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This article provides a survey of the specification and estimation of spatial panel data models.
These models include spatial error autocorrelation, or the specification is extended with a spa
tially lagged dependent variable. In particular, the author focuses on the specification and esti
mation of four panel data models commonly used in applied research: the fixed effects model, the
random effects model, the fixed coefficients model, and the random coefficients model- The sur
vey discusses the asymptotic properties of the estimators and provides guidance with respect to
the estimation procedures, which should be useful for practitioners.
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Inrecentyears, there has been a growing interest in the specification and estimation
of econometric relationships based on panel data. This interest can be explained by
the fact that panel data offer researchers extended modeling possibilities as com-
pared to purely cross-sectional data or time-series data. Panel data are generally
more informative, and they contain more variation and less collinearity among the
variables. The use of panel data results in a greater availability of degrees-of free
dom and hence increases efficiency in the estimation. Panel data also allow for the
specification of more complicated behavioral hypotheses, including effects that
cannot be addressed using pure cross-sectional or time-series data (Hsiao 1986;
Baltagi 2001).

Two problems may arise when panel data incorporate a locational component.
The first problem is that spatial dependence may exist between the observations at
each pointintime. The fact that distance affects economic behavior is the main rea
son for an observation associated with a specific location to be dependent on obser
vations at other locations. Regional science theory points out that economic agents
may change their decisions depending on (1) market conditions in the region of
location as compared to other regions and (2) the distance between regions. When
specifying the spatial dependence between observations, the model may incorpo
rate a spatial autoregressive process in the error term, or the model may contain a
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spatially autoregressive dependent variable. The first model is known gisetial
error model and the second as thgatial lagmodel (for the introduction of these
terms, see Anselin and Hudak 1992).

The second problem potentially arising when panel data have a locational com
ponentis that parameters are not homogeneous over space butinstead vary over dif
ferent geographical locations. Coefficients can of course also vary over time, but
this complication is not discussed in this article. Parameter heterogeneity across
spatial units has become atopical issue in the literature. Pesaran and Smith (1995)
and especially Fotheringham, Charlton, and Brunsdon (138R)ocate that we
abandon the fundamental assumption of homogeneous parameters underlying
pooled models and refrain from relying on estimated average responses frem indi
vidual regressions. Similar to cross-sectional regressions, the main problem of tra
ditional panel data techniques is that they will only capture “average” or representa
tive behavior. A panel data regression with constant slopes results in average effects
across spatial units, even when allowing for a variable intercept, and it does not
show the differences in behavior among individual spatial units (Quah 1996a,
1996b). A second reason for an estimated relationship to exhibit spatial variation is
that the model may constitute a gross misspecification of reality because one or
more relevant variables have erroneously been omitted from the model or are cap-
tured through an incorrect functional form.

Itshould be noted that the upsurge in the use of heterogeneous panel data estima-
tors has also been criticized. First, it has been argued that heterogeneous panel data
estimators produce less plausible estimates as compared to their pooled homoge-
neous counterparts (Baltagi and Griffin 1997; Baltagi, Griffin, and Xiong 2000).
Second, the estimation of individual time-series models—in effect, one for each
spatial unit—ignores the comovements across spatial units (Quah 1996b). Finally,
the use of heterogeneous panel data models is only feasible when the number of
observations on each spatial unit is large enough because these models effectively
consist of separate regressions for each spatial unit. Most panel data sets do not
meet this requirement.

This article surveys panel data models in which spatial dependence and spatial
heterogeneity are incorporated. We deal with four panel data models commonly
used in applied research (fixed effects, random effects, fixed coefficients, and ran
dom coefficients models) and extend the traditional models to include spatial error
autocorrelation or a spatially lagged dependent variable. As a result, this article
examines eight different models. Spatial heterogeneity is expressed in the coeffi
cients of the explanatory variables. In the fixed and random effects models, the
intercept is allowed to vary over spatial units, and in the fixed and random -coeffi
cients models, both the intercept and the slope coefficients are allowed to vary over
spatial units.

We focus specifically on details of the estimation method and discuss complica
tions that may arise from limitations of the available software as well. The treat
ment of these topics is motivated by the current lack of complete and detailed
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coverage of spatial panel data models in the literature. Anselin (1988) discussed
some of these models in his seminal textbook on spatial econometrics. He covered
the random effects model with spatially correlated errors at length (pp. 150-56,
164-66; see also Baltagi 2001, 195-97), but the fixed coefficients spatial lag model
(p- 156) and the random coefficients spatial error model (pp. 129-31) are discussed
only briefly. Anselin also closely examined two models that are similar to the fixed
coefficients spatial error and spatial lag models (pp. 137-50, 157-63). However,
whereas Anselin allows the coefficients to vary across time, we allow them to vary
over space, following earlier work by Pesaran and Smith (1995) and Fotheringham,
Charlton, and Brunsdon (1997).

The spatial econometric literature has shown that ordinary least squares (OLS)
estimation is inappropriate for models incorporating spatial effects. In the case of
spatial error autocorrelation, the OLS estimator of the response parameters remains
unbiased, butitloses the efficiency property. In the case when the specification con
tains a spatially lagged dependent variable, the OLS estimator of the response
parameters not only loses the property of being unbiased but also is inconsistent.
The latter is, however, a minimal requirement for a useful estimator, and it is there-
fore commonly suggested to overcome these problems by using maximum likeli-
hood techniques (Anselin 1988; Anselin and Hudak 1992). We adopt this principle
of using maximum likelihood techniques, unless this approach is too complicated
or not applicable. As the derivation of maximum likelihood functions is one of the
main purposes of this article, we assume that the density function of the errors is
always fully defined. Lee (2001a, 2001b) has recently investigated asymptotic
properties of (quasi) maximum likelihood estimators for spatial cross-section mod-
els, assuming that the number of spatial cross sections approaches infinity. We will
return to this issue below.

Recently, two studies proposed nonparametric covariance estimation tech
nigues (specifically, general methods of moments [GMM]), yielding standard error
estimates of the response parameters that are robust to spatial dependence among
the error terms in spatial cross-section models (Conley 1999; Kelejian and Prucha
1999). Driscoll and Kraay (1998) and Bell and Bockstael (2000) applied GMM
estimators in the context of spatial panel data sets. Although our focus is en para
metric approaches to modeling, we also discuss the conditions under which GMM
is useful as an alternative to the scalarindexed dependence among the error terms.

Spatial panel data models with spatial error autocorrelation have received more
attention in the regional science literature than panel data models, including a spa
tially lagged dependent variable. There are three reasons for considering both types
of models. First, the spatial extensions to the traditional panel data models are quite
different from each other. The difference is aggravated when the intercepts and/or
the slopes are assumed to vary with location and when the coefficients are treated as
randomly distributed over space. Second, neither of the spatial extensions te the tra
ditional panel data models is straightforward. Third, the extension of traditional
panel data models with a spatially lagged dependent variable is likely to be relevant
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for further work on spatial unit roots, spatial cointegration, and the problem that
regressing nonstationary data containing spatial unit roots can produce spurious
regressions (Fingleton 1999; see also Mur and Trivez 2003 [this issue]).

The organization of this article is as follows. First, we introduce the four most
commonly used panel data models, assuming relationships that are linear in the
coefficients (eventually after a suitable transformation) and in which the regressand
is a continuous variable. Subsequently, we extend these traditional panel data mod
els toinclude spatial error autocorrelation or a spatially lagged dependent variable,
and we explain how these models can be estimated. We do not cover dynamic
effects and hence rule out the situation in which a serially lagged dependent vari
able appears on the right-hand side of the regression equation. This extension intro
duces additional econometric complications, and these are beyond the scope of the
current article. The presentation of each spatial panel data model concludes with a
discussion of the feasibility of the model, the asymptotic justification, and potential
extensions and/or alternative estimation methods.

A TAXONOMY OF PANEL DATA MODELS

The analysis starts from a simple linear model between a dependent vafiable

and a set oK independent variables

Yo =By Xy + By Xy + BB X, +& =B X +§, 1)
wherel (=1, ...,N) refersto aspatial unit(=1, .. .,T) refers to a given time period,
By, . . ., Bk are fixed but unknown parameters, aqare independently and identi-
cally distributed (i.i.d.) error terms for dlandt, with zero mean and varianc@ To
avoid the breakdown of the asymptotic properties of the maximum likelihood esti-
mator (MLE), we assume that the regression model contains at least one spatially
varying regressor that is not irrelevant, implying that its coefficistunequal to
zero (Lee 2001b).

The main objection to this model is that it does not account for spatial heteroge
neity. Spatial units are likely to differ in their background variables, which are usu
ally space-specific, time-invariant variables that do affect the dependent variable
but are difficult to measure or hard to obtain. Failing to account for these variables,
however, increases the risk of obtaining biased estimation results. One remedy is to
introduce a variable interceptrepresenting the effect of the omitted variables that
are peculiar to each spatial unit considered:

Y =B X M +E, (2a)
or in stacked form:
Y =XB+U+e, (2b)

whereY, = (Yy, . ., Yad s X, =(X,, TIXy, ), €= (Egpr - - &) s @NAH = (g, - - -, Hy) -
Conditional on the specification of the variable intercept, the regression equation
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can be estimated as a fixed or random effects model. In the fixed effects model, a
dummy variable is introduced for each spatial unit as a measure of the variable
intercept. In the random effects model, the variable intercept is treated as a random
variable thatis i.i.d. distributed with zero mean and variajﬁ:eFurthermore, itis
assumed that the random variahleandg; are independent of each other.

Although the variable intercept model accommodates spatial heterogeneity to a
certain extent, the problem remains as to whether the data in such a model are
pooled correctly. When spatial heterogeneity is not completely captured by the
variable intercept, a natural generalization is to let the slope parameters of the
regressors vary as well. The slope parameters can also be considered fixed or ran
domly distributed between spatial units. If the parameters are fixed but different
across spatial units, each spatial unitis treated separately. For instan¢e, Xd3;

+ ¢ being thedth equation in a set dfl equations, with the observations stacked by
spatial unit over time, the only way of relating theseparate regressions is to
assume correlation between the error terms in different equations, a phenomenon
thatis known asontemporaneous error correlatioBuch a specification is reason-

able when the error terms for different spatial units, at a given point in time, are
likely to reflect some common immeasurable or omitted factor. In full-sample nota-
tion, the set oN equations can be written as

oY,0 X, 0 O O0IB,0 [¥,0 3)
O 0O O O

o0 % O 0gfp, o

oo g 0 0 Om0Oo gdo

MH H o o oxHsH B4

whereE(g) = 0,E(g;e,) =07 I, andi,j = (1, . . .,N). This model is also known as
the seemingly unrelated regressions (SUR) model.

If the parameters are treated as outcomes of random experiments between spa
tial units, the data can be pooled into one model to estimate the unknown parame
ters. This is known as the Swamy random coefficients model (Swamy 1970):

Y =XB+¢, Eg)=0, Hgg)=q"}, (4a)

B =B+v, E(y)=0, E(y¥) =V (4b)

where the3; applying to a particular spatial unit are the outcome of a random pro
cess with a common mean coefficient ve@d@nd covariance matri, which is a
symmetric K x K) matrix. In addition, itis assumed tHate, €, ) = 0andE(v, v;) =0
forj #i and that the random variablgsandyv, are independent of each other.
Before extending these four traditional panel data models with spatial error
autocorrelation or a spatially lagged dependent variable, we introduce the follow-
ing notation. LetW denote al{ x N) spatial weight matrix describing the spatial
arrangement of the spatial units awgdthe ,j)th element o, wherei andj =
(1,...,N). Itis assumed tha/ is a matrix of known constants, that all diagonal
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elements of the weights matrix are zero, and that the characteristic rod¥s of
denotedy, are known. The first assumption excludes the possibility that the spatial
weight matrix is parametric. The second assumption implies that no spatial unit can
be viewed as its own neighbor, and the third assumption presupposes that the char
acteristic roots ofV can be computed accurately using the computing technology
typically available to empirical researchers. The latter is also needed to ensure that
the log-likelihood function of the models we distinguish can be computed.

Lee (2001a, 2001b) pointed out that the familiar asymptotic properties of the
maximum likelihood estimator, suchd8l consistency, depend on the characteris
tic features of the spatial weight matrix. According to Kelejian and Prucha (1999),
the row and column sums @ must be bounded uniformly in absolute valu&as
co. When the spatial weight matrix is a binary contiguity matrix, this condition is
satisfied. Lee (2001a) showed that this condition can be made less strict: the row
and column sums should not diverge to infinity at a rate equal to or faster than the
rate of the sample siz¥ in the cross-section domain. When the spatial weight
matrix is an inverse distance matrix, this condition is satisfied. This can be seen as
follows. Consider an infinite number of spatial units that are linearly arranged (to
simulate one particular row of the spatial weight matrix). The distance of each spa-
tial unit to its first left- and right-hand neighbor is 1; to its second left- and right-
hand neighbor, the distance is 2; and so on. When the off-diagonal eleméits of
are of the form Id;, whered; is the distance between spatial unigadj, the row
sumofWequalss |, 2/ d, , representing a series that is not finite. By contrast, the
ratiol/ N =L 2/ d; — O asNgoes toinfinity. Finally, itis possible that these con-
ditions are not sufficient unless panel data are available (Kelejian and Prucha 2002).
Such a complicated situation occurs when all the nondiagonals of the spatial weight
matrix are equaky; = 1/(N-1) fori #j (Lee 2001a).

THE FIXED EFFECTSSPATIAL ERROR
AND SPATIAL LAG MODEL

The traditional fixed effects model extended to include spatial error
autocorrelation can be specified as

Y=XB+u+@ ¢ DWp 4, He) B, Heg) o |, (5)

and the traditional model extended with a spatially lagged dependent variable reads
as

Y, =0WY+ XB+u+g, Eg)=0, Eegg)=0"|. (6)

In the spatial error specification, the properties of the error structure have been
changed, whereas in the spatial lag specification, the number of explanatery vari
ables has increased by one. In the spatial error specificatiemsually called the
spatial autocorrelation coefficient, and in the spatial lag specification, it is referred
to as the spatial autoregressive coefficient.
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The standard estimation method for the fixed effects model is to eliminate the
intercepts3, andy; from the regression equation by demeaning¥tesnd X vari-
ables? then estimate the resulting demeaned equation by OLS and subsequently
recover the intercepf$, andy, (Baltagi 2001, 12-15). It should be noted that only
(B, + ;) are estimable and n@, andy; separately, unless a restriction such as
2.4, =0is imposed.

Instead of estimating the demeaned equation by OLS, it can also be estimated by
maximum likelihood (ML). The only difference is that ML estimators do not make
corrections for degrees of freedom. The log-likelihood function corresponding to
the demeaned equation incorporating spatial error autocorrelation is

_NT N B 12 (7
2 NEmOTT Y Ao T 3 e

=(1 =dW)[Y - Y=( X - %8,
and with a spatially lagged dependent variable,

NT N 1 < (8)
T AT Ao g3 G ®

=(1 =dW)(Y = V) =( X = XB,

whereY= (Y, ...,Yy) andX =(X, ,0IX, ) . Aniterative two-stage procedure can

be used to maximize the log-likelihood function of the first model, and a simple
two-stage procedure is available for the second model (Anselin 1988, 181-82).
Anselin and Hudak (1992) give instructions on how to implement these procedures
in commercial econometric software. One may also use Spacestat or the MATLAB
routines of spatial error model (SEM) and spatial lag model (SAR), which are
freely downloadable from LeSage’s Web site at www.spatial-econometrics.com.
Although these routines are written for spatial cross sections, they can easily be
generalized to spatial panel models.

Adistinct problem of the fixed effects model is related to the so-called incidental
parameter problem. Only the slope coefficients can be estimated consistently, in the
case of short panels, whefas fixed andN - . The coefficients of the spatial
fixed effects cannot be estimated consistently because the number of observations
available for the estimation ¢t is limited toT observations (Anselin 2001). Fortu
nately, the inconsistency gf is not transmitted to the estimator of the slope ceeffi
cients in the demeaned equation since this estimator is not a function of the esti
matedy;. This implies that the large sample properties of the fixed effects model
whenN - o do apply for the demeaned equation (Lee 2001a, 2001b). It should be
stressed that the incidental parameters problem is independent of the extension to
spatial error autocorrelation or to the inclusion of a spatially lagged dependent vari
able since it also occurs without these two extensions. The incidental parameters
problem does not matter wh@rare the coefficients of interest apchare not, which
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is the case in many empirical applications. The problem disappears in panels where
Nis fixed andT — co.

If the fixed effects model also contains fixed effects for time periods, there are
two feasible ways to proceed. First, one may simply add fixed effects for time peri
odsto the set of explanatory variables. This is possible whgamall. Care should
be taken concerning the dummy variable trap. Pott = 1, . . ., T), denoting a
dummy referring to théth time period, either the restriction, A , = 0 should be
imposed or one time dummy should be dropped. Second, one can eliminate the
intercept$,, 1;, andA, from the regression equation by double demeaning ofthe
andX variable$ and proceed as described above. It automatically follows that for
short panels, wher€Eis fixed andN - oo, the fixed effects for time periods can be
estimated consistently. Thisis not the case for the spatial fixed effects. Forlong pan
els, wherel — o andN is fixed, the spatial fixed effects can be estimated censis
tently, but the time period fixed effects cannot. Finally, whesndT are of compa
rable size, the spatial and time period fixed effects can be estimated consistently
only whenN andT are sufficiently large.

Another potential problem is that for lardjg the usual spatial econometric pro-
cedures are problematic because the eigenvalues of spatial weight matrices of
dimensions over 400 cannot be estimated with sufficient reliability (Kelejian and
Prucha 1999). One solution is to use the GMM estimator in the case of the fixed
effects spatial error model (Bell and Bockstael 2000). Another solution, based on
maximum likelihood estimation, is not to express the Jacobian term in the individ-
ual eigenvalues but in the coefficients of a characteristic polynomial (Smirnov and
Anselin 2001) or to approximate the Jacobian term in its original form-layV,
using a Monte Carlo approach (Barry and Pace 1999). The latter procedure is incor-
porated in the MATLAB routines SEM and SAR mentioned above.

The fixed effects spatial error or spatial lag model can be tested against the spa
tial error or spatial lag model without fixed effects using theest spelled out in
Baltagi (2001, 14). One can also estimate the fixed effects model without spatial
effects and subsequently test this restricted model against the unrestricted models
given in (7) and (8) using, for instance, a Lagrange multiplier (LM) test.

THE RANDOM EFFECTSVARIANT

An alternative that avoids the loss of degrees of freedom incurred in the fixed
effects model associated with relatively lafgés to consider the random effects
model. Ify; is treated as a random variable, we hﬁ(ﬂiu'j ) :oﬁ if i =jand zero
otherwise. This model is straightforwardly extended to include spatial error
autocorrelation or a spatially lagged dependent variable (see also Baltagi and Li
forthcoming). We discuss both models sequentially.

In full-sample notation, th& sets ofN observations in the spatial error case may
be written as
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o0 X0 ©)
G505 win v=( O01)ue (1 087)e,
%8 B0

wheret;is a (T x 1) vector of unit elements, afgk= |, —dW. The covariance matrix
of vis

Q=E(wW)=0}(1;1; Ol » o%1,0 (BB™). (10)

Following Magnus (1982), this covariance matrix can be rewritten in such a way
that

AN - 1. 40 (la
Q=Ew) =117 0 (Wil o¥(89) )“’ﬁh -y Ho(ERg, e
a1 ), 1 1 , 11b
le?lTlT D(T0§|N+ cz(B’B)l) +?§IT—?I1JT§D(BB), (11b)
Q11T + (@ Ko (B Y™ [ = (o7) " 12 | +( 28)"1<igy 7 19

If we defined? :"%, the log-likelihood function becomes
(12)

LogL = MIog(ZTtoz) 1 log|T &1, + (B B)_1 |+(T —1)% lod1 -3w)

ﬁ %HHD(TG I+ (BB) )@ 20 @lr =l @D(BB)e

wheree=(¢,[MTe) ande =Y, — X B Note thatthe matri% 1 .1 . 01, averages
the observations foreach spat|al unitover time, and the ndtyix + 1T| T) ol

refers to the observations of each spatial unit in deviations from their individual
mean. These matrices do not change under power transformations for real numbers.
The determinanip?l+ (BB)™| can be expressed as a function of the characteristic
roots ofW (see Griffith 1988, Table 3.1):

L N O (13)
To?l, +(BB) | =[] (®?
76’1, +(B'B) | [!5 +

1
oLk
(1-3w)’F
Consequently, the log-likelihood function simplifies to

__NT _1g ~5w Y
LogL = 5 log(21ta?) 2ileog(;l+T62(1 3wY) (14

N
1
+TZIog (1—60),)—202
i=1
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wheree, =Y, - XB,
Y =PY+ BRY-V=BY*( P B I3 WY R, I3 W,Y

X =(l, =W)X, =(P—(1l, -8W) X andP is such thaPP = (T8 + (BB) ™)™
P can be the upper-triangular Cholesky decompositiomefi(,+ (BB)™)orP =
AR, whereRis an (N x N) matrix of which theith column is the characteristic
vectorr; of (T@? + (BB)™)™, which is the same as the characteristic vector of the
spatial weight matrixV (see Griffith 1988, Table 3.1R=(r,, .. .,r\), andAis a
(N x N) diagonal matrix with théth diagonal element being= T6?+ 1/(1 -6w)?,
which is the characteristic root of the matribl, + (B B)™) corresponding to. It
is clear that for larg8l, the numerical determination Bfcan be problematic.

The parameter§ and o? can be solved from their first-order maximizing
conditions:

T

: 246 28 g
B=(x* x*)'l(x"' g )and62= t:1T , wherex* =DI§JDandy* =DF|D' (15)
B¢H ==

Upon substitutingfi andé? in the log-likelihood function, the concentrated log-
likelihood function ofd and6? is obtained:

NT, O 010 2 2 !
LogL:C—7Iog§ qeﬁ—az log +6°(1-dw) )+TZ log(l - 0w), (16)
=1 i=1 =1

whereCis a constant@=-NT/2 x log(2rm) —NT/2 + NT/2 xlog(NT)). One can iter-
ate betweef anda?, on one hand, andland®?, on the other, until convergence. The
estimator of, givend and®?, is a generalized least squares (GLS) estimator and
can be obtained by OLS regression of the transformed vartélole the trans
formed variableX. The variance?, givend andé? can be obtained from the trans
formed residuals. Conversely, the estimat®rsnd a?, given 3 andg? must be
attained by numerical methods because the equations cannot be solved analytically.
This problem can, however, be easily programmed using, for instance, the-optimi
zation toolbox of MATLAB. It should be noted that the estimato®oivill not nec
essarily be positive. One way of ensuring a positive value is to @fis0 x 6and
to maximize the concentrated log-likelihood functiordand6? with respect tad
and®e.

Infull-sample notation, th& sets olN observations in the spatial lag case may be
written as

;o0 wWy.o X,O

BDE:&E D%BDEPW, with v=(1; D1 (150 1)s, 17)
B8 BvVvE BE

wherel;is a (T x 1) vector of unit elements. The covariance matrix isf
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Q=EW)=02(1,1; O Iy o210 1) (18)

Following Magnus (1982), this covariance matrix can be rewritten as

Q=g(w) =(TolI, +02)%|T|} D|N§+02%T_% +'T§D|Nﬁ, (19a)

_ 1 1 , 1 1 . | 19b
Ql:m%””m'@*?@‘?ﬂ HO N .
BN

| Q| =1(Ta + o)l [xjo? [

_ 0o o o NT (19¢)
:(Toﬁ +0.2)N(0_2)N(T n_ - 2% (02) )
E?ou +0
If we defined® =o* /(To; +0?), we obtain
(20)

ot =$§2%eﬂ-}} 0 I+ @T— %ITI’TQDME

_ 1001 . 1 . 0o 1 1 . 0
Q2 :Eﬁ?uﬁ Ol @r = TQD I”Hzggm -@-6) 710 gy
where the last matrix between square brackets transforms the observations of each
spatial unitin deviations from their individual mean premultiplied by @.-Con-
sequently, the log-likelihood function can be written as

1
207,

(21)

Logl_:_M|Og(27-[02).|.fN|oge2 +T%|Ogﬂ.—50@)_ iereT'
2 2 =1 =1

wheree, =Y - XB, Y, =BY -(1-6) Y=( |, -5\ Y~(1-9 YandX; =(I, -
W) X, ~(1-9 X

The parameted® measures the weight attached to the variation between spatial
units. If this weight tends to zero, the random effects spatial lag model reduces to
the fixed effects spatial lag model, constituting a model that only uses the variation
within the spatial units over time in forming the parameter estimatésafip. If
the weight tends to unity, the random effects spatial lag model reduces to the stan
dard spatial lag model as given, for instance, in Anselin and Hudak (1992).

The parameter§ and o can be solved from their first-order maximizing
conditions:

.
X; O Y, O

&€
ﬁ:(x*'x* )1(x* 'y )andfr2 :'Z:\”_, wherex * :B Dgandy" = BDB (22)

B B
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Upon substitutingﬁ andé? in the log-likelihood function, the concentrated log-
likelihood function ofd and6? is obtained as

LogL=cC-NT| DT*’DL\H BZTNI 1-8 23
ogL=C- 0 +—log6” + og(l- )
g 2 g%zlq e% 5 109 Zl g(1-dw) (23)

whereC is a constant equal td\H7/2 x log(2m) —NT/2 + NT/2 x log(NT). One can
iterate betweefd ando ?, on one hand, an8and®?, on the other, until convergence
occurs. The estimator @ givend and®? is a GLS estimator and can be obtained

by OLS regression of the transformed varialflen the transformed variableés

The variances?, givend and? can be obtained from the transformed residuals.
Conversely, the estimatodsand®?, given ando?, must be solved by numerical
methods because they cannot be attained analytically. This problem is also straight
forward to program using, for example, the optimization toolbox of MATLAB. It
should be noted that finding a local maximum cannot be ruled out (Breusch 1987).

The iterative two-stage procedure needed to estimate the parameters of the ran
dom effects spatial error and spatial lag model bears similarities to the nonspatial
random effects model (Breusch 1987). The difference is that the concentrated log-
likelihood function must be maximized for two parametays5f) instead of only
one @). The random effects spatial lag model appears to be simpler than the ran-
dom effects spatial error model because the log-likelihood function of the latter
model contains the additional term —1/2 [6&fl, + (BB)™|. Case (1991) combined
the random effects spatial error and spatial lag model, although it appears that this
additional term is missing from the log-likelihood function. Another complication
in the random effects spatial error model is that the m#&iised to transform the
variablesy andX may not be reliably estimated for laiye

The parameters of the random effects spatial error and spatial lag model can be
consistently estimated whé&h— o, T — o, 0rN,T - o, although a problem of the
random effects model is that it may not be an appropriate specification whenr obser
vations on irregular spatial units are used. The spatial units of observation should be
representative of a larger population, and the number of units should potentially be
able to go to infinity in a regular fashion. When the random effects model is imple
mented for a given set of irregular spatial units, such as all counties of a state or all
regions in a country, the population is sampled exhaustively (Nerlove and Balestra
1996), and the individual spatial units have characteristics that actually set them
apart from a larger population (Anselin 1988, 51). Moreover, the assumption of
zero correlation betwean and the explanatory variables is particularly restrictive.
Hence, the fixed effects modelis compelling, even wéslarge and is small.

To testthe random effects spatial error or spatial lag model against their counter
part without random effects, various well-known tests are available (Baltagi 2001,
chap. 4). One can also estimate the random effects model without spatial effects and
subsequently test this restricted model against the unrestricted model with the help
of an LM test based on (14) or (21). For a test of the random effects spatial error or
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spatial lag model against its fixed effects counterpart, the Hausman specification
test can be used (Baltagi 2001, 65-66). This does cause a practical problem, how
ever. Commercial econometric packages usually do not apply maximum likelihood
to estimate the random effects model without spatial effects. This complicates the
use of the suggested LM test because maximum likelihood estimation of the stan
dard random effects model, developed along the lines given in Breusch (1987),
should be programmed first before the test can be carried out.

THE FIXED COEFFICIENTSSPATIAL ERROR
AND SPATIAL LAG MODEL

The fixed coefficients or SUR model given in (3), with one equation for every
spatial unit over time and with contemporaneous error correlation, does not have to
be changed to cope with the spatial error case since the sgtiof= 1, . . .,N)
already reflects the interactions between the spatial units. In the literature, this is
regarded as an advantage because no a priori assumptions are required about the
nature of interactions over space (White and Hewings 1982). The explanation is
that the specification of a particular spatial weight matrix does not alter the esti-
mates of the response paramefiand the estimate of eachimmediately adapts
itself to the value ofy; by which itis multiplied. As the SUR model is discussed in
almost every econometric textbook and available in almost every commercial econ-
ometrics software package, it hardly requires any further explanation.

The standard method to attain the maximum likelihood estimates of the parame-
ters in an SUR model is by iterating the feasible GLS procedure. In every iteration,
the residuals of the separate regressions are used to update the elements of the
covariance matriw; =¢ € / Tuntil convergence. It should be observed that the
estimates of3; ando; obtained by iterating the feasible GLS procedure are eguiva
lent to those that would be obtained by maximizing the log-likelihood function of
the model, assuming that there are no restrictions on the response pardineters
across or within the equations.

The set ofN equations, with one equation for every spatial unit over time, in a
model with fixed coefficients and spatially lagged dependent variables can be
expressed as

o1 -3, 0-5,0 X, 0 O 00,0 &0 (24
v g G D e % D dpheo
How 3 O 1 H H o oxHsH BH
or, equivalently,
YT =XB+¢, E(€) = 0,E(ee) == O Iy, withZ =0 I (i =1, .. .N). (25)

Each equation can also be written as
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(26)

Note that théds and thd3s are assumed to differ across spatial units. Furthermore,
the assumption of contemporaneous error correlation is dropped, and the assump
tionE(e €,) =0, |, ischangedt&(e &, =0, |, andE(g; ¢, ) =Ofori #j. Although
the latter is not strictly necessary, we have made this change to be able to discrimi
nate between the spatial error specification and the spatial lag specification.

The log-likelihood function and the first-order maximizing conditions of a lin
ear simultaneous equations model are givenin Hausman (1975, 1983). Dueto drop
ping the assumption of contemporaneous error correlation, the full-information
maximum likelihood (FIML) estimator of each singjgis

@i 5 -1a 2
=g r=(22) 22, (@72)
whereZ, =[(Xer %), X], whileg, ="~ 4" ¥Y_ a), (27b)
The matrixXBI' " consists o columns. In the case whexe(j=1,...,N)isan

explanatory variable of (i=1, .. .,N), thejth column ofXBI" * is part of the matrix

of estimated values &. The matrix of estimated values 4f Zi , consists of l— 1

+ K) columns: N— 1) columns with respect to the spatially lagged dependent vari
ables explaining;, as well aK columns with respect to the independent variables
explainingy;. Note that the estimated valuesftan also be seen as instrumental
variables (Hausman 1975, 1983). As the estimated valugsatfthe right-hand
side of (27) depend on, equation 27 defines no closed-form solutionfjolOne
can attempt to solve fat by the Jacobi iteration method. We require a solutjen
f(n). The Jacobi iteration method iterates accordingtd = f(n"). This method

is available in only a limited number of commercial econometric software-pack
ages.

Because a fixed coefficients spatial lag model has different spatial
autoregressive coefficiendsor different spatial units, it follows that the Jacobian
term, T In ||, cannot be expressed in function of the characteristic roots of the spa
tial weight matrix. This difference with the fixed and random effects spatial lag
models complicates the numerical determination of the FIML estimator. As an
alternative, one can use two-stage least squares (2SLS) since this estimator has the
same asymptotic distribution as the FIML estimator. The benefit of the 2SLS
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estimator is that it is considerably easier to compute. The incurred cost is a loss in
asymptotic efficiency because 2SLS does not take account of the restrictions on the
coefficients within the matrice8 andr .

Anselin (1988, 137-50) also derived the log-likelihood function for a fixed-coef
ficient model that includes spatial error autocorrelation or a spatially lagged
dependent variable, but his case considers response coefficients that are constant
across space but vary over time. This model is called spatial SUR.

The efficiency gain in the fixed coefficients spatial error model is greater, the
greater the correlation of the disturbances, the less correlation exists among vari
ables across equations and the more correlation exists among variables within an
equation (Fiebig 2001). Whem =0,i #], joint estimation of the set M equations
is notrequired. Shibaand Tsurumi (1988) provided a complete set of LM and likeli
hood ratio (LR) tests for this null hypothesis. A hypothesis of particular interest is
the homogeneity restriction of equal coefficient vecfar¥his hypothesis can be
investigated using or LR tests (Greene 1997).

A disadvantage of a model with different parameters for different spatial units is
the large number of parameters to be estimatéa:K) different regression coeffi-
cients @) and (1/N(N + 1)) different @) parameters of the (Symmetric) covariance
matrix in the spatial error model, as well &X K + N(N— 1)) different regression
coefficients 3, &) and N different (@) parameters of the (diagonal) covariance
matrix in the spatial lag model. These models are therefore only of use Taisen
large andN is small. Another practical problem is that the valuéoh most com-
mercial econometrics software is restricted. For instance, the upper botsithon
LIMDEP (version 7.0) is 20 for both the SUR model and the simultaneous linear
equation model.

Driscoll and Kraay (1998) have pointed out thallifs too large relative t@, it
will not be possible to estimate all parameters in a manner that yields a nonsingular
estimate. In this case, it is necessary to place prior restrictions on the parameters to
reduce the dimensionality of the problem. However, even if these restricted estima
tors are feasible, the quality of the asymptotic approximation used to justify their
use is suspect, unless the ra\id is close to zero.

One way to reduce the number of parameters of the covariance matkrix the
spatial error model, which at the same time reestablishes the use of the spatial
weight matrix, is obtained by imposing the restrictians= dw; for i # j. These
restrictions may be reasonable if one has prior information about the nature of inter
actions over space. Under these restrictions, the elements of the covariance matrix
must be updated by

g N ) N 28
oii=$’ 5 = zWije?q/TZViY (28)
j=1,# j=1#

in each iteration. Similarly, the number of regression coefficients in the spatial lag
model can be reduced td & K + N). Under these circumstances, we obtain
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o1 _62W21 U _6NWN 0 (29)
Hsw 1 0 -5, W, AN j

—[ e N NZDandZizz\Nlj[XE_ﬂ]J:
o ad a O 0o g 51

H’é 1Wiy -0 Wy O 1 B

where KB ] denotes thgth column of the matriXBI" . Although these restric-
tions simplify the estimation procedure, use of the Jacobi iteration method cannot
be avoided.

In both cases, the number of parameters still dependls ceusing the appropri
ateness of the asymptotic approximation to be suspect. An alternative, more rigor
ous, way to reduce the number of parameters is to make a compromise between esti
mating a uniform equation that is valid for all spatial units and a separate equation
for each single spatial unit. First, homogeneous spatial units are joined within
groups, and then a separate equation is considered for each group. Schubert (1982)
used this approach in building an interregional labor market model for Austria, and
Murphy and Hofler (1984) used it for estimating a regional unemployment rate
equation for the United States. Froot (1989) suggested this approach, in more for-
mal terms, in the accounting and finance literature to deal with cross-sectional
time-series data of firms. In addition, one can choose between spatial dependence
among the observations within groups (as in Froot 1989) or spatial dependence
between groups. The former may be applicable when neighboring spatial units are
grouped, and the latter may be applicable when spatial units with comparable char-
acteristics are put together. LRetienote the number of groupg=1, . . .,P) andN,
the number of spatial units in each group, so @gN ; = N. Then, the number
of parameters for spatial dependence within groups reduc®s to+
Z, %N, (N, +Dinthe spatial error model andfox K+% /N (N, 1) +Pinthe
spatial lag model. In the case of spatial dependence between groups, the number of
parameters reduceskox K +15 P(P —1) in the spatial error model and ®x K +
P(P - 1) +Pin the spatial lag model.

Another possibility of dealing with spatial error autocorrelation is to employ
groups and a nonparametric covariance estimation technique (such as GMM). The
GMM technique avoids estimating the parameters of the covariance matrix
(Driscoll and Kraay 1998). However, these parameter reduction techniques and the
nonparametric covariance estimation technique (Driscoll and Kraay 1998, n. 5)
rule out applications in which the parameters are allowed to vary across all spatial
units, which constitutes the initial purpose of the fixed coefficients model.

r

RANDOM COEFFICIENTSMODEL

The number of parameters to be estimated can also be reduced by treating the
coefficients in the regression equation as outcomes of random experiments
between spatial units. Consequently, the number of response coefficients no longer
grows with the number of spatial units. This approach also improves the efficiency
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of the estimators due to the availability of substantially more degrees of freedom.
Unfortunately, the random effects approach does not reduce the number of param
eters of the covariance matrix in the spatial error model or the number of parame
ters associated with the spatially lagged dependent variables in the spatial lag
model. Therefore, a large valueMfelative toT remains a problem.

The random coefficient model witpatial error autocorrelatiorcan be speei
fied as in equation 4, incorporating the following extension:

E(ge)=0; ;. (30)

Note that we change the notation slightly by usiqdor i = instead ob? as in
equation 4a. Similar to the fixed coefficients model, no prior assumptions are
required about the nature of the interactions over space. In this model, the random
vectorY =(Y,,Y,) can be assumed to be distributed with medh where

X =(X,, X, ) , and covariance matrix

X, VX, + 0, 0,l; O Oply O (31)
' 0
s =0 0,0+ XNVX,+0,l; O Ol 0
O O O 0 0O 0
0 : 0
0 Ol Ondl ¢ U XWXyt 0 w0

=D(I, OV)D+ (20 15),

whereD is a (NT x NK) block-diagonal matrixD = diag[X,, . . .,X\], andz;isa (N
x N) matrix withZ, = {g;}. The ML and the GLS estimator ¢ are known to be
equivalent (Lindstrom and Bates 1988) and equal to

B=(X'TX) T XT Y, (32)

although the major problem is thatcontains unknown parameters= >(%, V)

that must also be estimated. There are two ways to proceed. A feasible GLS estima
tor of 3 can be constructed on the basis of a consistent estimagaridV. To
obtain this estimator, the following steps must be carried out. First, estimate the
model assuming that all response parameters are fixed and different for differing
spatial units. We use the mnemoiii€ to refer to these estimates. This model is
actually the fixed coefficients model without restrictions on the covariance matrix,
as given in equation 3. This step results in estimate3foando /. Second, esti
mateV by the following (see Swamy 1974):

1 1 (33)

75—N§ o(xx)" + N(N- 1)§i (%) X% (% %)™

~ec] 1N .0
FC FC FC
O = i U

P D@ NZB g

1

whereS = % @fo _N%
=1
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The estimator o¥, although unbiased, may not be positive definite. To ensure the
positive definiteness of the estimated matrix, one can also use the consistent estima
tor V= 1/(N— 1) x S(for details, see Swamy 1970). Finally, estimate the common
mean coefficient vectds by GLS according to equation 32. A distinct problem of
the final step is that it requires a matrix inversion of ordéx(T). As an alternative,

the inverse ok can be computed with the following expression:

Th=( 00y (58 1,PD(EE 140 0, VITID(E00),  (34)

which requires the inversion of three matrices, one of okd@r), one of ordeiN

(%,), and one of orden\ x K) for the matrix between square brackets. In the case
whereT is large and/oK < < T, this alternative computation is to be preferred,
although the inversion of a matrix of ordéM & K) may still create computational
difficulties in some of the commercial econometric software packages.

Despite the mathematical equivalence, the feasible GLS estimgialags not
coincide with the ML estimator @. This is the case because the feasible GLS esti
mator off3 is based on a consistent but not on the ML estimafe aihdV. The sta-
tistical literature shows that ML estimation Bf %,, andV, although possible, is
laborious. There are three reasons for this. RisandV cannot be solved algebra-
ically from the first-order maximizing conditions of the log-likelihood function.
Consequentlyz; andV must be solved by numerical methods. Second, a common
estimation problem is associated with the restrictions on the parameters of the
covariance matrix. A variance estimate should be nonnegative, and a covariance
matrix estimate should be nonnegative definite. Moreover, it must be feasible that
an estimate takes on values atthe boundary of the parameter space. Thus, a variance
estimate may be zero, and a covariance matrix estimate may be a nonnegative defi-
nite matrix of any rank. In fact, such boundary cases provide useful exploratory
information during the model-building process. It is desirable that numerical algo
rithms for ML estimators can successfully produce the defined estimates for all
possible samples, including those where the maximum is attained at the boundary
of the parameter space. However, this parameter space problem often causes diffi
culties with existing ML algorithms (Shin and Amemiya 1997, 190). Third,
although some studies assert to have developed efficient and effective algorithms
for the likelihood-based estimation of the parameters, they generally assume that
E(e;g) =0?l; andE(e e, ) =0fori,j=1,...Nandj #iinstead of(e &, ) =07 |,
(Jenrich and Schluchter 1986; Lindstrom and Bates 1988, 1014, left columry, Long
ford 1993; Goldstein 1995; Shin and Amemiya 1997, 189). This naturally simpli
fies the parameter space problem, and it is therefore not clear whether these algo
rithms work for the more general case.

A full random parameter model witbpatial lagsof the dependent variables
does in fact not exist. The main reason for this is that the assumption of a random
elementin the coefficients of lagged dependent variables raises intractable difficul
ties at the level of identification and estimation (Kelejian 1974; Balestra and
Negassi 1992; Hsaio 1996). Instead, a mixed model can be used that contains fixed
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coefficients for the spatial dependent variables and random coefficients for the
exogenous variables. This model reads as

Ylt :61|Y11 +D]IBF6||—1|Y—1 +§ +1 |Y+t1 + DI[BFQI I\X +£3x|l +£|t' (35)

A problemthat causes this model not to be used very often is the number of cbserva
tions needed for its estimation. The minimum number of observations on each spa
tial unit amounts tol{l + K), as the number of regressorshis{ 1 +K). Most panels

do not meet this requirement, evemifs small. Provided that information is avail

able about the nature of interactions over space, we therefore impose the restric
tionsg; = dw;, fori #j, to attain

Y53 WY B X 45 =8N W X =02 e, 0

In this case, the minimum number of observations needed on each spatial unit
reduces toK + 1), which is independent of.

Stacking the observations by time for each spatial unit, the full model can be
expressed as

o ¥(w 0 O 0 03,0 X,0 X 0 0O 00w0 [ [037a)
OO0 0% O o O og, O O
Foog0 WW O 0 g Xm0 X O ODE(Z&%ZD_
oo O O O 0O 0O Ogbg pd oo 0O 0 OopbOg oo
0

HH 5o o ovwisH BH H o oxHhH BH

The covariance matrix of the composite disturbance term Hiag|.,X\] xv+¢€is
block diagonal, with théh diagonal block given by

®, =X VX + 02, . (37b)

Similar to the spatial error case, there are two ways to proceed. A feasible GLS esti
mator ofd andf3 may be constructed, extended to instrumental variables, and based
on a consistent estimate of , M2 andV. Alternatively,3, B, o7, (o, , andV

may be estimated by MEWe suggest the following feasible GLS analog instru
mental variables estimator taken from Bowden and Turkington (1984, cifap. 3).

Let X denote theT x K) matrix of the exogenous variables in ftteequationZ;
isthe (T x (1 +K)) matrix of the spatially lagged dependent variable and the exoge
nous variables in thigh equation, an&is the (T x K, ,) matrix of all the explana
tory variables in the full model, whelt€, , equals N(1 + K)). Consequently, the
inversion of the matrix X of order K,,, X K,,) may constitute a problem whéh
and/orK are large.

First, estimate the model assuming that all coefficients are fixed. We again use
the mnemoni€&Cto refer to these estimates. The model is in effect the fixed coeffi
cients model extended with spatially lagged dependent variables, as described in
equations 24 to 26, but now we stick to the use of instrumental variable estimators.
This results in the following estimates fgf ando > F:
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(38a)

Fc ! N
o= 8 (o) a2 KY x

sore - (Y =20) (Y- 207) (38b)
i T— K .

Second, estimat¥ by the following (see Balestra and Negassi 1992; Hsiao and
Tahmiscioglu 1997):

V= (38c)

- 1 NAF D@FC 1 FCIj
— s~ —-— 0.
z@s NZB' o0 N& ' O

LetZ” denote the predictive values from the multiequation regressigrgiv;(w)
%] on X, with the observations for each spatial unit weighted By

P = X(X X)X z=[¥( W X. (39)
The inverse ofp, can be computed by the following expression:
-1
a1 1 L. o1, .01 (40)
@ =??|T _??Xi@/ ' +0*i2>§ XE EZX
as a result of which the formula féf° changes to
0y 0 1,000, 1,01 0 (41)
A XXX XAV X
O it O
XBEXZ S XX S XX X 20
i Gi U 0 0 O =|
Finally, estimate), andf3 by
50 Xery) o o YOy XIX(w) &7 Y()E02)
OO D 0 0 O 0 m u| 0O
3.0 0 0 DY (Wer (9 YCyer X(w o X (W5
D -1 -1 -1 mn| ‘-1 O
BH Dxovv(W 0 Xevx(y 5 e Dy xorv(w 5

where®;* can be substituted for the expression given in equation 40.

Although the random coefficients spatial error and spatial lag models have only
K response coefficienfd and thus ([ — 1) x K) less parameters than their fixed
counterparts, the problem thdmay be too large relative foremains. Thisimplies
that techniques to reduce the numbeoafr d parameters, as already presented for
the fixed coefficients model, also apply to the random coefficients model. To test
the homogeneity restriction of equal coefficient vecfira chi-square test may be
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used (see Greene 1993). The estimation of the parameters of a random coefficients
model is obviously not a simple calculation, but it is feasible. In the manual of
LIMDEP (version 6), programming instructions are given to estimate the Swamy
random coefficients model that can be straightforwardly extended to spatial error
autocorrelation, as well as to a mixed fixed and random coefficients model (Elhorst
1996). A practical problem is that the fixed coefficients, which must be estimated
first, cannot be determined whé&iis smaller tharK. In this case, one hastoresortto
studies asserting to have developed efficient and effective algorithms for the likeli
hood-based estimation of the parameters (see above).

Similar to the random effects model not necessarily being an appropriate speci
fication when observations on irregular spatial units are used, the random coeffi
cients model may not be either. In that case, the fixed coefficients model is compel
ling, even whem is large.

CONCLUSIONS

This article has given a systematic overview of panel data models extended to
include spatial error autocorrelation or a spatially lagged dependent variable. Atthe
outset, we stated that spatial panel data models are not very well documented in the
literature, which may very well be caused by each model having its own specific
problems. These problems can be summarized as follows for the four panel data
models considered in this article.

Estimation of the spatidixed effects modalan be carried out with standard
techniques developed by Anselin (1988, 181-82) and Anselin and Hudak (1992),
but the regression equation must first be demeaned. This model is relatively simple.
One methodological shortcoming is the incidental parameters problem. For short
panels, wher@ is fixed andN - oo, the coefficients of the spatial fixed effects ean
not be estimated consistently. This problem does not necessarily mattefaben
the coefficients of interest while the spatial fixed effects are not. Moreover, the
problem disappears in panels whisrs fixed andT - co.

Estimation of the spatiahndom effects modebkn be carried out by maximum
likelihood, although it requires a specific approach. The iterative two-stage-proce
dure needed to maximize the log-likelihood function of the random effects spatial
lag model appears to be simpler than the procedure for the random effects spatial
error model. The parameters of the random effects spatial error and spatial lag
model can be consistently estimated whien o, T w0 orN,T - oo, although the
problem remains that the random effects model may not be an appropriate-specifi
cation when observations on irregularly shaped spatial units are used. In addition,
the assumption of zero correlation between the random effects and the explanatory
variables is particularly restrictive. Hence, the fixed effects model is compelling,
even wherN is large andr is small.

A fixed coefficientspatial error model with varying coefficients for different
spatial units is equivalent to a seemingly unrelated regressions model. Although the
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estimation of this model is standard, the number of equations allowed in cemmer
cial econometric software packages is often limited. A fixed coefficients spatial lag
model with different coefficients for different spatial units is almost equivalent to a
simultaneous linear equation model. Estimation of this model by maximumtlikeli
hood is complicated by the fact that the Jacobian term cannot be expressed in func
tion of the characteristic roots of the spatial weight matrix. As a result, the Jacobi
iteration method has to be used, but this method is available only in a limited num
ber of commercial software packages. As an alternative, one can resort to the use of
2SLS, but this method does not take into account the restrictions on the coefficients
within the coefficient matrices. A formidable problem of fixed coefficients models

is the large number of parameters causing the estimators to be infeasible.urther
more, even if the estimators are made feasible by introducing restrictions on the
parameters, the quality of the asymptotic approximation used to justify the
approach remains rather suspect, unless the Kéfitends to zero. The latter can
eventually be achieved by joining spatial units within groups or by considering sep
arate equations for each group.

Maximum likelihood estimation of theandom coefficientsnodel extended to
spatial error autocorrelation or to spatially lagged dependent variables is possible,
although it is laborious. It is simpler to use feasible GLS to estimate the random
coefficients model with spatial error autocorrelation and to use feasible GLS in
combination with instrumental variables to estimate the random coefficients model
comprising spatially lagged dependent variables. These estimators may still be dif-
ficult to compute because they require matrix inversions of large orders, depending
on the number of spatial units and the number of explanatory variables. In the ran-
dom coefficients model containing spatially lagged dependent variables, a random
element in the coefficients of the spatially lagged dependent variables should be
avoided because it creates intractabilities with respect to both identification and
estimation. Although the number of parameters in the random coefficients spatial
error and spatial lag models are smaller than in their fixed coefficients counterparts,
Nmay still be too large relative fin typical spatial panel data sets. This may cause
the estimators to be infeasible or asymptotically suspect. Finally, the random coef
ficients model may also not be an appropriate specification when observations on
irregular spatial units are used.

Overall, the spatial panel data estimators discussed in this article justify reliance
on asymptotics whem — o andN s fixed. Reliance on the asymptoticsif- co
andT is fixed and fraught with difficulties for most of the spatial panel data models.
The spatial random effects model is a favorable exception in this respect.

NOTES

1. These authors are advocates of geographically weighted regression.
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2. The dependent and explanatory variables for every spatial unit are taken in deviations of their
average over time. So, for instance, the dependent variable is defined as

_ _ 17
Y, - Y, whereY == ¥ Y,.
it T tZl it

3. The dependent variable reads as

- o 17T o 1N o 1 N T
Ye=Y - Y+ Ywhere Y=2%Y, Y ==5% Y, andY = = ¥
T2 TN, NT & 2

and similar transformations apply to tievariables.

4. Examples are TSP and PC-Give (see Greene 1997).

5. We found one application of this model in the literature (Sampson, Morenoff, and Earles 1999),
but this study does not describe the estimation procedure in detail.

6. Bowden and Turkington (1984) start from the regression equtOX3 + |1, whereE (uu)=Q,
and some of th& variables are endogenous. l&tlenote the set of instrumental variables. Then, the
generalized least squares analog instrumental variables estim@er(iX” Q' X?)™ X" QY

whereX? =2(ZQ''2)" Q7 X
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