA always enumerates all the subsets of tasks independent
of the range. As expected, the approximation algorithms run much
faster than the exact algorithms.
Accuracy of Approximation Algorithms. Figure 7(b) depicts the
efficiency of the three approximation algorithms when varying dl

on SYN-UNIFORM. As in the the previous set of experiments,
LEH performs worst and NNH performs better than MPH. It is in-
teresting to observe that on SYN-SKEWED, NNH performs better
as dl increases, whereas MPH performs much worse. One reason
is that with MPH the increased deadline results in all the remaining
tasks with similar higher upper bound, which makes them become
equally promising. It renders MPH to randomly choose the tasks,
thus affects the effectiveness. However, for NNH, larger number
of completed tasks generally means more available choices for the
worker and more accurate results.
Experiments on SYN-SKEWED. Figure 7(c) shows the runtime
and Figure 7(d) depicts the accuracy. The results of SYN-SKEWED
are similar to those of SYN-UNIFORM except MPH. We notice
MPH achieves higher accuracy than on SYN-UNIFORM, as sim-
ilar to Figure 6(b) and Figure 6(d). Another observation is that
MPH performs better than NNH when dl is small but worse than
NNH when dl becomes larger (They perform almost equally when
dl =0.4). The reason is twofold. First, when dl is small, MPH per-
forms better due to the effectiveness of its upper bound on SYN-
SKEWED. Besides, as dl increases, MPH performs significantly
worse but NNH achieves better accuracy.
5.3 Experiments on Real Data Set

Figure 8 shows our experiment results on real data set for a pe-
riod from Aug/15/2010 to Aug/20/2010. For this real data set, the
average number of tasks per worker is around 20 and the range
of expiration time is around [0.2, 0.4], which conforms to our set-

ting with synthetic data. Figure 8(a) depicts the efficiency and Fig-
ure 8(b) illustrates the accuracy. As expected, B&B performs better
than DA and DA_OPT, which makes it more suitable for real-world
applications. In terms of accuracy, NNH performs best.

6. RELATED WORK
In this section, we first review the related studies on crowdsourc-

ing and spatial crowdsourcing. We then discuss the related work in
the area of job scheduling and route planning queries.

Crowdsourcing has attracted much interest from both the indus-
trial and research community. A recent survey can be found in [9].
With the increasing popularity, a set of crowdsourcing market plat-
forms such as Amazon Mechanical Turk and CrowdFlower [5] have
emerged, which enable human workers to perform tasks on the In-
ternet. Crowdsourcing applications have been adopted in a wide
range of applications such as image search [24], natural language
annotations [22] and information retrieval [11]. Moreover, crowd-
sourcing has also been incorporated into database design and rela-
tional query processing [10, 12, 18].

Despite all the studies on crowdsourcing, not as much work has
been done in spatial crowdsourcing [7, 13, 15]. Kazemi and Sha-
habi [15] defined a maximum task assignment problem under SAT
mode. In [7], a crowdsourcing system with the WST mode was pro-
posed, which integrates location into the processing of distributing
tasks. Besides, participatory sensing [8,13,14,19], a particular type
of WST based spatial crowdsourcing has been studied to involve
human workers to perform sensor-dependent tasks. Among these
work, both Cartel [13] and Nericell [19] have used GPS-enabled
phones mounted on vehicles to collect information about traffic, the
WiFi access points on the route and road condition. Frameworks
under WST mode [8] and SAT mode [14] have been proposed in
participatory sensing. However, none of these existing studies con-
siders the influence of the worker’s travel cost on task’s completion,
which is critical in spatial crowdsourcing. Furthermore, existing
works on participatory sensing cannot be generalized to any type
of spatial crowdsourcing.

MTS can be formulated as an instance of a job-scheduling prob-
lem, which incorporates a job setup cost that is sequence depen-
dent, called DCS (dual criteria scheduling with setup cost). With
DCS, the objective is to find a schedule that maximizes both the
number of completed jobs and the total completion time. With
MTS, we can consider the travel time between two tasks as the
setup cost of the latter task in DCS. In [16], Lee et. al proposed a
genetic programming (GA) approach to solve DCS. First, the GA
approach is an overkill for our problem setting because the number
of tasks per worker is small. Second, with MTS we need to provide
a schedule for the worker in millisecond, which is different than
solving DCS as a one time optimization problem. Finally, we can
exploit the spatial property of MTS, i.e., the fact that the costs are
actual travel times depending on the location of tasks, to solve this
problem more efficiently.

MTS is also related to the route planning queries in the area of
spatial databases. Sharifzadeh et al. [21] addressed Optimal Se-
quenced Route (OSR) Query. Given a source location, a num-
ber of points with different types and a particular order imposed
to visit these types, OSR aims to find a route of minimum length
passed through the locations as the specified sequence. Besides, Li
et al. [17] studied Trip Planning Queries (TPQ) and Terrovitis et
al. [23] addressed Constrained Shortest Path problem (CSP). Given
a source and a destination, TPQ asks for a route with minimum
length which passes through a subset of these location types (not
the strict sequence order), while CSP seeks to find a shortest path
which passes through exactly k intermediate points (no constraint
on location types). The main difference between these studies and



our problem is that with MTS we want to maximize the number of
tasks that can be completed, whereas, these route planning queries
aim to minimize the total travel cost.
7. CONCLUSION

In the context of spatial crowdsourcing, we introduced a novel
problem, termed Maximum Task Scheduling (MTS), to maximize
the number of spatial tasks performed by a worker. We proved that
MTS is NP-hard and for which we proposed several exact, approx-
imate and progressive algorithms. Extensive experiments on both
real-world and synthetic datasets offered us insights on how to ap-
ply these algorithms in practical scenarios.

There are a number of promising directions for future work.
First, we intend to develop algorithms to optimize dual criteria,
namely, the number of tasks that can be completed and the total
travel cost of the worker. Moreover, we plan to consider other prop-
erties of spatial tasks, for instance, the processing time and priority
of the spatial tasks. Finally, we would like to extend MTS to the
SAT mode while addressing the privacy issues.
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APPENDIX
A. PROOF OF THEOREM 1
Proof (Sketch): We show that Ham-Path ≤p sTSP. The Ham-Path prob-
lem < G > decides whether there exists a simple path in G which visits
each vertex exactly once. Let G(V,E) be an instance of Ham-Path with
n vertices, we construct an instance of sTSP as follows: first, we form the
complete graph G′ = (V,E′), where E′ = {(i, j) : i, j ∈ V and i 6= j},
and we define the cost function c by

c(i, j) =

{
1 if (i, j) ∈ E
2 if (i, j) /∈ E

Next we add a new vertex u′ in G′, and for each i ∈ V , add (u′, i)
with edge cost 1. Now we have a complete graph G′ = (V ′, E′′) where
V ′ = V ∪ {u′} and E′′ = E′ ∪ {(u′, i) : i ∈ V }. We choose x = u′

and k = n+ 1, it is easy to see k ≥ 2 · c(x, i) for i ∈ V ′ and i 6= x.
We now show that graph G has a hamiltonian path if and only if graph

G′ has a tour starting from u′ with cost of at most n + 1. Suppose that
graph G has a hamiltonian path p = (u, · · · , v) which has n − 1 edges.
Each edge in p belongs to E and thus p has cost n − 1. If we connect u′
to path p by adding edges (u′, u) and (v, u′) in G′, we can form a tour h′
with cost n+ 1 since c(u′, u) = 1 and c(v, u′) = 1. Conversely, suppose
that graph G′ has a tour h′ start from u′ with cost less than n + 1. Since
edge cost in E′ is either 1 or 2, the cost of tour h′ which contains n + 1
edges must be exactly n+1. Therefore, by excluding u′ in h′ we can form
a hamiltonian path that contains only edges in E. It completes our proof. �

B. PROOF OF THEOREM 2
Proof (Sketch): First we show that the decision problem of MTS is in NP.
Given any task sequence R, it is easy to decide the number of finished tasks
in R by calculating the arrive time of each task. This process can be done
in polynomial time.

Next we show that the proof can be established by a reduction from the
sTSP problem. Consider an instance of sTSP< G, c, x, k > problem, let
G(V,E) be a complete graph with n + 1 vertices, given starting vertex
x = 0 and cost k, where k ≥ 2 · c(0, i) for i ∈ V and i 6= 0, now
we construct an instance of MTS< w,S, z > as follows. Let vertex 0
represents the worker w, vertices 1, 2, · · · , n represent n tasks. The travel
cost from i to j defined as c(i, j) is the same as sTSP. The deadline of each
task i is d(i) = k − c(0, i), which guarantees that the worker can arrive
at each task before its deadline initially since d(i) ≥ c(0, i). Finally we
choose z = n.

We now show that sTSP < G, c, x, k > has a tour of cost at most k if and
only if MTS < w,S, z > has a valid task sequence R, st. |R| = n, which
means all the tasks can be completed on time. Suppose we have a tour in
G starting from vertex 0 with cost less than k, which is (0, v1, v2, · · · , vn)

and its last edge (vn, 0), we know c(0, v1)+

n−1∑
j=1

c(vj , vj+1)+c(vn, 0) ≤

k. Next we prove all tasks can be finished on time by induction. First
consider the simple case: for the last task vn, its arrive time a(vn) =

c(0, v1) +

n−1∑
j=1

c(vj , vj+1) ≤ k − c(vn, 0) = d(vn), which means vn

can be finished on time. Then suppose vm(m < n) can be finished, we
prove vm−1 can also be finished. Since vm can be finished, we know
a(vm) = a(vm−1) + c(vm−1, vm) ≤ k − c(vm, 0), from the triangle
inequality, c(vm−1, vm) + c(vm, v0) ≥ c(vm−1, v0). Combining these,
we can get a(vm−1) ≤ k − c(vm−1, v0) = d(vm−1), which means
vm−1 can be finished on time. Therefore if we have a tour of cost k, we
also have a valid task sequence R = (v1, v2, . . . , vn) that contains n tasks.

Conversely, if we have a valid task sequence R with n tasks, suppose i
is the last task in R, we know the cost at i is at most k − c(0, i). Thus, We
can get a tour for sTSP starting from 0, following the vertices according to
the orders in R and returning back to 0. It is easy to see the tour’s cost is
less than k. This completes our proof. �
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