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This article provides a survey of the specification and estimation of spatial panel data models.
These models include spatial error autocorrelation, or the specification is extended with a spa-
tially lagged dependent variable. In particular, the author focuses on the specification and esti-
mation of four panel data models commonly used in applied research: the fixed effects model, the
random effects model, the fixed coefficients model, and the random coefficients model. The sur-
vey discusses the asymptotic properties of the estimators and provides guidance with respect to
the estimation procedures, which should be useful for practitioners.
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In recent years, there has been a growing interest in the specification and estimation
of econometric relationships based on panel data. This interest can be explained by
the fact that panel data offer researchers extended modeling possibilities as com-
pared to purely cross-sectional data or time-series data. Panel data are generally
more informative, and they contain more variation and less collinearity among the
variables. The use of panel data results in a greater availability of degrees of free-
dom and hence increases efficiency in the estimation. Panel data also allow for the
specification of more complicated behavioral hypotheses, including effects that
cannot be addressed using pure cross-sectional or time-series data (Hsiao 1986;
Baltagi 2001).

Two problems may arise when panel data incorporate a locational component.
The first problem is that spatial dependence may exist between the observations at
each point in time. The fact that distance affects economic behavior is the main rea-
son for an observation associated with a specific location to be dependent on obser-
vations at other locations. Regional science theory points out that economic agents
may change their decisions depending on (1) market conditions in the region of
location as compared to other regions and (2) the distance between regions. When
specifying the spatial dependence between observations, the model may incorpo-
rate a spatial autoregressive process in the error term, or the model may contain a
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spatially autoregressive dependent variable. The first model is known as thespatial
error model and the second as thespatial lagmodel (for the introduction of these
terms, see Anselin and Hudak 1992).

The second problem potentially arising when panel data have a locational com-
ponent is that parameters are not homogeneous over space but instead vary over dif-
ferent geographical locations. Coefficients can of course also vary over time, but
this complication is not discussed in this article. Parameter heterogeneity across
spatial units has become a topical issue in the literature. Pesaran and Smith (1995)
and especially Fotheringham, Charlton, and Brunsdon (1997)1 advocate that we
abandon the fundamental assumption of homogeneous parameters underlying
pooled models and refrain from relying on estimated average responses from indi-
vidual regressions. Similar to cross-sectional regressions, the main problem of tra-
ditional panel data techniques is that they will only capture “average” or representa-
tive behavior. A panel data regression with constant slopes results in average effects
across spatial units, even when allowing for a variable intercept, and it does not
show the differences in behavior among individual spatial units (Quah 1996a,
1996b). A second reason for an estimated relationship to exhibit spatial variation is
that the model may constitute a gross misspecification of reality because one or
more relevant variables have erroneously been omitted from the model or are cap-
tured through an incorrect functional form.

It should be noted that the upsurge in the use of heterogeneous panel data estima-
tors has also been criticized. First, it has been argued that heterogeneous panel data
estimators produce less plausible estimates as compared to their pooled homoge-
neous counterparts (Baltagi and Griffin 1997; Baltagi, Griffin, and Xiong 2000).
Second, the estimation of individual time-series models—in effect, one for each
spatial unit—ignores the comovements across spatial units (Quah 1996b). Finally,
the use of heterogeneous panel data models is only feasible when the number of
observations on each spatial unit is large enough because these models effectively
consist of separate regressions for each spatial unit. Most panel data sets do not
meet this requirement.

This article surveys panel data models in which spatial dependence and spatial
heterogeneity are incorporated. We deal with four panel data models commonly
used in applied research (fixed effects, random effects, fixed coefficients, and ran-
dom coefficients models) and extend the traditional models to include spatial error
autocorrelation or a spatially lagged dependent variable. As a result, this article
examines eight different models. Spatial heterogeneity is expressed in the coeffi-
cients of the explanatory variables. In the fixed and random effects models, the
intercept is allowed to vary over spatial units, and in the fixed and random coeffi-
cients models, both the intercept and the slope coefficients are allowed to vary over
spatial units.

We focus specifically on details of the estimation method and discuss complica-
tions that may arise from limitations of the available software as well. The treat-
ment of these topics is motivated by the current lack of complete and detailed
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coverage of spatial panel data models in the literature. Anselin (1988) discussed
some of these models in his seminal textbook on spatial econometrics. He covered
the random effects model with spatially correlated errors at length (pp. 150-56,
164-66; see also Baltagi 2001, 195-97), but the fixed coefficients spatial lag model
(p. 156) and the random coefficients spatial error model (pp. 129-31) are discussed
only briefly. Anselin also closely examined two models that are similar to the fixed
coefficients spatial error and spatial lag models (pp. 137-50, 157-63). However,
whereas Anselin allows the coefficients to vary across time, we allow them to vary
over space, following earlier work by Pesaran and Smith (1995) and Fotheringham,
Charlton, and Brunsdon (1997).

The spatial econometric literature has shown that ordinary least squares (OLS)
estimation is inappropriate for models incorporating spatial effects. In the case of
spatial error autocorrelation, the OLS estimator of the response parameters remains
unbiased, but it loses the efficiency property. In the case when the specification con-
tains a spatially lagged dependent variable, the OLS estimator of the response
parameters not only loses the property of being unbiased but also is inconsistent.
The latter is, however, a minimal requirement for a useful estimator, and it is there-
fore commonly suggested to overcome these problems by using maximum likeli-
hood techniques (Anselin 1988; Anselin and Hudak 1992). We adopt this principle
of using maximum likelihood techniques, unless this approach is too complicated
or not applicable. As the derivation of maximum likelihood functions is one of the
main purposes of this article, we assume that the density function of the errors is
always fully defined. Lee (2001a, 2001b) has recently investigated asymptotic
properties of (quasi) maximum likelihood estimators for spatial cross-section mod-
els, assuming that the number of spatial cross sections approaches infinity. We will
return to this issue below.

Recently, two studies proposed nonparametric covariance estimation tech-
niques (specifically, general methods of moments [GMM]), yielding standard error
estimates of the response parameters that are robust to spatial dependence among
the error terms in spatial cross-section models (Conley 1999; Kelejian and Prucha
1999). Driscoll and Kraay (1998) and Bell and Bockstael (2000) applied GMM
estimators in the context of spatial panel data sets. Although our focus is on para-
metric approaches to modeling, we also discuss the conditions under which GMM
is useful as an alternative to the scalar indexed dependence among the error terms.

Spatial panel data models with spatial error autocorrelation have received more
attention in the regional science literature than panel data models, including a spa-
tially lagged dependent variable. There are three reasons for considering both types
of models. First, the spatial extensions to the traditional panel data models are quite
different from each other. The difference is aggravated when the intercepts and/or
the slopes are assumed to vary with location and when the coefficients are treated as
randomly distributed over space. Second, neither of the spatial extensions to the tra-
ditional panel data models is straightforward. Third, the extension of traditional
panel data models with a spatially lagged dependent variable is likely to be relevant
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for further work on spatial unit roots, spatial cointegration, and the problem that
regressing nonstationary data containing spatial unit roots can produce spurious
regressions (Fingleton 1999; see also Mur and Trívez 2003 [this issue]).

The organization of this article is as follows. First, we introduce the four most
commonly used panel data models, assuming relationships that are linear in the
coefficients (eventually after a suitable transformation) and in which the regressand
is a continuous variable. Subsequently, we extend these traditional panel data mod-
els to include spatial error autocorrelation or a spatially lagged dependent variable,
and we explain how these models can be estimated. We do not cover dynamic
effects and hence rule out the situation in which a serially lagged dependent vari-
able appears on the right-hand side of the regression equation. This extension intro-
duces additional econometric complications, and these are beyond the scope of the
current article. The presentation of each spatial panel data model concludes with a
discussion of the feasibility of the model, the asymptotic justification, and potential
extensions and/or alternative estimation methods.

A TAXONOMY OF PANEL DATA MODELS

The analysis starts from a simple linear model between a dependent variableY
and a set ofK independent variablesX:

Y X X X Xit it it K Kit it it it= + + ⋅⋅⋅ + + = +′β β β ε β ε1 1 2 2 , (1)

wherei (= 1, . . .,N) refers to a spatial unit,t (= 1, . . .,T) refers to a given time period,
β1, . . .,βK are fixed but unknown parameters, andεit are independently and identi-
cally distributed (i.i.d.) error terms for alli andt, with zero mean and varianceσ2. To
avoid the breakdown of the asymptotic properties of the maximum likelihood esti-
mator (MLE), we assume that the regression model contains at least one spatially
varying regressor that is not irrelevant, implying that its coefficientβ is unequal to
zero (Lee 2001b).

The main objection to this model is that it does not account for spatial heteroge-
neity. Spatial units are likely to differ in their background variables, which are usu-
ally space-specific, time-invariant variables that do affect the dependent variable
but are difficult to measure or hard to obtain. Failing to account for these variables,
however, increases the risk of obtaining biased estimation results. One remedy is to
introduce a variable interceptµi representing the effect of the omitted variables that
are peculiar to each spatial unit considered:

Y Xit it i it= + +′β µ ε , (2a)

or in stacked form:

Y Xt t t= + +β µ ε , (2b)

whereYt = (Y1t, . . .,YNt)
′, X X Xt t Nt= ⋅⋅⋅′ ′ ′( , , )1 , εt = (ε1t, . . .,εNt)

′, andµ = (µ1, . . .,µN)′.
Conditional on the specification of the variable intercept, the regression equation
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can be estimated as a fixed or random effects model. In the fixed effects model, a
dummy variable is introduced for each spatial unit as a measure of the variable
intercept. In the random effects model, the variable intercept is treated as a random
variable that is i.i.d. distributed with zero mean and varianceσ µ

2 . Furthermore, it is
assumed that the random variablesµi andεit are independent of each other.

Although the variable intercept model accommodates spatial heterogeneity to a
certain extent, the problem remains as to whether the data in such a model are
pooled correctly. When spatial heterogeneity is not completely captured by the
variable intercept, a natural generalization is to let the slope parameters of the
regressors vary as well. The slope parameters can also be considered fixed or ran-
domly distributed between spatial units. If the parameters are fixed but different
across spatial units, each spatial unit is treated separately. For instance, forYi = Xiβi

+ εi being theith equation in a set ofN equations, with the observations stacked by
spatial unit over time, the only way of relating theN separate regressions is to
assume correlation between the error terms in different equations, a phenomenon
that is known ascontemporaneous error correlation. Such a specification is reason-
able when the error terms for different spatial units, at a given point in time, are
likely to reflect some common immeasurable or omitted factor. In full-sample nota-
tion, the set ofN equations can be written as
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whereE(εi) = 0,E Ii j ij T( )ε ε σ′ = 2 , andi, j = (1, . . .,N). This model is also known as
the seemingly unrelated regressions (SUR) model.

If the parameters are treated as outcomes of random experiments between spa-
tial units, the data can be pooled into one model to estimate the unknown parame-
ters. This is known as the Swamy random coefficients model (Swamy 1970):

Y X E E Ii i i i i i i T= + = =′β ε ε ε ε σ, ( ) , ( )0 2 , (4a)

β βi i i i iv E v E v v V= + = =′, ( ) , ( )0 , (4b)

where theβi applying to a particular spatial unit are the outcome of a random pro-
cess with a common mean coefficient vectorβ and covariance matrixV, which is a
symmetric (K ×K) matrix. In addition, it is assumed thatE i j( )ε ε′ = 0andE v vi j( )′ = 0
for j ≠ i and that the random variablesεit andvi are independent of each other.

Before extending these four traditional panel data models with spatial error
autocorrelation or a spatially lagged dependent variable, we introduce the follow-
ing notation. LetW denote a (N × N) spatial weight matrix describing the spatial
arrangement of the spatial units andwij the (i,j)th element ofW, wherei and j =
(1, . . .,N). It is assumed thatW is a matrix of known constants, that all diagonal



elements of the weights matrix are zero, and that the characteristic roots ofW,
denotedωi, are known. The first assumption excludes the possibility that the spatial
weight matrix is parametric. The second assumption implies that no spatial unit can
be viewed as its own neighbor, and the third assumption presupposes that the char-
acteristic roots ofWcan be computed accurately using the computing technology
typically available to empirical researchers. The latter is also needed to ensure that
the log-likelihood function of the models we distinguish can be computed.

Lee (2001a, 2001b) pointed out that the familiar asymptotic properties of the
maximum likelihood estimator, such asN consistency, depend on the characteris-
tic features of the spatial weight matrix. According to Kelejian and Prucha (1999),
the row and column sums ofWmust be bounded uniformly in absolute value asN→
∞. When the spatial weight matrix is a binary contiguity matrix, this condition is
satisfied. Lee (2001a) showed that this condition can be made less strict: the row
and column sums should not diverge to infinity at a rate equal to or faster than the
rate of the sample sizeN in the cross-section domain. When the spatial weight
matrix is an inverse distance matrix, this condition is satisfied. This can be seen as
follows. Consider an infinite number of spatial units that are linearly arranged (to
simulate one particular row of the spatial weight matrix). The distance of each spa-
tial unit to its first left- and right-hand neighbor is 1; to its second left- and right-
hand neighbor, the distance is 2; and so on. When the off-diagonal elements ofW
are of the form 1/dij, wheredij is the distance between spatial unitsi andj, the row
sum ofWequalsΣ i

N
ijd=1 2 / , representing a series that is not finite. By contrast, the

ratio1 21/ /N di
N

ijΣ = → 0 asNgoes to infinity. Finally, it is possible that these con-
ditions are not sufficient unless panel data are available (Kelejian and Prucha 2002).
Such a complicated situation occurs when all the nondiagonals of the spatial weight
matrix are equal,wij = 1/(N – 1) for i ≠ j (Lee 2001a).

THE FIXED EFFECTSSPATIAL ERROR

AND SPATIAL LAG MODEL

The traditional fixed effects model extended to include spatial error
autocorrelation can be specified as

Y X W E E It t t t t t t t t N= + + φ φ = φ + = =′β µ δ ε ε ε ε σ, , ( ) , ( )0 2 , (5)

and the traditional model extended with a spatially lagged dependent variable reads
as

Y WY X E E It t t t t t t N= + + + = =′δ β µ ε ε ε ε σ, ( ) , ( )0 2 . (6)

In the spatial error specification, the properties of the error structure have been
changed, whereas in the spatial lag specification, the number of explanatory vari-
ables has increased by one. In the spatial error specification,δ is usually called the
spatial autocorrelation coefficient, and in the spatial lag specification, it is referred
to as the spatial autoregressive coefficient.
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The standard estimation method for the fixed effects model is to eliminate the
interceptsβ1 andµi from the regression equation by demeaning theY andX vari-
ables,2 then estimate the resulting demeaned equation by OLS and subsequently
recover the interceptsβ1 andµi (Baltagi 2001, 12-15). It should be noted that only
(β1 + µi) are estimable and notβ1 andµi separately, unless a restriction such as
Σ i iµ = 0 is imposed.

Instead of estimating the demeaned equation by OLS, it can also be estimated by
maximum likelihood (ML). The only difference is that ML estimators do not make
corrections for degrees of freedom. The log-likelihood function corresponding to
the demeaned equation incorporating spatial error autocorrelation is
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and with a spatially lagged dependent variable,
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whereY= (Y1., . . .,YN.)
′ andX X XN= ⋅⋅⋅′ ′ ′( , , ). .1 . An iterative two-stage procedure can

be used to maximize the log-likelihood function of the first model, and a simple
two-stage procedure is available for the second model (Anselin 1988, 181-82).
Anselin and Hudak (1992) give instructions on how to implement these procedures
in commercial econometric software. One may also use Spacestat or the MATLAB
routines of spatial error model (SEM) and spatial lag model (SAR), which are
freely downloadable from LeSage’s Web site at www.spatial-econometrics.com.
Although these routines are written for spatial cross sections, they can easily be
generalized to spatial panel models.

A distinct problem of the fixed effects model is related to the so-called incidental
parameter problem. Only the slope coefficients can be estimated consistently, in the
case of short panels, whereT is fixed andN → ∞. The coefficients of the spatial
fixed effects cannot be estimated consistently because the number of observations
available for the estimation ofµi is limited toTobservations (Anselin 2001). Fortu-
nately, the inconsistency ofµi is not transmitted to the estimator of the slope coeffi-
cients in the demeaned equation since this estimator is not a function of the esti-
matedµi. This implies that the large sample properties of the fixed effects model
whenN → ∞ do apply for the demeaned equation (Lee 2001a, 2001b). It should be
stressed that the incidental parameters problem is independent of the extension to
spatial error autocorrelation or to the inclusion of a spatially lagged dependent vari-
able since it also occurs without these two extensions. The incidental parameters
problem does not matter whenβ are the coefficients of interest andµi are not, which
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is the case in many empirical applications. The problem disappears in panels where
N is fixed andT → ∞.

If the fixed effects model also contains fixed effects for time periods, there are
two feasible ways to proceed. First, one may simply add fixed effects for time peri-
ods to the set of explanatory variables. This is possible whenT is small. Care should
be taken concerning the dummy variable trap. Forλt (t = 1, . . .,T), denoting a
dummy referring to thetth time period, either the restrictionΣ t tλ = 0 should be
imposed or one time dummy should be dropped. Second, one can eliminate the
interceptsβ1, µi, andλt from the regression equation by double demeaning of theY
andX variables3 and proceed as described above. It automatically follows that for
short panels, whereT is fixed andN → ∞, the fixed effects for time periods can be
estimated consistently. This is not the case for the spatial fixed effects. For long pan-
els, whereT → ∞ andN is fixed, the spatial fixed effects can be estimated consis-
tently, but the time period fixed effects cannot. Finally, whenNandTare of compa-
rable size, the spatial and time period fixed effects can be estimated consistently
only whenN andT are sufficiently large.

Another potential problem is that for largeN, the usual spatial econometric pro-
cedures are problematic because the eigenvalues of spatial weight matrices of
dimensions over 400 cannot be estimated with sufficient reliability (Kelejian and
Prucha 1999). One solution is to use the GMM estimator in the case of the fixed
effects spatial error model (Bell and Bockstael 2000). Another solution, based on
maximum likelihood estimation, is not to express the Jacobian term in the individ-
ual eigenvalues but in the coefficients of a characteristic polynomial (Smirnov and
Anselin 2001) or to approximate the Jacobian term in its original form, ln|I – δW|,
using a Monte Carlo approach (Barry and Pace 1999). The latter procedure is incor-
porated in the MATLAB routines SEM and SAR mentioned above.

The fixed effects spatial error or spatial lag model can be tested against the spa-
tial error or spatial lag model without fixed effects using theF test spelled out in
Baltagi (2001, 14). One can also estimate the fixed effects model without spatial
effects and subsequently test this restricted model against the unrestricted models
given in (7) and (8) using, for instance, a Lagrange multiplier (LM) test.

THE RANDOM EFFECTSVARIANT

An alternative that avoids the loss of degrees of freedom incurred in the fixed
effects model associated with relatively largeN is to consider the random effects
model. Ifµi is treated as a random variable, we haveE i j( )µ µ σ µ

′ = 2 if i = j and zero
otherwise. This model is straightforwardly extended to include spatial error
autocorrelation or a spatially lagged dependent variable (see also Baltagi and Li
forthcoming). We discuss both models sequentially.

In full-sample notation, theTsets ofNobservations in the spatial error case may
be written as
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whereι T is a (T × 1) vector of unit elements, andB= IN – δW. The covariance matrix
of v is
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Following Magnus (1982), this covariance matrix can be rewritten in such a way
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where~ (~ , ,~ )e e eT= ⋅⋅⋅ ′
1 and~e Y Xt t t= − β. Note that the matrix1

T T T NIι ι ′ ⊗ averages
the observations for each spatial unit over time, and the matrix( )I IT T T T N− ⊗′1 ι ι
refers to the observations of each spatial unit in deviations from their individual
mean. These matrices do not change under power transformations for real numbers.
The determinant |Tθ2IN + (B′B)–1| can be expressed as a function of the characteristic
roots ofW (see Griffith 1988, Table 3.1):
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Consequently, the log-likelihood function simplifies to
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wheree Y Xt t t= −* * β,

Y PY B Y Y BY P B Y I W Y P I W Yt t t N t N
* ( ) ( ) ( ) ( ( ))= + − = + − = − − − −δ δ ,

X I W X P I W Xt N t N
* ( ) ( ( ))= − − − −δ δ , andP is such thatP′P = (Tθ2IN + (B′B)–1)–1.

P can be the upper-triangular Cholesky decomposition of (Tθ2IN + (B′B)–1)–1 or P =
Λ–1/2R, whereR is an (N × N) matrix of which theith column is the characteristic
vectorri of (Tθ2IN + (B′B)–1)–1, which is the same as the characteristic vector of the
spatial weight matrixW (see Griffith 1988, Table 3.1),R= (r1, . . .,rN), andΛ is a
(N × N) diagonal matrix with theith diagonal element beingci = Tθ2 + 1/(1 –δωi)

2,
which is the characteristic root of the matrix (Tθ2IN + (B′B)–1) corresponding tori. It
is clear that for largeN, the numerical determination ofP can be problematic.

The parametersβ and σ2 can be solved from their first-order maximizing
conditions:
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Upon substituting�β and �σ 2 in the log-likelihood function, the concentrated log-
likelihood function ofδ andθ2 is obtained:

LogL C
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e e
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t t
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N
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i

N
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1

1+ −
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∑ , (16)

whereC is a constant (C= –NT/2× log(2π) –NT/2 +NT/2× log(NT)). One can iter-
ate betweenβandσ2, on one hand, andδandθ2, on the other, until convergence. The
estimator ofβ, givenδ andθ2, is a generalized least squares (GLS) estimator and
can be obtained by OLS regression of the transformed variableY on the trans-
formed variablesX. The varianceσ2, givenδandθ2, can be obtained from the trans-
formed residuals. Conversely, the estimatorsθ andσ2, given β andσ2, must be
attained by numerical methods because the equations cannot be solved analytically.
This problem can, however, be easily programmed using, for instance, the optimi-
zation toolbox of MATLAB. It should be noted that the estimator ofθ2 will not nec-
essarily be positive. One way of ensuring a positive value is to writeθ2 asθ × θand
to maximize the concentrated log-likelihood function ofδ andθ2 with respect toδ
andθ.

In full-sample notation, theTsets ofNobservations in the spatial lag case may be
written as
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δ ( ) ( )β ι µ ε+ = ⊗ + ⊗v v I IN N, with T I T , (17)

whereι T is a (T × 1) vector of unit elements. The covariance matrix ofv is
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Ω = ′ = ′ ⊗ + ⊗E vv I I IT T N T N( ) ( ) ( )σ ι ι σµ
2 2 . (18)

Following Magnus (1982), this covariance matrix can be rewritten as
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If we defineθ σ σ σµ
2 2 2 2= +/ ( )T , we obtain
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(20)

where the last matrix between square brackets transforms the observations of each
spatial unit in deviations from their individual mean premultiplied by (1 –θ). Con-
sequently, the log-likelihood function can be written as

LogL
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2
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2
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e
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1

,
(21)

where e Y Xt t t= −* * β , Y BY Y I W Y Yt t N t
* ( ) ( ) ( )= − − = − − −1 1θ δ θ , andX It N

* (= −
δ θW X Xt) ( )− −1 .

The parameterθ2 measures the weight attached to the variation between spatial
units. If this weight tends to zero, the random effects spatial lag model reduces to
the fixed effects spatial lag model, constituting a model that only uses the variation
within the spatial units over time in forming the parameter estimates ofδ andβ. If
the weight tends to unity, the random effects spatial lag model reduces to the stan-
dard spatial lag model as given, for instance, in Anselin and Hudak (1992).

The parametersβ and σ2 can be solved from their first-order maximizing
conditions:
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Upon substituting�β and �σ 2 in the log-likelihood function, the concentrated log-
likelihood function ofδ andθ2 is obtained as

LogL C
NT

e e
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Tt t
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T
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




 + +

= =
∑ ∑2 21

2

1

log log log* θ ( )1− δωi , (23)

whereC is a constant equal to –NT/2 × log(2π) – NT/2 + NT/2 × log(NT). One can
iterate betweenβ andσ 2 , on one hand, andδandθ2, on the other, until convergence
occurs. The estimator ofβ, givenδ andθ2, is a GLS estimator and can be obtained
by OLS regression of the transformed variableY on the transformed variablesX.
The varianceσ2, givenδ andθ2, can be obtained from the transformed residuals.
Conversely, the estimatorsδ andθ2, givenβ andσ 2 , must be solved by numerical
methods because they cannot be attained analytically. This problem is also straight-
forward to program using, for example, the optimization toolbox of MATLAB. It
should be noted that finding a local maximum cannot be ruled out (Breusch 1987).

The iterative two-stage procedure needed to estimate the parameters of the ran-
dom effects spatial error and spatial lag model bears similarities to the nonspatial
random effects model (Breusch 1987). The difference is that the concentrated log-
likelihood function must be maximized for two parameters (δ, θ2) instead of only
one (θ2). The random effects spatial lag model appears to be simpler than the ran-
dom effects spatial error model because the log-likelihood function of the latter
model contains the additional term –1/2 log|Tθ2IN + (B′B)–1|. Case (1991) combined
the random effects spatial error and spatial lag model, although it appears that this
additional term is missing from the log-likelihood function. Another complication
in the random effects spatial error model is that the matrixP used to transform the
variablesY andX may not be reliably estimated for largeN.

The parameters of the random effects spatial error and spatial lag model can be
consistently estimated whenN→ ∞, T→ ∞, orN,T→ ∞, although a problem of the
random effects model is that it may not be an appropriate specification when obser-
vations on irregular spatial units are used. The spatial units of observation should be
representative of a larger population, and the number of units should potentially be
able to go to infinity in a regular fashion. When the random effects model is imple-
mented for a given set of irregular spatial units, such as all counties of a state or all
regions in a country, the population is sampled exhaustively (Nerlove and Balestra
1996), and the individual spatial units have characteristics that actually set them
apart from a larger population (Anselin 1988, 51). Moreover, the assumption of
zero correlation betweenµi and the explanatory variables is particularly restrictive.
Hence, the fixed effects model is compelling, even whenN is large andT is small.

To test the random effects spatial error or spatial lag model against their counter-
part without random effects, various well-known tests are available (Baltagi 2001,
chap. 4). One can also estimate the random effects model without spatial effects and
subsequently test this restricted model against the unrestricted model with the help
of an LM test based on (14) or (21). For a test of the random effects spatial error or
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spatial lag model against its fixed effects counterpart, the Hausman specification
test can be used (Baltagi 2001, 65-66). This does cause a practical problem, how-
ever. Commercial econometric packages usually do not apply maximum likelihood
to estimate the random effects model without spatial effects. This complicates the
use of the suggested LM test because maximum likelihood estimation of the stan-
dard random effects model, developed along the lines given in Breusch (1987),
should be programmed first before the test can be carried out.

THE FIXED COEFFICIENTSSPATIAL ERROR

AND SPATIAL LAG MODEL

The fixed coefficients or SUR model given in (3), with one equation for every
spatial unit over time and with contemporaneous error correlation, does not have to
be changed to cope with the spatial error case since the set ofσij(i, j = 1, . . .,N)
already reflects the interactions between the spatial units. In the literature, this is
regarded as an advantage because no a priori assumptions are required about the
nature of interactions over space (White and Hewings 1982). The explanation is
that the specification of a particular spatial weight matrix does not alter the esti-
mates of the response parametersβ, and the estimate of eachσij immediately adapts
itself to the value ofwij by which it is multiplied. As the SUR model is discussed in
almost every econometric textbook and available in almost every commercial econ-
ometrics software package, it hardly requires any further explanation.

The standard method to attain the maximum likelihood estimates of the parame-
ters in an SUR model is by iterating the feasible GLS procedure. In every iteration,
the residuals of the separate regressions are used to update the elements of the
covariance matrixσ ij i je e T= ′ / until convergence. It should be observed that the
estimates ofβi andσij obtained by iterating the feasible GLS procedure are equiva-
lent to those that would be obtained by maximizing the log-likelihood function of
the model, assuming that there are no restrictions on the response parametersβ
across or within the equations.

The set ofN equations, with one equation for every spatial unit over time, in a
model with fixed coefficients and spatially lagged dependent variables can be
expressed as
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(24)

or, equivalently,

YΓ = XB+ ε, E(ε) = 0,E(εε′) = Σ ⊗ IN, with Σ = σii IT (i = 1, . . .,N). (25)

Each equation can also be written as
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Note that theδs and theβs are assumed to differ across spatial units. Furthermore,
the assumption of contemporaneous error correlation is dropped, and the assump-
tionE Ii j ij T( )ε ε σ′ = is changed toE Ii i ii T(ε ε σ′ = andE i j( )ε ε′ = 0for i ≠ j. Although
the latter is not strictly necessary, we have made this change to be able to discrimi-
nate between the spatial error specification and the spatial lag specification.

The log-likelihood function and the first-order maximizing conditions of a lin-
ear simultaneous equations model are given in Hausman (1975, 1983). Due to drop-
ping the assumption of contemporaneous error correlation, the full-information
maximum likelihood (FIML) estimator of each singleη i is

( )η
δ
βi

i

i
i i i iZ Z Z Z=


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
= ′ ′

−
� �

1
,

(27a)

where � [( ) ]Z XB Xi i i= −Γ 1 , while σ η η
ii

i i i i i iY Z Y Z

T
= − −′( ) ( )

.
(27b)

The matrixXBΓ −1 consists ofN columns. In the case whereYj (j = 1, . . .,N) is an
explanatory variable ofYi (i = 1, . . .,N), thejth column ofXBΓ −1 is part of the matrix
of estimated values ofZi. The matrix of estimated values ofZi, �Zi , consists of (N– 1
+ K) columns: (N – 1) columns with respect to the spatially lagged dependent vari-
ables explainingYi, as well asK columns with respect to the independent variables
explainingYi. Note that the estimated values ofZi can also be seen as instrumental
variables (Hausman 1975, 1983). As the estimated values ofZi at the right-hand
side of (27) depend onη, equation 27 defines no closed-form solution forη. One
can attempt to solve forη by the Jacobi iteration method. We require a solutionη =
f(η). The Jacobi iteration method iterates according toη ηh hf+ =1 ( ). This method
is available in only a limited number of commercial econometric software pack-
ages.4

Because a fixed coefficients spatial lag model has different spatial
autoregressive coefficientsδ for different spatial units, it follows that the Jacobian
term,T ln |Γ|, cannot be expressed in function of the characteristic roots of the spa-
tial weight matrix. This difference with the fixed and random effects spatial lag
models complicates the numerical determination of the FIML estimator. As an
alternative, one can use two-stage least squares (2SLS) since this estimator has the
same asymptotic distribution as the FIML estimator. The benefit of the 2SLS
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estimator is that it is considerably easier to compute. The incurred cost is a loss in
asymptotic efficiency because 2SLS does not take account of the restrictions on the
coefficients within the matricesB andΓ.

Anselin (1988, 137-50) also derived the log-likelihood function for a fixed coef-
ficient model that includes spatial error autocorrelation or a spatially lagged
dependent variable, but his case considers response coefficients that are constant
across space but vary over time. This model is called spatial SUR.

The efficiency gain in the fixed coefficients spatial error model is greater, the
greater the correlation of the disturbances, the less correlation exists among vari-
ables across equations and the more correlation exists among variables within an
equation (Fiebig 2001). Whenσij = 0,i ≠ j, joint estimation of the set ofNequations
is not required. Shiba and Tsurumi (1988) provided a complete set of LM and likeli-
hood ratio (LR) tests for this null hypothesis. A hypothesis of particular interest is
the homogeneity restriction of equal coefficient vectorsβ. This hypothesis can be
investigated usingF or LR tests (Greene 1997).

A disadvantage of a model with different parameters for different spatial units is
the large number of parameters to be estimated: (N × K) different regression coeffi-
cients (β) and (1/2N(N+ 1)) different (σ) parameters of the (symmetric) covariance
matrix in the spatial error model, as well as (N × K + N(N – 1)) different regression
coefficients (β, δ) and N different (σ) parameters of the (diagonal) covariance
matrix in the spatial lag model. These models are therefore only of use whenT is
large andN is small. Another practical problem is that the value ofN in most com-
mercial econometrics software is restricted. For instance, the upper bound onN in
LIMDEP (version 7.0) is 20 for both the SUR model and the simultaneous linear
equation model.

Driscoll and Kraay (1998) have pointed out that ifN is too large relative toT, it
will not be possible to estimate all parameters in a manner that yields a nonsingular
estimate. In this case, it is necessary to place prior restrictions on the parameters to
reduce the dimensionality of the problem. However, even if these restricted estima-
tors are feasible, the quality of the asymptotic approximation used to justify their
use is suspect, unless the ratioN/T is close to zero.

One way to reduce the number of parameters of the covariance matrix toN in the
spatial error model, which at the same time reestablishes the use of the spatial
weight matrix, is obtained by imposing the restrictionsσij = δiwij for i ≠ j. These
restrictions may be reasonable if one has prior information about the nature of inter-
actions over space. Under these restrictions, the elements of the covariance matrix
must be updated by

σ δii
i i

i ij
j j i

N

i j ij
j j i

Ne e

T
w e e T w= =

′

= ≠

′

= ≠
∑ ∑, /

, ,1 1

(28)

in each iteration. Similarly, the number of regression coefficients in the spatial lag
model can be reduced to (N × K + N). Under these circumstances, we obtain
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where [XBΓ −1 ] j denotes thejth column of the matrixXBΓ −1 . Although these restric-
tions simplify the estimation procedure, use of the Jacobi iteration method cannot
be avoided.

In both cases, the number of parameters still depends onN, causing the appropri-
ateness of the asymptotic approximation to be suspect. An alternative, more rigor-
ous, way to reduce the number of parameters is to make a compromise between esti-
mating a uniform equation that is valid for all spatial units and a separate equation
for each single spatial unit. First, homogeneous spatial units are joined within
groups, and then a separate equation is considered for each group. Schubert (1982)
used this approach in building an interregional labor market model for Austria, and
Murphy and Hofler (1984) used it for estimating a regional unemployment rate
equation for the United States. Froot (1989) suggested this approach, in more for-
mal terms, in the accounting and finance literature to deal with cross-sectional
time-series data of firms. In addition, one can choose between spatial dependence
among the observations within groups (as in Froot 1989) or spatial dependence
between groups. The former may be applicable when neighboring spatial units are
grouped, and the latter may be applicable when spatial units with comparable char-
acteristics are put together. LetPdenote the number of groupsp (= 1, . . .,P) andNp

the number of spatial units in each group, so thatΣ p pN N= . Then, the number
of parameters for spatial dependence within groups reduces toP K× +
Σ p p pN N1

2 1( )+ in the spatial error model and toP K N N Pp p p× + − +Σ ( )1 in the
spatial lag model. In the case of spatial dependence between groups, the number of
parameters reduces toP K P P× + −1

2 1( ) in the spatial error model and toP × K +
P(P – 1) +P in the spatial lag model.

Another possibility of dealing with spatial error autocorrelation is to employ
groups and a nonparametric covariance estimation technique (such as GMM). The
GMM technique avoids estimating the parameters of the covariance matrix
(Driscoll and Kraay 1998). However, these parameter reduction techniques and the
nonparametric covariance estimation technique (Driscoll and Kraay 1998, n. 5)
rule out applications in which the parameters are allowed to vary across all spatial
units, which constitutes the initial purpose of the fixed coefficients model.

RANDOM COEFFICIENTSMODEL

The number of parameters to be estimated can also be reduced by treating the
coefficients in the regression equation as outcomes of random experiments
between spatial units. Consequently, the number of response coefficients no longer
grows with the number of spatial units. This approach also improves the efficiency
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of the estimators due to the availability of substantially more degrees of freedom.
Unfortunately, the random effects approach does not reduce the number of param-
eters of the covariance matrix in the spatial error model or the number of parame-
ters associated with the spatially lagged dependent variables in the spatial lag
model. Therefore, a large value ofN relative toT remains a problem.

The random coefficient model withspatial error autocorrelationcan be speci-
fied as in equation 4, incorporating the following extension:

E Ii j ij T( )ε ε σ′ = . (30)

Note that we change the notation slightly by usingσii for i = j instead ofσ i
2 as in

equation 4a. Similar to the fixed coefficients model, no prior assumptions are
required about the nature of the interactions over space. In this model, the random
vectorY Y YN≡ ⋅⋅⋅′ ′ ′( , , )1 can be assumed to be distributed with meanXβ, where
X X XN≡ ⋅⋅⋅′ ′ ′( , , )1 , and covariance matrix
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whereD is a (NT× NK) block-diagonal matrix,D = diag[X1, . . .,XN], andΣσ is a (N
× N) matrix withΣσ = { σij}. The ML and the GLS estimator ofβ are known to be
equivalent (Lindstrom and Bates 1988) and equal to

� ( )β = ′ − − ′ −X X X YΣ Σ1 1 1 , (32)

although the major problem is thatΣ contains unknown parametersΣ = Σ(Σσ, V)
that must also be estimated. There are two ways to proceed. A feasible GLS estima-
tor of β can be constructed on the basis of a consistent estimate ofΣσ andV. To
obtain this estimator, the following steps must be carried out. First, estimate the
model assuming that all response parameters are fixed and different for differing
spatial units. We use the mnemonicFC to refer to these estimates. This model is
actually the fixed coefficients model without restrictions on the covariance matrix,
as given in equation 3. This step results in estimates forβ i

FC andσ ij
FC . Second, esti-

mateV by the following (see Swamy 1974):
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The estimator ofV, although unbiased, may not be positive definite. To ensure the
positive definiteness of the estimated matrix, one can also use the consistent estima-
tor V = 1/(N – 1)× S(for details, see Swamy 1970). Finally, estimate the common
mean coefficient vectorβ by GLS according to equation 32. A distinct problem of
the final step is that it requires a matrix inversion of order (N× T). As an alternative,
the inverse ofΣ can be computed with the following expression:

Σ Σ Σ Σ− − − ′ − − − ′= ⊗ − ⊗ ⊗ + ⊗1 1 1 1 1 1( ) ( ) [ ( ) ] (σ σ σI I D D I D I V DT T T N Σσ
− ⊗1 I T ), (34)

which requires the inversion of three matrices, one of orderK (V), one of orderN
(Σσ), and one of order (N × K) for the matrix between square brackets. In the case
whereT is large and/orK < < T, this alternative computation is to be preferred,
although the inversion of a matrix of order (N × K) may still create computational
difficulties in some of the commercial econometric software packages.

Despite the mathematical equivalence, the feasible GLS estimator ofβ does not
coincide with the ML estimator ofβ. This is the case because the feasible GLS esti-
mator ofβ is based on a consistent but not on the ML estimate ofΣσ andV. The sta-
tistical literature shows that ML estimation ofβ, Σσ, andV, although possible, is
laborious. There are three reasons for this. First,Σσ andVcannot be solved algebra-
ically from the first-order maximizing conditions of the log-likelihood function.
Consequently,Σσ andV must be solved by numerical methods. Second, a common
estimation problem is associated with the restrictions on the parameters of the
covariance matrix. A variance estimate should be nonnegative, and a covariance
matrix estimate should be nonnegative definite. Moreover, it must be feasible that
an estimate takes on values at the boundary of the parameter space. Thus, a variance
estimate may be zero, and a covariance matrix estimate may be a nonnegative defi-
nite matrix of any rank. In fact, such boundary cases provide useful exploratory
information during the model-building process. It is desirable that numerical algo-
rithms for ML estimators can successfully produce the defined estimates for all
possible samples, including those where the maximum is attained at the boundary
of the parameter space. However, this parameter space problem often causes diffi-
culties with existing ML algorithms (Shin and Amemiya 1997, 190). Third,
although some studies assert to have developed efficient and effective algorithms
for the likelihood-based estimation of the parameters, they generally assume that
E Ii i T( )ε ε σ′ = 2 andE i j( )ε ε′ = 0for i, j = 1, . . .,Nandj ≠ i instead ofE Ii j ij T( )ε ε σ′ = 2

(Jenrich and Schluchter 1986; Lindstrom and Bates 1988, 1014, left column; Long-
ford 1993; Goldstein 1995; Shin and Amemiya 1997, 189). This naturally simpli-
fies the parameter space problem, and it is therefore not clear whether these algo-
rithms work for the more general case.

A full random parameter model withspatial lagsof the dependent variables
does in fact not exist. The main reason for this is that the assumption of a random
element in the coefficients of lagged dependent variables raises intractable difficul-
ties at the level of identification and estimation (Kelejian 1974; Balestra and
Negassi 1992; Hsaio 1996). Instead, a mixed model can be used that contains fixed
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coefficients for the spatial dependent variables and random coefficients for the
exogenous variables. This model reads as

Y Y Y Y Yit i t ii i t i t i t Nt Nt i= + ⋅⋅⋅ + + + ⋅⋅⋅ + +− − + +δ δ δ δ β1 1 1 1 1 1
′ +Xit itε . (35)

A problem that causes this model not to be used very often is the number of observa-
tions needed for its estimation. The minimum number of observations on each spa-
tial unit amounts to (N+ K), as the number of regressors is (N– 1 +K). Most panels
do not meet this requirement, even ifN is small. Provided that information is avail-
able about the nature of interactions over space, we therefore impose the restric-
tionsδij = δiwij, for i ≠ j, to attain

Y w Y X Y w X Zit i
j

N

ij jt i it it i i i it i it= + + ≡ + ≡
=

′ ′ ′∑δ β ε δ β η
1

( ) + εt .
(36)

In this case, the minimum number of observations needed on each spatial unit
reduces to (K + 1), which is independent ofN.

Stacking the observations by time for each spatial unit, the full model can be
expressed as
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(37a)

The covariance matrix of the composite disturbance term diag[X1, . . .,XN] × v+ ε is
block diagonal, with theith diagonal block given by

Φi i i i TX VX I= +′ σ2 . (37b)

Similar to the spatial error case, there are two ways to proceed. A feasible GLS esti-
mator ofδandβ may be constructed, extended to instrumental variables, and based
on a consistent estimate ofσ σ1

2 2, ,⋅⋅⋅ N andV. Alternatively,δ β σ σ, , , ,1
2 2⋅⋅⋅ N , andV

may be estimated by ML.5 We suggest the following feasible GLS analog instru-
mental variables estimator taken from Bowden and Turkington (1984, chap. 3).6

LetXi denote the (T× K) matrix of the exogenous variables in theith equation,Zi

is the (T × (1 +K)) matrix of the spatially lagged dependent variable and the exoge-
nous variables in theith equation, andX is the (T × KALL) matrix of all the explana-
tory variables in the full model, whereKALL equals (N(1 + K)). Consequently, the
inversion of the matrixX ′Xof order (KALL × KALL) may constitute a problem whenN
and/orK are large.

First, estimate the model assuming that all coefficients are fixed. We again use
the mnemonicFC to refer to these estimates. The model is in effect the fixed coeffi-
cients model extended with spatially lagged dependent variables, as described in
equations 24 to 26, but now we stick to the use of instrumental variable estimators.
This results in the following estimates forη i

FC andσ i
FC2 , :
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Second, estimateV by the following (see Balestra and Negassi 1992; Hsiao and
Tahmiscioglu 1997):
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(38c)

LetZi
p denote the predictive values from the multiequation regression ofZi = [Yi(w)

Xi] on X, with the observations for each spatial unit weighted byΦi
−1 :

( ) ( )Z X X X X Z Y w Xi
p

i i i i
p

i= =′ − − ′ −Φ Φ1 1 1 [ ] . (39)

The inverse ofΦi can be computed by the following expression:
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as a result of which the formula forZi
p changes to
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Finally, estimateδi andβ by

( ) ( ) ( )δ

δ
β

1
1 1

1
1 1 1

1
10

0
⋅



















=

⋅
⋅ ⋅ ⋅ ⋅

⋅

′ − ′ −

N

p pY w Y w Y w XΦ Φ

( ) ( ) ( )
( ) ( )

Y w Y w Y w X

X Y w X Y w X

N
p

N N N
p

N N

N N N i

′ − ′ −

′ − ′ − ′⋅

Φ Φ

Φ Φ Φ

1 1

1 1
1

1
1

i
-

( ) ( )

( ) ( )
1

i

N

X

Y w Y w

Y w Y w

Xi

p

N
p

N N

= 1

Φ

Φ

∑























⋅

′ −

′ −

1 1
1

1

1

( )i iY w′∑























Φ
= 1

i
-1

i

N

,

(42)

whereΦi
−1 can be substituted for the expression given in equation 40.

Although the random coefficients spatial error and spatial lag models have only
K response coefficientsβ and thus ((N – 1) × K) less parameters than their fixed
counterparts, the problem thatNmay be too large relative toTremains. This implies
that techniques to reduce the number ofσ or δ parameters, as already presented for
the fixed coefficients model, also apply to the random coefficients model. To test
the homogeneity restriction of equal coefficient vectorsβ, a chi-square test may be
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used (see Greene 1993). The estimation of the parameters of a random coefficients
model is obviously not a simple calculation, but it is feasible. In the manual of
LIMDEP (version 6), programming instructions are given to estimate the Swamy
random coefficients model that can be straightforwardly extended to spatial error
autocorrelation, as well as to a mixed fixed and random coefficients model (Elhorst
1996). A practical problem is that the fixed coefficients, which must be estimated
first, cannot be determined whenT is smaller thanK. In this case, one has to resort to
studies asserting to have developed efficient and effective algorithms for the likeli-
hood-based estimation of the parameters (see above).

Similar to the random effects model not necessarily being an appropriate speci-
fication when observations on irregular spatial units are used, the random coeffi-
cients model may not be either. In that case, the fixed coefficients model is compel-
ling, even whenN is large.

CONCLUSIONS

This article has given a systematic overview of panel data models extended to
include spatial error autocorrelation or a spatially lagged dependent variable. At the
outset, we stated that spatial panel data models are not very well documented in the
literature, which may very well be caused by each model having its own specific
problems. These problems can be summarized as follows for the four panel data
models considered in this article.

Estimation of the spatialfixed effects modelcan be carried out with standard
techniques developed by Anselin (1988, 181-82) and Anselin and Hudak (1992),
but the regression equation must first be demeaned. This model is relatively simple.
One methodological shortcoming is the incidental parameters problem. For short
panels, whereT is fixed andN → ∞, the coefficients of the spatial fixed effects can-
not be estimated consistently. This problem does not necessarily matter whenβ are
the coefficients of interest while the spatial fixed effects are not. Moreover, the
problem disappears in panels whereN is fixed andT → ∞.

Estimation of the spatialrandom effects modelcan be carried out by maximum
likelihood, although it requires a specific approach. The iterative two-stage proce-
dure needed to maximize the log-likelihood function of the random effects spatial
lag model appears to be simpler than the procedure for the random effects spatial
error model. The parameters of the random effects spatial error and spatial lag
model can be consistently estimated whenN→ ∞, T→ ∞ orN,T→ ∞, although the
problem remains that the random effects model may not be an appropriate specifi-
cation when observations on irregularly shaped spatial units are used. In addition,
the assumption of zero correlation between the random effects and the explanatory
variables is particularly restrictive. Hence, the fixed effects model is compelling,
even whenN is large andT is small.

A fixed coefficientsspatial error model with varying coefficients for different
spatial units is equivalent to a seemingly unrelated regressions model. Although the

264 INTERNATIONAL REGIONAL SCIENCE REVIEW (Vol. 26, No. 3, 2003)



estimation of this model is standard, the number of equations allowed in commer-
cial econometric software packages is often limited. A fixed coefficients spatial lag
model with different coefficients for different spatial units is almost equivalent to a
simultaneous linear equation model. Estimation of this model by maximum likeli-
hood is complicated by the fact that the Jacobian term cannot be expressed in func-
tion of the characteristic roots of the spatial weight matrix. As a result, the Jacobi
iteration method has to be used, but this method is available only in a limited num-
ber of commercial software packages. As an alternative, one can resort to the use of
2SLS, but this method does not take into account the restrictions on the coefficients
within the coefficient matrices. A formidable problem of fixed coefficients models
is the large number of parameters causing the estimators to be infeasible. Further-
more, even if the estimators are made feasible by introducing restrictions on the
parameters, the quality of the asymptotic approximation used to justify the
approach remains rather suspect, unless the ratioN/T tends to zero. The latter can
eventually be achieved by joining spatial units within groups or by considering sep-
arate equations for each group.

Maximum likelihood estimation of therandom coefficientsmodel extended to
spatial error autocorrelation or to spatially lagged dependent variables is possible,
although it is laborious. It is simpler to use feasible GLS to estimate the random
coefficients model with spatial error autocorrelation and to use feasible GLS in
combination with instrumental variables to estimate the random coefficients model
comprising spatially lagged dependent variables. These estimators may still be dif-
ficult to compute because they require matrix inversions of large orders, depending
on the number of spatial units and the number of explanatory variables. In the ran-
dom coefficients model containing spatially lagged dependent variables, a random
element in the coefficients of the spatially lagged dependent variables should be
avoided because it creates intractabilities with respect to both identification and
estimation. Although the number of parameters in the random coefficients spatial
error and spatial lag models are smaller than in their fixed coefficients counterparts,
Nmay still be too large relative toT in typical spatial panel data sets. This may cause
the estimators to be infeasible or asymptotically suspect. Finally, the random coef-
ficients model may also not be an appropriate specification when observations on
irregular spatial units are used.

Overall, the spatial panel data estimators discussed in this article justify reliance
on asymptotics whenT → ∞ andN is fixed. Reliance on the asymptotics ofN → ∞
andT is fixed and fraught with difficulties for most of the spatial panel data models.
The spatial random effects model is a favorable exception in this respect.

NOTES

1. These authors are advocates of geographically weighted regression.
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2. The dependent and explanatory variables for every spatial unit are taken in deviations of their
average over time. So, for instance, the dependent variable is defined as

Y Yit i− ., whereY
T

Yi
t

T

it. =
=

∑1

1

.

3. The dependent variable reads as
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and similar transformations apply to theX variables.
4. Examples are TSP and PC-Give (see Greene 1997).
5. We found one application of this model in the literature (Sampson, Morenoff, and Earles 1999),

but this study does not describe the estimation procedure in detail.
6. Bowden and Turkington (1984) start from the regression equationY= Xβ + µ, whereE uu( )′ = Ω,

and some of theX variables are endogenous. LetZ denote the set of instrumental variables. Then, the

generalized least squares analog instrumental variables estimator is� ( )' 'β = − − −X X X Yp p pΩ Ω1 1 1 ,

whereX Z Z Z Z Xp = ′ − − −( )Ω Ω1 1 1 .
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