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Most  of the  existing  literature  focuses  on estimating  traffic  or explaining  trip  lengths  from land  use.
This  research  attempts  to reveal  intraurban  land  use  variations  from  traffic  patterns.  Using  a seven-day
taxi  trajectory  data  set  collected  in  Shanghai,  we  investigate  the  temporal  variations  of both  pick-ups
and  drop-offs,  and  their  association  with  different  land  use features.  Based  on  the  balance  between  the
numbers  of drop-offs  and  pick-ups  and  its distinctive  temporal  patterns,  the  study  area  is  classified  into
eywords:
PS-enabled taxi data
rban land use
raffic ‘source-sink area’
rban form

six traffic  ‘source-sink’  areas.  These  areas  are  closely  associated  with  various  land  use  types  (commercial,
industrial,  residential,  institutional  and  recreational)  as well  as  land  use  intensity.  The  study  shows  that
human  mobility  data  from  location  aware  devices  provide  us  an  opportunity  to  derive  urban  land  use
information  in a timely  fashion,  and  help  urban  planners  and  policy  makers  in  mitigating  traffic,  planning
for  public  services  and  resources,  and  other  purposes.
hanghai

. Introduction

Examining the interdependence between land use and travel
ehavior (especially diurnal movement) is a long tradition in urban
tudies (e.g., Chen, Chen, & Barry, 2009; Goodchild & Janelle, 1984;
oodchild, Klinkenberg, & Janelle, 1993; Khisty & Lall, 2003; Maat,
an Wee, & Stead, 2005; Zandviliet & Dijst, 2006). Most literature
ocuses on how to estimate traffic or explain trip lengths from urban
and use. For instance, much of the traffic demand forecasting relies
n modeling origin-destination (O-D) traffic volumes from land use
ata (Black, 2003). There is also a large body of literature on explain-

ng commuting patterns by urban land use structure. The wasteful
ommuting proposition (Hamilton, 1982; Small & Song, 1992;

hite, 1988) questions the assumption in the traditional urban
conomic model (Mills, 1972; Muth, 1969) that people choose
heir residential location as a tradeoff between housing space and
ommuting time, and stimulates much work on linking travel to
rban form (Gordon, Kumar, & Richardson, 1989). The jobs-housing

alance approach emphasizes that long commutes tend to be
ssociated with spatial separation and severe imbalance between
obs and residences (Cervero, 1989; Wang, 2000), but others
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challenge the validity of the approach in predicting commute
lengths (Giuliano & Small, 1993). More recent work incorporates
both spatial structure (i.e., land use) and socioeconomic character-
istics in explaining commuting (Antipova, Wang, & Wilmot, 2011;
Shen, 2000; Wang, 2001). This school of work is motivated by pos-
sible planning and policy remedy in attempt to alter urban land use
for journey-to-work reduction, although the results are far short of
the expectation (Weber & Sultana, 2007).

The above brief review provides a glimpse of the rich literature
on examining the influence of urban land use on travel. In con-
trast, very little work has been reported on the reversed linkage
in the interdependence between land use and traffic, i.e., how to
extract the information on land use from traffic patterns. There is
just as much value for doing so. First and foremost, land use data
are expensive and time consuming to compile, and timely updated
land use data needed by urban planners and researchers are scarce.
Many are left with no choice but to estimate land use from remote
sensing images (e.g., Jensen, 1983; Lu & Weng, 2005; Xiao et al.,
2006), but “effective real-world operational examples”, especially
for urban areas, are a rarity (Rogan & Chen, 2004) due to various
challenges. For cities in a developing country such as China, land
uses and spatial structure are ever changing in a fast pace. Some
areas may experience no transformation in land use type but sig-
nificant change in land use intensity with important implication

in traffic patterns, service planning and others. It is imperative for
planners and policy makers to monitor citywide land use changes
and detect areas of rapid growth or decline in a timely fashion. This
is a task that can be accomplished neither by the costly traditional
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urvey method nor remote sensing that cannot detect detailed land
se patterns. Secondly, documenting changes of land use at a finer
ime interval over a period of time can also help researchers identify

ajor phases of urban structure changes (e.g., from a monocentric
o a polycentric metropolis, from a bedroom satellite city to a subur-
an job center, from the downtown primacy to suburb dominance

n office markets). Finally, similar to the debate on the effect of land
se on travel patterns, our research on this topic will provide sup-
orting evidence on the interdependence between them, but from
n inverted angle.

The lack of research along this line of work may  be attributable
o paucity of detailed intra-urban origin-destination traffic data
ntil recently a large volume of human motion data have become
vailable. With the rapid development of information and com-
unication technologies (ICT), data from location aware devices

LAD), including mobile phones and Global Positioning System
GPS) receivers, have been collected and made available. Such
ata have been widely applied in human mobility pattern research
González, Hidalgo, & Barabási, 2008; Jiang, Yin, & Zhao, 2009; Kang,

a,  Tong, & Liu, 2012; Rhee, Shin, Hong, Lee, Chong, 2008; Song,
oren, Wang, & Barabási, 2010; Song, Qu, Blumm,  & Barabási, 2010).

dentified patterns from LAD-generated data provide an impor-
ant approach to understanding urban dynamics (Chowell et al.,
003; Phithakkitnukoon, Horanont, Lorenzo, Shibasaki, & Ratti,
010; Ratti, Pulselli, Williams, & Frenchman, 2006). Much research
as been conducted to investigate the spatio-temporal patterns of
rban scale human motion. Related applications include studies in
ities such as Tallinn of Estonia (Ahas, Aasa, Silm, & Tiru, 2010),
ilan (Ratti et al., 2006) and Rome of Italy (Sevtsuk & Ratti, 2010),

nd Hong Kong (Jiang & Liu, 2009), Wuhan (Li, Zhang, Wang, & Zeng,
011) and Shenzhen of China (Sun, Yuan, Wang, Si, & Shan, 2011).

Some research has been conducted on collecting GPS data
o investigate travel behavior and the underlying geographic
nvironment (Stopher, Fitzgerald, Zhang, 2008; Wolf, Oliveira,

 Thompson, 2003). Recently, GPS-enabled vehicles have been
idely adopted to collect real time traffic data (Dai, Ferman, &
oesser, 2003; Kühne et al., 2003; Lü, Zhu, Wu,  Dai, & Huang, 2008;
ong, Coifman, Merr, 2009). In many applications, such data are
ften obtained from GPS-enabled taxis instead of private automo-
iles due to privacy concerns. In addition to monitoring real-time
raffic situations, large volume of GPS-enabled taxi trajectory data
ave been used for travel time estimation, dynamic accessibility
valuation, and travel behavior analysis (Berkow, Monsere, Koonce,
ertini, & Wolfe, 2009; Bricka & Bhat, 2006; Liu, Andris, & Ratti,
010). A study by Qi et al. (2011) uses the dynamic taxi data to
eflect coarse urban land uses, but does not systematically exam-
ne the relationship between the diurnal motion patterns and the
nderlying urban structure.

This research uses a massive data set of over 6600 taxis for seven
ays in Shanghai, China, to reveal the association between traffic
atterns and urban land uses. On any workday, one generally leaves
ome to work in the morning and goes back in the afternoon or
vening. Commutes exhibit a strong daily rhythm for a city. We
orrow a concept, ‘source-sink,’ developed by Pulliam (1988) in eco-

ogical studies to characterize the daily travel patterns. In ecology,
 source patch has higher birth rates than death rates and thus a
rowing population, and a sink patch has higher death rates than
irth rates and thus a declining population. Here, a traffic source
rea has more pick-ups than drop-offs from the taxi data and thus

 net traffic outflow; and a traffic sink area otherwise. Therefore, a
esidential area and workplace can be viewed as a source and sink
n the morning, respectively; and their roles switch in the after-

oon. By classifying each area in terms of its temporal balance of
eneration or attraction of traffic, we can examine the spatial pat-
erns of these classifications and their association with different
ypes of land uses. Urban development is an ongoing process, and
 Planning 106 (2012) 73– 87

changes are rapid particularly in cities in a fast-growing economy
such as China. Transportation planning and implementing traffic
mitigation measures demand timely data beyond the traditional
data sources such as census or land use survey. Large volume of real-
time data collected by GPS-enabled vehicles fulfills this demand.
This research demonstrates the potential of using such data to mon-
itor residents’ travel patterns and reveal the dynamics of urban land
use changes.

Urban land use types include commercial, industrial, residen-
tial, transportation and others, and can be grouped into two
broad categories (employment and population) in terms of its
implication on traffic generation and transportation planning. The
“population (evening-time) density pattern reflects the variation
of residential land use”, and “employment (daytime) density cap-
tures business-related land uses including industrial, commercial
and others” (Wang, Antipova, & Porta, 2011). The identification
of traffic source-sink areas and related traffic intensities by GPS-
enabled taxi data is an important step toward timely monitoring
land use changes and planning effective transportation mitigation
responses.

The remainder of this paper is organized as follows. Section 2
describes the data source and processing. Section 3 discusses the
methods for analyzing temporal patterns of trips and classifies the
study area into various source-sink areas. Section 4 examines the
association of the classifications with various land uses. The paper
is concluded with a brief summary and some discussion in Section
5.

2. Data preparation and study area

Shanghai is the most populous city in China. Its socio-spatial
structure has gone significant changes in the post-reform era (Li &
Wu,  2006; Wu  & Li, 2005). Some research has examined the impact
of urban form on residents travel behavior (Chai, Weng, & Shen,
2008; Pan, Shen, & Zhang, 2009; Song & Ikeda, 2005). But those
studies used survey data with small samples, and self-reported
travel data may not be representative of general population and
often lack accuracy in reported variables of a trip. This research uses
a large volume of trip data collected from location-aware devices
to examine the spatial structure of Shanghai.

Like most cities in China, taxis play an important role in
intra-urban transportation in Shanghai. According to the Shang-
hai Municipal Transport and Port Authority (http://www.jt.sh.cn/),
taxi-based trips account for about 20% of daily trips in 2009. Many
taxi companies have installed GPS receivers in their fleets to mon-
itor the real-time movement of each taxi. This research uses a data
set of more than 6600 taxis for seven consecutive days (from June
1st to June 7th in 2009) from an anonymous taxi company. The
data recorded each taxi’s location, velocity, and status (vacancy
or occupancy of passengers) in about every 10 s with the position
accuracy of about ±10 m, which is acceptable in investigating intra-
urban travel patterns. All trajectories were cleaned by removing
invalid points caused by data recording or transfer errors. Fig. 1
demonstrates a one-day trajectory of a taxi, where red lines denote
the paths with passengers in the taxi, and blue lines indicate the
taxi unoccupied. Based on the data, we  can identify the locations
where passengers were picked up and dropped off, and thus the
origin and destination of a completed trip. Each trip can be simpli-
fied to be a vector from (xo,yo,to) to (xd,yd,td), where (x,y) denotes
the location and t time of a pick-up (with subscript “o”) event and
a drop-off (with subscript “d”) event, respectively. There were a

total of 1,552,635 trips extracted from the data. These trips form a
representative sample of intra-urban movement.

Naturally the trips were more concentrated in central urban
areas than suburban or urban fringes. This can be demonstrated

http://www.jt.sh.cn/
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ig. 1. A taxi’s one-day trajectory in Shanghai on June 1, 2009 [a red line along the
-D  pair of a trip]. (For interpretation of the references to color in this figure legend

y density analyses on pick-up points (PUPs) and drop-off points
DOPs). Fig. 2a and b depicts the kernel density estimations of all
UPs and DOPs in the seven days. The spatial distributions of both
UPs and DOPs are positively correlated with the population distri-
ution (Fig. 2c). Fig. 2c shows estimated population density based
n the LandScanTM 2008 High Resolution Global Population Data
et (http://www.ornl.gov/sci/landscan/) because of lack of more
ecent census data in the study area. The Pearson correlation coef-
cients for PUPs vs. population and DOPs vs. population are 0.785

nd 0.783, respectively.

Based on the distributions of PUPs and DOPs as well as popula-
ion, we select a 35 km × 50 km rectangle region that covered the

ajor urban areas of Shanghai as the study area for this research

ig. 2. (a) Spatial distribution of pick-up points, (b) spatial distribution of drop-off point
lobal  Population Data Set, copyrighted by UT-Battelle, LLC, operator of Oak Ridge Nati
epartment of Energy).
s denotes the status with passengers, and a straight line with an arrow denotes an
eader is referred to the web  version of the article.)

(see the box in Fig. 2c). The rectangle area was discretized into
1750 1 km × 1 km cells. The right-top corner of the rectangle con-
tains 313 no-data cells that were excluded from the analysis. In
order to investigate the temporal characteristics of trips, we also
discretize the seven days into 168 1-h intervals. PUPs and DOPs
represent origins and destinations of various trips, and are criti-
cal for us to understand traffic patterns and related land use in the
city. For each cell, the numbers of PUPs and DOPs in each hour was
computed. In summary, two three-dimensional matrices, P[i, j,t]

and D[i, j,t], were obtained for pick-ups and drop-offs, respectively.
Note that i = 1,. . .,  35; j = 1,. . .,50, and t = 1,. . .,168. In this research,
we use R (=35 rows), C (=50 columns), and T (=168 h) to represent
the spatio-temporal extent of the data set.

s, (c) population distribution (c is based on the LandScan 2008TM High Resolution
onal Laboratory under Contract No. DE-AC05-00OR22725 with the United States

http://www.ornl.gov/sci/landscan/
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. Spatio-temporal patterns of taxi pick-ups and drop-offs

.1. Temporal pattern of pick-ups and drop-offs

For each hour in the seven days, we compute the total numbers
f pick-ups and drop-offs in the study area such as

p[t] =
R,C∑

i=1,j=1

P[i, j, t], t = 1, . . . , T (1)

d[t] =
R,C∑

i=1,j=1

D[i, j, t], t = 1, . . . , T (2)

here i and j specify the coordinates of a pixel. The results are plot-
ed in Fig. 3a. The temporal sequences represented by curves of Sp

nd Sd are very similar. Seven 24-h cycles can be clearly identi-
ed. That is to say, the temporal distributions of both pick-ups and
rop-offs roughly repeat in the seven days. The Fourier transform

s a mathematical operation to find the underlying frequencies of
 time-series data set, and the 24-h period length can be further
onfirmed by the discrete Fourier transform (DFT) analysis on Sp

nd Sd. Since Sp and Sd are similar, we simply perform the DFT on
p + Sd. The power of DFT is plotted in Fig. 3b, where the peak cor-
esponds to 24, indicating that the dominant period length is 24 h.
dditionally, we can find three peaks in the daytime on weekdays.
hey correspond with three temporal intervals, i.e., morning, noon,
nd early evening, with large numbers of trips.

The temporal distributions of pick-ups and drop-offs can be fur-
her examined in detail at the cell (pixel) level. For each 1 km × 1 km
ell in the study area, two 168-dimensional vectors, denoted by Vp

nd Vd, can be constructed to represent the temporal variations of
rips in the area. Five sample points are selected from the study
rea to represent various locations (land uses) (Fig. 4), and their
orresponding Vp and Vd are depicted in Fig. 5. Table 1 summarizes
he statistics of Vp and Vd associated with the five sample loca-
ions. Their temporal patterns differed significantly. For example,
he average numbers of pick-ups and drop-offs were roughly equal
or cells A and B. In either cell C or D, however, the average number
f pick-ups was much fewer than the average number of drop-offs.
ell E had far lower numbers of pick-ups and drop-offs than the
ther four locations.

To investigate the temporal characteristics of the five points, we
btain the peak point of each location on every day over the seven
ays. A peak point is the time corresponding to the maximum num-
er of pick-ups (or drop-offs) in 24 h. Fig. 6 plots the distribution of
he peak points, some of which occurred regularly at the same hour
f a day. The temporal patterns of cells A-D from Fig. 5a–d, where
here are large numbers of pick-ups and drop-offs, exhibit a 24-h
ycle but of different patterns, suggesting that the areas play differ-
nt roles in trip generation and attraction. In the downtown area
cell A, Fig. 5a), there is only one peak of drop-offs in the morning as
ommuters reported to work, and there are two peaks of pick-ups
one in the morning when people left home to work and another
n late afternoon till early evening as people returned home). The
owntown area in a Chinese city including Shanghai usually has a
ignificant number of residents. The trend is reversed in the cen-
ral city residential subdivision (cell B, Fig. 5b) with a morning peak
f pick-ups and an early evening peak of drop-offs. The two major
irports of Shanghai, Hongqiao Airport and Pudong Airport (cells C
nd D shown in Fig. 5c and d), exhibit a similar pattern with a morn-

ng peak of drop-offs and steady numbers of pick-ups throughout

 day into the evening time. The suburban area (cell E, Fig. 5e) has
mall numbers of both pick-ups and drop-offs, and its temporal pat-
ern is less regular (Fig. 6). In summary, different locations and land
 Planning 106 (2012) 73– 87

uses have distinctive traffic patterns revealed in taxi pick-ups and
drop-offs. This will be explored in depth in the next sub-section.

3.2. Spatio-temporal patterns of differences between pick-ups
and drop-offs

From the previous discussion, the temporal patterns of taxi pick-
ups (Vp) and drop-offs (Vd) varied a great deal from place to place.
For example, comparing Fig. 5a with b, we can find that during
7:00–8:00 am of each day (t = 8, 32,. . .,  152), Vp and Vd were roughly
the same for point A, but Vp > Vd for point B. On the contrary, during
7:00–8:00 pm (t = 18, 44,.  . .,  164), Vp > Vd for point A and Vp < Vd for
point B. This observation enlightens us that the difference between
the numbers of pick-ups and drop-offs may  reveal the distinctive
functions of different areas.

Due to the periodic properties of P and D, in the following
research, we aggregate P and D into two  24-h matrices using

P ′[i, j, t] =
6∑

k=0

P[i, j, k × 24 + t], i = 1, . . . ,R; j = 1, . . . , C,

t = 1, . . . , 24 (3)

D′[i, j, t] =
6∑

k=0

D[i, j, k × 24 + t], i = 1, . . . , R; j = 1, . . . , C,

t = 1, . . . , 24 (4)

where i and j denote a pixel, t and k stand for a 1-h period and
one day, respectively. P′ and D′ represent the diurnal variations
of pick-ups and drop-offs. For each hour t, we  compute the dif-
ference between them, D′[i,j,t]-P′[i,j,t] (i = 1,. . .,R and j = 1,.  . .,C), a
two-dimensional matrix that can be visualized as an image. It is
termed drop-offs pick-ups balance matrix (DPBM). Meanwhile, for
each pixel [i,j], we  use drop-offs pick-ups balance vector (DPBV) for
D′[i,j,t]-P′[i,j,t] (t = 1,. . .,24). Obviously, DPBM represents the spa-
tial variation of trips for a given time, while DPBV indicates the
temporal pattern associated with a position.

Fig. 7a–c depicts the DPBMs during 7:00–8:00 am (morning
time), 13:00–14:00 pm (noon time), and 19:00–20:00 pm (evening
time), respectively. Note that the images were smoothed using the
resample function with cubic interpolation for better visualization
effects. The contour lines in each image denote zero values, which
indicate the numbers of pick-ups and drop-offs were equal.

Fig. 7a–c shows interesting spatial patterns. In morning time, the
number of drop-offs is greater than that of pick-ups in the down-
town area (shown in yellow color in Fig. 7a), as the downtown area
is a major destination of many trips. Meanwhile, the number of trips
from this area is relatively small. Borrowing the terms from ecolog-
ical studies as described earlier, the downtown can be viewed as a
major sink area of trips with a large volume of inflow traffic (D′ > P′)
in the morning. Similarly, the two  airports and two railway stations
are also major sink areas in the morning. On the other hand, the
areas in blue in Fig. 7a are source areas with a high volume of out-
flow traffic (D′ < P′). These areas are generally the residential areas
of Shanghai. In evening time, the pattern is reversed (Fig. 7c). Most
sink areas in morning time become source areas in evening time,
and source areas in morning time are transformed to sink areas in
evening time. Fig. 7b shows the pattern of D′ − P′ at noon, where

the sink areas are more scattered and the numbers of both pick-
ups and drop-offs are also smaller than Fig. 6a. Note that the four
transportation facilities are still sinks in noontime but sources in
evening time.
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Fig. 3. (a) Curves of Sd and Sp representing temporal variations of pick-ups and drop-offs of the entire study area, (b) power of discrete Fourier transform (DFT) on Sp + Sd .

Fig. 4. Five sample points in the study area (A: downtown; B: residential; C: Hongqiao Airport; D: Pudong Airport; E: suburban).
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Fig. 5. Curves of Vp and Vd representing temporal variations of pick-ups and drop-offs of 5 sample points A–E.
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Table  1
Statistics of diurnal pick-up points (PUP) and drop-off points (DOP) at five sample locations.

A B C D E

PUP DOP PUP DOP PUP DOP PUP DOP PUP DOP

Average 84.31 78.35 17.28 18.02 48.55 92.01 7.97 26.92 0.51 1.13
Std.  dev. 46.82 48.83 9.24 10.17 34.42 85.64 7.45 25.45 0.69 1.24
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.3. Classifications of source-sink areas by temporal balances of
axi pick-ups and drop-offs

As shown in Fig. 7, the spatio-temporal pattern of balance
etween drop-offs and pick-ups (D′ − P′) reflects the variation of

and uses across the study area. In other words, the temporal varia-
ion of D′ − P′ for each pixel reveals its role in trip generation. Based
n the DPBV values such as (D′ − P′)[i,j,t] for pixel [i,j] at time t
=1,. . .,24), we classify all pixels in the study area into different
lasses of traffic source-sink areas using the k-means clustering
ethod. In other words, a pixel is grouped into a class (cluster)

o that the within-cluster total variances of DPBV is minimized
MacQueen, 1967).

The center vectors of five classes are plotted in Fig. 8a. The
ve classes of areas exhibit different temporal patterns, and are

amed as “strong source-sink”, “weak source-sink”, “equilibrium”,
weak source-sink”, and “moderate source-sink”. A sink-source area
s a sink area in morning time and a source area in evening
ime. In contrast, a source-sink area is a source area in morning

Fig. 6. Repetitive occurrences of maximum pick-up
time and a sink area in evening time. Terms “strong”, “mod-
erate” and “weak” reflect the high, medium and low values of
the trips, respectively. An equilibrium area has a relatively flat
curve, indicating that the numbers of pick-ups and drop-offs are
roughly balanced in each hour. Equilibrium areas can be further
divided into two  classes: high equilibrium and low equilibrium.
High-equilibrium areas have high numbers of pick-ups and drop-
offs, and low-equilibrium areas have low numbers of pick-ups and
drop-offs. Both equilibrium areas have similar values of DPBV,
(D′ − P′), near 0. In order to differentiate them, Fig. 8b is based
on the total counts of drop-offs and pick-ups (D′ + P′). The spatial
distribution of the resulting six classes is shown in Fig. 8c.

The DPBV is parallel to the concept of “jobs to resident workers
ratio” in the jobs-housing balance approach discussed in Sec-
tion 1. In an area where jobs outnumber resident workers, it

is more likely a source-sink area with a negative DPBV in the
morning and a positive DPBV in the evening. The opposite can
be said in an area where there are more resident workers than
jobs.

s and drop-offs for 5 sample points in 7 days.
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Fig. 7. Images of drop-offs pick-ups balance vector (DPBV), (D′ − P′), in different times: (a) 7:00–8:00 am,  (b) 13:00–14:00 pm,  (c) 19:00–20:00 pm.  The circle denotes
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owntown, and 4 triangles mark I: Hongqiao Airport, II: Pudong Airport, III: Sha
eferences to color in this figure legend, the reader is referred to the web version of

. Association of source-sink area classifications with land
ses

After a close examination of Fig. 8a, the following conjectures
re proposed on possible land use implications of various traffic
ource-sink areas. A typical commuting trip begins at home and
tops at workplace in morning time, and returns from workplace to
ome again in evening time. Therefore, a weak or moderate source-
ink area indicates a residential dominant area. On the other side,

 weak or strong source-sink area reflects an employment concen-
ration area such as commercial, industrial, or institutional land
ses. The class “high equilibrium” corresponds to mixed land uses
f high-density development areas, and the class “low equilibrium”
s associated with remote suburbs or even rural areas in the out-
kirts of Shanghai, where the trip number is low. The presence of
trong source-sink areas and absence of source-sink areas indicate
hat the high-density residential areas do not generate as much
raffic as high-density employment area.
.1. Urban land use features and their densities

Two data issues warrant some discussion prior to our analysis.
irst, urban trips include home-workplace commutes, and other
i Railway Station, IV: Shanghai South Railway Station. (For interpretation of the
rticle.)

trips of other purposes such as shopping, recreation, education and
social activities. Some trips by taxi are for non-commuting purposes
(Li, Yuan, Xie, Cao, & Wu,  2007). For an individual trip maker, it may
not end at his/her workplace, but the place being visited for other
purposes may  well be the workplace of others. At an aggregate
level for all trips in the study area, data on taxi trips are valuable in
revealing the urban structure and land use patterns. One may  argue
that taxi-based trips might not reflect a complete picture of urban
travels that are made of multiple modes. For our purpose of reveal-
ing land use patterns, taxi trips carry significant signals. Chinese
cities (particularly large cities) have more concentrated activities
and higher-density settlements than most western cities, and thus
taxi generally plays a more prominent role in urban transportation
in both mode share and spatial range. Taxis tend to be confined in
down area, airports and major transit terminals in a western city,
but are usually available citywide in China. The taxi ridership also
represents a wide spectrum of demographics and income groups
in China.

Another issue is the ambiguous roles of major transportation

facilities in generating taxi trips in Shanghai. Presence of a bus
or subway station may  reduce the number of taxi trips in an
area or its nearby area because of convenient access to public
transportation. On the other hand, a public transit station may
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Fig. 8. (a) Center vectors of source-sink areas based on (D′ − P′), (b) center vectors of two types of equilibrium areas based on (D′ + P′), (c) spatial distribution of six types of
source-sink areas.
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Fig. 9. Spatial distributions of nine types of point geographic features: (a) residential subdivisions, (b) shopping places, (c) hotels, (d) restaurants, (e) government offices, (f)
h
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ospitals, (g) schools, (h) parks, and (i) factories.

lso serve as a transfer point linking short taxi trips to public
ransportation, and thus also lead to more taxi trips. For this
eason, transportation facilities such as transit stations are usu-
lly not the real origins or destinations but transfer points of
rips, and they are not included in the subsequent analysis of
ssociation between land use features and source-sink area clas-
ifications.

Based on the data collected by a Web  map  provider in 2007,
his research has extracted nine types of geographical features to
epresent urban land uses. The nine types are: residential subdi-
ision (ju-zhu xiao-qu), government office, hospital, school, park,

hopping place (including shopping mall, super market, etc.), hotel,
estaurant, and factory. These point features are potentially origins
nd destinations of taxi trips. Each feature class was input into a
eographical information system (GIS) as a point feature, and the

able 2
rimary rules for classifying the six traffic source-sink areas based on the distributions of

Residential Commercial

Strong sink-source 4.5–9.5 >27.5 

Weak  sink-source <8.5 >27.5 

High  Equilibrium 8.5–9.5 >27.5 

Low  Equilibrium <1.5 N/A 

Weak  source-sink 6.5–9.5 >2.5 

Moderate source-sink >9.5 <12.5 
system computed the number of each point features inside every
1 km × 1 km cell to match the framework of source-sink areas. Fig. 9
shows the resulting density maps that depict the spatial distribu-
tions of various land uses in the study area.

In order to examine the spatial variation of a geographic fea-
ture’s density and compare across different features, we  use the
normalized density Lk[i, j] to capture the relative intensity of kth
(k = 1,. . .,9) feature for pixel [i, j] such as,

Lk[i, j] = Nk[i, j]∑

Nk[l, m]/M

where the numerator Nk[i, j] denotes the number of points
inside cell [i, j], the dominator is the average number of a

 four classes of point features.

 Institutional and recreational Industrial

>12.5 N/A
<12.5 N/A
<12.5 N/A
N/A N/A
<4.5 N/A
<4.5 N/A
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Fig. 10. Relative densities of land use features for various

eographic feature in a cell (i.e., its total number divided by the
umber of pixels in the study area M (=1437)).

.2. Characterizing traffic source-sink areas by land use features

For each type of the six traffic source-sink areas, the average
f normalized density Lk[i, j] for the kth feature (across all cells
hat are classified to this particular type of traffic area) is com-
uted and plotted in Fig. 10a. With regard to the pattern of strong
ource-sink areas, the normalized densities of shopping places,
otels, restaurants, government offices, and parks are greater than
hose of other features such as residential subdivisions. In other
ords, these geographic features tend to be sinks in morning time

ut sources in afternoon/evening time. For moderate source-sink
reas, the highest density is in that of residential subdivisions, indi-
ating that indeed moderate source-sink areas tend to be associated
ith residential-dominated areas. The pattern of weak source-sink

reas is consistent with (though of lower densities) that of strong
ource-sink areas; and the pattern of weak source-sink is also sim-
lar to but with lower densities than that of moderate source-sink

reas. Except for factories, the normalized densities of all feature
lasses are higher in high-equilibrium areas (mixed land uses) than
n low-equilibrium areas. Most factories are located in the subur-
an areas in Shanghai, and their normalized densities are higher
atterns: (a) 9 feature classes and (b) 4 aggregated classes.

in low-equilibrium areas (with mixed agriculture-industrial land
uses) than those in high-equilibrium areas.

In order to further clarify the association of traffic source-sink
areas with land uses, we consolidate the nine feature classes into
four land use types: residential, commercial (including shopping
place, hotel, and restaurant), institutional and recreational (includ-
ing government office, hospital, school, and park), and industrial. As
shown in Fig. 10b, the patterns discussed above become clear: (1)
the strong source-sink areas are associated with commercial and
institutional and recreational land uses, so are the weak source-
sink areas, (2) both moderate and weak source-sink areas are
foremost associated with residential areas, (3) high-equilibrium
areas are most likely mixed residential-commercial-institutional-
recreational land uses, and (4) low-equilibrium areas are often
linked to industrial more than any other land uses.

Two  approaches are used here to quantitatively examine the
relationship between the six types of traffic source-sink areas and
land uses. First, the classification tree method helps us to explain
responses organized in a tree structure on a categorical depen-
dent variable (Breiman, Friedman, Olshen, & Stone, 1984). In this
research, the four predictor-variables are the actual normalized

densities of the four consolidated feature classes (land uses) in all
pixels, and the predicted outcomes are the six traffic source-sink
areas. The method is used to map  the ranges of four predictor vari-
ables to the six traffic areas. After training a classification tree, a
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Fig. 11. Correspondence analysis plot of trip patterns and land use classes.
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otal accuracy of 83.5% (Kappa coefficient = 0.623) is achieved with
he primary rules listed in Table 2. It is clear that the rules are con-
istent with the dependence relations between trips and land uses.
ote that the industrial land use is not involved in any rules, since

he spatial distributions of factories and the other classes of points,
.g. shopping places, are complementary and dependent among
hem (cf. Fig. 9).

Another approach, correspondence analysis, is used to exam-
ne the linkage between source-sink areas and land use features.
orrespondence analysis represents associations in a table of fre-
uencies or counts to a two-dimension graph (Greenacre, 1983).
e categorize all pixels into five types: residential-dominant (RD),

ommercial-dominant (CD), institutional & recreational-dominant
IRD), industrial- dominant (ID), and zero (Z), according to the max-
mum normalized densities of the four aggregated land use classes.
f no point is inside a pixel, then the pixel is denoted as zero.
ence, two classification schemata are available. They are based
n temporal trip patterns and point distributions. With these two
lassification schemata, the graphical output (Fig. 11)  of a corre-
pondence analysis shows that weak source-sink and moderate
ource-sink areas are quite close to the class of RD, indicating that

hese two types of traffic areas tend to be located at residential-
ominant areas. Similarly, low-equilibrium area is close to classes

 and ID, which are in the suburbia. Last, strong and weak source-
ink areas as well as high-equilibrium area have closer associations
to CD and IRD than to other land use classes. The correspondence
analysis confirms the findings obtained from the classification tree
method.

4.3. Urban structure revealed by traffic source-sink areas

Our final analysis revisits the issue of urban form, and exam-
ines how the distribution of traffic source-sink areas corresponds
to their location in terms of distance from the city center. This
can be confirmed by the spatial distribution of the six trip-based
land use classes. As the urban development of Shanghai is con-
fined by the coastal line as well as the Yangtze River, the shape of
the city resembles more to an eclipse than a perfect circle (shown
in Fig. 2c). Fig. 12a shows six ellipses with the same center and
eccentricity as the minor semi-axes increases from 1 km to 13 km
by an increment of 2 km.  In each of the six zones, the proportions
of the traffic source-sink areas are computed. Fig. 12b shows the
distribution of various source-sink areas within each zone. From
inner to outer zones, the composition of traffic areas changes from
predominantly strong source-sink, to weak source-sink & moder-
ate source-sink, to moderate source-sink, to weak source-sink, and

mostly low-equilibrium areas. It indicates declining land use inten-
sity gradually toward outer zones, and corresponding change in
land use type from mostly commercial and institutional toward
more residential areas. This pattern is consistent with the findings
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Fig. 12. “Concentric” urban structure revealed by trip patterns: (a) six ellipses with semi minor-axes of 1 km, 3 km,  5 km, 7 km,  9 km,  and 13 km, (b) proportions of various
s
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ource-sink areas in zones.

y Li, Wu,  and Gao (2007), which revealed the concentric pattern
n Shanghai using census and survey data.

. Conclusions
Much of the existing literature on the interdependence between
rban land use and travel patterns focuses on estimating traffic
r explaining trip lengths from land use. This research attempts
o examine the reversed linkage by revealing intra-urban land use
variations from O-D traffic patterns. Using a seven-day taxi trajec-
tory data set in Shanghai, we  investigate the temporal variations
of both pick-ups and drop-offs, and identify how different types of
land use features play different roles at different times of a day in
trip generation.
Overall, the distributions of taxi pick-ups and drop-offs well
reflect the urban activity space, and their temporal variations
exhibit a strong daily routine with three peaks in the morning,
noon and early evening. The temporal patterns of pick-ups and
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rops-offs vary a great deal from place to place, and are dependent
n the function of the place. The balance between them, namely
rop-offs pick-ups balance vector (DPBV), and its variation over

 24-h time span signal the function at a particular location. Bor-
owing the terms from ecological studies, a sink area of trips has
ore inflow traffic than outflow and thus a positive DPBV, and a

ource area the opposite. A typical residential area is a source area in
orning time but a sink area in evening time, and a non-residential

rea (e.g., commercial, industrial, institutional-recreational) is the
pposite. By examining the temporal patterns of DPBV across the
tudy area of 1437 cells of 1 km × 1 km,  we have identified six
ypes of traffic areas: strong source-sink, weak source-sink, low
quilibrium, high equilibrium, weak source-sink, and moderate
ource-sink. A source-sink area is a sink area in morning time and a
ource area in evening time, a source-sink area is reversed, and an
quilibrium area has the numbers of pick-ups and drop-offs roughly
alanced in each hour. Terms “strong”, “moderate” and “weak” refer
o traffic volume.

Based on the data from a local map  supplier, four land use
ypes are identified: residential, commercial (including shopping
lace, hotel, and restaurant), institutional and recreational (includ-

ng government office, hospital, school, and park), and industrial. A
lose examination of the normalized densities of the four land use
eatures in each source-sink area reveals their association patterns.
oth strong and weak source-sink areas are primarily commer-
ial and institutional and recreational land uses. Both moderate
nd weak source-sink areas tend to be associated with residen-
ial areas. High-equilibrium areas are most likely mixed land uses
f high intensity, and low-equilibrium areas are often linked to
ndustrial more than any other land uses. The classification tree
nd correspondence analysis methods further confirm the relation-
hips. By dividing the study area to several “concentric” eclipses, we
re able to show that land use type changes from mostly commer-
ial and institutional toward more residential areas, and that land
se intensity declines toward outer zones. Both are reflected in the
arying DPBV and composition of various traffic source-sink areas.
e believe that increasing availability of human mobility data from

ocation aware devices will enable us to derive urban land use infor-
ation and detect changes in a timely fashion, and help us identify

nd understand the process of urban structure change. The infor-
ation will also be valuable for urban planners and policy makers

n mitigating traffic, planning for public services and resources, and
ther purposes.
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