
Joint Proceedings of:

»PNSE’13«
International Workshop on

Petri Nets and Software Engineering

»ModBE’13«
International Workshop on

Modeling and Business Environments

Satellite events of the

34th International Conference on
Application and Theory of Petri Nets

and Concurrency

Milano, Italy, June, 2013

Compilation Editor:
Daniel Moldt
University of Hamburg
Department of Informatics
Theoretical Foundations of Informatics
Vogt-Kölln-Str. 30
D-22527 Hamburg
Germany
http://www.informatik.uni-hamburg.de/TGI/

These proceedings are published online by the editor as Volume 989 at

CEUR Workshop Proceedings
ISSN 1613-0073
http://ceur-ws.org/Vol-989

Copyright c© 2013 for the individual papers by the papers’ authors. Copying per-
mitted only for private and academic purposes. This volume is published and copy-
righted by its editors.

Contents

PNSE’13 Proceedings

Part I PNSE’13: Invited Talk

Coordination for Situated MAS:
Towards an Event-driven Architecture
Andrea Omicini and Stefano Mariani . 17

Part II PNSE’13: Long Presentations

A Canonical Contraction for Safe Petri Nets
Thomas Chatain and Stefan Haar . 25

Symbolic Verification of ECA Rules
Xiaoqing Jin, Yousra Lembachar and Gianfranco Ciardo 41

Soundness of Workflow Nets with an Unbounded Resource is
Decidable
Vladimir A. Bashkin and Irina A. Lomazova . 61

Modeling Distributed Private Key Generation by Composing
Petri Nets
Luca Bernardinello, Görkem Kılınç, Elisabetta Mangioni and Lucia
Pomello . 77

Integrating Web Services in Petri Net-based Agent
Applications
Lawrence Cabac, Tobias Betz, Michael Duvigneau, Thomas Wagner
and Matthias Wester-Ebbinghaus . 97

Petri Nets as a Means to Validate an Architecture for Time
Aware Systems
Francesco Fiamberti, Daniela Micucci and Francesco Tisato 117

Part III PNSE’13: Short Presentations

A Framework for Efficiently Deciding Language Inclusion for
Sound Unlabelled WF-Nets
Dennis Schunselaar, Eric Verbeek, Wil van der Aalst and Hajo A. Reijers135

Introducing Catch Arcs to Java Reference Nets
Lawrence Cabac and Michael Simon . 155

A System Performance in Presence of Faults Modeling
Framework Using AADL and GSPNs
Belhassen Mazigh and Kais Ben Fadhel . 169

Coloured Petri Nets Refinements
Christine Choppy, Laure Petrucci and Alfred Sanogo 187

Petri Nets-Based Development of Dynamically Reconfigurable
Embedded Systems
Tomáš Richta, Vladimír Janoušek and Radek Kočí 203

Decomposing Replay Problems: A Case Study
Eric Verbeek and Wil van der Aalst . 219

Part IV PNSE’13: Short Papers

Building Petri Nets Tools around Neco Compiler
Łukasz Fronc and Franck Pommereau . 239

RT-Studio: A Tool for Modular Design and Analysis of
Realtime Systems Using Interpreted Time Petri Nets
Rachid Hadjidj and Hanifa Boucheneb . 247

Part V PNSE’13: Poster Abstracts

A Tool to Synthesize Intelligible State Machine Models from
Choreography using Petri Nets
Toshiyuki Miyamoto and Hiroyuki Oimura . 257

Transforming Platform Independent CPN Models into Code
for the TinyOS Platform: A Case Study of the RPL Protocol
Vegard Veiset and Lars Michael Kristensen . 259

ModBE’13 Proceedings

Part VI ModBE’13: Invited Talk

Knowledge and Business Intelligence Technologies in Cross-
Enterprise Environments for Italian Advanced Mechanical
Industry
Ernesto Damiani and Paolo Ceravolo . 271

Part VII ModBE’13: Long Presentations

Optimizing Algebraic Petri Net Model Checking by Slicing
Yasir Imtiaz Khan and Matteo Risoldi . 275

A Proposal for the Modeling of Organizational Structures
and Agent Knowledge in MAS
Lawrence Cabac, David Mosteller, Matthias Wester-Ebbinghaus 295

Mining Declarative Models Using Time Intervals
Jan Martijn van der Werf, Ronny Mans and Wil van der Aalst 313

Part VIII ModBE’13: Short Presentation

Improving Emergency Department Processes Using Coloured
Petri Nets
Khodakaram Salimifard, Seyed Yaghoub Hosseini and Mohammad
Sadegh Moradi . 335

Part IX ModBE’13: Poster Abstracts

Advantages of a Full Integration between Agents and
Workflows
Thomas Wagner and Lawrence Cabac . 353

Cloud Transition for QoS Modeling of Inter-Organizational
Workflows
Sofiane Bendoukha and Lawrence Cabac . 355

Editors: Daniel Moldt and
Heiko Rölke

Proceedings of the
International Workshop on

P etri
N ets and
S oftware
E ngineering
PNSE’13

University of Hamburg
Department of Informatics

These proceedings are published online by the editors as Volume 989 at

CEUR Workshop Proceedings
ISSN 1613-0073
http://ceur-ws.org/Vol-989

Copyright for the individual papers is held by the papers’ authors. Copying is per-
mitted only for private and academic purposes. This volume is published and copy-
righted by its editors.

Preface

These are the proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE’13) in Milano, Italy, June 24–25, 2013. It is
a co-located event of Petri Nets 2013, the 34th international conference on
Applications and Theory of Petri Nets and Concurrency.

More information about the workshop can be found at

http://www.informatik.uni-hamburg.de/TGI/events/pnse13/

For the successful realisation of complex systems of interacting and reactive
software and hardware components the use of a precise language at different
stages of the development process is of crucial importance. Petri nets are be-
coming increasingly popular in this area, as they provide a uniform language
supporting the tasks of modelling, validation, and verification. Their popular-
ity is due to the fact that Petri nets capture fundamental aspects of causality,
concurrency and choice in a natural and mathematically precise way without
compromising readability.

The use of Petri Nets (P/T-Nets, Coloured Petri Nets and extensions) in
the formal process of software engineering, covering modelling, validation, and
verification, will be presented as well as their application and tools supporting
the disciplines mentioned above.
The program committee consists of:

Wil van der Aalst (The Netherlands)
Kamel Barkaoui (France)
Didier Buchs (Switzerland)
Lawrence Cabac (Germany)
Piotr Chrzastowski-Wachtel (Poland)
Gianfranco Ciardo (USA)
José-Manuel Colom (Spain)
Jörg Desel (Germany)
Raymond Devillers (Belgium)
Jorge C.A. de Figueiredo (Brasilia)
Giuliana Franceschinis (Italy)
Luís Gomes (Portugal)
Stefan Haar (France)
Serge Haddad (France)
Xudong He (USA)
Kees van Hee (The Netherlands)
Thomas Hildebrandt (Danmark)
Kunihiko Hiraishi (Japan)
Vladimír Janoušek (Czech republic)
Gabriel Juhás (Slovakia)
Peter Kemper (USA)
Astrid Kiehn (India)

10 PNSE’13 – Petri Nets and Software Engineering

Hanna Klaudel (France)
Radek Kočí (Czech republic)
Fabrice Kordon (France)
Maciej Koutny (United Kingdom) Lars Kristensen (Norway)
Michael Köhler-Bußmeier (Germany)
Johan Lilius (Finland)
Robert Lorenz (Germany)
Daniel Moldt (Germany) (Chair)
Chun Ouyang (Australia)
Wojciech Penczek (Poland)
Laure Petrucci (France)
Lucia Pomello (Italy)
Heiko Rölke (Germany) (Chair)
Catherine Tessier (France)
H.M.W. (Eric) Verbeek (Netherlands)
Karsten Wolf (Germany)

We received 25 high-quality contributions. For each paper three to four re-
views were made. The program committee has accepted six of them for full
presentation. Furthermore the committee accepted six papers as short pre-
sentations and two short papers. Two more contributions were accepted as
posters.

The international program committee was supported by the valued work of
Edmundo López Bóbeda,
Görkem Kılınç,
Reng Zeng,
Benoît Barbot,
Alexis Marechal and
Artur Meski
as additional reviewers. Their work is highly appreciated.

Furthermore, we would like to thank our colleagues in the local organization
team at the University of Milano, Italy, for their support.

Without the enormous efforts of authors, reviewers, PC members and the or-
ganizational team this workshop wouldn’t provide such an interesting booklet.

Thanks!
Daniel Moldt and Heiko Rölke Hamburg, June 2013

PNSE’13 Proceedings

Part I PNSE’13: Invited Talk

Coordination for Situated MAS:
Towards an Event-driven Architecture
Andrea Omicini and Stefano Mariani . 17

Part II PNSE’13: Long Presentations

A Canonical Contraction for Safe Petri Nets
Thomas Chatain and Stefan Haar . 25

Symbolic Verification of ECA Rules
Xiaoqing Jin, Yousra Lembachar and Gianfranco Ciardo 41

Soundness of Workflow Nets with an Unbounded Resource is
Decidable
Vladimir A. Bashkin and Irina A. Lomazova . 61

Modeling Distributed Private Key Generation by Composing
Petri Nets
Luca Bernardinello, Görkem Kılınç, Elisabetta Mangioni and Lucia
Pomello . 77

Integrating Web Services in Petri Net-based Agent
Applications
Lawrence Cabac, Tobias Betz, Michael Duvigneau, Thomas Wagner
and Matthias Wester-Ebbinghaus . 97

Petri Nets as a Means to Validate an Architecture for Time
Aware Systems
Francesco Fiamberti, Daniela Micucci and Francesco Tisato 117

Part III PNSE’13: Short Presentations

A Framework for Efficiently Deciding Language Inclusion for
Sound Unlabelled WF-Nets
Dennis Schunselaar, Eric Verbeek, Wil van der Aalst and Hajo A. Reijers135

Introducing Catch Arcs to Java Reference Nets
Lawrence Cabac and Michael Simon . 155

A System Performance in Presence of Faults Modeling
Framework Using AADL and GSPNs
Belhassen Mazigh and Kais Ben Fadhel . 169

Coloured Petri Nets Refinements
Christine Choppy, Laure Petrucci and Alfred Sanogo 187

Petri Nets-Based Development of Dynamically Reconfigurable
Embedded Systems
Tomáš Richta, Vladimír Janoušek and Radek Kočí 203

Decomposing Replay Problems: A Case Study
Eric Verbeek and Wil van der Aalst . 219

Part IV PNSE’13: Short Papers

Building Petri Nets Tools around Neco Compiler
Łukasz Fronc and Franck Pommereau . 239

RT-Studio: A Tool for Modular Design and Analysis of
Realtime Systems Using Interpreted Time Petri Nets
Rachid Hadjidj and Hanifa Boucheneb . 247

Part V PNSE’13: Poster Abstracts

A Tool to Synthesize Intelligible State Machine Models from
Choreography using Petri Nets
Toshiyuki Miyamoto and Hiroyuki Oimura . 257

Transforming Platform Independent CPN Models into Code
for the TinyOS Platform: A Case Study of the RPL Protocol
Vegard Veiset and Lars Michael Kristensen . 259

Part I

PNSE’13: Invited Talk

Coordination for Situated MAS:
Towards an Event-driven Architecture

Andrea Omicini and Stefano Mariani

Dipartimento di Informatica–Scienza e Ingegneria (DISI)
Alma Mater Studiorum–Università di Bologna, Italy

{andrea.omicini, s.mariani}@unibo.it

Abstract Complex software systems modelled as multi-agent systems
(MAS) are characterised by activities that are generated either by agents,
or by the environment in its most general acceptation—that is, environ-
mental resources and the spatio-temporal fabric. Modelling and engin-
eering complex multi-agent systems (MAS) – such as pervasive, adaptive,
and situated MAS – requires then to properly handle diverse classes of
events: agent operations, resource events, spatio-temporal situation.
In the following, first we devise out the requirements for a software ar-
chitecture for an agent-based middleware based on boundary artefacts,
then we sketch a concrete architecture based on the TuCSoN middleware
for MAS coordination.

1 Motivation

Today’s complex computational systems more and more require strict coupling
with the environment: pervasive, adaptive, self-organising systems need to work
as situated systems, able to react to relevant changes in the environment, and to
possibly act over it appropriately and timely. Interaction with the environment
is then one of the main issue in complex computational systems nowadays [1].

On the other hand, agent-oriented abstractions and technologies provide a
solid ground for complex system modelling and engineering: in particular, meta-
models like A&A [2], middlewares like CArtAgO [3], JADE [4], TuCSoN [5],
agent-oriented methodologies like Gaia [6], PASSI [7] and SODA [8] already
proved their effectiveness in dealing with the engineering of complex software
systems [9]. The reactive nature of situated systems, however, does not cope
well with the proactive nature of agency, at least not with no compromise: in
particular, the event-driven computational model pushed by system situation
does not match straightforwardly the typical high-level programming model of
agent-oriented languages—in particular those for intelligent agents.

While such issues are typically faced with more articulated agent languages
and architectures – like hybrid agents architectures –, their increasing complexity
(in particular in size and number of components and events) mandates for prin-
cipled solutions, possibly at system level rather than at single-component level.
Accordingly, in the following we sketch an event-driven architecture for agent
middleware exploiting coordination abstractions for event handling, discuss its

abstract features, and describe a possible reification as a concrete architecture
based on the TuCSoN middleware for multi-agent system (MAS) coordination.

2 MAS as Event-driven Systems

Situated systems have to deal with the environment as the main source of activ-
ity, as well as the foremost target for their own activity. Environment activity
is typically modelled in terms of events, whose interaction with computational
systems is articulated in a number of stages: at least, selection of potentially-
relevant events, perception of selected events, delivering of perceived events to
designed components, elaboration of events by components. Moreover, situated-
ness also means reactiveness to the spatio-temporal fabric: perceiving and re-
acting to events related to location and motion in space, and to the passage
of time, are essential features of mobile and pervasive computing applications.
In the overall, dealing with situatedness basically requires an event-driven pro-
gramming model, along with a suitable choice of the representation language for
environment events.

On the other hand, modelling a complex computational system as a MAS
basically accounts to encapsulating system activities within agents. Whereas the
notion of environment as a sort of external source of event is more or less easy
to accept, the same does not hold for agents. However, agents in an open MAS
are possibly not designed and controlled by the MAS designer: so, their activity
should be in principle handled again as an unpredictable source of events: either
for openness, or for the intrinsic complexity that an agent behaviour may in
principle encapsulate. Accordingly, both organisation and security issues require
modelling agents, too, as (possibly unpredictable) event sources within MAS, to
be possibly handled via event-driven engineering techniques.

As a result, an event-driven view of MAS is possible, where agents and the
environment are the sources of all activities, and the overall behaviour of the
MAS is obtained by suitably modelling activities as events, and governing them
through suitable event-driven models and technologies.

3 Boundary & Coordination Artefacts

Whereas agents and environment are the most suitable abstractions to handle
activities in a MAS, artefacts – being reactive by definition – are the most
suitable abstractions to encapsulate reactive behaviours—so, the most suitable
way to handle events in a complex MAS, according to the A&A meta-model [2].

The first issue is to map activities of any sort – even possibly unpredictable
ones – upon a set of admissible events—that is, those events that are accep-
ted and handled by the MAS. Apart from an appropriate model, this requires
suitably-defined architectural abstractions embedding such a mapping. This is
in fact the role of boundary artefacts, which mediate between agents and the
MAS, as well as between the MAS and its environment.

18 PNSE’13 – Petri Nets and Software Engineering

In particular, we envision a principled MAS architecture where each agent
and each resource in the environment is associated to its own boundary artefact,
working on the one hand as a proxy for the agent / resource within the MAS, on
the other hand as a sort of interface for the agent / resource towards the MAS.
Known examples of boundary artefacts are Agent Communication Contexts [10]
and the abstractions of Law-Governed Linda [11].

However, once brought within a MAS by a boundary artefact, an admissible
event has to be handled to possibly generate other events and / or computational
activities, defining the overall behaviour of a MAS: for instance, to aggregate
events from resources, like a bunch of sensors. This is the role of coordination
artefacts [12], which capture admissible MAS events, and associate them to
computational activities implementing coordination laws, possibly generating
further events, and giving raise to event chains.

With respect to the classification of artefacts introduced by the A&A meta-
model [13], individual and resource artefacts are basically represented here by
boundary artefacts, whereas social artefacts play roughly the role of coordina-
tion artefacts, here. In principle, however, boundary artefacts have a much more
limited function with respect to individual and resource artefacts, which are de-
voted also to contain the basic coordination policies related to individual agents
and resources. Then, a more precise architectural mapping would require indi-
vidual coordination artefacts to be associated to boundary artefacts in order to
achieve the same sort of architectural functionality provided by A&A individual
artefacts.

4 A Concrete Event-driven Architecture in TuCSoN

The abstract architecture sketched above essentially models complex MAS as
composed of proactive entities (agents, environment resources, space-time fabric)
and reactive entities (boundary and coordination artefacts), connected together
by a net of co-ordinated events. Quite unsurprisingly, a possible reification of
such an abstract architecture can be designed upon the TuCSoN middleware for
MAS coordination [5].

First of all, it is quite easy to map coordination artefacts upon ReSpecT tuple
centres [14], which are the coordination abstraction provided by TuCSoN. There,
computational activities devoted to MAS coordination can be represented in
terms of the ReSpecT logic-based specification language [15], allowing admissible
events to be associated to reactions, possibly generating further events within a
MAS.

Then, two middleware abstractions play the role of boundary artefacts in
TuCSoN: agent coordination contexts (ACC) [16], for agents, and transducers
[17], for resources. On the one hand, ACC play the role of security and organ-
isation abstractions [18]: each agent has an associated ACC that mediates all
the agent interactions with the TuCSoN system, working both as its representat-
ive within the TuCSoN-coordinated MAS, and as its interface towards the MAS
itself, providing the agent with available operations. On the other hand, trans-

A. Omicini and S. Mariani: Coordination for Situated MAS 19

ducers [17] are in charge of representing individual resources, along with their
own peculiar ways of interacting: each portion of the MAS environment repres-
ented by a resource is associated to its specific transducer, capable of two-way
interaction to map meaningful resource events upon admissible MAS events.

Mapping our abstract event-driven architecture upon the TuCSoN middle-
ware obviously mandates for a complete event driven model. In TuCSoN, this is
achieved by (i) generalising the TuCSoN notion of admissible event, and (ii) ex-
tending ReSpecT as a full-fledge event-driven language, capable of dealing with
general-purpose events, enabling ReSpecT tuple centres to work as event-driven
abstractions for MAS coordination—as discussed in [19].

In order to test the effectiveness of the abstract architecture depicted above,
as well as of the corresponding TuCSoN-based concrete architecture for event-
driven engineering of complex MAS, experiments were conducted, by exploiting
the TuCSoN technology in complex application scenarios. In particular, TuCSoN
is currently adopted for the implementation of the Molecules of Knowledge (MoK
for short) model for knowledge self-organisation [20], and for the testing of the
SAPERE middleware for pervasive adaptive services [21].

The TuCSoN middleware is available as an open source project [22], and
in its current stage of development features ACC in its main distribution. The
most general notion of transducers (with transducer managers for middleware
lifecycle) and the complete situated version of ReSpecT are instead currently
under testing.

Acknowledgements

The authors would like to thank the organisers of PNSE’13 and ModBE’13 –
and in particular Daniel Moldt – for inviting our contribution.

This work has been supported by the EU-FP7-FET Proactive pro-
ject SAPERE – Self-Aware PERvasive service Ecosystems, under contract
no. 256873.

References

1. Weyns, D., Omicini, A., Odell, J.J.: Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 14(1) (Feb-
ruary 2007) 5–30 Special Issue on Environments for Multi-agent Systems.

2. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-
agent systems. Autonomous Agents and Multi-Agent Systems 17(3) (December
2008) 432–456 Special Issue on Foundations, Advanced Topics and Industrial Per-
spectives of Multi-Agent Systems.

3. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A framework for prototyping artifact-
based environments in MAS. In Weyns, D., Parunak, H.V.D., Michel, F., eds.:
Environments for MultiAgent Systems III. Volume 4389 of LNAI. Springer
(May 2007) 67–86 3rd International Workshop (E4MAS 2006), Hakodate, Japan,
8 May 2006. Selected Revised and Invited Papers.

20 PNSE’13 – Petri Nets and Software Engineering

4. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (February 2007)

5. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2(3) (September 1999) 251–269
Special Issue: Coordination Mechanisms for Web Agents.

6. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engeneering Methodolo-
gies 12(3) (2003) 317–370

7. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The PASSI and agile PASSI
MAS meta-models compared with a unifying proposal. In Pechoucek, M., Petta,
P., Varga, L.Z., eds.: Multi-Agent Systems and Applications IV. Volume 3690 of
LNCS., Springer (2005) 183–192 4th International Central and Eastern European
Conference on Multi-Agent Systems, CEEMAS 2005, Budapest, Hungary, Septem-
ber 15-17, 2005, Proceedings.

8. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts.
In Dikenelli, O., Gleizes, M.P., Ricci, A., eds.: Engineering Societies in the Agents
World VI. Volume 3963 of LNAI. Springer (June 2006) 49–62 6th International
Workshop (ESAW 2005), Kuşadası, Aydın, Turkey, 26–28 October 2005. Revised,
Selected & Invited Papers.

9. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems 9(3) (Novem-
ber 2004) 253–283 Special Issue: Challenges for Agent-Based Computing.

10. Di Stefano, A., Santoro, C.: Modeling multi-agent communication contexts. In:
1st International Joint Conference on Autonomous Agents & Multiagent Systems
(AAMAS 2002), Bologna, Italy, ACM Press (15–19 July 2002) 174–175 Proceed-
ings.

11. Minsky, N.H., Leichter, J.: Law-Governed Linda as a coordination model. In Cian-
carini, P., Nierstrasz, O., Yonezawa, A., eds.: Object-based Models and Languages
for Concurrent Systems. Volume 924 of LNCS. Springer (1995) 125–146

12. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M., eds.: 3rd international Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004). Volume 1., New
York, USA, ACM (19–23 July 2004) 286–293

13. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for
MAS. Electronic Notes in Theoretical Computer Science 150(3) (29 May 2006)
21–36 1st International Workshop “Coordination and Organization” (CoOrg 2005),
COORDINATION 2005, Namur, Belgium, 22 April 2005. Proceedings.

14. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3) (November 2001) 277–294

15. Omicini, A.: Formal ReSpecT in the A&A perspective. Electronic Notes in The-
oretical Computer Science 175(2) (June 2007) 97–117 5th International Work-
shop on Foundations of Coordination Languages and Software Architectures (FO-
CLASA’06), CONCUR’06, Bonn, Germany, 31 August 2006. Post-proceedings.

16. Omicini, A.: Towards a notion of agent coordination context. In Marinescu, D.C.,
Lee, C., eds.: Process Coordination and Ubiquitous Computing. CRC Press, Boca
Raton, FL, USA (October 2002) 187–200

17. Casadei, M., Omicini, A.: Situated tuple centres in ReSpecT. In Shin, S.Y., Os-
sowski, S., Menezes, R., Viroli, M., eds.: 24th Annual ACM Symposium on Applied
Computing (SAC 2009). Volume III., Honolulu, Hawai’i, USA, ACM (8–12 March
2009) 1361–1368

A. Omicini and S. Mariani: Coordination for Situated MAS 21

18. Omicini, A., Ricci, A., Viroli, M.: Agent Coordination Contexts for the formal spe-
cification and enactment of coordination and security policies. Science of Computer
Programming 63(1) (November 2006) 88–107 Special Issue on Security Issues in
Coordination Models, Languages, and Systems.

19. Mariani, S., Omicini, A.: Event-driven programming for situated MAS with Re-
SpecT tuple centres. In: Workshop on Agent Based Computing: From Model to
Implementation X (ABC:MI 2013), Koblenz, Germany (September 2013) Proceed-
ings.

20. Mariani, S., Omicini, A.: Molecules of Knowledge: Self-organisation in knowledge-
intensive environments. In Fortino, G., Bădică, C., Malgeri, M., Unland, R., eds.:
Intelligent Distributed Computing VI. Volume 446 of Studies in Computational
Intelligence., Springer (2013) 17–22 6th International Symposium on Intelligent
Distributed Computing (IDC 2012), Calabria, Italy, 24-26 September 2012. Pro-
ceedings.

21. Zambonelli, F., Castelli, G., Ferrari, L., Mamei, M., Rosi, A., Di Marzo Seru-
gendo, G., Risoldi, M., Tchao, A.E., Dobson, S., Stevenson, G., Ye, Y., Nardini,
E., Omicini, A., Montagna, S., Viroli, M., Ferscha, A., Maschek, S., Wally, B.:
Self-aware pervasive service ecosystems. Procedia Computer Science 7 (December
2011) 197–199 Proceedings of the 2nd European Future Technologies Conference
and Exhibition 2011 (FET 11).

22. TuCSoN: Home page. http://tucson.apice.unibo.it

22 PNSE’13 – Petri Nets and Software Engineering

Part II

PNSE’13: Long Presentations

A Canonical Contraction for Safe Petri Nets?

Thomas Chatain and Stefan Haar

INRIA & LSV (CNRS & ENS Cachan)
61, avenue du Président Wilson
94235 CACHAN Cedex, France
{chatain, haar}@lsv.ens-cachan.fr

Abstract. Under maximal semantics, the occurrence of an event a in a
concurrent run of an occurrence net may imply the occurrence of other
events, not causally related to a, in the same run. In recent works, we have
formalized this phenomenon as the reveals relation, and used it to obtain
a contraction of sets of events called facets in the context of occurrence
nets. Here, we extend this idea to propose a canonical contraction of
general safe Petri nets into pieces of partial-order behaviour which can be
seen as “macro-transitions” since all their events must occur together in
maximal semantics. On occurrence nets, our construction coincides with
the facets abstraction. Our contraction preserves the maximal semantics
in the sense that the maximal processes of the contracted net are in
bijection with those of the original net.

1 Introduction and Motivation

The properties of the long-run, maximal behaviour of discrete event systems
contains also correlations between occurrences, i.e. relations of the type “if a
fires, then b will fire sooner or later – unless it already has”. This could be
exploited in predicting (in the sense e.g. of failure prognosis, see [8]) events that
inevitably will occur: Consider the sequential system shown in Figure 1(a). It is
given here as a Petri net for convenience, but easily translated into an equivalent
finite automaton of six states, eight transitions and initial state 0. When in state
0, the system can perform either a, e, or h. Whatever the choice of the first
transition, however, in each case the second choice is imposed: after a no other
transition than b is possible, after e only f , and after h only i.

It is known that structural transformations can facilitate verification of some
system properties, as witnessed by e.g. Berthelot [3], Desel and Merceron [5],
and other works. Here, we focus on other properties, those that depend only on
the language of the maximal runs of the system, such as liveness properties, or
particular other properties such as diagnosability or predictability, see [9,10]. In
such a perspective, the system can be thought of as contracted : any stretch of
consecutive transitions that occur always together in a maximal behavior pro-
vided that any one of them occurs, is fused into a single macro-transition that
inherits pre- and post-places from the first and (if it exists) last transitions. In
Figure 1(b): each of the new transitions is labeled with the transition chain that
? This work is supported by the French ANR project ImpRo (ANR-2010-BLAN-0317).

0•

1

2

3

4

5

a

b

c

d

e

f

g

hi

(a) (A Petri net representation of) an automaton

0•

2

ab

cgf

def

hiω

(b) Its contraction

Fig. 1. Contracting automata by removing non-branching states (here 1, 3, 4 and 5)

it represents. Note that the infinite word hiω is obtained via a single macro-
transition without post-place, since the word has no last transition. Of course,
not all temporal properties of the system are preserved, since not all finite words
survive the contraction: abcg is a word produced by a run in Figure 1(a), but
not in Figure 1(b) which has no intermediate word between (ab) and (ab)(cgf).
However, one sees quickly that the maximal words – which coincide with the
infinite words – of the original system of Figure 1(a) are in bijection with the in-
finite words of the contracted system in Figure 1(b). This contraction represents
a reduction of the original system onto its essential behavior.

When concurrent behavior in partial order semantics is considered, the lan-
guage of words is replaced by a collection of partial orders representing the
non-sequential runs. Best and Randell [4] considered atomicity of subnets in
occurrence graphs, focusing on non-interference in the temporal behavior and
identifying atomic and hence contractable blocks of behavior. The structures
obtained can be embedded into non-branching occurrence nets, allowing the
approach to be compared with ours. However, while the construction of facets
appears geometrically similar, the approach of [6,7,1,2] focuses on the question
of logical occurrence regardless of the order in which events occur. The theory of
the reveals relation and of reduced occurrence nets is given in [6,7,1,2]. Figure
3(a) (whose formal discussion is postponed to Section 2) illustrates the facets of
an occurrence net; the contraction of its facets yields the reduced occurrence net
in Figure 3(b). The present work is based on a combination of the ideas shown,
on the one hand, in the automata contraction such as in the example of Figure 1,
and on the other hand of the facet contraction in the context of occurrence nets.
We will identify macro-transitions in safe Petri nets that allow contraction with
preservation of maximal semantics, and thus to give a contracted normal form
for any given Petri net. If the definition is applied to occurrence nets, we obtain
exactly the facets according to [6,7,1,2]. At the same time, the reduced net has
never more, and generally much fewer, transitions than the original net.

The paper is organized as follows: We begin by recalling the basic definitions
on unfoldings, and results from [6,7,1,2] concerning facets in occurrence nets,
based on the reveals-relation, in Section 2. Section 3 contains the core of the
present work, with the study of macro-transitions that generalize facets from

26 PNSE’13 – Petri Nets and Software Engineering

0• 0′•

1

2

3

4

5

t0t1 t′1

t2 t′2

t3 t′3

t4

t5

(a) A safe Petri net

0• 0′•

1

2

3

4

5

t0t1t
′
1

t2 t′2

t3t4 t′3t4 tω5

(b) Its canonical contraction. (Place 3 is not
used any more and could be forgotten.)

Fig. 2. Overview of the canonical contraction of a safe Petri net

occurrence nets to safe Petri nets. In Section 4, we identify the canonical reduced
version for a given safe net. The relation between the operations of reduction
and of unfolding is studied in Section 5. Finally, Section 6 concludes.

2 Reveals Relation and Facets in Occurrence Nets

Petri Nets, Occurrence Nets and Unfoldings. This part collects several
basic definitions used below. In this paper, only safe Petri nets are considered.

Definition 1 (Petri Net). A Petri net (PN), or simply net, is a tuple
(P, T, F,M0) where P and T are sets of places and transitions respectively,
F ⊆ (P × T) ∪ (T × P) is a flow relation, and M0 ⊆ P is an initial marking.

For any node x ∈ P ∪T , we call pre-set of x the set •x = {y ∈ P ∪T | (y, x) ∈ F}
and post-set of x the set x• = {y ∈ P ∪ T | (x, y) ∈ F}. A marking of a net
is a subset M of P . A transition t is enabled at M iff •t ⊆ M . Then t can fire,
leading to M ′ = (M \ •t) ∪ t•. In that case, we write M t−→M ′. A marking M
is reachable if M0 −→∗ M , where −→ def

=
⋃
t∈T

t−→. A PN is safe iff for each
reachable marking M , for each transition t enabled at M , (t• ∩M) ⊆ •t. As
usual, in figures, transitions are represented as rectangles and places as circles.
If p ∈M , a black token is drawn in p (see Figure 2(a)).

Partial-order Semantics. Occurrence nets are used to represent the partial-
order behaviour of Petri nets. We need a few definitions to introduce them.
Denote by l the direct causality relation defined as: for any transitions s and t,
sl t

def⇔ s• ∩ •t 6= ∅. We write < for its transitive closure and ≤ for its reflexive

Th. Chatain et al.: A Canonical Contraction for Safe Petri Nets 27

transitive closure, called causality. For any transition t, the set dte def
= {s | s ≤ t}

is the causal past of t, and for T ′ ⊆ T , the causal past of T ′ is defined as
dT ′e def

=
⋃
t∈T ′dte. Two distinct transitions s and t are in direct conflict, denoted

by s #d t, iff •s ∩ •t 6= ∅. Two transitions s and t are in conflict, denoted by
s # t, iff ∃s′ ∈ dse, t′ ∈ dte : s′ #d t

′, and the conflict set of t is defined as
#[t]

def
= {s | s # t}. Finally, two transitions s and t are concurrent, denoted by

s co t, iff ¬(s # t) ∧ ¬(s ≤ t) ∧ ¬(t ≤ s).
Definition 2 (Occurrence net). An occurrence net (ON) is a Petri net
(B,E, F,C0) where elements of B and E are called conditions and events, re-
spectively, and such that:

1. ∀b ∈ C0 •b = ∅,
2. ∀b ∈ B \ C0 |•b| = 1 (no backward branching),
3. ∀e ∈ E ¬(e < e) (≤ is a partial order),
4. ∀e ∈ E ¬(e # e) (no self-conflict),
5. ∀e ∈ E |dee| <∞ (finite cones).

Figure 3(a) gives an example of ON.
Occurrence nets are branching structures which have several possible execu-

tions in general. Each execution appears under the form of a configuration.

Definition 3 (Configurations and Maximal Configurations). A configu-
ration of an ON is a conflict-free and causally closed set of events, i.e. ω ⊆ E is
a configuration iff ∀e ∈ ω, (#[e]∩ω = ∅)∧(dee ⊆ ω). A configuration is maximal
iff it is maximal w.r.t. ⊆. We write Ωgen for the set of all configurations and
Ωmax for the set of maximal configurations.

Executions of safe Petri nets will be represented as non-branching processes,
using occurrence nets related to the original Petri net by a net homomorphism.

Definition 4 (Net homomorphism). A net homomorphism from N =
(P, T, F,M0) to N ′ = (P ′, T ′, F ′,M ′0) is a pair of maps π = (πP , πT), where
πP : P → P ′ and πT : T → T ′, such that:

– for all t ∈ T , πP |•t (the restriction of πP to •t) is a bijection between •t and
•πT (t), and πP |t• is a bijection between t• and πT (t)

•;
– and πP |M0 maps injectively M0 to (a subset of) M ′0.

We will often write simply π instead of πP or πT .

Net homomorphisms preserve the semantics of nets in the sense that they map
every firing sequence of N to a firing sequence of N ′, and πP |M0 needs not be
a bijection for that. If a place p′ of N ′ is not the image of any place of N , it
simply means that the images in N ′ of the firing sequences of N do not use the
token initially in p′. We need this subtlety to define macro-transitions later.

Definition 5 (Branching process). Let N = (P, T, F,M0) be a PN. A
branching process of N is a pair (O, π), where O = (B,E, F ′, C0) is an ON
and π is a homomorphism from (B,E, F ′, C0) to (P, T, F,M0) such that for all
t, t′ ∈ E,

(•t = •t′ ∧ π(t) = π(t′)
)
⇒ t = t′.

28 PNSE’13 – Petri Nets and Software Engineering

0• 0′•

t1

1

t′1

4

t0

t2

2

t′2

2

t3

3

t4

1 5
...

t′3

3

t4

1 5
...

t3

3

t4

1 5

t′3

3

t4

1 5
...

t2

2

t5

2 5

t5

2 5
...

t′2

2

t5

2 5

t5

2 5
...

(a) A prefix of the unfolding of the
Petri net of Figure 2(a). Dashed
boxes indicate facets.

0• 0′•

t1t
′
1

1

4

t0

t2

2

t′2

2

t3t4

1 5
...

t′3t4

1 5
...

t3t4

1 5

t′3t4

1 5
...

t2t
ω
5 t′2t

ω
5

(b) The corresponding reduced ON. The
condensed labels of facets indicate the
events that they contain; e.g. the facet la-
beled t1t′1 is the one depicted in Figure 4(b).

Fig. 3. An ON and its reduction through the facet abstraction.

Definition 6 (Run). A run of a safe Petri net N = (P, T, F,M0) is a branch-
ing process (O, π) of N with O = (B,E, F ′, C0) such that E is a configuration
and π(C0) = M0.

Definition 7 (Prefix). For Π1, Π2 two branching processes, Π1 is a prefix of
Π2, written Π1 v Π2, if there exists an injective homomorphism h from ON1

into ON2, such that the composition π2 ◦ h coincides with π1.

Definition 8 (Maximal run). A run ρ is maximal if it is not a proper prefix of
any run, i.e. for every run ρ′, if ρ is a prefix of ρ′, then ρ and ρ′ are isomorphic.

Th. Chatain et al.: A Canonical Contraction for Safe Petri Nets 29

We define a function µ which allows us to construct the run µ(ω) corresponding
to a configuration ω of an ON.

Definition 9 (µ). Let O = (B,E, F,C0) be an occurrence net. Every conflict-
free set of events E′ ⊆ E defines a run µ(E′) of the Petri net (B,E, F, •E′\E′•)1.
The occurrence net µ(E′) has E′ as events, their pre- and post-sets as conditions,
and •E′ \ E′• as initial conditions. The arcs are the restriction of F to these
events and conditions, and the folding homomorphism π is the identity.

Definition 10 (Unfolding). Let N be a PN. By Theorem 23 of [11], there
exists a unique (up to an isomorphism) v-maximal branching process, called
the unfolding of N and denoted U(N); by abuse of language, we will also call
unfolding of N the ON obtained by the unfolding.

Remark. Occurrence nets are linked to safe Petri nets in the sense that the partial
order unfolding semantics of such Petri nets yields occurrence nets, as defined
above. The converse is true for occurrence nets corresponding to regular trace
languages: Following Zielonka [12], any regular trace language L is accepted by
an asynchronous automaton AL; moreover, AL can be synthesized directly from
L. As there are natural translations from asynchronous automata into safe Petri
nets, the approach extends immediately into a procedure that takes as input an
occurrence net ON and synthesizes a safe Petri net N whose unfolding semantics
yields again ON (up to isomorphism). The present paper aims not at mimicking
this synthesis but rather provides a contraction on the generating safe Petri net
itself; the relation between unfolding and reduction will be clarified below, in
particular Theorems 4 and 5, as well as Figure 6.

Reveals Relation and Facets Abstraction. The structure of an ON defines
three relations over its events: causality, conflict and concurrency. But these
structural relations do not express all logical dependencies between the occur-
rence of events in maximal configurations. A central fact is that concurrency
is not always a logical independency: it is possible that the occurrence of an
event implies, under the perspective of maximal runs, the occurrence of another
one, which is structurally concurrent. This happens with events t1 and t′1 in
Figure 3(a): we observe that t1 is in conflict with t0 and that any maximal
configuration contains either t0 or t′1. Therefore, if t1 occurs in a maximal con-
figuration, then t0 does not occur and eventually t′1 necessarily occurs. Yet t1
and t′1 are concurrent.

Another case is illustrated by events labeled t3 and t4 on the left of the same
figure: because t3 is a causal predecessor of t4, the occurrence of t4 implies the
occurrence of t3; but in any maximal configuration, the occurrence of t3 also
implies the occurrence of t4, because t4 is the only possible continuation to t3
and nothing can prevent it. Then t3 and t4 are actually made logically equivalent
by the maximal progress assumption.
1 Notice that (B,E, F, •E′ \E′•) is not an occurrence net in general: it satisfies items
3, 4 and 5 of Definition 2, but items 1 and 2 may not hold.

30 PNSE’13 – Petri Nets and Software Engineering

Definition 11 (Reveals relation [6,7,1,2]). We say that event e reveals event
f , and write e . f , iff ∀ω ∈ Ωmax, (e ∈ ω ⇒ f ∈ ω).

Definition 12 (Facets Abstraction in Occurrence Nets[6]). Let ∼ be the
equivalence relation defined by ∀ e, f ∈ E : e ∼ f

def⇔ (e . f) ∧ (f . e). Then a
facet of an ON is an equivalence class of ∼.
In Figure 3(a), the facets are highlighted in grey. If ψ is a facet, then for any
maximal configuration ω ∈ Ωmax and for any event e such that e ∈ ψ, e ∈ ω
iff ψ ⊆ ω. In this sense, facets can be seen as atomic sets of events (under the
maximal semantics). Denote the set of O’s facets as Ψ(O).

For any facet and for any configuration, either all events in the facet are
in the configuration or no event in the facet is in the configuration. Therefore,
facets can be seen as events.

Definition 13 (Reduced occurrence net). A reduced ON is an ON
(B,E, F,C0) such that ∀e1, e2 ∈ e, e1 ∼ e2 ⇐⇒ e1 = e2.

As shown in [6,1], every occurrence net O = (B,E, F,C0) has a uniquely defined
reduction ON O whose events are the facets of O and whose conditions those
from B that are post-conditions of a maximal event of some facet:

Definition 14 (Reduction of an occurrence net). The reduction of occur-
rence net O = (B,E, F,C0) is the occurrence net O = (B,Ψ(O), F , C0), where

B = C0 ∪ {b ∈ B : ∃ ψ ∈ Ψ (O) , e ∈ ψ : (e, b) ∈ F ∧ b• ∩ ψ = ∅} (1)
F =

{
(b, ψ) : b ∈ B ∧ ∃ e ∈ ψ : (b, e) ∈ F

}

∪
{

(ψ, b) : b ∈ B ∧ ∃ e ∈ ψ : (e, b) ∈ F
} (2)

Figure 3 shows the facets of an occurrence net and its reduction.

3 Generalizing Facets to Safe Petri Nets

Preliminaries. We propose to identify pieces of partial-order behaviour of a
safe Petri net, under the form of macro-transitions which group events that
always occur together when at least one of them occur in any maximal run of
the original net. There will be a fundamental difference in the approach here
with respect to the work in [6,7,1,2]: there, the set of events to be contracted
(the facets) were obtained as the strongly connected components of a transitive
binary reveals-relation, where a reveals b iff any run containing a also contains
b. Here , such a relation is not available on the level of transitions. Our approach
is thus to identify directly sets of transitions such that, if any one of them fires,
all others fire sooner or later.

Definition 15 (Macro-transition). Let N = (P, T, F,M0) be a PN. A macro-
transition of N is a run φ = (O, π) of (P, T, F, π(C0)) (the net N initialized with
the image of the initial conditions C0 of O) such that for any reachable marking
M of N with π(C0) ⊆M and for any maximal run ρ of (P, T, F,M) (the net N
starting at M), if there exists a nonempty prefix φ′ of φ which is also a prefix of
ρ, then the entire φ is a prefix of ρ.

Th. Chatain et al.: A Canonical Contraction for Safe Petri Nets 31

0•

1

t1

(a) φ1

0• 0′•

1

4

t1 t′1

(b) φ2

1•

5•t2

2

t5

2 5

t5

2 5

(c) φ3

Fig. 4. Examples of macro-transitions of the Petri net of Figure 2(a)

Figures 4 and 5 show examples and counter-examples of macro-transitions of
the Petri net of Figure 2(a).

– φ1 is trivially a macro-transition.
– In φ2 we have two events: an occurrence of t1 and one of t′1. The initial

conditions of φ2 are mapped to places 0 and 0′ of N . The only reachable
marking of N which contains {0, 0′} is {0, 0′} itself; in {0, 0′}, if one of the
two transitions fire, the other one will necessarily fire in any maximal run.

– Consider now φ3: again the only reachable marking of N which contains
{1, 5} is {1, 5} itself. From it, if t2 fires, it is necessarily followed by an
infinite sequence of firings of t5. φ3 is exactly a prefix of it.

We also find counter-examples here:

– φ4 is not a macro-transition as it is not a run: t0 and t1 are in conflict.
– φ5 is not a macro-transition because an occurrence of t1 is not necessarily

followed by an occurrence of t2.
– Concerning φ6, it is exactly a prefix of every maximal run from {1, 0′} start-

ing by an occurrence of t2, but not of every run starting by an occurrence of
t′1 (because t′2 can fire instead of t2).

The two following properties are immediate consequences of the definition.

Property 1. Any single transition t ∈ T induces a macro-transition defined as
the (unique, up to isomorphism) non-branching process which contains a single
event mapped to t and whose initial conditions are mapped to •t. For example,
the facet induced by t1 in the net of Figure 2(a) is the one depicted in Figure 4(a).

Property 2. Let φ be a macro-transition of a Petri net N . Then any prefix of φ
with the same initial conditions as φ is also a macro-transition of N .

Definition 16 (Φ-contracted net). Given a set Φ of macro-transitions of a
Petri net N = (P, T, F,M0), we construct the Φ-contracted net N/Φ by replacing

32 PNSE’13 – Petri Nets and Software Engineering

0• 0′•

1

t0t1

(a) φ4

0•

1

2

t1

t2

(b) φ5

0′•

1•

2

4

t′1

t2

(c) φ6

Fig. 5. Counter-examples of macro-transitions of the Petri net of Figure 2(a)

the transitions of N by new transitions which summarize the macro-transitions.
The contracted net is formally defined as the net N/Φ = (P,Φ, FΦ,M

0) where
the macro-transitions are interpreted as transitions and with the flow relation FΦ
defined such that, for every φ = (O, π) ∈ Φ, •φ is the image by π of the initial
conditions of O, and φ• is the image by π of the conditions of O that are not
consumed by any event of O.

To express the soundness of this contraction, we define a function χ which
maps any branching process (O, π) of the contracted net N/Φ to a branching pro-
cess of N . Intuitively, χ simply expands every event e of O into a set of events
corresponding to the content of the macro-transition π(e). For example, the re-
duced unfolding of Figure 3(b), viewed as a branching process of the contraction
of the unfolding U of Figure 3(a), is mapped by χ to U .

Definition 17 (χ). Let N = (P, T, F,M0) be a Petri net, Φ a set of macro-
transitions of N and ρ = (O, π) a branching process of the contracted net
N/Φ, with O = (B,E, F,C0). We define the branching process χ(ρ) of N as
χ(ρ) = (O′, π′) with O′ = (C0 ∪ χcond(E), χevents(E), χcond(E), χarcs(E), C0)
where χevents , χcond and χarcs associate to every event e ∈ E a set of events
χevents(e), a set of conditions χcond(e) and a set of arcs χarcs(e), all specified
below. Remember that e is an occurrence of transition π(e) of N/Φ, which is also
a macro-transition of N and thus has the form (Oe, πe) with Oe an occurrence
net and πe a net homomorphism from Oe to (P, T, F, π(C0

e)), where C0
e are the

initial conditions of Oe.
The set χevents(e) is defined as the set of pairs (e, f) with f an event of Oe;

it represents an occurrence of each of the events that were grouped inside the
macro-transition π(e) of the contracted net N/Φ.

The set χconds(e) is defined as the set of pairs (e, b) with b a condition created
by an event of Oe; it represents all conditions created by events in χevents(e).
The initial conditions of π(e) are not reproduced since they will be merged with
the final conditions of the occurrence of the macro-transition that created them.

Now the arcs in χarcs(e) connect naturally every event (e, f) to the conditions
(e, b) with b ∈ f•, and every condition (e, b) with b ∈ •f to the event (e, f).

Th. Chatain et al.: A Canonical Contraction for Safe Petri Nets 33

It remains the case of the initial conditions of Oe: for every initial condition
b of Oe, there exists a unique condition b′ ∈ •e such that π(b′) = πe(b) ∈ P .
Either this b′ is an initial condition of O or it is created by an event e′ ∈ E. In
the first case, b′ is also an initial condition of O′ and an arc is added in χarcs(e)
to connect it to any event (e, f) ∈ χevents(e) representing an event f of Oe which
consumes b. In the second case b′ comes from a final condition of π(e′), which
appears in χcond(e′) and serves as the origin of the arcs.

Finally, we define the homomorphism π′ from O′ to N . It maps simply every
event (e, f) to the transition πe(f) ∈ T , and every condition (e, b) to πe(b) ∈ P .
On the set C0 of initial conditions, π′ coincides with π : π|C0

≡ π′|C0
.

Lemma 1 (Soundness). Let N be a Petri net and Φ a set of macro-transitions
of N . The function χ maps any branching process (O, π) of the contracted net
N/Φ to a branching process of N .

Proof. By construction of χ. ut
Definition 18 (Completeness). A set Φ of macro-transitions of a Petri net
N = (P, T, F,M0) is complete if for every reachable markingM of the contracted
net N/Φ = (P,Φ, F ′,M0) and every transition t ∈ T firable from M , the run of
(P, T, F,M) composed of all the events revealed by the initial occurrence of t in
the unfolding of (P, T, F,M), is the image by χ of a run of (P,Φ, F ′,M).

Lemma 2. Let N be a Petri net and Φ a complete set of macro-transitions of
N . Then every maximal run ρ of N is (isomorphic to) the image by χ of a
maximal run ρ′ of N/Φ.

Proof. To construct the ρ′, start from the process with no events and initial
conditions corresponding to the initial marking of N (which is also the initial
marking of N/Φ). Then, as long as there are events in ρ which are not in χ(ρ′),
take one which is minimal w.r.t. causality and call it e. (Among the possible
choices, e should be of minimal depth2 so that every event of ρ is eventually in
χ(ρ′).) The transition t of N which is the image of e by the homomorphism of ρ,
can fire from the marking M reached after ρ′ (which is also the marking reached
after χ(ρ′)). By the completeness hypothesis, there exists a run of (P,Φ, F ′,M)
whose image by χ yields all the events revealed by the firing of t from M . Then
ρ′ can be augmented by this run. Our e of ρ is now one of the new events in
χ(ρ′); and the other new events are also in ρ because they are revealed by the
occurrence of t from M and ρ is maximal.

Notice that at each step, χ(ρ′) is a prefix of ρ. The iteration may not termi-
nate but, since ρ′ always grows, we consider its limit (containing all the events
that are eventually added). By construction this limit is the desired process. ut
Definition 19 (Non-Redundancy). A set Φ of macro-transitions of a Petri
net N = (P, T, F,M0) is called non-redundant if for every transition t ∈ T , at
most one macro-transition φ ∈ Φ starts by3 t.
2 The depth of an event e is the size of the longest path from an initial condition to e.
3 By “φ starts by t”, we mean that there exists an event in φ which is mapped to t
and consumes only initial conditions of φ.

34 PNSE’13 – Petri Nets and Software Engineering

Theorem 1 (Facets as Macro-Transitions). Let O = (B,E, F,C0) be an
occurrence net and ψ ⊆ E a facet of O. Then µ(ψ) is a macro-transition of O.
Moreover the image by µ of all the facets of O is a complete non-redundant set
of macro-transitions of O.

Proof. Consider a reachable set of conditions C ⊇ •ψ, and let ω be a maximal
run of (B,E, F,C) starting by a nonempty prefix of µ(ψ). Then ω starts by
µ({e}) with e an initial event of ψ. By Definition 12, e reveals all the events in
ψ. This implies that ω starts by the entire µ(ψ).

For completeness, remark that for every run ρ of the contracted ON, the
events in χ(ρ) are a union of facets of O. After such a run, every maximal run
is again a union of facets.

Non-redundancy holds because the facets are a partition of the events. ut

4 Canonical Contraction

Before defining our canonical contraction, we study the markings that are reach-
able after a run of a contracted net.

For every configuration O, we call cut of O the set of conditions which are
created and not consumed along O. When O is the support of a finite run (O, π)
of a net N , the homomorphism π maps the cut of O to a reachable marking
of N . And conversely every reachable marking of N is the image of the final
conditions of a finite run.

But in this paper we focus on maximal runs, which are in general infinite. And
the image of a cut of an infinite run may be only a subset of a reachable marking
of N . An example is the maximal run of the net of Figure 1(a) containing an
occurrence of h and an infinite chain of i’s. All the conditions are consumed, and
the cut is empty. Yet the empty marking is not reachable after any finite run.

Then we call asymptotically reachable (or a-reachable for short) in N any
marking that is the image of the cut of a (possibly infinite) run of N .

Lemma 3 (A-Reachability in a Contracted Net). Let N be a Petri net
and Φ a set of macro-transitions of N . Any marking a-reachable in N/Φ is also
a-reachable in N .

Proof. This is an immediate consequence of Lemma 1. ut

Notice however that in general not every marking a-reachable in N is a-
reachable in N/Φ. And this is actually what allows us to skip some intermediate
markings and give a more compact representation of the behaviour of the net.

In this sense we can say that a complete contracted net N/Φ is more compact
than another N/Φ′ if all markings a-reachable in N/Φ are also a-reachable in
N/Φ′ . We will show now that there exists a complete non-redundant contracted
net which is optimal w.r.t. this criterion: i.e. all markings a-reachable in this
contracted net are a-reachable in any complete non-redundant contracted net.

Th. Chatain et al.: A Canonical Contraction for Safe Petri Nets 35

Definition 20 (MN and RN). We define inductively a setMN of markings
of M and a set RN of runs as the smallest sets satisfying:

– M0 ∈MN ;
– for everyM ∈MN , for every transition t firable fromM , µ(E) ∈ RN , where
E is the set of events revealed by the initial occurrence of t in U((P, T, F,M));

– for every M ∈ MN , for every ρ ∈ RN such that •ρ ⊆ M , the marking
(M \ •ρ) ∪ ρ• reached after firing ρ from M , belongs toMN ;

– for every ρ1, ρ2 ∈ RN , the largest common prefix of ρ1 and ρ2 is in RN .

Theorem 2. Let N = (P, T, F,M0) be a Petri net and Φ a non-redundant com-
plete set of macro-transitions. All markings ofMN are a-reachable in N/Φ.

Proof. Let NΦ = (P,Φ, F ′,M0). The theorem is a direct consequence of the
following lemma: for every markingM a-reachable in N every run ρ ∈ RN firable
from M satisfies the property that ρ is the image by χ a run ρ′ of (P,Φ, F ′,M).
This lemma is proved by induction, following the construction of RN : at each
step of the construction, we prove that if all the runs in the current RN satisfy
the property, then the new runs added to RN also satisfy it. Initialization of the
induction is trivial since RN is initially empty.

By completeness of Φ, the property is satisfied by all the runs of the form
µ(E) with E the set of events revealed by the initial occurrence of a transition t
in U((P, T, F,M)). For every run ρ constructed as the largest common prefix of
two runs ρ1 and ρ2 already inRN , assume that ρ1 and ρ2 satisfy our property and
call ρ′1 and ρ′2 the corresponding runs of the contracted net. By non-redundancy
of Φ, ρ′1 and ρ′2 must coincide on the largest common prefix ρ of ρ1 and ρ2. Then
ρ is the image by χ of the largest common prefix of ρ′1 and ρ′2. ut

Definition 21 (Canonical contractionN). We define the canonical contrac-
tion of a safe Petri net N as the contracted net N def

= NΦN
where ΦN is the set

of nonempty runs of RN which are minimal w.r.t. the prefix relation.

Theorem 3. For every safe Petri net N , the set ΦN of macro-transitions in N
is complete and non-redundant, and the set of states a-reachable in N is precisely
MN . Moreover |ΦN | ≤ |T |.

Proof. Completeness is ensured by the insertion in RN of all the runs of the form
µ(E) with E the set of events revealed by the initial occurrence of a transition t in
U((P, T, F,M)). For redundancy, assume two runs ρ1 and ρ2 ofRN both start by
an occurrence of t. Then their common prefix ρ is nonempty and is in RN . Then
ρ1 and ρ2 are not minimal in RN w.r.t. the prefix relation, and they are not
in ΦN . By construction all the states a-reachable in N are in MN . Finally the
inequality |ΦN | ≤ |T | is a direct consequence of the non-redundancy of ΦN . ut

Illustration. Let us construct the canonical contraction of the net N of Fig-
ure 2(a).MN contains the initial marking {0, 0′}. From this marking t0, t1 and
t′1 are firable. Since t1 and t′1 reveal each other, RN contains the runs t0 and

36 PNSE’13 – Petri Nets and Software Engineering

t1t
′
1, andMN contains the reached markings {} and {1, 4}. From {1, 4}, t2 and

t′2 can fire; they reveal nothing, so they are added as such to RN . The marking
{2, 4} is now reachable; it is added toMN . From {2, 4}, t3 and t′3 can fire, and in
both cases an occurrence of t4 necessarily follows. Hence t3t4 and t′3t4 are added
to RN . We can now reach {1, 5} and fire t2 or t′2 again. But, from {1, 5} firing
t2 (or t′2) reveals an infinite sequence of occurrences of t5. For this t2tω5 and t′2tω5
are added to RN . But, since t2 and t′2 already appear “alone” – i.e. as singleton
transitions – in RN , marking {2, 5} obtained after firing them from {1, 5} must
also be added to MN . And from it, tω5 can fire and is added to RN . Now, ΦN
is constructed by extracting the runs of RN that are minimal w.r.t. the prefix
relation. Here we get all of them, except t2tω5 and t′2tω5 . The resulting contracted
net is shown in Figure 2(b).

Contraction and Automata. It is clear that applying our contraction to the
Petri net representation N of an automaton (i.e. a Petri where every transition
has exactly one input- and one output-place) removes the deterministic states
(or places), i.e. those from which there is no choice. Concretely, these places
will not appear in the set MN . The macro-transitions are the paths between
non-deterministic states with only deterministic intermediate states.

5 Reductions and Unfoldings

When concurrent behavior in partial order semantics is considered, our contrac-
tion is related to the facets reduction [6].

Theorem 4 (Reduction as contraction of ONs). For every occurrence net
O, the canonical contraction of O is isomorphic to its facet reduction.

Proof. By Definition 20, all runs in RO correspond to unions of facets of O. Now,
let ρ ∈ RO be a run containing more than one facet. By definition of facets, the
reveals relation on facets is antisymmetric. Then one of O′s initial facets, say ψ1,
does not reveal the other, say ψ2. Take an initial event e of ψ1 and a marking
M ∈MO from which ρ can fire; e is firable fromM in O. Therefore RO contains
the run ρ′ containing the events revealed by e fromM . This run contains ψ1 but
not ψ2. By definition, RO contains the largest common prefix of ρ and ρ′. Hence
ρ is not minimal in RO w.r.t. the prefix relation, and is not in ΦO. ut

As illustrated in Figure 6, the operation of reduction does not entirely com-
mute with unfolding. That is, in general, the unfolding U(N) of reduced Petri
net N is coarser, as an occurrence net, than the reduction U(N) of the original
net N ’s unfolding. In the example of Figure 6, the facets labeled t2tω5 and t′2tω5
in U(N) are both split into two events of U(N).

However, one retrieves the reduction of U(N) from U(N) as follows.

Theorem 5. For every net N , applying the occurrence net facet reduction to
U(N) yields U(N) up to isomorphism.

Th. Chatain et al.: A Canonical Contraction for Safe Petri Nets 37

0• 0′•

t1t
′
1

1

4

t0

t2

2

t′2

2

t3t4

1 5
...

t′3t4

1 5
...

t3t4

1

5

t′3t4

1 5
...

t2

2

tω5

t′2

2

tω5

(a) The unfolding of the contracted Petri
net of Figure 2(b). Remark that the unfold-
ing is not reduced: the last occurrence of t2
and the following tω5 are in the same facet
(similarly for t′2 and the following tω5).

0• 0′•

t1t
′
1

1

4

t0

t2

2

t′2

2

t3t4

1 5
...

t′3t4

1 5
...

t3t4

1 5

t′3t4

1 5
...

t2t
ω
5 t′2t

ω
5

(b) Its reduction (or contraction) is
isomorphic to the reduction of the
unfolding of N already represented
in Figure 3(b).

N

U(N)

N

U(N)

U(N)

unfolding

contraction

unfolding

contraction (or reduction)

contraction

Fig. 6. Unfolding and contraction.

Proof. By definition of macro-transitions, for every event e of U(N), all the
events of U(N) which are in χevents(e), reveal each other. Then χevents(e) is
included in a facet ψ of U(N). And for two events e1 and e2 of U(N), an event
in χevents(e1) reveals (in U(N)) an event in χevents(e2) iff e1 reveals e2 in U(N).
Therefore the facets reduction of U(N) regroups e1 and e2 into the same facet
iff the events in χevents(e1) and those in χevents(e2) are in the same facet. ut

38 PNSE’13 – Petri Nets and Software Engineering

6 Conclusion

We have presented a method for identifying and contracting macro-transitions in
safe Petri nets. The procedure includes and justifies our previous work in [6,7,1,2]
focusing on facets in occurrence nets. The result is a unique contracted 1-safe
Petri net with no more macro-transitions than transitions in the original net.
The construction provides a unique canonical version for any given 1-safe Petri
net, whose maximal behaviour offers a condensed view of the maximal behaviour
of the original net. By computing offline the canonical version, verification pro-
cedures for any property that depends only on the maximal run behavior can be
run on the smaller contracted net instead. Computing the contraction (with finite
representations of the macro-transitions) is in general costly (computing the re-
veals relation on the unfolding of a finite Petri net is PSPACE-complete [7]), but
in practice many syntactic sufficient conditions can be used to identify macro-
transitions. Hence our contraction appears as an optimal, canonical contraction,
to which other contractions based on macro-transitions can be compared.

References
1. S. Balaguer, T. Chatain, and S. Haar. Building tight occurrence nets from reveals

relations. In Proceedings of the 11th International Conference on Application of
Concurrency to System Design, pages 44–53. IEEE Computer Society Press, 2011.

2. S. Balaguer, T. Chatain, and S. Haar. Building occurrence nets from reveals rela-
tions. Fundamenta Informaticae, 123(3):245–272, 2013.

3. G. Berthelot. Checking properties of nets using transformation. In Applications
and Theory in Petri Nets, volume 222 of LNCS, pages 19–40. Springer, 1985.

4. E. Best and B. Randell. A formal model of atomicity in asynchronous systems.
Acta Informatica, 16(1):93–124, 1981.

5. J. Desel and A. Merceron. Vicinity respecting homomorphisms for abstracting
system requirements. In Proc. Int. Workshop on Abstractions for Petri Nets and
Other Models of Concurrency (APNOC), 2009.

6. S. Haar. Types of asynchronous diagnosability and the reveals-relation in occur-
rence nets. IEEE Transactions on Automatic Control, 55(10):2310–2320, 2010.

7. S. Haar, C. Kern, and S. Schwoon. Computing the reveals relation in occurrence
nets. In Proceedings of GandALF’11, volume 54 of Electronic Proceedings in The-
oretical Computer Science, pages 31–44, 2011.

8. R. Kumar and S. Takai. Decentralized prognosis of failures in discrete event sys-
tems. IEEE Transactions on Automatic Control, 55(1):48–59, 2010.

9. A. Madalinski and V. Khomenko. Diagnosability verification with parallel LTL-
X model checking based on Petri net unfoldings. In Control and Fault-Tolerant
Systems (SysTol’2010), pages 398–403. IEEE Computing Society Press, 2010.

10. A. Madalinski and V. Khomenko. Predictability verification with parallel LTL-X
model checking based on Petri net unfoldings. In Proc. of the 8th IFAC Sympo-
sium on fault detection, diagnosis and safety of technical processes (SAFEPRO-
CESS’2012), pages 1232–1237, 2012.

11. M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures and do-
mains, part I. Theoretical Computer Science, 13:85–108, 1981.

12. W. Zielonka. Notes on finite asynchronous automata. RAIRO, Theoretical Infor-
matics and Applications, 21:99–135, 1987.

Th. Chatain et al.: A Canonical Contraction for Safe Petri Nets 39

40 PNSE’13 – Petri Nets and Software Engineering

Symbolic Verification of ECA Rules

Xiaoqing Jin, Yousra Lembachar, and Gianfranco Ciardo

Department of Computer Science and Engineering,
University of California, Riverside

{jinx,ylemb001,ciardo}@cs.ucr.edu

Abstract. Event-condition-action (ECA) rules specify a decision mak-
ing process and are widely used in reactive systems and active database
systems. Applying formal verification techniques to guarantee properties
of the designed ECA rules is essential to help the error-prone procedure
of collecting and translating expert knowledge. The nondeterministic and
concurrent semantics of ECA rule execution enhance expressiveness but
hinder analysis and verification. We then propose an approach to analyze
the dynamic behavior of a set of ECA rules, by first translating them
into an extended Petri net, then studying two fundamental correctness
properties: termination and confluence. Our experimental results show
that the symbolic algorithms we present greatly improve scalability.

Keywords: ECA rules, termination, confluence, verification

1 Introduction

Event-condition-action (ECA) [12] rules are expressive enough to describe com-
plex events and reactions. Thus, this event-driven formalism is widely used to
specify complex systems [1, 3], e.g., for industrial-scale management, and to im-
prove efficiency when coupled with technologies such as embedded systems and
sensor networks. Analogously, active DBMSs enhance security and semantic in-
tegrity of traditional DBMSs using ECA rules; these are now found in most
enterprise DBMSs and academic prototypes thanks to the SQL3 standard [9].
ECA rules are used to specify a system’s response to events, and are written in
the format “on the occurrence of a set of events, if certain conditions hold, per-
form these actions”. However, for systems with many components and complex
behavior, it may be difficult to correctly specify these rules.

Termination, guaranteeing that the system does not remain “busy” internally
forever without responding to external events, and confluence, ensuring that any
possible interleaving of a set of triggered rules yields the same final result, are fun-
damental correctness properties. While termination has been studied extensively
and many algorithms have been proposed to verify it, confluence is particularly
challenging due to a potentially large number of rule interleavings [2].

Researchers began studying these properties for active databases in the early
90’s [2, 4, 11, 14], by transforming ECA rules into some form of graph and apply-
ing various static analysis techniques on it to verify properties. These approaches

based on a static methodology worked well to detect redundancy, inconsistency,
incompleteness, and circularity. However, since static approaches may not ex-
plore the whole state space, they could easily miss some errors. Also, they could
find scenarios that did not actually result in errors due to the found error states
may not be reachable. Moreover, they had poor support to provide concrete coun-
terexamples and analyze ECA rules with priorities. [2] looked for cycles in the
rule-triggering graph to disprove termination, but the cycle-triggering conditions
may be unsatisfiable. [4] improved this work with an activation graph describing
when rules are activated; while its analysis detects termination where previous
work failed, it may still report false positives when rules have priorities. [5] pro-
posed an algebraic approach emphasizing the condition portion of rules, but did
not consider priorities. Other researchers [11, 14] chose to translate ECA rules
into a Petri Net (PN), whose nondeterministic interleaving execution semantics
naturally model unforeseen interactions between rule executions. However, as
the analysis of the set of ECA rules was through structural PN techniques based
on the incidence matrix of the net, false positives were again possible.

To overcome these limitations, dynamic analysis approaches using model
checking tools such as SMV [15] and SPIN [6] have been proposed to verify
termination. While closer to our work, these approaches require manually trans-
forming ECA rules into an input script, assume a priori bounds for all vari-
ables, provide no support for priorities, and require the initial system state to
be known; our approach does not have these limitations. [8] analyzes both ter-
mination and confluence by transforming ECA rules into Datalog rules through
a “transformation diagram”; this supports rule priority and execution seman-
tics, but requires the graph to be commutative and restricts event composition.
However, most of these works show limited results, and none of them properly
addresses confluence; we present detailed experimental results for both termina-
tion and confluence. UML Statecharts [17] provide visual diagrams to describe
the dynamic behavior of reactive systems and can be used to verify these prop-
erties. However, event dispatching and execution semantics are not as flexible as
for PNs [13].

Our approach transforms a set of ECA rules into a PN, then dynamically
verifies termination and confluence and, if errors are found, provides concrete
counterexamples to help debugging. It uses our tool SmArT, which supports PNs
with priorities to easily model ECA rules with priorities. Moreover, a single
PN can naturally describe both the ECA rules as well as their nondeterministic
concurrent environment and, while our MDD-based symbolic model-checking al-
gorithms [18] require a finite state space, they do not require to know a priori the
variable bounds (i.e., the maximum number of tokens each place may contain).
Finally, our framework is not restricted to termination and confluence, but can
be easily extended to verify a broader set of properties.

The rest of the paper is organized as follows: Sect. 2 recalls Petri nets; Sect.
3 introduces our syntax for ECA rules; Sect. 4 describes the transformation
of ECA rules into a Petri net; Sect. 5 presents algorithms for termination and
confluence; Sect. 6 shows experimental results; Sect. 7 concludes.

42 PNSE’13 – Petri Nets and Software Engineering

2 Petri Nets

As an intermediate step in our approach, we translate a set of ECA rules into a
self-modifying Petri net [16] (PN) with priorities and inhibitor arcs, described
by a tuple (P, T , π,D−,D+,D◦,xinit), where:

– P is a finite set of places, drawn as circles, and T is a finite set of transitions,
drawn as rectangles, satisfying P ∩ T = ∅ and P ∪ T 6= ∅.

– π : T → N assigns a priority to each transition.
– D− :P×T ×NP→N, D+ :P×T ×NP→N, and D◦ :P×T ×NP→N∪{∞} are

the marking-dependent cardinalities of the input, output, and inhibitor arcs.
– xinit∈NP is the initial marking, the number of tokens initially in each place.

Transition t has concession in marking m ∈ NP if, for each p ∈ P, the input arc
cardinality is satisfied, i.e., mp ≥ D−(p, t,m), and the inhibitor arc cardinality
is not, i.e., mp < D◦(p, t,m). If t has concession in m and no other transition
t′ with priority π(t′) > π(t) has concession, then t is enabled in m and can fire
and lead to marking m′, where m′p = mp −D−(p, t,m) + D+(p, t,m), for all
places p (arc cardinalities are evaluated in the current marking m to determine
the enabling of t and the new marking m′). In our figures, tk(p) indicates the
number of tokens in p for the current marking, a thick input arc from p to t
signifies a cardinality tk(p), i.e., a reset arc, and we omit arc cardinalities 1,
input or output arcs with cardinality 0, and inhibitor arcs with cardinality ∞.

The PN defines a discrete-state model (Spot,Sinit,A, {Nt : t ∈ A}). The
potential state space is Spot = NP (in practice we assume that the reachable set
of markings is finite or, equivalently, that there is a finite bound on the number of
tokens in each place, but we do not require to know this bound a priori). Sinit ⊆
Spot is the set of initial states, {xinit} in our case (assuming an arbitrary finite
initial set of markings is not a problem). The set of (asynchronous) model events
is A = T . The next-state function for transition t is Nt, such that Nt(m) =
{m′}, where m′ is as defined above if transition t is enabled in marking m, and
Nt(m)=∅ otherwise. Thus, the next-state function for a particular PN transition
is deterministic, although the overall behavior remains nondeterministic due to
the choice of which transition should fire when multiple transitions are enabled.

3 ECA syntax and semantics

ECA rules have the format “on events if condition do actions”. If the events
are activated and the boolean condition is satisfied, the rule is triggered and its
actions will be performed. In active DBMSs, events are normally produced by
explicit database operations such as insert and delete [1] while, in reactive sys-
tems, they are produced by sensors monitoring environment variables [3], e.g.,
temperature. Many current ECA languages can model the environment and dis-
tinguish between environmental and local variables [2, 4, 6, 11, 14, 15]. Thus,
we designed a language to address these issues, able to handle more general cases
and allow different semantics for environmental and local variables (Fig. 1).

X. Jin, Y. Lembachar and G. Ciardo: Symbolic Verification of ECA Rules 43

env_vars := environmental env_var read-only bounded natural
loc_vars := local loc_var read-and-write bounded natural

factor := loc_var | env_var | (exp) | number

term := factor | term ∗ term | term / term “/” is integer division
exp := exp − exp | exp + exp | term “number” is a constant ∈ N

rel_op := ≥ | ≤ | =
assignment := env_var into loc_var [, assignment]

ext_ev_decl := external ext_ev [activated when env_var rel_op number]
[read (assignment)]

int_ev_decl := internal int_ev

ext_evs := ext_ev | (ext_evs or ext_evs) | (ext_evs and ext_evs)
int_evs := int_ev | (int_evs or int_evs) | (int_evs and int_evs)

condition := (condition or condition) | (condition and condition) |
not condition | exp rel_op exp

action := increase (loc_var, exp) | decrease (loc_var, exp) |
set (loc_var, exp) | activate (int_ev)

actions := action | (actions seq actions) | (actions par actions)
ext_rule := on ext_evs [if condition] do actions

int_rule := on int_evs [if condition] do actions [with priority number]
system := [env_vars]+[loc_vars]∗[ext_ev_decl]+[int_ev_decl]∗

[ext_rule]+[int_rule]∗

Fig. 1. The syntax of ECA rules.

Environmental variables are used to represent environment states that can
only be measured by sensors but not directly modified by the system. For in-
stance, if we want to increase the temperature in a room, the system may choose
to turn on a heater, eventually achieving the desired effect, but it cannot directly
change the value of the temperature variable. Thus, environmental variables cap-
ture the nondeterminism introduced by the environment, beyond the control of
the system. Instead, local variables can be both read and written by the system.
These may be associated with an actuator, a record value, or an intermediate
value describing part of the system state; we provide operations to set (absolute
change) their value to an expression, or increase or decrease (relative change) it
by an expression; these expressions may depend on environmental variables.

Events can be combinations of atomic events activated by environmental or
internal changes. We classify them using the keywords external and internal.
An external event can be activated when the value of an environmental variable
crosses a threshold; at that time, it may take a snapshot of some environmental
variables and read them into local variables to record their current values. Only
the action of an ECA rule can instead activate internal events. Internal events
are useful to express internal changes or required actions within the system.

44 PNSE’13 – Petri Nets and Software Engineering

These two types of events cannot be mixed within a single ECA rule. Thus,
rules are external or internal, respectively. Then, we say that a state is stable if
only external events can occur in it, unstable if actions of external or internal
rules are being performed (including the activation of internal events, which
may then trigger internal rules). The system is initially stable and, after some
external events trigger one or more external rules, it transitions to unstable
states where internal events may be activated, triggering further internal rules.
When all actions complete, the system is again in a stable state, waiting for
environmental changes that will eventually trigger external events.

The condition portion of an ECA rule is a boolean expression on the value
of environmental and local variables; it can be omitted if it is the constant true.

The last portion of a rule specifies which actions must be performed, and in
which order. Most actions are operations on local variables which do not directly
affect environmental variables, but may cause some changes that will conceivably
be reflected in their future values. Thus, all environmental variables are read-
only from the perspective of an action. Actions can also activate internal events.
Moreover, to handle complex action operations, the execution semantics can
be specified as any partial order described by a series-parallel graph; this is
obtained through an appropriate nesting of seq operators, to force a sequential
execution, and par operators, to allow an arbitrary concurrency. The keyword
with priority enforces a priority for internal rules. If no priority is specified,
the default priority of an internal rule is 1, the same as that of external rules.

We now discuss the choices of execution semantics for our language, to sup-
port the modeling of reactive systems. The first choice is how to couple the
checking of events and conditions for our ECA rules. There are (at least) two
options: immediate and deferred. The event-condition checking is immediate if
the corresponding condition is immediately evaluated when the events occur,
it is deferred if the condition is evaluated at the end of a cycle with a prede-
fined frequency. One critical requirement for the design of reactive systems is
that the system should respond to external events from the environment [10]
as soon as possible. Thus, we choose immediate event-condition checking: when
events occur, the corresponding condition is immediately evaluated to determine
whether to trigger the rule. We stress that deferred checking can still be modeled
using immediate checking, for example by adding an extra variable for the sys-
tem clock and changing priorities related to rule evaluation to synchronize rule
evaluations. However, the drawback of deferred checking is that the design must
tolerate false ECA rule triggering or non-triggering scenarios. Since there is a
time gap between event activation and condition evaluation, the environmental
conditions that trigger an event might change during this period of time, causing
rules supposed to be triggered at the time of event activation to fail because the
“current ” condition evaluation are now inconsistent.

Another important choice is how to handle and model the concurrent and
nondeterministic nature of reactive systems. We introduce the concept of batch
for external events, similar to the concept of transaction in DBMSs. Formally,
the boundary of a batch of external events is defined as the end of the execution

X. Jin, Y. Lembachar and G. Ciardo: Symbolic Verification of ECA Rules 45

of all triggered rules. Then, the system starts to receive external events and im-
mediately evaluates the corresponding conditions. The occurrence of an external
event closes a batch if it triggers one or more ECA rules; otherwise, the event is
added to the current batch. Once the batch closes and the rules to be triggered
have been determined, the events in the current batch are cleaned-up, to prevent
multiple (and erroneous) triggerings of rules. For example, consider ECA rules
ra: “on a do · · · ” and rac: “on (a and c) do · · · ”, and assume that the sys-
tem finishes processing the last batch of events and is ready to receive external
events for the next batch. If external events occur in the sequence “c, a, . . .”,
event c alone cannot trigger any rule so it begins, but does not complete, the
current batch. Then, event a triggers both rule ra and rac, and thus, closes the
current batch. Both rules are triggered and will be executed concurrently. This
example shows how, when the system is in a stable state, the occurrence of a
single external event may trigger one or more ECA rules, since there is no “con-
tention” within a batch on “using” an external event: rule ra and rac share event
a and both rules are triggered and executed. If instead the sequence of events
is “a, c, . . .”, event a by itself constitutes a batch, as it triggers rule ra. This
event is then discarded by the clean-up so, after executing ra and any internal
rule (recursively) triggered by it, the system returns to a stable state and the
subsequent events “c, . . .” begin the next batch. Under this semantic, all external
events in one batch are processed concurrently. Thus, unless there is a termina-
tion error, the system will process all triggered rules, including those triggered
by the activation of internal events during the current batch, before considering
new external events. This batch definition provides maximum nondeterminism
on event order, which is useful to discover design errors in a set of ECA rules.

We also stress that, in our semantics, the system is frozen during rule ex-
ecution and does not respond to external events. Thus, rule execution is in-
stantaneous, while in reality it obviously requires some time. However, from a
verification perspective, environmental changes and external event occurrences
are nondeterministic and asynchronous, thus our semantic allows the verification
process to explore all possible combinations without missing errors due to the
order in which events occur and environmental variables change.

3.1 Running example

We now illustrate the expressiveness of our ECA rules on a running example:
a light control subsystem in a smart home for senior housing. Fig. 2 lists the
requirements in plain English (R1 to R5). Using motion and pressure sensors,
the system attempts to reduce energy consumption by turning off the lights
in unoccupied rooms or if the occupant is asleep. Passive sensors emit signals
when an environmental variable value crosses a significant threshold. The motion
sensor measure is expressed by the boolean environmental variable Mtn. The
system also provides automatic adjustment for indoor light intensity based on an
outdoor light sensor, whose measure is expressed by the environmental variable
ExtLgt ∈ {0, ..., 10}. A pressure sensor detects whether the person is asleep and
is expressed by the boolean environmental variable Slp.

46 PNSE’13 – Petri Nets and Software Engineering

environmental Mtn, ExtLgt, Slp
local lMtn, lExtLgt, lSlp, lgtsTmr, intLgts

external SecElp read (Mtn into lMtn, ExtLgt into lExtLgt, Slp into lSlp)
MtnOn activated when Mtn = 1
MtnOff activated when Mtn = 0
ExtLgtLow activated when ExtLgt ≤ 5

internal LgtsOff, LgtsOn, ChkExtLgt, ChkMtn, ChkSlp
(R1) When the room is unoccupied for 6 minutes, turn off lights if they are on.

r1 on MtnOff if (intLgts > 0 and lgtsTmr = 0) do set (lgtsTmr, 1)

r2
on SecElp if (lgtsTmr ≥ 1 and lMtn = 0)
do increase (lgtsTmr, 1)

r3
on SecElp if (lgtsTmr = 360 and lMtn = 0)
do (set (lgtsTmr, 0) par activate (LgtsOff))

r4 on LgtsOff do (set (intLgts, 0) par activate (ChkExtLgt))
(R2) When lights are off, if external light intensity is below 5, turn on lights.

r5
on ChkExtLgt if (intLgts = 0 and lExtLgt ≤ 5)
do activate (LgtsOn)

(R3) When lights are on, if the room is empty or a person is asleep, turn off lights.
r6 on LgtsOn do (set (intLgts, 6) seq activate (ChkMtn))

r7
on ChkMtn if (lSlp = 1 or (lMtn = 0 and intLgts ≥ 1))
do activate (LgtsOff)

(R4) If the external light intensity drops below 5, check if the person is asleep
and set the lights intensity to 6. If the person is asleep, turn off the lights.

r8 on ExtLgtLow do (set (intLgts, 6) par activate (ChkSlp))
r9 on ChkSlp if (lSlp = 1) do set (intLgts, 0)

(R5) If the room is occupied, set the lights intensity to 4.
r10 on MtnOn do (set (intLgts, 4) par set (lgtsTmr, 0))

Fig. 2. ECA rules for the light control subsystem of a smart home.

MtnOn, MtnOff , and ExtLgtLow are external events activated by the environ-
mental variables discussed above. MtnOn and MtnOff occur when Mtn changes
from 0 to 1 or from 1 to 0, respectively. ExtLgtLow occurs when ExtLgt drops
below 6. External event SecElp models the system clock, occurs every second,
and takes a snapshot of the environmental variables into local variables lMtn,
lExtLgt, and lSlp, respectively. Additional local variables lgtsTmr and intLgts
are used. Variable lgtsTmr is a timer for R1, to convert the continuous condi-
tion “the room is unoccupied for 6 minutes” into 360 discretized SecElps events.
Rule r1 initializes lgtsTmr to 1 whenever the motion sensor detects no motion
and the lights are on. The timer then increases as second elapses, provided that
no motion is detected (rule r2). If the timer reaches 360, internal event LgtsOff
is activated to turn off the lights and to reset lgtsTmr to 0 (rule r3). Variable
intLgts acts as an actuator control to adjust the internal light intensity.

Our ECA rules contain internal events to model internal system actions or
checks not observable from the outside. LgtsOff , activated by rule r3 or r7, turns
the lights off and activates another check on outdoor light intensity through
internal event ChkExtLgt (rule r4). ChkExtLgt activates LgtsOn if lExtLgt ≤ 5

X. Jin, Y. Lembachar and G. Ciardo: Symbolic Verification of ECA Rules 47

r Tst
1

tk(Mtn)

1

0

Mtn

SecElp

EnvMotOn

EnvMotOff

0

3

3

lMtn

tk(ExtLgt)

3

2 CleanUp

1

3

1

1

intLgts

4

lgtsTmr

1

lgtsTmr

1

1

LgtsOff

360 360
1

1

ChkExtLgt
1

intLight

1

6

1

1

intLgts

1

1

ChkMtn

1

lSlp

LgtsOff

2

CleanUp

lgtsTmr

lExtLgt

lMtn

if(tk(ExtLgt)=6 and

tk(ExtLgtLow)=0)

ExtLgtLow

2

CleanUp

1

EnvExtLgtInc

10

MtnOn

2

Ready

MtnOff

CleanUp

0

0

EnvExtLgtDec

ExtLgt

6

Ready

Ready

6

1

lMtn

3

1

ChkSlp

1

intLgts

lSlp

1

2

CleanUp

r Trg
19

r Act
19

r Act
17

r Trg
17

r Tst
1,27

r Tst
1,17

r Act
16r Trg

16

r Tst
6

r Act
18

r Trg
28

r Act
28

r Trg
18

r Tst
8

r Trg
15

r Act
15 r Act

23

r Trg
23

r Tst
3

r Trg
13

r Act
13r Tst

5

r Act
14

r Act
24

r Trg
14

r Trg
24

r Tst
4

r Act
12

r Trg
11

r Act
11

r Tst
2

r Tst
10

r Trg
12

r Trg
110

r Trg
210

r Act
210

r Act
110

if(tk(MtnOff)=0)

if(tk(MtnOn)=0)

0

r Tst
9

EnvAsleep

0 Slp

0EnvAwake

tk(Slp)

lSlp

if(tk(Ready)=0)

if(tk(Ready)=0)

if(tk(Ready)=0)

if(tk(Ready)=0)

if(tk(Ready)=0)

r Trg Seq
16 1

r Act Seq
16 1

duplicate

reset arc

EnvSecElp

LgtsOn

if(tk(SecElp)=0)

Fig. 3. The PN for ECA rules in Fig. 2.

(rule r5). ChkSlp is activated by rule r8 to check whether a person is asleep. If
true, the event triggers an action that turns the lights off (rule r9). Internal event
ChkMtn, activated by rule r6, activates LgtsOff if the room is unoccupied and
all lights are on, or if the room is occupied but the occupant is asleep (rule r7).

4 Transforming a set of ECA rules into a PN

We now explain the procedure to transform a set of ECA rules into a PN. First,
we put each ECA rule into a regular form where both events and condition are

48 PNSE’13 – Petri Nets and Software Engineering

disjunctions of conjunctions of events and relational expressions, respectively.
All rules in Fig. 2 are in this form. While this transformation may in principle
cause the expressions for events and conditions to grow exponentially large, each
ECA rule usually contains a small number of events and conditions, hence this
is not a problem in practice. Based on the immediate event-condition checking
assumption, a rule is triggered iff “trigger ≡ events ∧ condition” holds.

Next, we map variables and events into places, and use PN transitions to
model event testing, condition evaluation, and action execution. Any change
of variable values is achieved through input and output arcs with appropriate
cardinalities. Additional control places and transitions allow the PN behavior to
be organized into “phases”, as shown next. ECA rules r1 through r10 of Fig. 2 are
transformed into the PN of Fig. 3 (dotted transitions and places are duplicated
and arcs labeled “if (cond)” are present only if cond holds).

4.1 Occurring phase

This phase models the occurrence of external events, due to environment changes
over which the system has no control. The PN firing semantics perfectly matches
the nondeterministic asynchronous nature of these changes. For example, in
Fig. 3, transitions EnvMotOn and EnvMotOff can add or remove the token
in place Mtn, to nondeterministically model the presence or absence of people in
the room (the inhibitor arc from place Mtn back to transition EnvMotOn ensures
that at most one token resides in Mtn). Firing these environmental transitions
might nondeterministically enable the corresponding external events. Here, firing
EnvMotOn generates the external event MtnOn by placing a token in the place
of the same name, while firing EnvMotOff generates event MtnOff , consistent
with the change in Mtn. To ensure that environmental transitions only fire if
the system is in a stable state (when no rule is being processed) we assign the
lowest priority, 0, to these transitions. As the system does not directly affect
environmental variables, rule execution does not modify them. However, we can
take snapshots of these variables by copying the current number of tokens into
their corresponding local variables using marking-dependent arcs. For example,
transition EnvSecElp has an output arc to generate event SecElp, and arcs con-
nected to local variables to perform the snapshots, e.g., all tokens in lMtn are
removed by a reset arc (an input arc that removes all tokens from its place),
while the output arc with cardinality tk(Mtn) copies the value of Mtn into lMtn.

4.2 Triggering phase

This phase starts when trigger ≡ events ∧ condition holds for at least one exter-
nal ECA rule. If, for rule rk, events and condition consist of nd and nc disjuncts,
respectively, we define nd ·nc test transitions rkTsti,j with priority P + 2, where
i and j are the index of a conjunct in events and one in condition, while P ≥ 1 is
the highest priority used for internal rules (in our example, all internal rules have
default priority P = 1). Then, to trigger rule rk, only one of these transitions,
e.g., r7Tst1,1 or r7Tst1,2, needs to be fired (we omit i and j if nd = nc = 1). Firing

X. Jin, Y. Lembachar and G. Ciardo: Symbolic Verification of ECA Rules 49

a test transition means that the corresponding events and conditions are satisfied
and results in placing a token in each of the triggered places rkTrg1, . . . , rkTrgN ,
to indicate that Rule rk is triggered, where N is the number of outermost par-
allel actions (recall that par and seq model parallel and sequential actions).
Thus, N = 1 if rk contains only one action, or an outermost sequential series of
actions. Inhibitor arcs from rkTrg1 to test transitions rkTsti,j ensure that, even
if multiple conjuncts are satisfied, only one test transition fires. The firing of
test transitions does not “consume” external events, thus we use double-headed
arrows between them. This allows one batch to trigger multiple rules, concep-
tually “at the same time”. After all enabled test transitions for external rules
have fired, place Ready contains one token, indicating that the current batch of
external events can be cleared: transition CleanUp, with priority P +1, fires and
removes all tokens from external and internal event places using reset arcs, since
all the rules that can be triggered have been marked. This ends the triggering
phase and closes the current batch of events.

4.3 Performing phase

This phase executes all actions of external rules marked in the previous phase. It
may further result in triggering and executing internal rules. Transitions in this
phase correspond to the actions of rules with priority in [1, P], the same as that of
the corresponding rule. An action activates an internal event by adding a token to
its place. This token is consumed as soon as a test transition of any internal rule
related to this event fires. This is different from the way external rules “use”
external events. Internal events not consumed in this phase are cleared when
transition CleanUp fires in the next batch. When all enabled transitions of the
performing phase have fired, the system is in a stable state where environmental
changes (transitions with priority 0) can again happen and the next batch starts.

4.4 ECA rules to PN translation

The algorithm in Fig. 4 takes external and internal ECA rules Rext, Rint, with
priorities in [1, P], environmental and local variables Venv, Vloc, and external
and internal events Eext, Eint, and generates a PN. After normalizing the rules
and setting P to the highest priority among the rule priorities in Rint, it maps
environmental variables Venv, local variables Vloc, external events Eext, and
internal events Eint, into the corresponding places (Lines 5, 6, and 8). Then, it
creates phase control place Ready, transition CleanUp, and reset arcs for CleanUp
(Lines 4-5). We use arcs with marking-dependent cardinalities to model expres-
sions. For example, together with inhibitor arcs, these arcs ensure that each
variable v ∈ Venv remains in its range [vmin, vmax] (Lines 8-10). These arcs also
model the activated when portion of external events (Line 17), rule condi-
tions (Line 33), and assignments of environmental variables to local variables
(Lines 19-20 and lines 14-15). The algorithm models external events and envi-
ronmental changes (Lines 11-24); it connects environmental transitions such as
tvInc and tvDec to their corresponding external event places, if any, with an arc

50 PNSE’13 – Petri Nets and Software Engineering

TransformECAintoPN (Rext, Rint, Venv, Vloc, Eext, Eint)
1 normalize Rext and Rint into regular form and set P to the highest rule priority
2 create a place Ready • to control “phases” of the net
3 create transition CleanUp with priority P +1 and Ready−[1]→CleanUp
4 for each event e ∈ Eext ∪Eint do
5 create place pe and pe−[tk(pe)]→CleanUp
6 create place pv, for each variable v ∈ Vloc

7 for each variable v ∈ Venv with range [vmin, vmax] do
8 create place pv and transitions tvInc and tvDec with priority 0
9 create tvDec−[if(tk(pv) > vmin)1 else 0]→ pv

10 create tvInc−[1]→ pv and pv −[vmax]−◦ tvInc

11 for each event e ∈ Eext activated when v op val, for op ∈ {≥ | =} do
12 create tvInc−[if(tk(pv) op val)1 else 0]→ pe

13 if e reads v ∈ Venv into v′ ∈ Vloc then
14 create pv′ −[if(tk(pv) op val)tk(pv′) else 0]→ tvInc

15 create tvInc−[if(tk(pv) op val)tk(pv) else 0]→ pv′

16 for each event e ∈ Eext activated when v op val, for op ∈ {≤ | =} do
17 create tvDec−[if(tk(pv) op val)1 else 0]→ pe

18 if e reads v ∈ Venv into v′ ∈ Vloc then
19 create pv′ −[if(tk(pv) op val)tk(pv′) else 0]→ tvDec

20 create tvDec−[if(tk(pv) op val)tk(pv) else 0]→ pv′

21 for each event e ∈ Eext without an activated when portion do
22 create te and te−[if(tk(pe) = 0)1 else 0]→ pe

23 if e reads v ∈ Venv into v′ ∈ Vloc then
24 create pv′ −[tk(pv′)]→ te and te −[tk(pv)]→ pv′

25 for each rule rk ∈ Rext ∪Rint with nd event disjuncts, nc condition disjuncts,
actions A, and priority p ∈ [1, P] do

26 create trans. rkTsti,j ,i ∈ [1, nd], j ∈ [1, nc],w/priority P + 2 if rk ∈ Rext, else p
27 for each event e in disjunct i do
28 create pe−[1]→ rkTsti,j

29 create rkTsti,j −[1]→ pe, if e ∈ Eext

30 for each conjunct v ≤ val or v = val in disjunct j do
31 create pv −[val + 1]−◦ rkTsti,j

32 for each conjunct v ≥ val or v = val in disjunct j do
33 create pv −[val]→ rkTsti,j and rkTsti,j −[val]→ pv

34 if actions A is “(A1 par A2)” then na = 2 else na = 1, A1 = A
35 for each l ∈ [1, na] do
36 create places rkTrgl and transitions rkActl with priority p
37 create rkTrgl−[1]→ rkActl and rkTsti,j −[1]→ rkTrgl

38 SeqSubGraph(Al, “rkAcll”, l, p)
39 for each rk ∈ Rext, i ∈ [1, nd], j ∈ [1, nc] do
40 create rkTsti,j −[if(tk(Ready) = 0)1 else 0]→Ready and rkTrg1−[1]−◦ rkTsti,j

Fig. 4. Transforming ECA rules into a PN: a−[k]→ b means “an arc from a to b with
cardinality k; a−[k]−◦ b means “an inhibitor arc from a to b with cardinality k.

whose cardinality evaluates to 1 if the corresponding condition becomes true
upon the firing of the transition and the event place does not contain a token
already, 0 otherwise (e.g., the arcs from EnvExtLigDec to ExtLgtLow).

Next, rules are considered (Lines 25-40). A rule with nd event disjuncts and
nc condition disjuncts generates nd ·nc testing transitions. To model the parallel-
sequential action graph of a rule, we use mutually recursive procedures (Fig. 5
and Fig. 6). Procedure SeqSubGraph first tests all atomic actions, such as “set”,

X. Jin, Y. Lembachar and G. Ciardo: Symbolic Verification of ECA Rules 51

ParSubGraph(Pars, Pre, p) •Pars: parallel actions, Pre: prefix
1 for each l ∈ {1, 2} do • according to the syntax Pars2 has two components
2 create place PreActlTrglSeql and transition PreActl w/priority p
3 create Pre−[1]→PreActl and PreActl−[1]→PreActlTrglSeql

4 SeqSubGraph(Parsl, “PreActlTrglSeql”, l, p);
Fig. 5. Processing par.

SeqSubGraph(Seqs, Pre, i, p) •Seqs: sequential actions, Pre: prefix
1 if Seqs sets variable v to val then
2 create pv −[tk(pv)]→Pre and Pre−[val]→ pv

3 else if Seqs increases variable v by val then
4 create Pre−[val]→ pv

5 else if Seqs decreases variable v by val then
6 create pv −[val]→Pre
7 else if Seqs activates an internal event e then
8 create Pre−[1]→ pe

9 else if the outermost operator of Seqs is par then
10 ParSubGraph(Seqs, “Pre”, p) •Recursion on parallel part
11 else if the outermost operator of Seqs is seq then
12 SeqSubGraph(Seqs1, “Pre”, 1, p) •Seqs1 is the first part of Seq
13 create place PreTrgiSeq1 and transition PreActiSeq1
14 create Pre−[1]→PreTrgiSeq1 and PreTrgiSeq1−[1]→PreActiSeq1
15 SeqSubGraph(Seqs2, “PreTrgiSeq1”, 2, p) •Seqs2 is the second part of Seq

Fig. 6. Processing seq.

“increase”, “decrease”, and “activate”. Then, it recursively calls ParSubGraph
at Line 10 if it encounters parallel actions. Otherwise, it calls itself to unwind
another layer of sequential actions at Line 12 and Line 15 for the two portions
of the sequence. Procedure ParSubGraph creates control places and transitions
for the two branches of a parallel action and calls SeqSubGraph at Line 4.

5 Verifying properties

The first step towards verifying correctness properties is to define Sinit, the set
of initial states, corresponding to all the possible initial combinations of system
variables (e.g., ExtLgt can initially have any value in [0, 10]). One could consider
all these possible values by enumerating all legal stable states corresponding
to possible initial combinations of the environmental variables, then start the
analysis from each of these states, one at a time. However, in addition to requiring
the user to explicitly provide the set of initial states, this approach may require
enormous runtime, also because many computations are repeated in different
runs. Our approach instead computes the initial states symbolically, thanks to
the nondeterministic semantics of Petri nets, so that the analysis is performed
once starting from a single, but very large, set Sinit.

To this end, we add an initialization phase that puts a nondeterministically
chosen legal number of tokens in each place corresponding to an environmental
variable. This phase is described by a subnet consisting of a transition InitEnd

52 PNSE’13 – Petri Nets and Software Engineering

4

InitEnd Init
4

4

4

InitExtLgt
ExtLgt

Slp

Mtn

InitSlp

InitMtn

10

Fig. 7. The initialization phase for the smart home example.

with priority P +3, a place Init with one initial token, and an initializing transi-
tion with priority P+3 for every environmental variable, to initialize the number
of tokens in the corresponding place. Fig. 7 shows this subnet for our running
example. We initialize the Petri net by assigning the minimum number of to-
kens to every environmental variable place and leaving all other places empty,
then we let the initializing transitions nondeterministically add a token at a
time, possibly up to the maximum legal number of tokens in each correspond-
ing place. When InitEnd fires, it disables the initializing transitions, freezes the
nondeterministic choices, and starts the system’s normal execution.

This builds the set of initial states, ensuring that the PN will explore all
possible initial states, and avoids the overhead of manually starting the PN from
one legal initial marking at a time. Even though the overall state space might
be larger (it equals the union of all the state spaces that would be built starting
from each individual marking), this is normally not the case, and, anyway, having
to perform just one state space generation is obviously enormously better.

After the initialization step, we proceed with verifying termination and con-
fluence using our tool SmArT, which provides symbolic reachability analysis and
CTL model checking with counterexample generation [7].

5.1 Termination

Reactive systems constantly respond to external events. However, if the system
has a livelock, a finite number of external events can trigger an infinite number
of rule executions (i.e, activate a cycle of internal events), causing the system to
remain “busy” internally, a fatal design error. When generating the state space,
all legal batches of events are considered, due to the PN execution semantics,
again avoiding the need for an explicit enumeration, this time, of event batches.

A set G of ECA rules satisfies termination if no infinite sequence of
internal events can be triggered in any possible execution of G. This can
be expressed in CTL as ¬EF(EG(unstable)), stating that there is no cycle
of unstable states reachable from an initial, thus stable, state.

Both traditional breadth-first-search (BFS) and saturation-based [19] algo-
rithms are suitable to compute the EG operator. Fig. 8 uses saturation, which
tends to perform much better in both time and memory consumption when an-
alyzing large asynchronous systems. We encode transitions related to external

X. Jin, Y. Lembachar and G. Ciardo: Symbolic Verification of ECA Rules 53

bool Term(mdd Sinit, mdd2 Nint)
1 mdd Srch ← StateSpaceGen(Sinit,Next ∪Nint);
2 mdd Sunst ← Intersection(Srch, ExtractUnprimed(Nint));
3 mdd Sp ← EF(EG(Sunst));
4 if Sp 6= ∅ then return false • provide error trace
5 else return true;

mdd ExtractUnprimed(mdd2 p) • p unprimed
1 if p = 1 then return 1;
2 if CacheLookUp(EXTRACTUNPRIMED, p, r) return r;
3 foreach i ∈ Vp.v do
4 mdd ri ← 0;
5 if p[i] 6= 0 then • p[i] is the node pointed edge i of node p
6 foreach j ∈ Vp.v s.t. p[i][j] 6= 0 do
7 ri ← Union(ri, ExtractUnprimed(p[i][j]))
8 mdd r ← UniqueTableInsert({ri : i ∈ Vp.v});
9 CacheInsert(EXTRACTUNPRIMED, p, r);
10 return r;

Fig. 8. Algorithms to verify the termination property.

events and environmental variable changes into Next. Thus, the internal transi-
tions areNint = N\Next. After generating the state space Srch using constrained
saturation [18], we build the set of states Sunst by symbolically intersecting Srch

with the unprimed, or “from”, states extracted from Nint. Then, we use the CTL
operators EG and EF to identify any nonterminating path (i.e., cycle).

5.2 Confluence

Confluence is another desirable property to ensure consistency in systems ex-
hibiting highly concurrent behavior.

A set G of ECA rules satisfying termination also satisfies confluence if,
for any legal batch b of external events and starting from any particular
stable state s, the system eventually reaches a unique stable state.

We stress that what constitutes a legal batch b of events depends on state s,
since the condition portion of one or more rules might affect whether b (or
a subset of b) can trigger a rule (thus close a batch). Given a legal batch b
occurring in stable state s, the system satisfies confluence if it progresses from s
by traversing some (nondeterministically chosen) sequence of unstable states,
eventually reaching a stable state uniquely determined by b and s. Checking
confluence is therefore expensive [2], as it requires verifying the combinations
of all stable states reachable from Sinit with all legal batches of external events
when the system is in that stable state. A straightforward approach enumerates
all legal batches of events for each stable state, runs the model, and checks that
the set of reachable stable states has cardinality one. We instead only check
that, from each reachable unstable state, exactly one stable state is reachable;
this avoids enumerating all legal batches of events for each stable state. Since

54 PNSE’13 – Petri Nets and Software Engineering

bool ConfExplicit(mdd Sst, mdd Sunst, mdd2 Nint)
1 foreach i ∈ Sunst

2 mdd Si ← StateSpaceGen(i,Nint);
3 if Cardinality(Intersection(Si,Sst)) > 1 then return false; • provide error trace
4 return true;

bool ConfExplicitImproved(mdd Sst, mdd Sunst, mdd2 Nint, mdd2 N)
1 mdd Sfrontier ← Intersection(RelProd(Sst,N),Sunst);
2 while Sfrontier 6= ∅ do • if Sfrontier is empty, it explores all Sunst

3 pick i ∈ Sfrontier;
4 mdd Si ← StateSpaceGen(i,Nint);
5 if Cardinality(Intersection(Si,Sst)) > 1 then return false; • provide error trace
6 else Sfrontier ← Sfrontier \ Intersection(Si,Sunst); • exclude all unstable

states reached by i
7 return true;

Fig. 9. Explicit algorithms to verify the confluence property.

bool ConfSymbolic(mdd Sst, mdd Sunst, mdd2 Nint)
1 mdd2 T C ← ConstraintedTransitiveClosure(Nint,Sunst);
2 mdd2 T Cu2s ← FilterPrimed(T C,Sst);
3 return CheckConf (T Cu2s);

bool CheckConf (mdd2 p)
1 if p = 1 then return true
2 if CacheLookUp(CHECKCONF , p, r) return r;
3 foreach i ∈ Vp.v, s.t. exist j, j′ ∈ Vp.v, j 6= j′, p[i][j] 6= 0, p[i[j′] 6= 0 do
4 foreach j, j′ ∈ Vp.v, j 6= j′ s.t. p[i][j] 6= 0, p[i[j′] 6= 0 do
5 if p[i][j] = p[i][j′] return false; •Confluence does not hold
6 mdd fj ← ExtractUnprimed(p[i][j]); •Result will be cached
7 mdd fj′ ← ExtractUnprimed(p[i][j′]); •No duplicate computation
8 if Intersection(fi, fj′) 6= 0 then return false;
9 foreach i, j ∈ Vp.v s.t. p[i][j] 6= 0 do

10 if CheckConf (p[i][j]) = false return false;
11 CacheInsert(CHECKCONF , p, true);
12 return true;

Fig. 10. Fully symbolic algorithm to verify the confluence property.

nondeterministic execution in performing phase is the main reason to violate
confluence and the system is in unstable states in our definition, checking the
evolution starting from unstable states will fulfill the purpose.

The brute force algorithm ConfExplicit in Fig. 9 enumerates unstable states
and generates reachable states only from unstable states using constrained sat-
uration [18]. Then, it counts the stable states in the obtained set. We observe
that, starting from an unstable stable u, the system may traverse a large set
of unstable states before reaching a stable state. If unstable state u is reach-
able, so are the unstable states reachable from it. Thus, the improved version
ConfExplicitImproved first picks an unstable state i and, after generating the
states reachable from i and verifying that they include only one stable state, it
excludes all visited unstable states (Line 6). Furthermore, it starts only from
states i in the frontier, i.e., unstable states reachable in one step from stable

X. Jin, Y. Lembachar and G. Ciardo: Symbolic Verification of ECA Rules 55

Termination (time: sec, memory: MB)

Model |Srch| Tt Tc Mp Mf

PN t 2.66·106 0.009 9.665 358.68 88.36

PN c 2.61·106 0.005 9.497 344.42 87.88

PN 1 8.99·106 0.010 11.559 391.52 89.78

PN 2 1.78·107 0.010 24.477 673.33 158.66

PN 3 2.61·107 0.010 85.171 1686.46 559.52

PN 4 5.02·107 0.010 14.541 491.80 105.90

Confluence (time: min, memory: GB, –: out of memory)

Model |Srch| Best Explicit Symbolic
Tbe Mp Mf Ts Mp Mf

PN c 2.38·106 4.51 4.24 4.10 5.11 2.02 0.22

PN 1 8.12·106 40.25 14.53 14.33 6.40 2.31 0.27

PN 2 1.61·107 34.40 0.85 0.08 10.11 2.59 0.25

PN 3 2.33·107 >120.00 – – 60.09 2.59 0.25

PN 4 4.55·107 >120.00 – – 23.33 4.66 0.52

Table 1. Results to verify the ECA rules for a smart home.

states (all other unstable reachable states are by definition reachable from this
frontier). However, we stress that these, as most symbolic algorithms, are heuris-
tics, thus they are not guaranteed to work better than the simpler approaches.

Next, we introduce a fully symbolic algorithm to check confluence in Fig. 10.
It first generates the transition transitive closure (TC) set from Nint using con-
strained saturation [19], where the “from”’ states of the closure are in Sunst

(Line 1). The resulting set encodes the reachability relation from any reachable
unstable state without going through any stable state. Then, it filters this re-
lation to obtain the relation from reachable unstable states to stable states by
constraining the “to” states to set Sst. Thus, checking confluence reduces to
verifying whether there exist two different pairs (i, j) and (i, j′) in the relation:
Procedure CheckConf implements this check symbolically. While computing TC
is a an expensive operation [19], this approach avoids separate searches from
distinct unstable states, thus is particularly appropriate when Sunst is huge.

6 Experimental results

Table 1 reports results for a set of models run on an Intel Xeon 2.53GHz work-
station with 36GB RAM under Linux. For each model, it shows the state space
size (|Srch|), the peak memory (Mp), and the final memory (Mf). For termina-
tion, it shows the time used to verify the property (Tt) and to find the shortest

56 PNSE’13 – Petri Nets and Software Engineering

...

r Tst
4

r Act
14

r Act
24

r Act
17

r Act
15

r Tst
5

r Tst
1,27

lgtsTmr = 1

LgtsOn=1

lgtsTmr = 1

intLgts = 6

LgtsOff = 1

r Trg =1
15

 lgtsTmr = 1

r Act Seq
16 1

r Tst
6

r Act16

lgtsTmr = 1

ChkExtLgt=1 r Trg =1
14

 lgtsTmr = 1 r Trg =1
14

 lgtsTmr = 1

intLgts = 6

r Trg =1
24

 lgtsTmr = 1

ChkMtn = 1

intLgts = 6

lgtsTmr = 1

r Trg Seq = 1

intLgts = 6
6 1 1

 lgtsTmr = 1

intLgts = 6

r Trg =1
17

lgtsTmr = 1

r Trg = 1
6 1

Fig. 11. A termination counterexample (related to rules r4 to r7).

ExtLgtLow = 1

intLgts = 0

ChkSlp=0

lSlp = 1

ExtLgtLow = 0

intLgts = 0

ChkSlp=0

lSlp = 1

ExtLgtLow = 0

intLgts = 6

ChkSlp=1

lSlp = 1

... ...

s0 1ss2

......

Fig. 12. A confluence counterexample (related to rules r8 and r9).

counterexample (Tc). For confluence, it reports the best runtime between our
two explicit algorithms (Tbe) and for our symbolic algorithm (Ts). Memory con-
sumption accounts for both decision diagrams and operation caches.

Net PN t is the model corresponding to our running example, and fails the
termination check. Even though the state space is not very large, counterex-
ample generation is computationally expensive [20] and consumes most of the
runtime. The shortest counterexample generated by SmArT has a long tail con-
sisting of 1885 states and leads to the 10-state cycle of Fig. 11 (only the non-
empty places are listed for each state, and edges are labeled with the corre-
sponding PN transition). Analyzing the trace, we can clearly see (in bold) that,
when lights are about to be turned off due to the timeout, lMtn = 0, and
the external light is low, ExtLgt ≤ 5, the infinite sequence of internal events
(LgtsOff ,ChkExtLgt,LgtsOn,ChkMtn)ω prevents the system from terminating.
Thus, rules r4, r5, r6, and r7 need to be investigated to fix the error. Among
the possible modifications, we choose to replace rule r5 with r′5 : on ChkExtLgt
if ((intLgts= 0 and lExtLgt ≤ 5) and lMtn= 1) do activate (LgtsOn), resulting
in the addition of an input arc from lMtn to r5Tst. The new corrected model is
called PN c in Table 1, and SmArT verifies it holds the termination property.

We then run SmArT on PN c to verify confluence, and found 72,644 bad states.
Fig. 12 shows one of these unstable states, s0, reaching two stables states, s1
and s2. External event ExtLgtLow closes the batch in s0 and triggers rule r8,
which sets intLgt to 6 and activates internal event ChkSlp, which in turn sets
intLgt to 0 (we omit intermediate unstable states from s0 to s1 and to s2).
We correct rules r8 and r9, replacing them with r′8: on ExtLgtLow if lSlp=0
do set (intLgt, 6) and r′9: on ExtLgtLow if lSlp=1 do set (intLgt, 0); resulting
in model PN fc. Checking this new model against for confluence, we find that
the number of bad states decreases from 72,644 to 24,420. After investigation,
we determine that the remaining problem is related to rules r2 and r3. After

X. Jin, Y. Lembachar and G. Ciardo: Symbolic Verification of ECA Rules 57

changing rule r2 to on SecElp if ((lgtsTmr ≥ 1 and lgtsTmr ≤ 359) and lMtn
= 0) do increase (lgtsTmr, 1), the model passes the check. This demonstrates
the effectiveness of counterexamples to help a designer debug a set of ECA rules.

We then turn our attention to larger models, which extend our original model
by introducing four additional rules and increasing variable ranges. In PN 1 and
PN 2, the external light variable ExtLgt ranges in [0, 20] instead of [0, 10]; for
PN 4, it ranges in [0, 50]. PN 2 also extends the range of the light timer variable
lgtTmr to [0, 720]; PN 3 to [0, 3600]. We observe that, when verifying termination
or confluence, the time and memory consumption tends to increase as the model
grows; also, our symbolic algorithm scales much better than the best explicit
approach when verifying confluence. For the relatively small state space of PN t,
enumeration is effective, since computing TC is quite computationally expensive.
However, as the state space grows, enumerating the unstable states consumes
excessive resources. We also observe that the supposedly improved explicit con-
fluence algorithm sometimes makes things worse. The reason may lie in the fact
that a random selection of a state from the frontier has different statistical prop-
erties than for the original explicit approach, and also in the fact that operation
caches save many intermediate results. However, both explicit algorithms run
out of memory on PN 3 and PN 4. Comparing the results for PN 3 and PN 4, we
also observe that larger state spaces might require less resources. With symbolic
encodings, this might happen because the corresponding MDD is more regular
than the one for a smaller state space.

7 Conclusion

Verifying termination and confluence of ECA rule bases for reactive systems
is challenging due to their highly concurrent and nondeterministic nature. We
proposed an approach to verify these properties using a self-modifying PN with
inhibitor arcs and priorities. Our approach is general enough to give precise
answers to questions about other properties, certainly those that can be ex-
pressed in CTL. As an application, we showed how a light control system can
be captured by our approach, and we verified termination and confluence for
this model using SmArT. In the future, we would like to improve our approach
in the following ways. The confluence algorithm must perform constrained state
space generation starting from each unstable state, which is not efficient if Sunst

is large. In that case, a simulation-based falsification approach might be more
suitable, using intelligent heuristic sampling and searching strategies. However,
this approach is sound only if the entire set Sunst is explored. Another direction
to extend our work is the inclusion of abstraction techniques to reduce the size
of the state space.

Acknowledgement
Work supported in part by UC-MEXUS under grant Verification of active rule
bases using timed Petri nets and by the National Science Foundation under grant
CCF-1018057.

58 PNSE’13 – Petri Nets and Software Engineering

References

1. D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data
stream management. The VLDB Journal, 12(2):120–139, 2003.

2. A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of database production rules:
termination, confluence, and observable determinism. Proc. ACM SIGMOD, pp.
59–68. ACM Press, 1992.

3. J. C. Augusto and C. D. Nugent. A new architecture for smart homes based on
ADB and temporal reasoning. Toward a Human-Friendly Assistive Environment,
vol. 14, pp. 106–113, 2004.

4. E. Baralis, S. Ceri, and S. Paraboschi. Improved rule analysis by means of triggering
and activation graphs. Rules in Database Systems, LNCS 985, pp. 163–181. 1995.

5. E. Baralis and J. Widom. An algebraic approach to static analysis of active
database rules. ACM TODS, 25(3):269–332, Sept. 2000.

6. E.-H. Choi, T. Tsuchiya, and T. Kikuno. Model checking active database rules
under various rule processing strategies. IPSJ Digital Courier, 2:826–839, 2006.

7. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Logical and stochas-
tic modeling with SMART. Proc. Modelling Techniques and Tools for Computer
Performance Evaluation, LNCS 2794, pp. 78–97. 2003.

8. S. Comai and L. Tanca. Termination and confluence by rule prioritization. IEEE
TKDE, 15:257–270, 2003.

9. K. G. Kulkarni, N. M. Mattos, and R. Cochrane. Active database features in
SQL3. Active Rules in Database Systems, pp. 197–219. Springer, New York, 1999.

10. E. A. Lee. Computing foundations and practice for cyber-physical systems: A pre-
liminary report. Technical Report UCB/EECS-2007-72, UC Berkeley, May 2007.

11. X. Li, J. M. Marín, and S. V. Chapa. A structural model of ECA rules in active
database. Proc. Second Mexican International Conference on Artificial Intelli-
gence: Advances in Artificial Intelligence, pp. 486–493. Springer, 2002.

12. D. McCarthy and U. Dayal. The architecture of an active database management
system. ACM SIGMOD Record, 18(2):215–224, 1989.

13. T. Murata. Petri nets: properties, analysis and applications. Proc. of the IEEE,
77(4):541–579, Apr. 1989.

14. D. Nazareth. Investigating the applicability of Petri nets for rule-based system
verification. IEEE TKDE, 5(3):402–415, 1993.

15. I. Ray and I. Ray. Detecting termination of active database rules using symbolic
model checking. Proc. East European Conference on Advances in Databases and
Information Systems, pp. 266–279. Springer, 2001.

16. R. Valk. Generalizations of Petri nets. Mathematical foundations of computer
science, LNCS 118, pp. 140–155. 1981.

17. D. Varró. A formal semantics of UML statecharts by model transition systems.
Proc. Int. Conf. on Graph Transformation, pp. 378–392. Springer, 2002.

18. Y. Zhao and G. Ciardo. Symbolic CTL model checking of asynchronous systems
using constrained saturation. Proc. ATVA, LNCS 5799, pp. 368–381. 2009.

19. Y. Zhao and G. Ciardo. Symbolic computation of strongly connected components
and fair cycles using saturation. ISSE, 7(2):141–150, 2011.

20. Y. Zhao, J. Xiaoqing, and G. Ciardo. A symbolic algorithm for shortest EG witness
generation. Proc. TASE, pp. 68–75. IEEE Comp. Soc. Press, 2011.

X. Jin, Y. Lembachar and G. Ciardo: Symbolic Verification of ECA Rules 59

60 PNSE’13 – Petri Nets and Software Engineering

Soundness of Workflow Nets with an Unbounded
Resource is Decidable?

Vladimir A. Bashkin1 and Irina A. Lomazova2,3

1 Yaroslavl State University, Yaroslavl, 150000, Russia
v_bashkin@mail.ru

2 National Research University Higher School of Economics,
Moscow, 101000, Russia

3 Program Systems Institute of the Russian Academy of Science,
Pereslavl-Zalessky, 152020, Russia

i_lomazova@mail.ru

Abstract. In this work we consider modeling of workflow systems with
Petri nets. A resource workflow net (RWF-net) is a workflow net, sup-
plied with an additional set of initially marked resource places. Resources
can be consumed and/or produced by transitions. We do not constrain
neither the intermediate nor final resource markings, hence a net can
have an infinite number of different reachable states.
An initially marked RWF-net is called sound if it properly terminates
and, moreover, adding any extra initial resource does not violate its
proper termination. An (unmarked) RWF-net is sound if it is sound
for some initial resource. In this paper we prove the decidability of both
marked and unmarked soundness for a restricted class of RWF-nets with
a single unbounded resource place (1-dim RWF-nets). We present an
algorithm for computing the minimal sound resource for a given sound
1-dim RWF-net.

1 Introduction

Petri nets constitute a popular formalism for modeling and analysis of distributed
systems. In this paper we consider workflow systems, or, to be more precise,
workflow processes. To model workflow processes a special subclass of Petri nets,
called WF-nets [1, 2], is used.

In the context of WF-nets a crucial correctness criterion is soundness [1, 3].
We say that a workflow case execution terminates properly, iff its firing sequence
(starting from the initial marking with a single token in the initial place) termi-
nates with a single token in the final place (i.e. there are no “garbage” tokens after
the termination). A model is called sound iff a process can terminate properly
starting from any reachable marking.
? This work is supported by the Basic Research Program of the National Research
University Higher School of Economics, Russian Fund for Basic Research (projects
11-01-00737, 12-01-31508, 12-01-00281), and by Federal Program "Human Capital
for Science and Education in Innovative Russia" (Contract No. 14.B37.21.0392).

Soundness of WF-nets is decidable [1]. Moreover, a number of decidable
variations of soundness are established, for example, k-soundness [9], structural
soundness [14] and soundness of nested models [11].

One of important aspects in workflow development concerns resource man-
agement. Resources here is a general notion for executives (people or devices),
raw materials, finances, etc. To take resources into account different extensions
of a base formalism where introduced, having different versions of soundness
criteria.

In [5, 6] a specific class of WFR-nets with decidable soundness is studied. In
[10, 13] a more general class of Resource-Constrained Workflow Nets (RCWF-
nets) is defined. Informally, the authors impose two constraints on resources.
First, they require that all resources that are initially available are available again
after terminating of all cases. Second, they also require that for any reachable
marking, the number of available resources does not override the number of
initially available resources.

In [10] it is proven that for RCWF-nets with a single resource type soundness
can be effectively checked in polynomial time. In [13] it is proven that soundness
is also decidable in general case (by reducing to the home-space problem).

In all mentioned papers resources are assumed to be permanent, i.e. they are
used (blocked) and released later on. Resources are never created, nor destroyed.
Hence the process state space is explicitly bounded.

To study a more general case of arbitrary resource transformations (that can
arise, for example, in open and/or adaptive workflow systems), in [8] we defined
a notion of WF-nets with resources (RWF-nets). RWF-nets extend RCWF-nets
from [10] in such a way that resources can be generated or consumed during a
process execution without any restrictions (cf. [7]). For RWF-nets we defined no-
tions of resources and controlled resources and studied the problem of soundness-
preserving resource replacement (this problem is important for adaptive work-
flows).

Unfortunately, even sound RWF-nets are not bounded in general, hence exist-
ing soundness checking algorithms cannot be applied here. In [8] the decidability
of soundness for RFW-nets was declared as an open problem.

In this paper we consider a restricted case — RWF-nets with a single resource
place (1-dim RWF-nets). One resource type is sufficient for many practical ap-
plications (memory or money are typical examples of such resources). Note that
1-dim RWF-nets are, generally speaking, not bounded and hence this case cannot
be reduced to finite-state WF-nets with resources, such as RCWF- or WFR-nets.

In this paper we use graph-theoretic properties of RWF-net control automa-
ton to prove decidability of soundness for marked, as well as unmarked 1-dim
RWF-nets. We present also an algorithm for computing minimal sound resource
for a given sound 1-dim RWF-net.

The paper is organized as follows. In Section 2 basic definitions of multisets
and Petri nets are given. In Section 3 we give definitions of sound RWF-nets.
In Section 4 the class of 1-dim RWF-nets is defined and studied, algorithms for

62 PNSE’13 – Petri Nets and Software Engineering

checking marked soundness, soundness and finding the minimal sound resource
are given. Section 5 contains some conclusions.

2 Preliminaries

Let S be a finite set. A multiset m over a set S is a mapping m : S → Nat,
where Nat is the set of natural numbers (including zero), i. e. a multiset may
contain several copies of the same element.

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s) (the
inclusion relation). The sum, the union and the subtraction of two multisets m
and m′ are defined as usual: ∀s ∈ S : (m+m′)(s) = m(s) +m′(s), (m∪m′)(s) =
max(m(s),m′(s)), (m−m′)(s) = m(s)	m′(s) (where 	 denotes the truncated
subtraction). ByM(S) we denote the set of all finite multisets over S.

Non-negative integer vectors are often used to encode multisets. Actually, the
set of all multisets over finite S is a homomorphic image of Nat|S|.

Let P and T be nonempty disjoint sets of places and transitions and let
F : (P ×T)∪ (T ×P)→ Nat. Then N = (P, T, F) is a Petri net. A marking in a
Petri net is a functionM : P → Nat, mapping each place to some natural number
(possibly zero). Thus a marking may be considered as a multiset over the set of
places. Pictorially, P -elements are represented by circles, T -elements by boxes,
and the flow relation F by directed arcs. Places may carry tokens represented by
filled circles. A current marking M is designated by putting M(p) tokens into
each place p ∈ P . Tokens residing in a place are often interpreted as resources
of some type consumed or produced by a transition firing. A simple example,
where tokens represent molecules of hydrogen, oxygen and water respectively is
shown in Fig. 1.

� �

� �

� � � � � 	

 �

�

Fig. 1. A chemical reaction.

For a transition t ∈ T an arc (x, t) is called an input arc, and an arc (t, x) —
an output arc; the preset •t and the postset t• are defined as the multisets over P
such that •t(p) = F (p, t) and t•(p) = F (t, p) for each p ∈ P . A transition t ∈ T is
enabled in a marking M iff ∀p ∈ P M(p) ≥ F (p, t). An enabled transition t may
fire yielding a new marking M ′ =def M − •t+ t•, i. e. M ′(p) = M(p)−F (p, t) +

V. Bashkin et al.: Soundness of WF Nets with an Unbounded Resource 63

F (t, p) for each p ∈ P (denoted M t→ M ′, or just M → M ′). We say that M ′
is reachable from M iff there is a sequence M = M1 → M2 → · · · → Mn = M ′.
For a Petri net N by R(N,M0) we denote the set of all markings reachable from
its initial marking M0.

3 WF-nets with resources

In Petri nets with resources we divide Petri net places into control and resource
ones.

Definition 1. A Petri net with resources is a tuple N = (Pc, Pr, T, Fc, Fr),
where

– Pc is a finite set of control places;
– Pr is a finite set of resource places, Pc ∩ Pr = ∅;
– T is a finite set of transitions, Pc ∩ T = Pr ∩ T = ∅;
– Fc : (Pc × T) ∪ (T × Pc)→ Nat is a multiset of control arcs;
– Fr : (Pr × T) ∪ (T × Pr)→ Nat is a multiset of resource arcs;
– ∀t ∈ T ∃p ∈ Pc : Fc(p, t) +Fc(t, p) > 0 (each transition is incident to some

control place).

Note that all transitions are necessarily linked to control places — this guar-
antees the absence of “uncontrolled” resource modifications.

A marking in a Petri net with resources is also divided into control and
resource parts. For a multiset c+ r, where c ∈M(Pc) and r ∈M(Pr), we write
c|r.

Definition 2. For a net N a resource is a multiset over Pr. A controlled re-
source is a multiset over Pc ∪ Pr.

Workflow nets (WF-nets) are a special subclass of Petri nets designed for
modeling workflow processes. To study resource dependencies in workflow sys-
tems we consider WF-nets with resources.

Definition 3. A Petri net with resources N is called a WF-net with resources
(RWF-net) iff

1. There is one source place i ∈ Pc and one sink place o ∈ Pc s. t. •i = o• = ∅;
2. Every node from Pc ∪ T is on a path from i to o, and this path consists of

nodes from Pc ∪ T.

Fig. 2 represents an example of a RWF-net, where resource places r1 and r2
are depicted by ovals, resource arcs — by dotted arrows.

Every RWF-net N = (Pc, Pr, T, Fc, Fr) contains its control subnet Nc =
(Pc, T, Fc), which forms a RWF-net with the empty set of resources.

A marked net is a net together with some initial marking.

Definition 4. A marked RWF-net (N, c|r) is called sound iff ∀s ∈M(Pr), ∀M ∈
R(N, c|r + s) we have:

64 PNSE’13 – Petri Nets and Software Engineering

�

�

� �

� �

� �

� 	

 �

Fig. 2. WF-net wth resources.

1. ∃s′ ∈M(Pr) : o|s′ ∈ R(N,M);
2. c′|r′ ∈ R(N,M) ⇒ c′ = o ∨ c′ ∩ o = ∅.

Thus soundness for a RWF-net means that, first, this workflow net can ter-
minate properly from any reachable state, and, additionally, adding any extra
resource does not violate the proper termination property.

Note that our definition is substantially different from the definition of sound
RCWF-nets (Resource-Constrained Workflow net) in [10]. We do not forbid cre-
ating and spending of resources. Thus, in RWF-nets resources may be produced
and consumed during a process execution. This implies the possible unbound-
edness of sound RWF-nets.

The following statement is analogous to Lemma 5 in [10].

Proposition 1. [7] If a marked RWF-net (N, i|r) is sound, then its control
subnet Nc with the initial marking i is also sound.

The proof of this proposition is given in the Appendix.
The converse statement is not true: there may be RWF-nets with sound

control subnets, for which sound resources do not exist. An example of such a
net is given in Fig. 3.

Let N be a RWF-net. By C(N) we denote the set of all control markings
reachable in Nc, i. e. C(N) = R(Nc, i).

Proposition 2. [7] If a marked RWF-net (N, i|r) is sound, then

1. for any reachable control marking c ∈ C(N) there exists a resource r′, such
that (N, c|r′) is sound;

2. for any two control markings c1, c2 ∈ C(N) we have c1 6⊂ c2 and c2 6⊂ c1.

The proof of this proposition is given in the Appendix.

V. Bashkin et al.: Soundness of WF Nets with an Unbounded Resource 65

� �

�

Fig. 3. RWF-net with a sound control subnet, which is not sound for any resource.

Further, we call a RWF-net N sound (without indicating any concrete re-
source) iff a marked RWF-net (N, i|r) is sound with some initial resource r.

From the second statement of Proposition 2 and the well-known Dickson’s
lemma we obtain the following

Corollary 1. For a sound RWF-net N the set C(N) of all its reachable control
markings is finite.

Note 1. Since the control subnet of a sound RWF-net N is bounded, the set
C(N) can be effectively constructed (e. g. by constructing a coverability tree).

Definition 5. Let N be a RWF-net, c ∈ C(N). We define:

1. res(c) =def {r ∈M(Pr) | (N, c|r) is sound} — the set of all sound resources
for c;

2. mres(c) =def {r ∈ res(c) | 6 ∃r′ ∈ res(c) : r′ ⊂ r} — the set of all minimal
sound resources for c.

Then from Dickson’s Lemma we immediately obtain:

Proposition 3. [7] For any sound RWF-net N and any control marking c ∈
C(N) the set mres(c) is finite.

The questions of computability of mres(c) and decidability of soundness
for RWF-nets remain open. In the next section positive answers to these two
questions are given for a restricted case — RWF-nets with a single resource
place.

4 Soundness of 1-dim RWF-nets

Let N = (Pc, Pr, T, Fc, Fr) be an RWF-net with Pr = {pr}, i.e. with just one
resource place. By 1-dim RWF-nets we denote the subclass of RWF-nets with
single resources. An example of such a net is given in Fig. 4. In the following
sections we consider only 1-dim RWF-nets.

If a control subnet of N is not sound, then N is also not sound. So, we
suppose that the control subnet of N is sound, and hence bounded.

66 PNSE’13 – Petri Nets and Software Engineering

� �� �

� �

� �

� 	

 �

�

� �

� �

� �

� �

� � �

Fig. 4. 1-dim RWF-net N1.

4.1 Control automaton

It is easy to note that a bounded control subnet can be represented as an equiva-
lent finite automaton (a transition system). This automaton is an oriented graph
with two distinguished nodes – a source node i and a sink node o.

In this control automaton states are exactly the elements of C(N), transitions
— transitions of the given net N . But now it will be more convenient to consider
a transition t as a pair (c1, c2) of control states, where c1

t→ c2. Every transition
t of the automaton is labeled by an integer δ(t), defining a “resource effect” of
transition firing. A positive δ(t) means that the firing of t increments the marking
of a (single) resource place pr by δ(t), a negative δ(t) means that t is enabled in
a state (c|r) iff r(pr) ≥ |δ(t)|, and that the firing of t decrements the resource
by |δ(t)|. Formally,

δ(t) =def

{
−Fr(pr, t) for Fr(pr, t) > 0;
Fr(t, pr) for Fr(t, pr) > 0.

The value δ(t) is called an effect of t (denoted Eff (t)). Note that for simplicity
we exclude loops, when both Fr(pr, t) > 0 and Fr(t, pr) > 0; such loops can be
simulated by two sequential transitions.

A support of t is the amount of the resource required for a firing of t. It is
defined as:

Supp(t) =def

{
0, δ(t) ≥ 0;

|δ(t)|, δ(t) < 0.

Thus, a 1-dim RWF-net N can be transformed into a control automaton
Aut(N), which can be considered as a one-counter net (e.g. [4]) or, alternatively,
a 1-dim Vector Addition System with States (VASS [12]) with a specific workflow
structure: one source state, one sink state, and every state is reachable from the
source state, as well as the sink is reachable from every state. Note that the
control automaton Aut(N) is behaviorally equivalent to N in the branching-
time semantics.

V. Bashkin et al.: Soundness of WF Nets with an Unbounded Resource 67

Consider an example depicted in Fig. 5. This is a control automaton for
the 1-dim RWF-net from Fig. 4. States are denoted by octagons, labelled with
the corresponding control markings of the net. Transitions are labelled with the
corresponding names and effects.

� �
� �

� � � � � 	

 �

�
� � � �

� � � � � � � �

� � � �

� � ! " #

$ % & ' ()

* + , - . /

0 1 2 3 4 5

6 7 8 9 : ;

Fig. 5. Control automaton for N1.

A control automaton (a one-counter net) is a digraph with arcs labeled by
integers. Recall some basic notion from graph theory.

A walk is an alternating sequence of nodes and arcs, beginning and ending
with a node, where each node is incident to both the arc that precedes it and
the arc that follows it in the sequence, and where the nodes that precede and
follow an arc are the head and the tail of this arc.

We consider only non-empty walks, containing at least one arc.
A walk is closed if its first and last nodes coincide.
A path is a walk where no arcs are repeated (nodes may be repeated).
A simple path is a path where no nodes are repeated.
A cycle is a closed path.
A simple cycle is a closed path where no nodes are repeated (except the

first/last one).

A walk in a control automaton corresponds to some sequence of firings in
1-dim RWF-net. Now we inductively define an effect and a support of a walk.
Intutively,

Let t be a transition and σ a walk, such that the ending node of t is the
beginning node of the first transition of σ. Let tσ denote a walk, constructed by
linking t and σ. We define:

Eff (tσ) =def Eff (t) + Eff (σ); Supp(tσ) =def Supp(t) + (Supp(σ)	 Eff (t)),

where 	 denotes the truncated subtraction.

68 PNSE’13 – Petri Nets and Software Engineering

A positive (resp., negative) walk is a walk with a positive (resp., negative)
effect. Obviously, the effect of a cycle does not depend on a choice of a starting
node.

A node q is called a positive generator, iff there exists a simple positive path
from q to q (a simple positive cycle) with a zero support.

Lemma 1. Any simple positive cycle contains at least one generator.

Proof. Note that without loss of generality we can consider only cycles of even
lengths, having alternating positive and negative arcs. Then the proof is straight-
forward, by induction on the length of a cycle.

A node q is called a negative generator, iff there exists a simple negative path
θ from q to q (a simple negative cycle), such that Supp(θ) = −Eff (θ).

Lemma 2. Any simple negative cycle contains at least one generator.

Proof. Similar to the previous lemma.

4.2 Decidability of soundness for marked nets

Let (N, i|r0) be an initially marked 1-dim RWF-net. By abuse of notation we
denote by N also the control automaton of N , represented as a one-counter net.
Recall that i ∈ C(N) denotes the initial control state, r0 ∈ Nat denotes the
initial value of a counter (the single resource place), and R(N, (i|r0)) denotes
the set of all reachable states.

Note that a marked RWF-net (N, i|r0) with a sound control subnet is not
sound if and only if it does not always terminate with a final control state o for
some larger initial resource r0 + s:

∃(c|r) ∈ R(N, i|r0 + s) such that (o|s′) 6∈ R(N, c|r) for any s′ ∈ Nat.

So we consider both two kinds of possible undesirable (not properly terminating)
behaviours of a Petri net, namely, deadlocks and livelocks.

Definition 6. A state (c|r) ∈ C(N)×Nat is a deadlock iff c 6= o and there is
no transition t ∈ T s.t. (c|r) t→ (c′|r′) for some c′, r′.

A finite set L ⊂ C(N)×Nat of states is a livelock iff

1. |L| > 1;
2. for any (c|r), (c′|r′) ∈ L there is a finite transition sequence σ ∈ T ∗ s.t.

(c|r) σ→ (c′|r′);
3. for any (c|r) ∈ L and t ∈ T s.t. (c|r) t→ (c′′|r′′) we have (c′′|r′′) ∈ L.

A livelock state is a state that belongs to some livelock.

Note that by definition (o|r) 6∈ L for any r;.

V. Bashkin et al.: Soundness of WF Nets with an Unbounded Resource 69

Proposition 4. If a state (c|r) is a deadlock then for any t ∈ T s.t. c t→ c′ we
have Supp(t) > r.

Proof. Straightforward.

Note that Prop. 4 implies δ(t) < 0 and hence we can reformulate it:

Corollary 2. If a state (c|r) is a deadlock then:

1. ∀t ∈ T s.t. c t→ c′ for some c′ we have δ(t) < 0;

2. r < min{|δ(t)| : c
t→ c′ for some c′}.

So deadlocks can occur (1) just for control states with only negative outgoing
transitions; (2) only for a finite number of different resources – when there are
no enough resources for firing any of the successor transitions.

Proposition 5. The set of deadlock states is finite.

Proof. The set of “potential deadlock” control states (nodes with only negative
outgoing transitions) is finite. For a given “potential deadlock” control state the
set of applicable deadlock states (natural numbers smaller than the smallest
required resource for a successor transition) is also finite.

Hence, all deadlocks can be detected by checking control states with only
negative outgoing transitions.

Now let us consider livelocks.

Proposition 6. If L ⊂ C(N)×Nat is a livelock then there is a state (c|r) ∈ L
and a negative transition t ∈ T with c t→ c′, such that δ(t) < −r.

Proof. Straightforward, since the control subnet of RWF-net N is sound.

Proposition 7. The set of livelocks is finite.

Proof. First note that if (c|r), (c|r + x) ∈ L with x > 0 then L is not a livelock.
Indeed, in this case the transition sequence (c|r) σ→ (c|r + x) corresponds to a
positive cycle, that can generate an infinite number of states — a contradiction
to the finiteness of livelocks. So, every control state can occur in a given livelock
at most once.

Now assume the converse: there are infinitely many livelocks. Then there are
infinitely many livelocks with the same set of control states, which differ only in
their resource value. Hence, this set includes a livelock with an arbitrarily large
resource, and we can take a livelock with a resource big enough to reach the final
state o. This implies that o belongs to the livelock — a contradiction with the
definition of a livelock.

Thus, all livelocks can be easily detected by checking finite systems of states,
closed under transition firings (strongly connected components) and satisfying
the property from Prop. 6.

70 PNSE’13 – Petri Nets and Software Engineering

�

�
�

�

� �

���
	������������������������ "!$#&%('
)+*-,�.0/�132�4653798�:<;�=6>

Fig. 6. Modified RWF-net N.

Theorem 1. Soundness is decidable for marked 1-dim RWF-nets.

Proof. The following proof is similar to the proof of decidability of structural
soundness in [14].

For a given 1-dim RWF-net N construct the modified RWF-net N by adding
a new initial place i and two new transitions, as depicted in Fig. 6. The original
1-dim RWF-net (N, i|r) is sound iff neither deadlocks nor livelocks are reachable
in 1-dim RWF-net (N, i|r) (otherwise some large enough initial resource would
produce the same undesirable situation in the given net N).

Since the sets of deadlocks and livelocks are finite and computable, the prob-
lem of soundness of a marked 1-dim RWF-net can be reduced to a finite number
of instances of a reachability problem for a 1-counter Petri net. This reachability
problem is decidable.

4.3 Decidability of soundness for unmarked nets

Theorem 1 gives us only a semidecision procedure for soundness of a net. One
can check the soundness of a given initial marking, but if the answer is negative,
it is not known whether there exists a larger sound marking.

Definition 7. An unmarked RWF-net N is called sound iff (N, i|r) is sound
for some resource r.

Corollary 2 gives us only a necessary condition of a deadlock, reachable from
some initial marking. Now we prove a stronger theorem, which gives a sufficient
and necessary condition for existence of a soundness-violating deadlock (i.e. a
deadlock that is reachable from an infinite number of different initial markings).

Theorem 2. An unmarked 1-dim RWF-net is not sound with deadlocks iff there
exist a deadlock state (c|r), a negative generator q and a simple path q σ→ c such
that Eff (σ)	 Supp(σ) ≤ r.

V. Bashkin et al.: Soundness of WF Nets with an Unbounded Resource 71

Proof. (⇐) It is sufficient to show that for any (large enough) initial resource
r0 there exists a larger initial resource r0 + x, such that a deadlock is reachable
from (i|r0 + x).

Consider an arbitrary (large enough) initial resource r0 s.t.

(i|r0)
τ→ (q|s)

for some path τ and resource s (it is always possible to find such a resource
since the control net is sound, and therefore any control state is reachable for
some sufficiently large initial resource). Let θ = qc1 . . . cjq be a simple negative
cycle with generator q, i.e. Supp(θ) = −Eff (θ). Denote z = s mod Supp(θ) and
consider a larger initial resource r0 + z + Supp(σ).

We have (
i|r0 + z + Supp(σ)

)

↓ τ
(
q|s+ z + Supp(σ)

)

↓ θ

(
(s+z)/Supp(θ)

)

(
q|Supp(σ)

)

↓ σ
(
c|Eff (σ)	 Supp(σ)

)

and hence a deadlock.
(⇒) Assume the converse: the net is unsound with a deadlock, but for any

given deadlock state, it is impossible to find a negative generator that satisfies
the conditions in the theorem.

The number of deadlock states is finite, hence some deadlock state (c|r)
is reachable from an infinite number of different initial states (initial resource
values).

Every transition sequence σ = t1.t2.tn from (i|r0) to (c|r) corresponds
to a walk σ in the control automaton graph. Since there are infinitely many
deadlock-generating initial states, the set of corresponding walks is also infinite.
Each of these walks can be decomposed into a sequence of alternating simple
cycles and acyclic simple paths:

σ = τ1(θ1)k1τ2(θ2)k2 . . . τn−1(θn−1)kn−1τn.

Note that this decomposition is not unique: ababa can be considered both as
(ab)2a and a(ba)2. To fix ideas, we only consider “decomposition from the right
to the left”, so a(ba)2.

Let us show that among these walks there is a walk with a negative last cycle
θn−1. Indeed, if the last cycle is positive (or neutral) with an effect x, we can
consider a larger initial resource r0 + x ∗ kn−1 and a shorter walk

σ′ = τ1(θ1)k1τ2(θ2)k2 . . . τn−1τn,

72 PNSE’13 – Petri Nets and Software Engineering

having the same ending — a deadlock. Now, the new walk σ′ can be decomposed
into simple cycles and simple paths, then the last cycle, if it is positive, can be
removed by increasing the initial resource, and so on. At the end of this process
we will obtain either a walk with a negative “last cycle” or a completely acyclic
walk (simple path from i to c). There are only finitely many acyclic paths in
the graph, but infinitely many deadlock-generating initial markings (and hence
deadlock-generating walks from i to c), so we necessarily obtain a walk with a
negative last cycle.

Consider such a deadlock-walk σ′′, ending with a suffix θkτ, where θ is a
negative cycle and τ is acyclic. Let θ = c1c2 . . . ci . . . cmc1, where ci is a negative
generator (from Lemma 2 such ci always exists). The path

(
(ci . . . cmc1)τ

)
is

simple (remember that we decompose “from the right to the left” and hence θτ
cannot contain cycles other than θ). Since the final state of the whole walk σ′′
is (c|r), for any suffix φ of σ′′ we have

Eff (φ)	 Supp(φ) ≤ r.

It holds for
(
(ci . . . cnc1)τ

)
as well. But this is a simple path that leads from a

negative generator to a deadlock control state – Q.E.D.

A result similar to Th. 2 is valid for livelocks:

Theorem 3. An unmarked 1-dim RWF-net is not sound with livelocks iff there
exist a livelock state (c|r), a negative generator q and a simple path q σ→ c such
that Eff (σ)	 Supp(σ) ≤ r.

Proof. Similar to Th. 2.

Corollary 3. Soundness is decidable for unmarked 1-dim RWF-nets.

Proof. All simple (negative) cycles can be found by Tarjan algorithm, deadlock
and livelock states — by searching for states, satisfiyng Prop. 4 and Prop. 6
respectively. The set of simple paths is finite (and easily computable).

4.4 Computability of a minimal sound resource

Now we propose a plain (and hence, may be, not the most effective) algorithm for
computing the minimal resource r such that (N, i|r) is sound: one tests soundness
for incremented values of r until success. Note that this method can be applied
only to sound nets, while soundness of the unmarked net can be checked with
the algorithm given in Cor. 3.

5 Conclusion

In this paper we have investigated the soundness property for workflow nets with
one (unbounded) resource place. We have proved that soundness is decidable

V. Bashkin et al.: Soundness of WF Nets with an Unbounded Resource 73

for marked and unmarked nets, and that the minimal sound resource can be
effectively computed.

Our decision algorithms use the reduction to the reachability problem for
unbounded Petri nets and hence cannot be considered efficient. However, the
inefficiency could be unavoidable, since RWF-nets are expressively rather close
to ordinary Petri nets (VASS).

Further research will concern decidability of soundness for the general case
of RWF-nets. It is also quite interesting to apply some alternative notions of
soundness to our infinite-state workflow nets. The so-called relaxed soundness is
of a particular interest. Relaxed soundness has been proposed as a weaker than
soundness property.

Some other interesting variants of soundness property are k-soundness, gen-
eralized and structural soundness [3].

The authors would like to thank the anonymous reviewers for their helpful
comments.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst, K.M. van Hee. Workflow Management: Models, Methods
and Systems, MIT Press, 2002.

3. W.M.P. van der Aalst, K.M. van Hee, A.H.M. Hofstede, N. Sidorova, H.M.W.
Verbeek, M. Voorhoeve, M.T. Wynn. Soundness of workflow nets: classification,
decidability, and analysis, Formal Aspects of Computing, 23(3):333–363, Springer,
2011.

4. P. A. Abdulla, K. Čerans. Simulation is decidable for one-counter nets. In Proc.
CONCUR’98, vol. 1466 of Lecture Notes in Computer Science, pages 253–268,
Springer, 1998.

5. K. Barkaoui, L. Petrucci. Structural Analysis of Workflow Nets with Shared Re-
sources. In Proc. Workflow Management: Net-based Concepts, Models, Techniques
and Tools (WFM98), volume 98/7 of Computing Science Reports, pages 82–95,
Eidhoven University of Technology, 1998.

6. K. Barkaoui, R. Ben Ayed, Z. Sbaï. Workflow Soundness Verification based on
Structure Theory of Petri Nets. International Journal of Computing and Informa-
tion Sciences, Vol. 5, No. 1, 2007. P.51–61.

7. V. A. Bashkin, I. A. Lomazova. Petri Nets and resource bisimulation. Fundamenta
Informaticae, Vol. 55, No. 2, 2003. P.101–114,

8. V. A. Bashkin, I. A. Lomazova. Resource equivalence in workflow nets. In Proc.
Concurrency, Specification and Programming, 2006, volume 1, pages 80–91. Berlin,
Humboldt Universitat zu Berlin, 2006.

9. K. van Hee, N. Sidorova, M. Voorhoeve. Generalized Soundness of Workflow Nets
is Decidable. In Proc. ICATPN 2004, volume 3099 of Lecture Notes in Computer
Science, pages 197–216. Springer, 2004.

10. K. van Hee, A. Serebrenik, N. Sidorova, M. Voorhoeve. Soundness of Resource-
Constrained Workflow Nets. In Proc. ICATPN 2005, volume 3536 of Lecture Notes
in Computer Science, pages 250–267. Springer, 2005.

74 PNSE’13 – Petri Nets and Software Engineering

11. K. van Hee, O. Oanea, A. Serebrenik, N. Sidorova, M. Voorhoeve, I.A. Lomazova.
Checking Properties of Adaptive Workflow Nets. Fundamenta Informaticae, Vol.
79, No. 3, 2007. P.347–362.

12. J. Hopcroft, J.-J. Pansiot. On the reachability problem for 5-dimensional vector
addition systems. Theoretical Computer Science, 8(2), 1979, pages 135–159.

13. N. Sidorova, C. Stahl. Soundness for Resource-Contrained Workflow Nets is De-
cidable. In BPM Center Report BPM-12-09, BPMcenter.org, 2012.

14. F. L. Tiplea, D. C. Marinescu. Structural soundness of workflow nets is decidable.
Information Processing Letters, Vol. 96, pages 54–58. Elsevier, 2005.

6 Appendix

Proof of Proposition 1.
The proof is by contradiction. Let (N, i|r) be a sound RWF-net and let the

net (Nc, i) be not sound. Then there exists a marking c ∈ R(Nc, i), such that
either the final marking o is not reachable from c, or o ∈ c and c 6= {o}.

Since for the control subnet the control marking c is reachable from the
initial marking i via some sequence of firings, we can always take a resource s,
sufficiently large to support the same sequence of firings for (N, i|r + s) and to
reach the same control state c. If for the control subnet the final state was not
reachable from c, then adding resource places can’t make it reachable for the
net with resources, i. e. for (N, i|r + s), in contradiction with the soundness of
(N, i|r). If, otherwise, o ∈ c and c 6= {o}, then we also obtain a contradiction with
the soundness of (N, i|r), since the control state c is reachable for (N, i|r + s).

Proof of Proposition 2.
(1) Similarly to the proof of the Proposition 1 we can always take a sufficiently

large initial resource r + s.
(2) Suppose this is not true. Assume that for some c1, c2 ∈ C(N) we have

c2 = c1+c′ for some c′ 6= ∅. From the first statement of this proposition it follows
that there exist resources r1 and r2 s. t. RWF-nets (N, c1|r1) and (N, c2|r2) are
sound. Then nets (N, c1|r1+r2) and (N, c2|r1+r2) are also sound. Thus the final
marking o|r′ is reachable from the marking c1|r1 + r2, and (due to monotonicity
property of Petri nets) the marking o+c′|r′ is reachable from the larger marking
c2|r1 + r2 — contradiction with the soundness for RWF-net (N, c2|r1 + r2).

V. Bashkin et al.: Soundness of WF Nets with an Unbounded Resource 75

76 PNSE’13 – Petri Nets and Software Engineering

Modeling Distributed Private Key Generation by
Composing Petri Nets

Luca Bernardinello1, Görkem Kılınç1, Elisabetta Mangioni1,2, and Lucia
Pomello1

1 Dipartimento di Informatica Sistemistica e Comunicazione,
Università degli studi di Milano - Bicocca,

Viale Sarca, 336 - Edificio U14 - I-20126 Milano, Italia
2 Istituto per la Dinamica dei Processi Ambientali,
Consiglio Nazionale delle Ricerche (CNR-IDPA),

Piazza della Scienza, 1 - Edificio U1 - I-20126 Milano, Italia

Abstract. We present a Petri net model of a protocol for the distributed
generation of id-based private keys. Those keys can then be used for
secure communications. The components of the system are built as re-
finements of a common interface, by applying a formal operation based
on a class of morphisms between Elementary Net Systems. It is then
shown that we can derive behavioural properties of the composed sys-
tem without building it explicitly, by exploiting properties of the given
morphisms.

Keywords: Petri Nets, morphisms, local state refinement, composition,
distributed private key generation

1 Introduction

In [1] we proposed a way to compose Elementary Net Systems (ENS) by iden-
tifying conditions, places, and events. The identification is ruled by a pair of
morphisms from the two components to an interface. The interface is an ENS
which can be seen as specifying the protocol of interaction between components,
or a common abstraction.

This framework was first defined relying on N-morphisms, originally intro-
duced in [11], [4]. Later, the same operation was defined over a new class of
morphisms, called α-morphisms (see [3] and [1]).

An α-morphism from an ENS N1 to an ENS N2 corresponds to a relation of
refinement: some subnets of N1 refine conditions of N2. This refinement may re-
quire that some events be duplicated. Such morphisms are defined and discussed
in Section 3.

When composing two ENS, N1 and N2 over an interface NI , the two mor-
phisms towards the interface specify how each component refines parts of the
interface. An uninterpreted example is given in Section 4.

One of the claimed advantages of this approach to design is the ability to
derive properties of the composed systems from properties of the components and

of the morphisms, without the need to actually build and analyse the composed
system.

Ideally, one would like to derive behavioural properties, like liveness and
safety properties, by analyzing only the structure of the models involved, thus
avoiding the potentially high cost of computing the reachable markings. This
is not always possible. Hence, the method we propose uses some behavioural
information about components and interface; however, this is limited to only a
part of the models, and does not involve the whole system model.

Here, we test these ideas on a protocol for distributed generation of id-based
cryptographic keys. The protocol, described in more detail in Section 5, requires
the cooperation of several private key generators (PKGs) so that a client can
build a private key. Basically, n PKG nodes come together to generate a master
key pair consisting of a private and a public key. After that, each PKG node has a
share for the master key pair. A client who wants to have a private key applies to
k available PKG nodes. Each PKG node calculates a piece of the client’s private
key by using the unique id-string of the client and the share of the master private
key which is held by that specific PKG node. On receiving k pieces, the client
continues to extract its private key. The so called bulletin board is responsible for
the initialization of the components in the system and broadcasting the public
parameters. During both the distributed generation of the master key pair and
the extraction of the clients’ private keys, a verification can be performed by
using the commitment values and public keys held and broadcast by the bulletin
board. The id-based distributed private key generation protocol was proposed
in [5]; an improved version is presented in [6]. In [7], a Petri net model for the
protocol to be implemented on industrial control systems is presented.

In the next section, basic definitions related to ENS are recalled. Section 3
recalls the formal definition of α-morphisms and the properties they preserve
or reflect and which are used in the rest of the paper. The definition of an
operation of composition of ENS, based on α-morphisms, is informally recalled
in Section 4 on the basis of an uninterpreted example. In the same section, the
main result relating behavioral properties of the composed system to behavioral
properties of its components is recalled. Section 5 presents the distributed private
key generation protocol which is modelled by Petri nets in Section 6. In the same
section, we analyze behavioural properties of the model. The paper is closed by
a short concluding section.

2 Preliminary definitions

In this section, we recall the basic definitions of net theory, in particular Ele-
mentary Net Systems and unfoldings [13].

A net is a triple N = (B,E, F), where B is a set of conditions or local states,
E is a set of events or transitions such that B∩E = ∅ and F ⊆ (B×E)∪(E×B)
is the flow relation.

78 PNSE’13 – Petri Nets and Software Engineering

We adopt the usual graphical notation: conditions are represented by circles,
events by boxes and the flow relation by arcs. The set of elements of a net will
be denoted by X = B ∪ E.

The preset of an element x ∈ X is •x = {y ∈ X|(y, x) ∈ F}; the postset of x
is x• = {y ∈ X|(x, y) ∈ F}; the neighbourhood of x is given by •x• = •x ∪ x•.
These notations are extended to subsets of elements in the usual way.

For any net N we denote the in-elements of N by ◦N = {x ∈ X : •x = ∅}
and the out-elements of N by N◦ = {x ∈ X : x• = ∅}.

A net N ′ = (B′, E′, F ′) is a subnet of N = (B,E, F) if B′ ⊆ B,E′ ⊆ E, and
F ′ = F ∩ ((B′×E′)∪ (E′×B′)). Given a subset of elements A ⊆ X, we say that
N(A) is the subnet of N identified by A if N(A) = (B ∩A,E ∩A,F ∩ (A×A)).
Given a subset of conditions A ⊆ B, we say that NA is the subnet of N generated
by A if NA = (A, •A•, F ∩ ((A ∪ •A•) × (A ∪ •A•))). Note that given A ⊆ B,
N(A ∪ •A•) = NA.

A State Machine is a connected net such that each event e has exactly one
input condition and exactly one output condition: ∀e ∈ E, |•e| = |e•| = 1.

Elementary Net (EN) Systems are a basic system model in net theory. An
Elementary Net System is a quadruple N = (B,E, F,m0), where (B,E, F) is a
net such that B and E are finite sets, self-loops are not allowed, isolated elements
are not allowed, and the initial marking is m0 ⊆ B.

A subnet of an EN System N identified by a subset of conditions A and all its
pre and post events, N(A∪ •A•), is a Sequential Component of N if N(A∪ •A•)
is a State Machine and if it has only one token in the initial marking.

An EN System is covered by Sequential Components if every condition of
the net belongs to at least a Sequential Component. In this case we say that the
system is State Machine Decomposable (SMD).

Let N = (B,E, F,m0) be an EN System, e ∈ E and m ⊆ B. The event e is
enabled at m, denoted m [e〉, if •e ⊆ m and e• ∩m = ∅; the occurrence of e at
m leads from m to m′, denoted m [e〉m′, iff m′ = (m \ •e) ∪ e•.

Let ε denote the empty word in E∗. The firing rule is extended to sequences
of events by setting m [ε〉m and ∀e ∈ E,∀w ∈ E∗,m [ew〉m′ = m [e〉m′′[w〉m′;
w is called firing sequence.

A subset m ⊆ B is a reachable marking of N if there exists a w ∈ E∗ such
that m0 [w〉m. The set of all reachable markings of N is denoted by [m0〉.

An EN System is contact-free if ∀e ∈ E,∀m ∈ [m0〉: •e ⊆ m implies e•∩m =
∅. An EN System covered by Sequential Components is contact-free [13]. An
event is called dead at a marking m if it is not enabled at any marking reachable
from m. A reachable marking m is called dead if no event is enabled at m. An
EN System is deadlock-free if no reachable marking is dead.

Let N = (B,E, F) be a net, and let x, y ∈ X. We say that x and y are in
conflict, denoted by x #N y, if there exist two distinct events ex, ey ∈ E such
that exF ∗x, eyF ∗y, and •ex ∩ •ey 6= ∅, where F ∗ is the reflexive and transitive
closure of F .

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 79

The semantics of an EN System can be given as its unfolding. The unfolding
is an acyclic net, possibly infinite, which records the occurrences of its elements
in all possible executions.

An occurrence net is a net N = (B,E, F) such that if e1, e2 ∈ E, e1• ∩ e2• 6=
∅ then e1 = e2; F ∗ is a partial order; for any x ∈ X, {y : yF ∗x} is finite;
#N is irreflexive and the minimal elements with respect to F ∗ are conditions.
Occurrence nets were introduced in [10]; in [13] they are called branching process
nets.

A branching process of N is an occurrence net whose elements can be mapped
to the elements ofN . LetN = (B,E, F,m0) be an EN System, andΣ = (P, T,G)
be an occurrence net. Let π : P ∪ T → B ∪ E be a map. The pair (Σ, π) is a
branching process of N if π(P) ⊆ B, π(T) ⊆ E; π restricted to the minimal
elements of Σ is a bijection on m0; for each t ∈ T , π restricted to •t is injective
and π restricted to t• is injective and for each t ∈ T , π(•t) = •(π(t)) and
π(t•) = (π(t))•.

The unfolding of an EN System N , denoted by Unf (N), is the maximal
branching process of N , namely the unique, up to isomorphism, branching pro-
cess such that any other branching process of N is isomorphic to a subnet of
Unf (N). The map associated to the unfolding will be denoted u and called
folding.

3 α-morphisms

In this section we present the formal definition of α-morphisms [3, 2] for State
Machine Decomposable Elementary Net Systems (SMD-EN Systems) and the
structural and behavioural properties α-morphisms preserve and reflect.

Definition 1. Let Ni = (Bi, Ei, Fi,m
i
0) be a SMD-EN System, for i = 1, 2. An

α-morphism from N1 to N2 is a total surjective map ϕ : X1 → X2 such that:

1. ϕ(B1) = B2;
2. ϕ(m1

0) = m2
0;

3. ∀e1 ∈ E1, if ϕ(e1) ∈ E2, then ϕ(•e1) = •ϕ(e1) and ϕ(e1
•) = ϕ(e1)•;

4. ∀e1 ∈ E1, if ϕ(e1) ∈ B2, then ϕ(•e1•) = {ϕ(e1)};
5. ∀b2 ∈ B2

(a) N1(ϕ−1(b2)) is an acyclic net;
(b) ∀b1 ∈ ◦N1(ϕ−1(b2)), ϕ(•b1) ⊆ •b2 and (•b2 6= ∅ ⇒ •b1 6= ∅);
(c) ∀b1 ∈ N1(ϕ−1(b2))◦, ϕ(b1

•) = b2
•;

(d) ∀b1 ∈ ϕ−1(b2) ∩B1,
(b1 6∈ ◦N1(ϕ−1(b2)) ⇒ ϕ(•b1) = {b2}) and (b1 6∈ N1(ϕ−1(b2))◦ ⇒
ϕ(b1

•) = {b2});
(e) ∀b1 ∈ ϕ−1(b2) ∩ B1, there is a sequential component NSC of N1 such

that b1 ∈ BSC and ϕ−1(•b2•) ⊆ ESC .

We require that the map is total and surjective because N1 refines the ab-
stract model N2, and any abstract element must be related to its refinement.

80 PNSE’13 – Petri Nets and Software Engineering

In particular, a subset of nodes can be mapped on a single condition b2 ∈ B2;
in this case, we will call bubble the subnet identified by this subset, and denote
it by N1(ϕ−1(b2)); if more than one element is mapped on b2, we will say that
b2 is refined by ϕ.

In-conditions and out-conditions have different constraints, 5b and 5c respec-
tively. As required by 5c, choices which are internal to a bubble can not constrain
a final marking of that bubble: i.e., each out-condition of the bubble must have
the same choices of the condition it refines. Instead, pre-events do not need this
strict constraint (5b): hence it is sufficient that pre-events of any in-condition are
mapped on a subset of the pre-events of the condition it refines. Moreover, the
conditions that are internal to a bubble must have pre-events and post-events
which are all mapped to the refined condition b2, as required by 5d. By require-
ment 5e, events in the neighbourhood of a bubble are not concurrent, and the
same holds for their images. Within a bubble, there can be concurrent events;
however, post events are in conflict, and firing one of them will empty the bubble
[8]. Moreover, given that a bubble can be abstracted by a single condition no
input event of a bubble is enabled whenever a token is within the bubble [8].

It is possible to show that the family of SMD-EN Systems together with
α-morphisms forms a category [8].

In [8] and [3] structural and behavioral properties preserved or reflected by α-
morphisms has been studied. In particular, sequential components are reflected
in the sense that the inverse image of a sequential component is covered by
sequential components and α-morphisms preserve reachable markings.

Moreover, stronger properties hold under additional constraints. In order
to present them, we have to consider the following construction. Given an α-
morphism ϕ : N1 → N2, and a condition b2 ∈ B2 with its refinement, we define
two new auxiliary SMD-EN Systems. The first one, denoted S1(b2), contains the
following elements: a copy of the subnet which is the refinement of b2, i.e.: the
bubble; its pre and post events in E1 and two new conditions, denoted bin1 and
bout1 . bin1 is pre of all the pre-events, and bout1 is post of all the post-events. The
initial marking of S1(b2) will be {bin1 } or, if there are no pre-events, the initial
marking of the bubble in N1. The second system, denoted S2(b2), contains b2,
its pre- and post-events and two new conditions: bin2 , which is pre of all the
pre-events, and bout2 , which is post of all the post-events. The initial marking of
S2(b2) will be {bin2 } or, if there are no pre-events, the initial marking of b2. Define
ϕS as a map from S1(b2) to S2(b2), which restricts ϕ to the elements of S1(b2),
and extends it with ϕS(bin1) = bin2 and ϕS(bout1) = bout2 . Note that S1(b2) and
S2(b2) are SMD-EN Systems and that ϕS is an α-morphism. Let Unf (S1(b2))
be the unfolding of S1(b2), with folding function u : Unf (S1(b2))→ S2(b2).

Consider the following additional constraints:

c1 the initial marking of each bubble is at the start of the bubble itself; formally,
for each b2 ∈ B2 one of the following conditions hold:
– ϕ−1(b2) ∩m1

0 = ∅ or
– if •b2 6= ∅ then there is e1 ∈ ϕ−1(•b2) such that ϕ−1(b2) ∩m1

0 = e1
• or

– if •b2 = ∅ then ϕ−1(b2) ∩m1
0 = ◦ϕ−1(b2);

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 81

c2 any condition is refined by a subnet such that, when a final marking is
reached, this one enables events which correspond to the post-events of the
refined condition, i.e.: ϕS ◦ u is an α-morphism from Unf (S1(b2)) (in which
we put a token in the in-condition of the net) to S2(b2);

c3 different bubbles do not “interfere” with each other; where we say that two
bubbles interfere with each other when their images share, at least, a neigh-
bour.

Note that the third constraint is not restrictive since the refinement of two
interfering conditions can be done in two different steps.

Under c1, c2, and c3, the following properties can be proved [8]:

p1 reachable markings of N2 are reflected:
for all m2 ∈

[
m2

0

〉
, there is m1 ∈

[
m1

0

〉
such that ϕ(m1) = m2;

p2 N1 and N2 are weakly bisimilar:
by using ϕ, define two labelling functions such that E2 are all observ-
able, i.e.: l2 is the identity function, and the invisible events of N1 are the
ones mapped to conditions; then (N1, l1) and (N2, l2) are weakly bisimilar
(N1, l1) ≈ (N2, l2).

For a definition of weak bisimulation of EN Systems see [12] and [9].

4 Composition based on α-morphisms

In this section, we recall the composition of SMD-EN Systems based on α-
morphisms as defined in [1], on the basis of an uninterpreted example given in
Fig. 1.

The two systems to be composed, N1 and N2, must be mapped onto a com-
mon interface, which is another SMD-EN System NI . The interface can be seen,
intuitively, as a protocol of interaction, with which the components must comply,
or as a common abstraction; in this second view, each component can refine some
parts of the common abstraction. The two α-morphisms, from the components
to the interface, determine how the two components refine the local states of the
interface, and then which elements are to be identified and which events in the
two components have to synchronize.

To compose two net systems, each must be canonical with respect to the cor-
responding morphism towards the interface. We say that a net system is canon-
ical with respect to an α-morphism if each bubble contains a condition, called
representation, that corresponds to the abstraction of that bubble. Examples of
representations are rN1(b1) and rN2(b0) in Fig. 1. If a system is not canonical, it
is always possible to construct its unique (up to isomorphism) canonical version
by adding the missing representations, and marking them as their images, or by
deleting the multiple ones. Because of the constraints on α-morphisms, and in
particular of the ones on sequential components, point 5e of Def. 1, this construc-
tion does not modify the behaviour of the original system and the corresponding
modified morphism is still an α-morphism.

82 PNSE’13 – Petri Nets and Software Engineering

Fig. 1: An example of composition based on α-morphisms

In the example given in Figure 1 the interface NI is a simple sequence of two
events. The two components, N1 and N2, refine two different local states, b1 and
b0, each one by a subnet, shown on a gray background.

The composed net N = N1〈NI〉N2 contains the refinement of each condition
of the interface as it is in the two components, but for the representation, plus
the condition itself, as we can see for condition b0 and b1 of the example. The
rest of the net, not refined by the components, is taken as it is, but for the
synchronizations of the events in the neighbourhood of the refinements/bubbles.
Such events must be synchronized so that each possible pair composed by one
event of a component and one event of the other component must be created,
as we can see for events mapped on events e0 and e1 of Fig. 1. Then, also arcs
between in- and out-condition of each bubble and its pre and post (synchronized)
events must be created accordingly to the components. The initial marking is
the union of the ones in the components. By construction, N = N1〈NI〉N2 is an
EN System, and it is covered by sequential components [8].

This construction leads to the definition of a map ϕ′i from N = N1〈NI〉N2

ontoNi, i = 1, 2, relating each element local to a component to the corresponding

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 83

representation and projecting synchronized events. In [8] it is proved that this
map is an α-morphism and that the following diagram commutes.

NI

N1

ϕ1

99

N2

ϕ2

ee

N1〈NI〉N2

ϕ′
1

dd
ϕ′

2

::

These results say that the composed system refines both the components,
as well as the interface. The main result relating behavioral properties of the
composed system to behavioral properties of its components is stated in the
following Proposition [8], [2].

Proposition 1. Let Ni = (Bi, Ei, Fi,m
i
0) be an SMD-EN System for i = 1, 2, I.

Let ϕi, with i = 1, 2, be an α-morphism from Ni to NI , and let N = N1〈NI〉N2

be be the composition of N1 and N2 using ϕ1 and ϕ2. If N1 is weakly bisimilar
to NI then N = N1〈NI〉N2 is weakly bisimilar to N2.

Where, the labelling functions are derived from ϕ1 and ϕ′2, respectively, in
such a way that EI and E2 are all observable and the invisible events of E1 and
E are the ones which are mapped to conditions by ϕ1 and ϕ′2, respectively.

This result tells us, in particular, that the composition of refinements N1 and
N2, which are weakly bisimilar to a common interface NI , yields a system N
which is weakly bisimilar to NI ; and then, since bisimulation preserves deadlock-
freeness, it is possible to deduce that N is also deadlock-free by verifying that NI

is deadlock-free. Remember that by p2 it is possible to check weak bisimilarity
between two systems related by an α-morphism by considering their behaviour
only locally, as required by c1, c2, and c3.

5 Distributed private key generation for id-based
cryptography

In an id-based cryptographic system, unlike in the other public key cryptographic
systems, a publicly known string such as e-mail address, domain name, a physical
IP address or a combination of more than one strings is used as public key.
The idea of id-based cryptography was first proposed by Shamir in [14]. The
proposed scheme enables users to communicate securely and to verify signatures
without exchanging any private or public key. Consequently, there is no need for
a certification authority to verify the association between public keys and users.

Basically, in an id- based cryptographic system there is a private key gener-
ator (PKG) which generates private keys for users. A PKG has a key pair which
is referred as master key pair consisting of a master private key and a master

84 PNSE’13 – Petri Nets and Software Engineering

public key. A PKG generates a private key for a user basically by first hashing
its publicly known unique identity string then signing hashed id by the master
private key. Later, the user can verify its key by using the master public key.

Since the PKG can generate private keys for users, it can sign or decrypt
a message for any user or it can make users’ private keys public. This problem
about private key generation is called the key escrow problem. Distributed pri-
vate key generation (DPKG) is one of the effective solutions to the key escrow
problem. In both schemes [5], [6] secret sharing methods are used for distributing
private key generation among multiple PKGs.

In a DPKG there is a number of PKG nodes participating while they share
the responsibility equally. In our work we followed the identity based distributed
private key generation schemes presented in [5] and [6]. For more details about
the algorithms and the terminology it is recommended to refer to these citations.

The components of a DPKG system are divided into two main groups as
PKG nodes and clients. PKG nodes are responsible for generating private keys
for clients in a distributed manner. There is also a third component called bul-
letin board which is responsible for managing the global system variables, col-
lecting the commitments from PKG nodes, calculating the final commitment
and broadcasting these commitments.

We can examine DPKG protocol in three steps: setup, distribution and ex-
traction. Setup is a preparation step to create the system parameters and to get
ready for extracting the master key pair distributively and extraction of private
keys. In this step, bulletin board is given a security parameter and chooses some
system variables according to this given security parameter; it then broadcasts
public system parameters to be used by the other system components. It also
initializes the commitment values to zero in order to set them to the values it
will receive from PKG nodes in the distribution step. Final commitment is also
set to zero which will be calculated using the received commitments and it will
be broadcast later.

Distribution step is illustrated in Figure 2. In this step, n PKG nodes create
a master private key together without using any dealer in a way that the key
cannot be reconstructed without retrieving k shares from these n PKGs. k is the
threshold number of PKG nodes needed to collaborate together in order to con-
struct the key. To do this, an improved version of (n, k) Feldman’s secret sharing
scheme stated in [6] is used. The idea behind secret sharing without a dealer is
to make each PKG node create a secret of their own and calculate subshares to
distribute among other PKG nodes. At the end, each PKG node will have n sub-
shares including the one it calculated for itself. The sum of these subshares will
be the share of the PKG node for the master private key. During the calculation
of the subshares each PKG node also creates commitments corresponding to the
subshares calculated by them. These commitments are sent to the bulletin board
to be used by the PKG nodes for the verification of the received subshares. Note
that, in this DPKG system none of the PKG nodes knows the master secret key
since each of them has only a part of it.

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 85

Fig. 2: Block schema of the distribution step of private key generation.

Fig. 3: Block schema of the extraction step.

86 PNSE’13 – Petri Nets and Software Engineering

In extraction step, as it is illustrated in Figure 3, a client with identity string
ID contacts k available nodes from the PKG nodes pool. Each PKGi signs
hashed identity string of the client with its master private key share and returns
a private key piece as siH(ID) over a secure and authenticated channel. After
receiving k pieces from k available PKG nodes, client constructs its private key.
The client can verify the key by using bilinear pairings as it is stated in [6] and
[7].

6 The model of DPKG

In this section, we present Petri net model of a simplified DPKG system with
three PKG nodes while the threshold number is two. We fixed these numbers
for the simplicity but the generated model is more generic and can easily be
modified for different threshold and PKG node number as it will be discussed
through this section. Our model consists of the following three nets: NI , NPKG

and NC . NI is the common interface between NPKG and NC . It is an abstract
model of the whole system which represents the interaction between the main
components of the system. This model also includes the abstract behavior of
the bulletin board which is basically responsible for managing the global system
variables and commitments. NPKG is the net representing the behavior of PKG
nodes while NC is the net representing the behavior of clients in the DPKG
system. We aim to compose NPKG and NC using NI as the common interface
and prove that the composed net NPKG〈NI〉NC and the interface NI preserve
and reflect some properties presented in Section 3 since there is an α-morphism
both from NPKG to NI and from NC to NI .

NI , which is the net representing the interface, is given in Figure 4. This net
is an abstract model of the behavior of all three system components: bulletin
board, PKG nodes and clients. The system is idle in the beginning. After event
init occurs, system components are initialized and all PKG nodes are ready for
generating a secret key distributedly. The event init includes the setup step of the
protocol which is explained in Section 5. The condition calculate shares repre-
sents the whole process including calculating subshares and exchanging between
PKG nodes in order to calculate their shares for the master private key. During
this, each PKG node chooses a secret polynomial. It calculates the commitment
corresponding to its secret polynomial and sends it to the bulleting board. It also
calculates n subshares using its polynomial where n is the number of PKG nodes
in the system. Each PKG node sends the subshare to the related PKG node.
After exchanging is completed each PKG node will have n− 1 subshares sent by
other PKG nodes and one subshare of its own. By using these n subshares each
PKG node calculates its share. When the condition shares calculated becomes
true, it means that all the PKG nodes finished calculating share and each of
them is holding a share.

Once PKG nodes have their shares, they can verify their shares using the
final commitment value which is already calculated during the abstract event
calculate shares. If all the shares are correctly verified, the condition shares ver-

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 87

Fig. 4: NI , the net representing the interface.

ified becomes true so a client can apply for extracting a private key. In this
model, event apply includes choosing k available PKG nodes, receiving k pieces
and calculating its private key using these pieces. When the condition key is
true, the client has a key but we do not know if the key is correct or not by
looking in this abstract model. In both cases new request event can occur or the
system can continue with a restart which repeats the whole distributed private
key generation. In case of a fail during the verification of shares, the system is
forced to a restart without a key extraction.

NI is a live and reversible net which means that from any reachable marking
one can always get back to the initial state. These two properties are important
because a DPKG system must always be alive to respond to the clients’ key
requests and key generation process must be restartable whenever it is needed.
The net NI is also covered by sequential components which is a requirement in
order to be able to look for an α-morphism. The sequential components covering
the net can be shown as lists of conditions: {idle, ready, shares calculated, shares
verified, key, restart requested }, {idle, client, key}.

Figure 5 shows the net NPKG. This net refines the interface with respect
to PKG nodes’ behavior. All the elements of NPKG are mapped to the element
with the same name in NI but for the subnet circled by dashed line that is

88 PNSE’13 – Petri Nets and Software Engineering

Fig. 5: NPKG, the net representing the PKG nodes.

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 89

mapped to a single condition. This subnet forms a bubble which is a refinement
of the condition shares calculated in NI . The bubble shows the calculation and
exchange of subshares between three PKG nodes and calculation of shares by
each PKG node whereas in NI the occurrence of the whole process is abstracted
by one condition. If we model a system with n PKG nodes instead of three nodes,
only the bubble will grow, the other elements of the net will remain the same.

NPKG is also live, reversible and covered by sequential components like NI .
It is already shown that the conditions outside the bubble are covered by se-
quential components. Thus, here we will only show how the bubble is covered by
sequential components. After event calculate shares the net branches into three
paths and after each event calculate subshares i for i = 1, 2, 3 the net branches
again into three paths. This fact results in having nine sequential components
inside the bubble. Here we present only some of the sequential components as the
lists of conditions that construct the components: {p1, subshare 1-2, subshare
1_2, share 2, shares calculated}, {p1, subshare 1-1, share 1, shares calculated},
{p1, subshare 1-3, subshare 1_3, share 3, shares calculated}. The paths starting
with conditions p2 and p3 can also be constructed in the same way.

In order to prove that there is an α-morphism from NPKG to NI we have to
show that the requirements in Definition 1 are satisfied. To begin with, the initial
states ofNPKG andNI are related. For all the events inNPKG which are mapped
to an event in NI , also the pre-conditions and post conditions of these events are
mapped to the pre and post-conditions of the related events in NI . Moreover,
for all the events in NPKG that are mapped to a condition in NI , all the pre and
post-conditions of that event are also mapped to the same condition in NI . We
see that the nets satisfy the first four requirements of α-morphism. To continue
with, we can see that the bubble in NPKG is acyclic so 5a is satisfied. As seen in
Figure 5 all the in-elements of the bubble are generated by the only one event
entering the bubble which is mapped to the corresponding event in the interface,
calculate shares. It is also seen that post-events of the out-condition of the bubble
are exactly the same post-events of the corresponding condition in the interface.
Thus, 5b and 5c are satisfied. 5d is also satisfied because the conditions that are
internal to the bubble have pre-events and post-events which are all mapped to
the refined condition shares calculated in NI but for in and out-elements. Finally,
as we already listed the sequential components of the net, it is easy to see that
for each condition of the bubble there is a sequential component containing that
condition and all the pre and post-events of the bubble, so requirement 5e is
satisfied. In this way, we proved that there is an α-morphism from NPKG to NI .

The net shown in Figure 6, NC , is the net representing the behavior of a
client. While it includes the whole abstract model, it refines the key extraction
process of a client. The bubble shown with a dashed line is the refinement of the
condition key in the interface NI . In this refinement, receiving two pieces from
chosen PKG nodes, calculating the private key and verification of it is modeled
in more details. In a DPKG system where the threshold number is two, when
a client applies for a private key, it receives two pieces from two available PKG
nodes. The client can verify the pieces it received. If both pieces are verified

90 PNSE’13 – Petri Nets and Software Engineering

Fig. 6: NC , the net representing the clients.

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 91

then the client can extract its private key by using these pieces and the system
reaches a state where extraction is successful. In case at least one of the pieces
are not verified then the condition extraction not successful becomes true. After
both failed or successful extraction, the system reaches a state where extraction
ended is true and a new key can be requested by the same client or by any other
client in the system. Again if we improve the model for threshold value k instead
of two, only the bubble will grow but the other elements of the net will remain
the same.

This net is also live, reversible and covered by sequential components. Here we
give the sequential components which are enough to cover the net as lists of con-
ditions: {idle, ready, shares calculated, shares verified, piece 1, piece 1 verified,
piece 1 not verified, extraction successful, extraction not successful, extraction
ended, restart requested}, {idle, ready, shares calculated, shares verified, piece 2,
piece 2 verified, piece 2 not verified, extraction successful, extraction not success-
ful, extraction ended, restart requested}, {client, idle, piece 1, piece 1 verified,
piece 1 not verified, extraction successful, extraction not successful, extraction
ended}.

It is very easy to see that the first four requirements of α-morphism are
already satisfied so we can continue with checking the rest of the requirements.
The bubble contains no cycles so 5a is satisfied. All the in-elements of the bubble
are generated by the only one event entering the bubble which is mapped to the
corresponding event in the interface, apply. There is also only one post-event of
out-condition of the bubble which empties the bubble and this event is mapped
to the post-event of key. With these observation it is easy to see that 5b and
5c are satisfied. 5d is also satisfied because the conditions that are internal to
the bubble have pre-events and post-events which are all mapped to the refined
condition key in NI but for in and out-elements.

Finally, as we already listed the sequential components of the net, it is easy to
see that for each condition of the bubble there is a sequential component contain-
ing that condition and all the pre and post-events of the bubble, so requirement
5e is satisfied. Considering all the requirements, we can say that there is an α-
morphism between NC and NI . Now that we proved that there is an α-morphism
both from NPKG to NI and from NC and NI , we can prove that the composed
net is weakly bisimilar to the interface by showing that some additional require-
ments which are stated as c1, c2, and c3 in Section 3 are satisfied by NPKG and
NC . Proposition 1 states that if both of the components are weakly bisimilar to
the interface, then the composed net is also weakly bisimilar to the interface.
Thus, here we first show that NC is weakly bisimilar to the interface NI . To
do this, we follow the construction of the two auxiliary nets given in Section 3,
i.e., we consider the bubble in NC and the corresponding condition key in NI

and we add their pre and post-events to the subnets. We also add two more
conditions to each subnet: one condition to be a pre-condition to all pre-events
and another condition to be a post-condition to all post-events. Let us name
these two subnets as SC(key) and SI(key). Finally, we build the unfolding of

92 PNSE’13 – Petri Nets and Software Engineering

Fig. 7: Unf (SC(key)) and SI(key)

SC(key), represented as Unf (SC(key)). The resulting nets are shown in Figure
7.

We follow the same procedure for NPKG and we get two subnets Unf (SPKG

(shares calculated)) and SI(shares calculated) as in Figure 8.
When we examine these subnets, we see that no condition of the bubbles is in

the initial marking. Any condition is refined by a subnet such that, when a final
marking is reached, this one enables events which correspond to the post-events
of the refined condition, so there is an α-morphism both from Unf (SC(key))
to SI(key) and from Unf (SPKG(shares calculated)) to SI(shares calculated).
Thus, c1 and c2 are satisfied. Since there is only one bubble in both NPKG and
NC , c3 is automatically satisfied. Consequently, we can say that the additional
properties p1 and p2 are held. Moreover, considering Proposition 1, we can
conclude that the composed net NPKG〈NI〉NC is weakly bisimilar to NI .

Knowing that our nets satisfy the requirements of α-morphisms and the
other three additional constraints, give us the ensurance that, in addition to
weakly bisimulation, the nets preserve another important property stated in
p1. The property of reflecting reachable markings gives us a big advantage in
performing reachability analysis. Instead of analyzing the big composed net with
respect to reachability of a specific marking we can analyze the interface for the
corresponding marking in the interface. To give an example, we can consider
the existence of the following situation in the composed net NPKG〈NI〉NC : the

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 93

Fig. 8: Unf (SPKG(shares calculated)) and SI(shares calculated)

condition shares verified should not be true while there is at least one token in
any bubble. Performing a reachability analysis on the composed net is complex
in terms of time and space since both the net and the logic formula we have
to use to represent the interested global state are big. Instead, the mentioned
global state can be easily translated into a global state of the interface, NI .
Since each bubble in the composed net is mapped to a condition in the interface,
reachability analysis becomes easier. The previously mentioned critical situation
is reflected in the interface as the following: the condition shares verified cannot
be true while key or shares calculated is true. Performing a reachability analysis
for existence of this situation in NI is easier than analyzing the composed net.
Moreover, we do not even need to build the composed net.

7 Conclusion

We have developed a Petri net model of a protocol for distributed generation
of private keys. The model has been obtained by composing two net models
on a common interface. The first component models the interactions among
PKG nodes, while the second component models clients of the key generator.
Both components refine a common interface, representing the interactions among
components.

94 PNSE’13 – Petri Nets and Software Engineering

We have then discussed behavioural properties of the model, directly deriv-
able from properties of the components without generating the composed net.
In particular, we have shown that some markings are not reachable.

On one hand, we have verified modeling and analysis capacity of the compo-
sitional approach proposed in [2] by means of a real world example. On the other
side, we have proposed a model of distributed private key generation protocol
by using the compositional approach.

We now plan to explore how to extend the approach to other classes of Petri
nets, particularly PT nets and high-level nets. With respect to the model, we
plan to improve it giving a less abstract specification in order to propose a formal
verification of the protocol and to discuss its weak and strong aspects.

Acknowledgements

This work was partially supported by MIUR.

References

1. Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello. Composition of Ele-
mentary Net Systems based on α-morphisms. In Michael Köhler-Bußmeier, editor,
Joint Proc. of LAM’12, WooPS’12, and CompoNet’12, Hamburg, Germany, June
25-26, 2012, volume 853 of CEUR Workshop Proceedings, pages 87–102. CEUR-
WS.org, 2012.

2. Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello. Local state refine-
ment and composition on elementary net systems: an approach based on mor-
phisms. Transactions on Petri Nets and Other Models of Concurrency (ToPNoC),
special issue based on the workshops of Petri nets 2012 (to appear), 2012.

3. Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello. Local State Refine-
ment on Elementary Net Systems: an Approach Based on Morphisms. In Lawrence
Cabac, Michael Duvigneau, and Daniel Moldt, editors, Petri Nets and Software
Engineering. International Workshop, PNSE’12, Hamburg, Germany, June 25-26,
2012. Proceedings, volume 851 of CEUR Workshop Proceedings, pages 138–152.
CEUR-WS.org, 2012.

4. Luca Bernardinello, Elena Monticelli, and Lucia Pomello. On preserving struc-
tural and behavioural properties by composing net systems on interfaces. Fundam.
Inform., 80(1-3):31–47, 2007.

5. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. SIAM J. Comput., 32:586–615, 2003.

6. Aniket Kate and Ian Goldberg. Asynchronous distributed private-key generators
for identity-based cryptography. IACR Cryptology ePrint Archive, 2009:355, 2009.

7. Gorkem Kilinc, Igor Nai Fovino, Carlo Ferigato, and Ahmet Koltuksuz. A model
of distributed key generation for industrial control systems. In 11th Workshop on
Discrete Event Systems, volume 11, pages 356–363, Guadalajara, Mexico, 2012.

8. Elisabetta Mangioni. Modularity for system modelling and analysis. PhD thesis,
Università degli Studi di Milano-Bicocca, Dottorato di ricerca in Informatica, ciclo
24, 2013.

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 95

9. Robin Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

10. Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event struc-
tures and domains, part i. Theor. Comput. Sci., 13:85–108, 1981.

11. Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Elementary transi-
tion systems. Theor. Comput. Sci., 96(1):3–33, 1992.

12. Lucia Pomello, Grzegorz Rozenberg, and Carla Simone. A survey of equivalence
notions for net based systems. In Grzegorz Rozenberg, editor, Advances in Petri
Nets: The DEMON Project, volume 609 of Lecture Notes in Computer Science,
pages 410–472. Springer, 1992.

13. Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Wolfgang
Reisig and Grzegorz Rozenberg, editors, Petri Nets, volume 1491 of Lecture Notes
in Computer Science, pages 12–121. Springer, 1996.

14. A. Shamir. Identity-based cryptosystems and signature schemes. Advances in
Cryptology: Proceedings of CRYPTO 84, Lecture Notes in Computer Science, 7:47–
53, 1984.

96 PNSE’13 – Petri Nets and Software Engineering

Integrating Web Services in Petri Net-based
Agent Applications

Tobias Betz, Lawrence Cabac, Michael Duvigneau, Thomas Wagner,
Matthias Wester-Ebbinghaus

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics
{betz,cabac,duvigne,wagner,wester}@informatik.uni-hamburg.de

http://www.informatik.uni-hamburg.de/TGI

Abstract. The context of this paper is given through a software en-
gineering approach that uses Petri nets as executable code. We apply
the particular understanding that Petri nets are not only used to model
systems for design purposes but also to implement system components.
Following this approach, we develop complex Petri net-based software
applications according to the multi-agent paradigm. Agent-internal as
well as agent-spanning processes are implemented directly as (high-level)
Petri nets. These nets are essential parts of the resulting software appli-
cation – alongside other parts (operational and declarative ones), which
are implemented using traditional ways of programming.
One of our goals is to open our Petri net-based agent framework Mulan/
Capa so that multi-agent applications can communicate and interoper-
ate with other systems – especially with Web-based applications. For
this cause, we present a gateway solution to enable Petri net-based ap-
plications to access Web services as well as to offer Web services to other
applications: the WebGateway. Besides describing the WebGateway ex-
tension itself, we use its presentation to demonstrate the practicability of
the Petri net-based software engineering approach in general. We empha-
size two benefits: (1) Petri net models serve as conceptual models that
progressively refine the constructed system from simple models to well-
defined specifications of the systems. This improves the understanding
of the systems. (2) Having essential parts of the software system being
implemented with Petri nets allows to carry out (partial) verification of
our application code by means of standard formal methods from the field
of Petri net theory.

Keywords: Web Services, High-Level Petri Nets, Multi-Agent Systems,
Mulan, Renew, P∗aose

1 Introduction

One of the most frequent requirements for modern software applications is to
open the access of the offered functionality to other entities in the World Wide

Web. In this paper we address the topic of meeting this requirement for Petri-
net based software applications. We present a gateway solution for allowing Petri
net-based applications to access Web services as well as offering Web services
themselves.

The usefulness of Petri nets for software engineering has been recognized in
the context of many paradigms like object-orientation [1], components / plu-
gins [7,16,22] or agent-orientation [17,20]. However, in this paper we assume
a particular understanding of Petri net-based software. In addition to using
Petri nets for design-level artifacts and for verification of certain system prop-
erties, we utilize Petri nets as our implementation language. More concretely,
we rely on the high-level Petri net formalism of Java reference nets [7,18] that
allows to combine multi-level Petri net modeling (according to the nets-within-
nets concept [25]) with Java programming. The formalism is supported by the
Renew1 tool (http://www.renew.de). We have developed the multi-agent sys-
tem (MAS) framework Mulan1 based on Java reference nets. It provides a
powerful middleware for running distributed multi-agent applications on mul-
tiple instances of Renew. In addition, we have developed a Petri net-based
agent-oriented software engineering approach (P∗aose1) for the construction of
such multi-agent applications.

With the WebGateway extension, we introduce the latest addition to our
Petri net-based software engineering framework Mulan/Capa. While the Mu-
lan model is often referred to as the reference architecture, Capa (Concurrent
Agent Platform Architecture) is an extension and implementation of Mulan.
Capa [11] provides convenient ontology-based message processing and an infras-
tructure for FIPA-compliant agent management and IP-based transport services.
Capa is, thus, one implementation of the reference architecture Mulan. It al-
lows to integrate Mulan applications into Web-based environments via Web
services. This opens Mulan applications in the sense that Mulan agents can
now access resources external to the agent world in a uniform way via Web Ser-
vices instead of having to be equipped with proprietary connectors. In the other
direction, Mulan agents publish and offer their own services also as Web ser-
vices and thus can equally be accessed uniformly from anywhere across the Web.
Again, we stress our specific understanding of Petri net-based software, which
carries over to the integration with Web services. Usually, work on Petri nets
and Web services deals with providing semantics to modeling notations that are
used within the Web context, like BPEL [13] and some translations [15]. Our
approach is to provide a way to offer Web services that are actually realized by
the execution of Petri net models. The other way round, the execution of Petri
net-based applications can include the access of arbitrary Web services.

The concrete aim of this paper is twofold. Firstly, we introduce the Web-
Gateway itself as a solution for bringing Petri net-based applications and Web
services together. Secondly, we use the WebGateway extension as an example

1 For more detailed information about Renew, Mulan and P∗aose see [5] and http:
//www.paose.net.

98 PNSE’13 – Petri Nets and Software Engineering

for the general benefits that underlie our approach of Petri net-based software
engineering. We claim that these benefits are basically:

1. We follow an engineering approach, in which we move from conceptual mod-
els as design artifacts to refined, technical models as software artifacts. In
our opinion, this approach of implementation through specification allows to
iteratively build models/code in a documented and comprehensible way. In
addition, core features of a system can be determined early on and main-
tained in further refinements.

2. By using Petri nets as code we can verify our application code. Of course,
this can only happen within certain limits. Both the nets-within-nets na-
ture of our models and the use of Java inscriptions prohibit a comprehensive
verification. Nevertheless, we can define abstractions (e.g. P/T net abstrac-
tions) of our program code and verify specific properties (e.g. properties of
sound workflows) with respect to them. This allows at least partial verifi-
cation of our application code (which could possibly be supplemented with
unit testing mechanisms for reference nets, cf. Section 8 and [8]).

The outline of the paper is as follows. In Section 2, we present the concep-
tual model of our WebGateway extension for bringing Petri net-based (agent-
oriented) applications and Web services together. Based on this, we present
details of the WebGateway implementation in Section 3. In combination, these
two sections demonstrate the benefits and practicability of our implementation
through specification approach. In Section 4, we demonstrate how the WebGate-
way and one particular Petri net-based Web service are deployed in the context of
our integrated project management environment (IPME) on a day-to-day basis.
Section 5 presents a further insight to the implementation in order to demon-
strate the refinement process of the model. We discuss the results of the paper
in Section 6, position them in the context of related work in Section 7 before we
conclude the paper in Section 8.

2 Conceptual Gateway Architecture

The WebGateway extension to our multi-agent framework Mulan/Capa is re-
alized by a WebGateway agent. This agent is coupled to a (jetty) Web Server and
thus brings the two worlds of the (Web service-based) Internet and multi-agent
systems together. In Section 3, we address technical details of the WebGate-
way realization. In this section, we focus on the conceptual architecture. Along
the way, we demonstrate the usefulness of applying a Petri net-based modeling
approach. We progressively refine a simple architectural model to a meaningful
and well-defined specification. This specification then represents the basis on
which to actually implement the WebGateway agent’s behavior. Due to space
limitations, we cannot address the whole functionality of the WebGateway. In-
stead we concentrate on handling Web requests and responses. Further topics
and challenges will be addressed in the following section.

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 99

Figure 1 illustrates our starting point. In order to provide communication in
such a heterogeneous setup consisting of Web and multi-agent system parts, the
communication has to be facilitated. The WebGateway provides the translation
as an adapter between the two worlds of communication. For this it provides
two interfaces: one for Web-based communication and one for FIPA2-compliant
communication. The interfaces are depicted in Figure 1 as white rectangles. The
Internet is shown as a cloud and the Mulan reference model (cf. [17]) stands as
an exemplary multi-agent system.

Figure 1. WebGateway context.

In the following we will consecutively refine the WebGateway as a Petri net
model. Figure 2 shows the first step of this refinement. The WebGateway’s main
functionality of translating messages from one domain to the other is represented
as two transitions that are included in the transformation component. The two
interfaces are now depicted as transitions.3 Messages may enter through the
interface transitions with outgoing arcs, are received on the buffer places and
ready for transformation processing.

Figure 2. Simple WebGateway architecture model

2 Foundation for Intelligent Physical Agents: http://www.fipa.org.
3 The notion of transitions being interfaces fits nicely with an object-oriented
paradigm, if one presumes that these (on one side open) transitions are one port
of synchronous channels.

100 PNSE’13 – Petri Nets and Software Engineering

Translation is an important and already technically challenging part (cf. the
following section) but by far not the only task of the WebGateway. In addition, it
has to make sure that responses are matched to requests across the heterogeneous
setup. In our approach the WebGateway keeps a copy of a request message in
order to be able to provide this matching. Thus responses can be routed to
the right recipient. In Figure 3 an exemplary conversation direction is modeled:
a request from the Web to an agent-implemented service. The original request
(e.g. from a Web browser) is a JSON message (JavaScript Object Notation). The
WebGateway translates this message to FIPA-SL (Semantic Language), which
can be understood by agents in the multi-agent system. A copy of the message is
kept within the gateway, which allows the gateway to route the response message
to the requester after the answer has been translated back from FIPA-SL to
JSON. Please note that JSON stands for just one possibility of a Web message’s
content. Content types like XML or HTML form data can be translated in a
similar fashion.

Figure 3. WebGateway architecture model for handling Web-client requests

While Figure 3 covers one exemplary interaction type, namely a request sent
by a Web-based client to an agent-based service, the WebGateway also provides
the possibility that a Web service request is initiated from the agent’s side. In
this case an SL encoded request will be translated to (for instance) JSON, a
copy of this message will be kept for later routing and the answer from a Web
application will be translated from JSON to SL in order to deliver it to the
requesting agent. Both initiating directions are supported by the WebGateway
and use the same interface as depicted in Figure 4.

In addition to the request interactions covered so far, the WebGateway also
supports a uni-directional communication (inform interaction), which is not dis-
cussed here.

While this conceptual Petri net model of the WebGateway architecture shows
the basic (internal) behavior of the WebGateway, it neither specifies the interac-
tions between WebGateway and Web applications or agents nor does it present a
realistic level of detail for the implementation of the WebGateway agent. These
details are covered in the following section.

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 101

Figure 4. WebGateway architecture for two-way service request handling

3 WebGateway: Integration and Details

In order to achieve a concrete implementation of the abstract architecture de-
scribed in the previous section we need to combine multiple technologies, which
are well established in the world of multi-agent systems and Web services. In this
section, we describe how those technologies are combined for the implementation
of the WebGateway in order to obtain the desired integration of both application
domains. For this we present two parts of the adapter functionality of the Web-
Gateway. The first is concerned with the message routing and translation as well
as service registration. It focuses on the Web interface side, which is – from the
perspective of the muulti-agent system – the external interface. The realization
of this interface, which requires the integration of the required technologies, is
presented in Section 3.1. The second part focuses on the WebGateway as a part
of the agent system and its communication with other agents. Hence, Section 3.2
introduces the communication protocols providegd with the WebGateway.

3.1 Integration of the Required Technologies

An initial requirement is that the WebGateway must be able to interact with
communication partners of both worlds. For that reason the WebGateway pro-
vides two communication interfaces as shown in Figure 5 where we have included
the conceptual architecture model from the previous section in order to illustrate
its relation to the actual WebGateway implementation.

As the WebGateway is realized as an agent itself, the agent interface for
communication with other agents is inherently part of the underlying multi-
agent system framework (Mulan/Capa in our case). Consequently, the ordinary
FIPA-compliant agent communication infrastructure of our framework enables

102 PNSE’13 – Petri Nets and Software Engineering

Figure 5. Integration of the WebGateway in the multi-agent system

communication with other agents both on the same platform and on remote
platforms. This part can be considered as the WebGateway’s internal commu-
nication interface.

In addition, the WebGateway agent needs a Web interface that serves the
communication with Web services and Web clients. It is realized using a Web
server (Jetty, http://www.eclipse.org/jetty). This is where we have extended
our framework. For each Mulan/Capa host, one Web server is launched. A Mu-
lan/Capa host may include multiple agent platforms, but typically we have a
one-to-one correspondence between a host and a platform. For each platform,
a WebGateway agent is launched and connects automatically to the platform’s
(/host’s) Web server. This part can be considered as the WebGateway’s external
communication interface. The Web server enables communication between the
WebGateway agent and Web services/clients using the well established HTTP
protocol (Hypertext Transfer Protocol, http://www.w3.org/Protocols) as well
as the HTML5WebSocket protocol (http://dev.w3.org/html5/websockets/).
In contrast to HTTP, a WebSocket connection allows to exchange messages asyn-
chronously between client and server. This allows more flexibility for browser-
based Web applications and fits quite well with the agent paradigm as it tradi-
tionally relies on asynchronous interactions.

Besides mediating communication technically, there remain further challenges
in order for the WebGateway to really provide a transparent and bidirectional
communication between the agent and the Web service world. We identify the
following required key features.

1. Routing and management of messages between the different interfaces.
2. Registration and management of agent services that are published as Web

services and vice versa.
3. A two-way translation of the supported message encodings.

The first mentioned feature is specifically addressed by the conceptual archi-
tecture for the WebGateway from the previous section. More (technical) details

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 103

of our solution concerning the cross-technological tracking and routing of mes-
sages can be found in [4].

For the second mentioned feature, our approach supports – and actually
is limited to – RESTful Web services. The REpresentational State Transfer
(REST) architecture [12] gained increased attention because of its simplicity
of publishing and consuming services over the Web. The architecture is based
on resources that identify the participants of service interactions and that are
addressed with globally unique URIs4. Such a resource can be manipulated over
a uniform interface with a fixed set of operations (GET, POST, PUT, DELETE,
etc.) that are traditionally part of the underlying HTTP networking protocol.
Resources are also decoupled from their representations so that their content
can be accessed in a variety of formats e.g. HTML, JSON5, XML or even JPEG
images. For our purposes, we treat artifacts from the multi-agent world (hosts,
platforms, agents, agent services) as REST resources in the Web world. The
technical counterparts for these agent-based REST resources on the Web server
side are implemented as Java Servlets6. These are responsible for providing the
resource representations and also act as connection endpoints for HTTP and
WebSocket connections, forwarding all incoming messages to the responsible
WebGateway agent. In [4], we provide more details on addressing agent-based
REST resources and on how to provide suitable presentations.

The last mentioned feature was also briefly addressed in the previous section
(translation between FIPA-SL and JSON/XML/HTML form data). We will not
cover this topic here, but again refer to [4].

3.2 The WebGateway as a Mulan/Capa Agent
So far we have mainly focused on Web technologies that are necessary for re-
alizing the WebGateway according to the conceptual architecture presented in
the previous section. However, we have already stressed the fact that the Web-
Gateway is actually realized as an agent in our Mulan/Capa framework. We
have presented the development approach (P*aose) for Mulan/Capa multi-
agent systems together with corresponding tools on other occasions (cf. [5,6]).
Basically, a Mulan/Capa agent is designed in terms of three aspects: agent
knowledge, agent-internal processes, agent-spanning processes. These aspects
eventually manifest in three types of software artifacts for agent implementa-
tion: a knowledge base, decision components (DCs) for managing agent-internal
processes and protocols for managing interactions with other agents. In this pa-
per, we will not comprehensively cover all details of developing the WebGateway
agent but provide an overview of the necessary parts.

Basically, the conceptual architecture described in Section 2 provides the
groundwork, on which the agent’s decision components are designed. In the
previous subsection, we have covered the technologies that are needed to flesh
out the conceptual architecture in order to arrive at an actual implementation.
4 Uniform Resource Identifier
5 Javascript Object Notation (JSON)
6 http://www.oracle.com/technetwork/java/index-jsp-135475.html

104 PNSE’13 – Petri Nets and Software Engineering

One central aspect of agent design is its interactions with other system parts.
Interactions between the WebGateway and Web applications take place via
HTTP/WebSockets. For interactions between the WebGateway and other agents
we have to provide equally well-defined protocols. Basically, the WebGateway
agent offers five protocols for this purpose:

– WebGateway_registerAgent for registering agent services as Web services.
– WebGateway_sendrequest for forwarding request from Web applications to

application agents
– WebGateway_receiverequest for forwarding request from application agents

to Web applications
– WebGateway_sendinform and WebGateway_receiveinform for sending inform

messages in both directions

Figure 6. A model of the export request interaction initiated by a web client.

We cannot cover all of these interactions but will turn to one example. Fig-
ure 6 shows an AUML diagram for the case of a WebGateway_sendrequest. The
AUML (Agent UML, see [9,6]) Interaction Protocol diagrams are derived from
Sequence Diagrams. They allow to fold several sequences into one scenario by
providing modeling elements for alternatives or concurrency – similar to UML2
Interaction Diagrams. Here, we regard the sample case where a Web application

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 105

requests the export functionality of an application agent and the WebGateway
agent acts as the mediator. We address the export application scenario more
deeply in the next section.

In the P∗aose approach, we use these AUML diagrams to (semi-)automatically
generate the interaction parts for each party as Petri nets (cf. [9]). These result-
ing protocol nets are then directly used for the implementation of agent interac-
tions. It is important to note that the WebGateway_sendrequest protocol net is
generic. Here, it is shown in the context of the export example. But is designed
to be applicable for arbitrary requests sent from a Web application to an ap-
plication agent. For instance, we have developed a web component-based GUI
framework for browser applications that relies on exchanging web component
events between browsers and agents (so called Agentlets).

For each new way of making use of the WebRequest_sendrequest protocol net,
the two interaction sides have to fit together. This means that the composition
of the WebRequest_sendrequest protocol net and its counterpart protocol net has
(at least) to result in a sound protocol.7

4 Application of the WebGateway / Export Example

As a real world example we present an application that utilizes the WebGate-
way’s functionality to provide a Web service. The Export Service takes a repre-
sentation of a Petri net in the form of a serialized Renew drawing or as PNML
and returns an image representation of the model.8 The Diff Service service
takes two representations of models and returns a graphical diff [10] of the two
models.

People can access these Web services directly through a Web page interface.
But the main application for the Web services is currently a different one. In the
context of software engineering, in which we use our models, a tight integration of
available tools ensures the efficiency and therefore the acceptance of the available
tools among developers. Thus we have integrated the two Web services in our
preferred integrated project management environment (IPME, see [3]).

Figure 7 shows a schematic model of the setup of our IPME. The IPME –
in this case: Redmine (http://www.redmine.org/) – runs on a standard Web
server shown in the center of the model. It includes several plugins for the ac-
cess of the source code management system (SCM, possibly located on another
server) and the Export/Diff Web services (again located on another server). De-
velopers can interact with the source code repositories to introduce new versions

7 Although the soundness property is not well-defined for protocol nets, we conceive
this property in analogy to soundness of workflow nets.

8 In fact the service takes any file type that can be read by Renew, e.g. Renew
nets (.rnw), JHotDraw drawings (.draw), PNML, several diagram types used within
P∗aose (.aip,.arm) and also Lola net files (.net). The Renew import/export system
is also extensible, so any envisioned file type in the context of Petri nets and UML
modeling can easily be implemented.

106 PNSE’13 – Petri Nets and Software Engineering

Figure 7. A schematic architecture for the export Web Service / Redmine plugin.

of artifacts, to examine the commit history or to examine differences of the se-
lected versions and so on. Managers as well as developers can in addition use the
IPME – besides of using the planning and documentation features – to investi-
gate the source repository comfortably in a Web browser. One main part of the
functionality provided by the IPME is that developers and project managers can
browse quickly through the source code and choose to display a diff of versions
of the source code in a Web browser. However, the default browsing and diffing
functionality of IPMEs works on text-based source code only while a large part
of our code base is Petri net-based. A textual representation of diagrams – for
example in PNML – is not very significant for human readers. Moreover, a text
based diff of versions of the diagram’s text representations is completely useless.
Thus, the Export and Diff plugins take the text representations for diagrams
from the SCM, hand them to the Export and Diff Web services and integrate
the returned images smoothly into the Web page-based display for the developer.
Figure 8 shows a screenshot of the integration of the Diff Service in the IPME
Redmine. The screenshot shows The Redmine user interface in a Web browser.
The diff of revisions 9044 and 9545 of the Receiver_chat protocol net is dis-
played. The differences are highlighted in red (removals) and green (additions).9
All other graphical elements are faded to a foggy gray leaving a shadow of the
original net.

Consequently, within our development environment the Web services are used
by the IPMEs10 and are thus provided to the developers in an automated way.
A server instance of Renew is running and provides the Web services using the
Mulan/Capa framework with its WebGateway extension. A publicly accessible
Export/Diff Web page and a demonstration page of the Redmine integration
can be accessed from the P∗aose Web Site (http://www.paose.net/).

Figure 9 shows a screenshot of the presented multi-agent application showing
an export interaction. The MulanViewer on the left shows the multi-agent sys-
tem’s status in terms of all started agents, their decision components, knowledge
9 In black & white printing the location of the manipulated parts are still recognizable,
although it becomes impossible to distinguish removals from additions.

10 We provide plugins for Redmine and Trac (http://trac.edgewall.org/).

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 107

Figure 8. Screenshot of a diff image integrated in Redmine (Demo).

bases and currently executed protocol nets. In the back, parts of the involved
nets are shown: these are – from top to bottom – the transformation decision
component of the WebGateway and the export protocol net of the Export agent.
The sendrequest protocol net of the WebGateway is not shown but listed in the
MulanViewer’s tree view. During this interaction the WebGateway sends the
request to the Export agent after the request has been received from the Web
client. On the right hand side of the screenshot are two frames showing a deep
inspection of tokens, which are located as indicated on the highlighted places.
The first one shows the request message in FIPA-SL, waiting to be matched
with the response for routing purposes (cf. Section 2). The second is the re-
sponse message, which is just about to be sent from the Export agent to the
WebGateway.11

11 Although the messages could also be inspected in String representation, the UML
representation is much clearer and more concise.

108 PNSE’13 – Petri Nets and Software Engineering

Figure 9. A screenshot of the agent application while running the export interaction.

The availability and the robustness of the Export and Diff Web services
provided through a running instance of a Petri net application shows that our
framework is already beyond a pure proof of concept.

5 Implementation

Although executable models tend to grow to a size that cannot be presented in
all details, we present the implementation of the transformation component in

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 109

order to discuss the specification refinement that leads to the executable model.
Often the process that leads incrementally to the executable model has been
presented as implementation through specification. In this executable model we
do not discuss the inscriptions and certain technical details such as the prepara-
tion and selection of the messages. Figure 10 shows an executable version of the
WebGateway Transformation Component as an overview.12 The details of the
main parts are presented again in Figure 11. Compared to the abstract model
shown in Figure 4 this model shows several refinements. First of all the interfaces
– indicated by the dashed boxes – of the component have been duplicated. This
results from the fact that our implementation allows for additional communica-
tion protocols and two connection types.

Figure 10. Implementation of the WebGateway Transformation Component.

In the abstract model we described the possibility to serve a typical request
protocol. Thus, one party can send a request message and receive an answer
to this in the form of an inform message. This protocol may be triggered from
either side the web server interface or the agent system interface. Additionally,
the implementation also allows for a simple inform message that has not been
triggered and does not expect any follow-ups. Consequently, we have three out-
12 The Petri nets is presented as a whole, in order to show the final result of the refine-

ment process. Most of the details, such as declarations are only of minor importance.
The main details are presented in a magnified version in Figure 11 for convenient
inspection.

110 PNSE’13 – Petri Nets and Software Engineering

going transitions for these three different communication possibilities (request,
inform as answer, simple inform) on each outgoing interface side. Additionally,
we included the possibility to connect as a Web service in two possible ways. The
first is the well-known http connection, the second, which is a websocket connec-
tion, allows for asynchronous communication through a bidirectional permanent
connection link.

Figure 11. Fragment of the WebGateway Transformation Component.

In the center of the net – displayed in more detail in Figure 11 – one can
prominently conceive the buffer places that hold the messages for matching an-
swers to request and thus to determine the receiver. The buffer places are filled
during the processing of the requests – constituting the first branch leading to
the first of an outgoing interface. The answer collects the waiting message during
processing – indicated by an arc – leading to the second interface transition. The
last interface transition serves for the simple inform message. We have hidden

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 111

several parts of the original net – indicated by large dotted transitions. These
transitions hide message processing and routing as well as the processing of the
http answers.

6 Discussion

The presented example and the publicly available Web services and Web site
demonstrate that the presented application is more than just a proof of con-
cept. Especially the availability of the Export and Diff services as Web ser-
vices has proven their usefulness in the straight-forward and seamless inclusion
within several used instances of IPMEs (internal as well as public). We have
also briefly mentioned the realization of Web-based GUIs where Web events re-
lated to the GUI components are transmitted between a browser and application
agents (Agentlets). While this application of the WebGateway is still under de-
velopment and still in an experimental stage, we have successfully made use of
it in academic projects where students develop browser-based applications for
collaboration support.

The choice of RESTful Web services in combination with WebSockets brings
more flexibility to our gateway than strict WSU stack-based gateways can pro-
vide. Currently, we use rather simple service descriptions, which might hinder the
automation of service workflows. A possible improvement in this area could be
the integration of WADL13, which plays a similar role for RESTful Web service
as WSDL for SOAP Web services.

7 Related Work

Service oriented architectures especially in combination with Web applications
is currently a popular field in the research community. Hence, the integration
of Web services into multi-agent systems is a well researched topic with many
interesting solutions. Such an approach that impacts on our introduced archi-
tectural design is presented by Greenwood et al. [14]. They introduce a Web
Service Integration Gateway Service (WSGIS), which acts as a broker between
the service participants and provides translation and routing mechanisms. Shafiq
et al. [24] offers a slightly different solution that addresses the interconnection
of FIPA-compliant multi-agent systems and Web services. Their approach rely
on a middleware software that handles the communication of the service par-
ticipants without any modification on the respective communication systems.
In contrast to theses approaches, which are based on Web services that use the
standard WSU14 stack, the approach of Soto [19] makes use of the advantages
of Web services that comply with the RESTful architecture [23]. He provides a
Web Service Message Transport Service (WSMTS) for JADE platforms that is
capable of handling FIPA-SL messages in XML representation. These messages
13 Web Application Description Language (WADL): http://java.net/projects/wadl
14 WSDL, SOAP, UDDI (WSU)

112 PNSE’13 – Petri Nets and Software Engineering

are extended with additional information that ensure an end-to-end communi-
cation with only one single message encoding. In this case, agents are able to
register themselves with a specific address to publish their services as a REST
service.

A still problematic issue, concerning the use and composition of RESTful
services, is the change of state of a resource and the corresponding update of
clients. Especially Web clients have to constantly send GET requests to check if
the state has changed, which will result in heavy traffic and unnecessarily high
load of Javascript. For a bidirectional communication, as used for instance in a
User Interface Framework, Aghaee et al. [2, Section 5.2] recommend the use of
W3C WebSockets [26]. The WebSocket API provides a mechanism to sent data
in various representations (JSON, XML, etc.) to clients when the resource has
changed.

An approach concerning the modeling of Web services using high-level Petri
nets was given by Moldt et al. [21]. The authors introduce a four layer architec-
ture that focuses on modeling the internal behavior of a Web service and provide
a proposal for lifecycle management and interconnection of Web services.

With the approach presented in this paper we provide a prerequisite that
enables us to verify the soundness of internal Web service processes by examina-
tion of agent interactions. In order to examine the composition of Web services
we have to extend our approach to the external Web service interactions and
their interfaces. A related approach is presented by Wolf [27] and his team at
the University of Rostock. They provide formal models based on Petri nets to
describe service interfaces and tools15 that support the discovery and synthesis
of matching service partners.

8 Conclusion and Future Works

In this paper, we present a gateway architecture that makes it possible to inter-
connect FIPA-compliant multi-agent systems and RESTful Web services. More
specifically, it creates a bridge between Petri net-based (Mulan) agents and
arbitrary Web service providers or clients. Its suitability for daily use has been
proven by coupling image conversion and comparison services (provided by Mu-
lan agents) with an integrated project management environment (running as
a classic web server, using these services). Besides its useful functionality, the
gateway as an artifact exemplifies the benefits of engineering Petri net-based
software. The gateway architecture, its message routing core and its multi-agent
interface are modeled and implemented in Java reference nets. We present the
design of the core gateway functionality as coarse Petri net models, the inte-
gration of concrete functionality into these Petri nets – thus turning them into
application code –, and the validation of certain application properties by using
well-known Petri net analysis techniques.

On the practical side, the gateway broadens the range of applications for
FIPA-compliant agents (and especially Mulan agents). Their functionality be-
15 Service-Technology: http://service-technology.org/tools/

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 113

comes available for any Web service client, and they can refer to functionality
provided by any other web service. The interaction with web services is restricted
to the request-response pattern or just unidirectional information distribution,
and thus not as feature-rich as the speech act-based communication in the multi-
agent world. Nevertheless, these simple interaction patterns form the basis of any
complex interaction and can thus be considered as sufficient for everyday use.

On the Petri net-based software engineering side, the tools and methods of
the P∗aose approach are evolving while we use them for the design and imple-
mentation of applications like the WebGateway. A major focus is currently put
on validation and testing of the application’s Petri net-based code artifacts.

The further use of our approach in future student projects and the continuous
advancement of our agent-based collaboration platform will help to improve the
gateway functionality and software engineering techniques step by step.

References
1. Gul Agha, Fiorella De Cindio, and Grzegorz Rozenberg, editors. Advances in Petri

Nets: Concurrent Object-Oriented Programming and Petri Nets, volume 2001 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

2. Saeed Aghaee and Cesare Pautasso. Mashup development with HTML5. In Pro-
ceedings of the 3rd and 4th International Workshop on Web APIs and Services
Mashups, Mashups ’09/’10, pages 10:1–10:8, New York, NY, USA, 2010. ACM.

3. Tobias Betz, Lawrence Cabac, and Matthias Güttler. Improving the development
tool chain in the context of Petri net-based software development. In Michael
Duvigneau, Daniel Moldt, and Kunihiko Hiraishi, editors, Petri Nets and Software
Engineering. International Workshop PNSE’11, Newcastle upon Tyne, UK, June
2011. Proceedings, volume 723 of CEUR Workshop Proceedings, pages 167–178.
CEUR-WS.org, June 2011.

4. Tobias Betz, Lawrence Cabac, and Matthias Wester-Ebbinghaus. Gateway archi-
tecture for Web-based agent services. In Franziska Klügl and Sascha Ossowski,
editors, Multiagent System Technologies, volume 6973 of Lecture Notes in Com-
puter Science, pages 165–172. Springer Berlin / Heidelberg, 2011.

5. Lawrence Cabac. Modeling Petri Net-Based Multi-Agent Applications, volume 5 of
Agent Technology – Theory and Applications. Logos Verlag, Berlin, 2010.

6. Lawrence Cabac, Till Dörges, Michael Duvigneau, Daniel Moldt, Christine Reese,
and Matthias Wester-Ebbinghaus. Agent models for concurrent software systems.
In Ralph Bergmann and Gabriela Lindemann, editors, Proceedings of the Sixth
German Conference on Multiagent System Technologies, MATES’08, volume 5244
of Lecture Notes in Artificial Intelligence, pages 37–48, Berlin Heidelberg New
York, 2008. Springer-Verlag.

7. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Modeling
dynamic architectures using nets-within-nets. In Gianfranco Ciardo and Philippe
Darondeau, editors, Applications and Theory of Petri Nets 2005. 26th International
Conference, ICATPN 2005, Miami, USA, June 2005. Proceedings, volume 3536 of
Lecture Notes in Computer Science, pages 148–167, 2005.

8. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Matthias Wester-
Ebbinghaus. Towards unit testing for Java reference nets. In Robin Bergenthum
and Jörg Desel, editors, Algorithmen und Werkzeuge für Petrinetze. 18. Workshop
AWPN 2011, Hagen, September 2011. Tagungsband, pages 1–6, 2011.

114 PNSE’13 – Petri Nets and Software Engineering

9. Lawrence Cabac, Daniel Moldt, and Heiko Rölke. A proposal for structuring Petri
net-based agent interaction protocols. In Wil van der Aalst and Eike Best, editors,
24th International Conference on Application and Theory of Petri Nets, Eindhoven,
Netherlands, June 2003, volume 2679 of Lecture Notes in Computer Science, pages
102–120. Springer-Verlag, June 2003.

10. Lawrence Cabac and Jan Schlüter. ImageNetDiff: A visual aid to support the
discovery of differences in Petri nets. In 15. Workshop Algorithmen und Werkzeuge
für Petrinetze, AWPN’08, volume 380 of CEUR Workshop Proceedings, pages 93–
98. Universität Rostock, September 2008.

11. Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Concurrent architecture
for a multi-agent platform. In Fausto Giunchiglia, James Odell, and Gerhard
Weiß, editors, Agent-Oriented Software Engineering. 3rd International Workshop,
AOSE 2002, Bologna. Proceedings, pages 147–159. ACM Press, July 2002.

12. Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web
architecture. ACM Trans. Internet Technol., 2:115–150, May 2002.

13. OASIS (Organization for the Advancement of Structured Information Stan-
dards). BPEL: Web services business process execution language. Avail-
able at: http://bpel.xml.org/, 2012. Release 2.0: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

14. D. Greenwood and M. Calisti. Engineering Web service - agent integration. In
Systems, Man and Cybernetics, 2004 IEEE International Conference on, volume 2,
pages 1918 – 1925 vol.2, october 2004.

15. Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming BPEL to
Petri nets. Lecture Notes in Computer Science, 3649:220–235, 2005.

16. Ekkart Kindler, Vladimir Rubin, and Robert Wagner. Component tools: Integrat-
ing Petri nets with other formal methods. Lecture Notes in Computer Science :
Petri Nets and Other Models of Concurrency - ICATPN 2006, Volume 4024, 2006,
pages 37–56, 2006.

17. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the structure and
behaviour of Petri net agents. In J.M. Colom and M. Koutny, editors, Proceedings
of the 22nd Conference on Application and Theory of Petri Nets 2001, volume 2075
of Lecture Notes in Computer Science, pages 224–241. Springer-Verlag, 2001.

18. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael
Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In Jordi Cortadella and Wolfgang Reisig,
editors, Applications and Theory of Petri Nets 2004. 25th International Confer-
ence, ICATPN 2004, Bologna, Italy, June 2004. Proceedings, volume 3099 of Lec-
ture Notes in Computer Science, pages 484–493, Berlin Heidelberg New York, June
2004. Springer.

19. Esteban León Soto. Agent communication using Web services, a new fipa mes-
sage transport service for jade. In Paolo Petta, Jörg Müller, Matthias Klusch, and
Michael Georgeff, editors, Multiagent System Technologies, volume 4687 of Lec-
ture Notes in Computer Science, pages 73–84. Springer Berlin / Heidelberg, 2007.
10.1007/978-3-540-74949-3_7.

20. T. Miyamoto and S. Kumagai. An agent net approach to autonomous distributed
systems. In Proc. of 1996 IEEE Systems, Man, and Cybernetics, 14-17 October
1996, Beijing, China, pages 3204–3209, October 1996.

21. Daniel Moldt, Sven Offermann, and Jan Ortmann. A Petri net-based architecture
for web services. In Lawrence Cavedon, Ryszard Kowalczyk, Zakaria Maamar,
David Martin, and Ingo Müller, editors, Workshop on Service-Oriented Computing

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 115

and Agent-Based Engineering, SOCABE 2005, Utrecht, Netherland, July 26, 2005.
Proceedings, pages 33–40, 2005.

22. Julia Padberg and Hartmut Ehrig. Petri net modules in the transformation-based
component framework. Journal of Logic and Algebraic Programming, Vol 97 (1-2),
pages 198–225, 2006.

23. Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services
vs. “big” web services: making the right architectural decision. In Proceeding of
the 17th international conference on World Wide Web, WWW ’08, pages 805–814,
New York, NY, USA, 2008. ACM.

24. M. Omair Shafiq, Ying Ding, and Dieter Fensel. Bridging multi agent systems and
Web services: towards interoperability between software agents and semantic Web
services. In Enterprise Distributed Object Computing Conference, 2006. EDOC
’06. 10th IEEE International, pages 85 –96, october 2006.

25. Rüdiger Valk. Object Petri Nets – Using the Nets-within-Nets Paradigm. In
Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advances in Petri
Nets: Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in
Computer Science, pages 819–848. Springer-Verlag, Berlin Heidelberg New York,
2004.

26. World Wide Web Consortium (W3C). The websocket api editor’s draft 6. Website,
June 2011. http://dev.w3.org/html5/websockets.

27. Karsten Wolf. Does my service have partners? LNCS ToPNoC, 5460(II):152–171,
March 2009. Special Issue on Concurrency in Process-Aware Information Systems.

116 PNSE’13 – Petri Nets and Software Engineering

Petri nets as a means to validate an architecture
for time aware systems

Francesco Fiamberti, Daniela Micucci, and Francesco Tisato

D.I.S.Co., University of Milano-Bicocca, Viale Sarca 336, 20126, Milano, Italy
{francesco.fiamberti, daniela.micucci, francesco.tisato}@disco.unimib.it

Abstract. Time aware systems claim for an explicit representation of
time-related concepts, so that they can be observed and possibly con-
trolled at run-time. The paper identifies a set of architectural abstrac-
tions capturing such concepts related to time and classifies the base ac-
tivities performed by a time aware system. Our proposal has been for-
malized using two different modeling techniques: UML and Petri nets.
The former has been chosen to model the static structure of both the
abstractions and the entities performing time aware activities. The latter
have been exploited to model the dynamics of a time aware system.

Keywords: real-time, architectural abstractions, UML, Petri nets

1 Introduction

Time aware systems [1] deal with time-related issues when accomplishing domain-
related tasks. For example, a time aware system includes activities whose acti-
vation is time driven, activities that need to reason on timestamped facts, and
activities that need to know what time it is. Therefore, time ought to emerge as
a first-class concept because of its relevance in the application domain.

As stated in [2], only recently model-based development has begun focusing
on timing aspects of a system in addition to its functional and structural ones.
However, the proposed approaches tend to specify the requirements with respect
to timing focusing on a specific solution. Moreover, the satisfaction of timing
requirements is verified only during the test phase of the development process.
As stated in [3], this is due to the fact that model-driven approaches applied to
embedded systems in early design phases do not always rely on a systematic and
rigorous methodology that includes specifying and verifying timing requirements.

To overcome the above drawbacks, several modeling techniques have been
proposed. MARTE [4] is an UML profile designed to face real-time aspects of
a system from a model-based perspective. UML [5] is a standardized general-
purpose modeling language used to specify the artifacts of a software system. A
UML profile customizes UML for a specific purpose or domain by using extension
mechanisms able to modify the semantics of the meta-model elements [5]. [6]
exploits MARTE (the logical time concept) and the CCSL language [7] to specify
the causal and temporal characteristics of the software as well as the hardware

parts of the system. However, modeling capabilities need to be supported by
tools that directly implement the system.

Languages like Giotto [8] and SIGNAL [9] extend existing paradigms to in-
clude time-related issues. Close to Giotto, PTIDES [3] is a programming model
for distributed embedded systems based on a global, consistent notion of time.
However, such approaches allow time-related issues to be managed at compile
time only, preventing the temporal behavior of the system from being adaptive.

The key idea behind our proposal is that time-related concepts should be
first-class concepts, which directly turn into basic architectural abstractions [10]
supported by a running machine. In this way, it is possible to explicitly treat
time-related aspects from the analysis of the requirements to the test phase of
the life cycle of a system. Even if UML [5] is a well-known modeling language
in the software engineering area, the features of Petri nets [11] make them a
suitable tool to model the dynamics of a time aware system. Indeed, when a set
of time driven entities must be performed, they must be enabled in a determin-
istic way. However, once they have been enabled, their actual execution can be
nondeterministic, that is, their execution order should have no significance and
should not affect the system behavior. Therefore, we used UML to describe the
architectural abstractions and the time-related activities (static structure), and
Petri nets to describe the dynamics of a time aware system.

The paper is organized as follows. Section 2 introduces time-related abstrac-
tions by means of UML class diagrams. Section 3 identifies the three base entities
performing time aware activities by means of UML class and state diagrams.
Section 4 discusses the dynamics of a time aware system exploiting Petri nets.
Finally, Section 5 presents concluding remarks.

2 Time-related abstractions

To give a flavor of the proposed model, the following simplified example will be
used. Consider a road gate equipped with a camera. The gate provides access
to an area with traffic restrictions. In particular, car transits are only allowed
at night and for a restricted set of vehicles. Every second, the camera must
acquire a frame, which must be stored with the acquisition timestamp. Finally,
the acquired frames are elaborated offline to detect infractions.

The described scenario is an example of a time aware system. A time aware
system reifies the following time aware activities:

– a time driven activity is triggered by events that are assumed to model the
flow of time. In the proposed example, the acquisition activity must be time
driven in order to acquire frames at predefined time instants.

– a time observer activity observes “what time it is”. Thus, the acquisition
activity in the example must also be time observer, since it needs the correct
timestamp for every acquired frame.

– a time conscious activity reasons on facts placed in a temporal context,
no matter when the computation is realized. In the example, the infraction

118 PNSE’13 – Petri Nets and Software Engineering

Timer

- emitEvent()

VirtualTimer

- internal counter

+ count()
+ setDuration(Duration)

GroundTimer
VirtualDuration

- value

Duration

-duration

1
{redefines duration}

-duration

1

0..*

-reference

1

Fig. 1: Concepts related to timers

detection activity is time conscious, as it performs an offline elaboration of
timestamped frames.

Drivenness, observability, and consciousness can be enabled by means of three
well distinguished architectural abstractions: Timer, Clock, and Timeline.

2.1 Timer

A Timer is a cyclic source of events, all of the same type: two successive events
define a duration. A timer generates events by means of its emitEvent operation.

A Virtual Timer is a timer whose event generation is constrained by the
behavior of its reference timer: it counts (by means of the count operation)
the number of events it receives from its reference timer and generates an event
when this number equals a predefined value. The duration is specialized to virtual
duration. Timers can thus be arranged in hierarchies, in which every descendant
timer has exactly one reference timer. The root of every hierarchy is a Ground
Timer, which is a timer whose duration is not constrained by the duration of
another timer. Therefore, the duration of a ground timer can be interpreted
as intervals of the real external time, so that the events generated by a ground
timer can be interpreted as marking the advance of time. Finally, the setDuration
operation allows the duration of a virtual timer to be modified, thus varying the
speed at which events are generated. Figure 1 sketches the described concepts.

2.2 Clock

A Clock counts (by means of its increment operation) the events it receives from
the associated timer. The event count is interpreted as the clock’s current time
(see Figure 2). Thus, time is not a primitive concept but it is built from events.

2.3 Timeline

A Timeline is a data structure (thus intrinsically discrete) constituting a static
representation of time as a numbered sequence of grains. A grain is an elemen-
tary unit of time identified by its index and whose interior cannot be inspected.

F. Fiamberti et al.: PNs as a Means to Validate an Architecture 119

Timer

emitEvent()

Clock

current time

increment()
0..1

emitEvent

1

Fig. 2: Concepts related to clocks

A Time Interval, defined on a timeline, is a subset of contiguous grains belonging
to that timeline. A virtual timeline is a timeline whose grains (virtual grains)
have a duration that can be expressed as a time interval in the associated refer-
ence timeline. Timelines can thus be arranged in hierarchies. The root of every
hierarchy is a Ground Timeline, which is a timeline whose grain durations are
not constrained by the grains of another timeline. In each hierarchy, the ground
timeline is therefore the only one whose grains can be interpreted as an elemen-
tary time interval in an arbitrary ground reference time (e.g., the “real” time
from the application viewpoint).

A Fact is an assertion regarding the system domain. A Timed Fact is a fact
associated to a time interval representing the fact’s interval of validity. Therefore,
timelines are histories of timed facts. Figure 3 sketches all the described concepts.

By connecting a clock with a timeline, it is possible to interpret as present
time on the associated timeline the grain whose index equals the clock’s current
time (see Figure 4). Every time the clock receives an event from the connected
timer, it advances the present time on the corresponding timeline by one grain.
The clock also defines the concepts of past and future in the associated timeline:
the grains with index less than current time belong to the past and the grains
with index greater than current time belong to the future.

3 Time aware entities

The identified abstractions enable the design of the following time aware entities
(see Figure 5), which reify the activities of a time aware system:

– Time driven entity : an entity whose activation is triggered by a virtual timer
– Time observer entity : an entity that reads current time from clocks
– Time conscious entity : an entity that reads/writes timed facts on a timeline

without any reference to when such a management is actually realized

More articulated behaviors can be obtained by combining the three basic entities.
For example, a time driven time conscious entity is an entity that is triggered
by a virtual timer (time driven) and reads/writes timed facts (time conscious).

3.1 Time driven entities

A time driven entity is associated to its activating timer, and it may be in two
states: running and idle. A time driven entity enters the running state when its

120 PNSE’13 – Petri Nets and Software Engineering

Timeline

VirtualTimeline

GroundTimeline

Grain

index

VirtualGrain

GroundGrain

TimeInterval

TimedFact Fact

0..*

reference 1

grains

1..* {ordered}

1..*
{ordered,
redefines grains}

1..*
{ordered,
redefines grains}

/

0..*

defined over

1
begin 1 end 1

0..* 1

0..*is valid in

1

duration 1

Fig. 3: Concepts related to timelines

Timer

emitEvent()

Clock

current time

increment()

TimelineGrain

index

grains

1..* {ordered}

present time

0..1

clock 0..1

advances time

timeline 0..1

0..1

emitEvent

1

Fig. 4: Connection of a clock to a timeline

activating timer emits an event. In this state, it performs its domain-dependant
operation. At the end of the execution, the entity goes back to the idle state.

This simple model assumes that the deadline for an execution coincides with
the beginning of the next execution. To adapt the model to the general case
where deadlines temporally precede the beginning of the next execution, it is
possible to associate a second timer to each time driven entity, as sketched in
Figure 6. When the deadline timer emits an event, the associated time driven
entity must have already completed the perform operation. It follows that a time
driven entity must include an additional state, denoted terminated.

F. Fiamberti et al.: PNs as a Means to Validate an Architecture 121

Time Aware Entity

perform()

Time Conscious Entity

observe()
expose()

Time Observer Entity

readClocks()

Time Driven Entity

Clock

Timer

Timeline

activated by

reads time from

reasons on

Fig. 5: Entity classification according to the relation with the basic concepts

idle running

entry / perform

terminated
emitEvent()

[end of execution]

emitEvent()

Fig. 6: State diagram for a time driven entity

3.2 Time driven time conscious entities

Some care must be used to guarantee consistency when designing entities that
are both time driven and time conscious. In fact, it is desirable that the behavior
of all the entities that are triggered simultaneously does not depend on the order
in which the executions are actually managed, which may be affected by low-
level details such as the number of available cores or the particular scheduling
algorithm that is being used. Therefore, it is necessary to guarantee that all the
time driven time conscious entities that are triggered simultaneously share the
same view of the timelines, to avoid the situation of an entity that reads timed
facts written by another entity triggered simultaneously just because the latter
was granted higher execution priority by the low-level scheduler.

A possible solution is that all entities read timed facts immediately when they
are activated by the activating timer and write timed facts only when they receive
an event by the deadline timer, even if the actual execution ends before the
deadline. The state diagram in Figure 7 enriches Figure 6 by introducing effects
in the transitions triggered by timers: the effect of an event from the activating
timer is the reading of facts by means of the observe operation, whereas the
effect of an event from the deadline timer is the writing of facts by means of
the expose operation. In an actual implementation, the concrete component in
charge of the execution of entities must guarantee that when the execution of
a set of entities is triggered, all the entities read timed facts before any one of

122 PNSE’13 – Petri Nets and Software Engineering

idle running

entry / perform

terminated
emitEvent() /expose()

[end of execution]

emitEvent() /observe()

Fig. 7: State diagram for a time driven time conscious entity

them is allowed to start the actual execution, and that every entity writes timed
facts only at the deadline for its execution.

4 Time aware systems

This section presents the behavior of time aware systems exploiting Petri nets.
First, the dynamics of a timer hierarchy will be discussed. Afterwards, the model
of the activation of time driven and time conscious entities will be presented.

4.1 Timer hierarchy

Before describing a complete timer hierarchy, we will detail the internal behavior
of a virtual timer. Figure 8 shows the subnet modeling the timer T2, of duration
3, without descendant timers. In the initial marking, a token is present in place
p1. The first time a token is put into place Event to T2, transition t1 is enabled
and fires, putting a token into both p2 and T2 updated. The structure made of
p* and t* works as an internal counter, and the token to T2 updated is needed
to allow the external system to be notified that the timer completed its update
operations (simple increment of the internal counter or event generation). When
the internal counter equals the timer’s duration, transition Emit event is fired.
At the end, a token is put into place T2 updated. If a clock is connected to
the timer, after every generated event, the corresponding transition increment
clock time is fired before the end of the timer’s update. Note also that the gray
arcs in Figure 8 are required for the correct behavior of the Petri net, but do not
have any particular time-related semantics. For example, the arcs from the place
Event to T2 to transitions t1, t2 and t3 allow such transitions to fire only one
at a time, when a token is present in place Event to T2.

Figure 9 shows the subnet of T1, a timer with descendants (T3 and T4). Unlike
in the previous case, transition Emit event puts tokens into all the places Event
to T* of the descendant timers, whose places T* updated are joined in transition
Join descendant timers, after which the system’s behavior is the same as in
the case without descendant timers. No assumptions are made on the order in
which descendant timers are updated.

Figure 10 shows a Petri net modeling a four-level hierarchical timer struc-
ture. Place Ground timer event receives a token that is interpreted as the flow

F. Fiamberti et al.: PNs as a Means to Validate an Architecture 123

Event to T2
Emit
event

T2 updated

Event
emitted

(increment clock time)

p1 p2 p3

t1 t2 t3

Fig. 8: Subnet for a timer with no descendants

Event to T1

Emit
event

T1 updated

Event to T3 T3 updated

Join descendant
timersEvent to T4 T4 updated

(increment clock time)

Event
emitted

Fig. 9: Subnet for a timer with descendants

of real time. If the previous update of the system has been completed (a to-
ken is present in place All timers updated), transition Start execution is
enabled. When the transition is fired, a token is sent to place Event to T*
of every virtual timer directly connected to the ground timer, enabling inter-
nal update operations. When a timer emits an event, its update can terminate
only when all its possible descendant timers’ updates have been triggered and
completed. Once the timer has been updated, a token is put into the correspond-
ing place T* updated. Places T* updated are joined in transition Join direct
descendants of ground timer, whose firing terminates the atomic update of
all timers by putting a token into place All timers updated. This token enables
transition Start execution when the next token is produced in place Ground
timer event. Thanks to the recursive structure of virtual timers, only direct
descendants of the ground timer need to be joined in transition Join direct
descendants of ground timer to ensure atomicity of all timers’ updates. In
Figure 10, for clarity the details regarding the internal structure of timers have
been hidden and represented by means of simple transitions shown in gray.

4.2 Time driven entities

Time driven entities can be executed by associating them to timers. Every time a
timer emits an event, it sends a signal to all its associated entities, which behave
consequently according to their internal state. To make the concepts clear, we

124 PNSE’13 – Petri Nets and Software Engineering

Ground timer
event

Join direct
descendants

of ground timer

Event to T2

T2 updated

T2
All timers
updated

Event to T3

T3 updated

T3

Event to T5

T5 updated

T5

Event to T1

T1 updated

T1

Event to T4

T4 updated

T4

Start new
cycle

Fig. 10: Example of hierarchical timer structure

assume that the relative deadlines of the time driven entities coincide with the
beginning of the next execution. Figure 11 sketches an example of such a system,
where timers T3, T4, and T5 have been hidden for the sake of readability. The
assumption is made that the execution of a time driven entity is an instantaneous
action. Thus, if the actual time taken by an entity is not negligible with respect to
the smallest time scale in the system, the execution considered here is made only
of the (instantaneous) set of operations needed to decouple the actual actions
from the main system flow (e.g., the operations needed to start a new thread
where threads are available).

Figures 12 and 13 show the structures of timers T2 and T1 respectively in
presence of time driven entities: when an event is generated, a token is put into
place T* time driven entities to be enabled, to enable the execution of
the entities associated to T*. Note that habilitation does not mean immediate
execution: the actual execution of all the time driven entities can be started only
once all the timers have been updated, as will be explained later. To ensure that
the entities have been enabled, a token is required in place T* time driven
entities enabled for the transition in input to place T* updated to fire.

Figure 14 shows how atomicity of all timers’update can be granted. A copy of
place All timers updated is available for every subnet modeling a group of time
driven entities associated to the same timer. Every entity group has a T* time

F. Fiamberti et al.: PNs as a Means to Validate an Architecture 125

Ground timer
event

Join direct descendants
of ground timer

Event to T2

T2 updated

T2

All timers
updated

Event to T1

T1 updated

T1

All timers
updated

T1 time driven
entities enabled

T1 time driven
entities to be enabled

T1 time driven
entities completed

All timers
updated

T2 time driven
entities enabled

T2 time driven
entities to be enabled

T2 time driven
entities completed

Join
time driven

entities

End of
execution

Start new
cycle

Fig. 11: Time aware system with time driven entities

Event to T2
Emit
event

T2 updated

T2 time driven
entities to be enabled

T2 time driven
entities enabled

Event
emitted

(increment clock time)

p1 p2 p3

t1 t2 t3

Fig. 12: Subnet for a timer with associated time driven entities

driven entities completed place, where the presence of a token indicates that
no additional actions are required for the group. This is needed to deal with the
(typical) situation where only a subset of all the timers emit an event. All places
T* time driven entities completed are initialized with a token, and a token

126 PNSE’13 – Petri Nets and Software Engineering

Event to T1
Emit
event

T1 updated

Event to T3 T3 updated

Join descendant
timers

T1 time driven
entities to be enabled

T1 time driven
entities enabled

Event to T4 T4 updated

(increment clock time)

Event
emitted

Fig. 13: Subnet for a timer with descendants and associated time driven entities

T* time driven
entities to be enabled

T* time driven
entities enabled

All timers updated
(copy for current timer)

Execute time
driven entities

T* time driven
entities completed

T* time driven entities
to be completed

Enable
time driven

entities

Fig. 14: Model of a group of time driven entities

is always present at the end of every execution. Only in case of an event from
the associated timer, place T* time driven entities completed is cleared as
a consequence of the habilitation of time driven entities. In fact, when a token is
put into place T* time driven entities to be enabled, transition Enable
time driven entities fires, removing the token from place T* time driven
entities completed and putting it into place T* time driven entities to
be completed. Transition Execute time driven entities is not enabled until
a token is present in the current timer’s copy of place All timers updated, that
is, until all the timers have been updated. All places T* time driven entities
completed are joined in transition Join time driven entities (see Figure
11). At the end of each global timer update, the time driven entity groups that
do not require execution (because their timer did not emit an event) already
have a token in place T* time driven entities completed.

Transition Join time driven entities is not enabled only if some of the
time driven entities must still be executed. If this is the case, all the correspond-
ing transitions Execute time driven entities are now enabled, removing the
token from place T* time driven entities to be completed and putting it
into T* time driven entities completed. No assumptions are made on the
possible order in which time driven entities are executed. Once all the executions
have been completed, the transition Join time driven entities is enabled.
Note that in order to prevent an early firing of this transition in the case where
no entity groups need to be executed, a copy of place All timers updated is
present as an input to Join time driven entities, so that the global update

F. Fiamberti et al.: PNs as a Means to Validate an Architecture 127

T* time driven
entities to be enabled

T* time driven
entities enabled

All timers updated
(copy for current timer)

expose

T* time driven
entities completed

Facts to be exposed

observe (+ readClocks) +
perform

T* facts
exposed

All facts exposed
(copy for current timer)

Enable
time driven

entities

Execution
enabled

Fig. 15: Model of a group of time driven time conscious entities

of timers must be terminated first even though all the places T* time driven
entities completed contain a token.

4.3 Time driven time conscious (observer) entities

As stated in subsection 3.2, some care must be used when designing entities
that are time driven and time conscious, or time driven, time conscious and
time observer. The two cases can be analyzed together, since the differences are
limited to the presence of clocks and to the need to read the relevant clocks’
current times before starting the executions. Figure 15 contains the model of a
group of time driven time conscious entities associated to the same timer, while
an example of time aware system is shown in Figure 16.

As introduced in Subsection 3.2, the sequence of operations of a time driven
time conscious entity can be organized in three blocks: expose (that puts on
the right timelines the timed facts computed during the previous execution),
observe (that reads timed facts from the timelines of interest), and perform
(the actual execution of the entity’s actions). Since no constraints are put on
the order in which entities are executed, consistency and predictability of the
system’s behavior require that timed facts are added on a timeline by an entity
only at the end of the time grain of the timer to which the entity is associated,
and before any other entity in the system reads facts from the same timelines.
So the exposition of all the facts generated by all entities must be realized as an
atomic action after all timers have been updated and before the execution of the
perform of any time driven time conscious entity.

With reference to Figure 15, for every group of entities, place T* facts
exposed is initialized with a token. When the associated timer emits an event,
the token put into place Time driven entities to be enabled enables tran-
sition Enable time driven entities, which removes the tokens from places
Time driven entities completed and T* facts exposed, putting a token
into Facts to be exposed. Once all the timers have been updated, so that
a token is put into the copy of place All timers updated for every group of en-
tities, transition expose is fired, putting a token into the corresponding places T*
facts exposed and Execution enabled (whose presence prevents unrequested

128 PNSE’13 – Petri Nets and Software Engineering

Ground timer event

Join direct descendants
of ground timer

Event to T2

T2 updated

T2

All timers
updated

Event to T1

T1 updated

T1

Join
time driven entities

End of
execution

Join fact
expositions

All facts
exposed

All timers
updated

T1 time driven
entities enabled

T1 time driven
entities to be enabled

T1 time driven
entities completed

T1 facts
exposed

All facts
exposed

All timers
updated

T2 time driven
entities enabled

T2 time driven
entities to be enabled

T2 time driven
entities completed

T2 facts
exposed

All facts
exposed

Start new
cycle

Fig. 16: Time aware system

firing of transition observe (+ readClocks) + perform that would be other-
wise triggered by the simple presence of a token in place All timers updated).
All places T* facts exposed are joined, together with a copy of All timers
updated, in transition Join fact expositions. Only after all the expositions
have been completed, this transition can fire, putting a token into the copy of

F. Fiamberti et al.: PNs as a Means to Validate an Architecture 129

Property Y/N Property Y/N

Pure (PUR) No Covered by P-invariants (CPI) Yes
Ordinary (ORD) Yes Strongly Covered by T-invariants (SCTI) Yes
Homogeneous (HOM) Yes Structurally Bounded (SB) Yes
Non-Blocking Multiplicity (NBM) Yes Bounded (kB) Yes
Conservative (CSV) No Safe (1-B) Yes
Structurally Conflict-Free (SCF) No Dynamically Conflict-Free (DCF) Yes
FT0, TF0, FP0, PF0 Yes No Dead States (DSt(0)) Yes
Connected (CON) Yes No Dead Transitions (DTr) Yes
Strongly Connected (SC) Yes Live (LIV) Yes
Deadlock-Trap Property (DTP) No Reversible (Rev) Yes
Covered by T-invariants (CTI) Yes

Table 1: Properties of the proposed Petri nets

place All facts exposed for all groups of entities. This enables all transitions
observe (+ readClocks) + perform (for time observer entities, readClocks is
executed on all the clocks of interest before perform), whose firing puts a token
into the corresponding place T* time driven entities completed. At this
stage, as in the case of pure time driven entities, places Time driven entities
completed are joined in transition Join time driven entities, which fires
when all the entity executions have been completed. The gray arcs in Figure
16 involve groups of entities: one connects place All facts exposed of each
group and transition Join time driven entities, to ensure that tokens do
not pile up in these places when the corresponding timer does not emit an event.
The other is between transition Join fact expositions and place T* facts
exposed of every group, needed to recharge the token for the next execution.

5 Final remarks

The time-related abstractions and the dynamics of a time aware system could
have been fully described by means of UML diagrams (i.e., class and state to
model the basic abstractions and sequence to model the dynamics). Initially, this
was the direction we followed, but we soon realized that the resulting sequence
diagrams would be complex and difficult to read. So we decided to use Petri nets,
because of their suitability to model the dynamics of a system. The obtained
result consists in a set of Petri nets that are simpler and more readable with
respect to the corresponding UML sequence diagrams, notwithstanding the need
for additional places and transitions that do not have an application semantic
but are required for the Petri nets to behave correctly.

Table 1 summarizes the properties of the proposed Petri nets, as defined
in [12,13]. Some of the properties cannot be satisfied because of the intrinsic
nature of time aware systems (e.g., the proposed nets are not pure because of
the presence of loops, which are required to obtain a cyclic behavior).

130 PNSE’13 – Petri Nets and Software Engineering

The proposed models supported the implementation of a Java framework
named Time Aware Machine (TAM) [14] that has been used for the experimental
testing of the Space Integration Services platform [15]. Currently, the framework
is being used in ALARM [16], an architecture based on a time driven mechanism
that verifies hypotheses about domain entities against previsions.

References

1. Fiamberti, F., Micucci, D., Tisato, F.: An architecture for time-aware systems.
In: 2011 IEEE 16th Conference on Emerging Technologies & Factory Automation
(ETFA), IEEE (2011)

2. Buckl, C., Gaponova, I., Geisinger, M., Knoll, A., Lee, E.A.: Model-based speci-
fication of timing requirements. In: Proceedings of the tenth ACM international
conference on Embedded software. EMSOFT ’10, ACM (2010) 239–248

3. Zhao, Y., Liu, J., Lee, E.A.: A programming model for Time-Synchronized dis-
tributed Real-Time systems. In: 13th IEEE Real Time and Embedded Technology
and Applications Symposium, 2007. RTAS ’07, IEEE (2007) 259–268

4. OMG: MARTE Modeling and Analysis of Real-Time and Embedded systems.
http://www.omg.org/spec/MARTE/1.1/PDF/

5. OMG: Unified Modeling Language (UML), Superstructure.
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

6. Peraldi-Frati, M., DeAntoni, J.: Scheduling multi clock real time systems: From
requirements to implementation. In: Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2011 14th IEEE International Symposium
on. (2011) 50 –57

7. Mallet, F.: Clock constraint specification language: specifying clock constraints
with UML/MARTE. Innovations in Systems and Software Engineering 4(3) (2008)
309–314

8. Henzinger, T., Horowitz, B., Kirsch, C.: Giotto: a time-triggered language for
embedded programming. Proceedings of the IEEE 91(1) (2003) 84–99

9. Gamatié, A., Gautier, T., Guernic, P.L., Talpin, J.P.: Polychronous design of
embedded real-time applications. ACM Trans. Softw. Eng. Methodol. 16(2) (2007)

10. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Ab-
stractions for software architecture and tools to support them. IEEE Transactions
on Software Engineering 21(4) (1995) 314–335

11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

12. Starke, P.H.: Analyse von Petri-netz-modellen. Teubner BG GmbH (1990)
13. Starke, P.H.: INA Integrated Net Analyzer. http://www2.informatik.hu-

berlin.de/lehrstuehle/automaten/ina/manual.html
14. Fiamberti, F., Micucci, D., Tisato, F.: An object-oriented application framework

for the development of real-time systems. In: 50th International Conference on
Objects, Models, Components, Patterns (TOOLS 2012), Springer (2012) 75–90

15. Bernini, D., Fiamberti, F., Micucci, D., Tisato, F.: Architectural Abstractions
for Spaces-Based Communication in Smart Environments. Journal of Ambient
Intelligence and Smart Environments 4(3) (2012)

16. Fiamberti, F., Micucci, D., Mobilio, M., Tisato, F.: A Layered Architecture based
on Previsional Mechanisms. In: ICSOFT 2013 - Proceedings of the 8th Interna-
tional Joint Conference on Software Technologies (accepted for publication). (2013)

F. Fiamberti et al.: PNs as a Means to Validate an Architecture 131

132 PNSE’13 – Petri Nets and Software Engineering

Part III

PNSE’13: Short Presentations

A Framework for Efficiently Deciding Language
Inclusion for Sound Unlabelled WF-Nets

D.M.M. Schunselaar?, H.M.W. Verbeek?, W.M.P. van der Aalst?, and
H.A. Reijers?

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar, h.m.w.verbeek, w.m.p.v.d.aalst, h.a.reijers}@tue.nl

Abstract. We present a framework to efficiently check language inclu-
sion between two sound unlabelled WF-nets. That is, to efficiently check
whether every successfully terminating transition sequence of one sound
unlabelled WF-net also is a successfully terminating transition sequence
of a second sound unlabelled WF-net. Existing approaches for check-
ing language inclusion are typically based on the underlying transition
systems of both nets, and hence are subject to the well-known state-
explosion problem. As a result, these approaches cannot check language
inclusion on sound unlabelled WF-nets in polynomial time. Our frame-
work allows for efficient language inclusion checks even if parallelism is
present, by comparing specific net abstractions that can be computed
and compared in polynomial time. For sound unlabelled WF-nets that
are free-choice and do not contain loops, we prove that our approach is
complete.

1 Introduction

Language inclusion refers to the problem of deciding whether a first language is
included in a second language, that is, whether every word of the first language
is also a word in the second language. For this paper, we assume that a language
is described by a sound unlabelled WF-net (a subclass of Petri nets), and that
every word in the language corresponds to a successfully terminating trace in
that WF-net. As a result, the problem can now be rephrased as deciding whether
every successfully terminating trace of a first sound unlabelled WF-net is also a
successfully terminating trace of a second sound unlabelled WF-net.

There already is a large body of work on equivalences and/or similarities
between Petri nets, e.g., [1–3]. However, in some cases we do not need to decide
on language equivalence as language inclusion is already sufficient to investigate
relevant properties. For example, suppose we have a large repository of Petri nets
that are all different. To reduce the number of Petri nets we need to maintain,
we might want to remove any Petri net that has less behaviour than some other
? This research has been carried out as part of the Configurable Services for Local
Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).

Petri net. This requires us to determine whether the language of a Petri net is
included in the language of another Petri net.

Conformance checking is another interesting application area for language
inclusion. In conformance checking, one seeks to validate an event log against
a Petri net, i.e., does every trace in the event log correspond to a successfully
terminating transition sequence of the Petri net [4]? If we can create a Petri
net that precisely captures the traces from the event log, then this question
corresponds to whether the language of this created Petri net is included in the
language of the original, given, Petri net.

Another interesting application of language inclusion comes from the CoSeLoG
project1. In this project, we are cooperating with municipalities of different sizes
and with different characteristics. If, for instance, a first, small, municipality
wants to cooperate with a second, large, municipality, then the second munici-
pality might have more generic process models (that is, Petri nets) that also sup-
port the first municipality. Although, language equivalence is unlikely to hold,
language inclusion might very well hold, which is already sufficient for a fruitful
cooperation. Apart from comparing the Petri nets of these municipalities, we
can also combine them into a more generic Petri net [5], and check whether a
Petri net of a third municipality is already included in this generic Petri net. If
so, then this third municipality can be supported by this generic Petri net as
well, while it might not have been supported by the Petri net of the first or the
second municipality only. In the context of [5], we already have standardised the
Petri nets, i.e., same activities names, and same level of abstraction.

The main problem with Petri-net-based language inclusion is that it is defined
on the state-space underlying the Petri net (encoded as a transition system) and
is PSPACE-complete. Due to the state-space explosion problem, such a transi-
tion system may be extremely large. Therefore, in general, it is computationally
expensive to decide on language inclusion using the underlying transition sys-
tems.

We present a framework for deciding whether and how Petri-net-based lan-
guage inclusion can be decided in a more efficient way for sound unlabelled
WF-nets. The framework is based on the general pattern: If a sound unlabelled
WF-net adheres only to some characteristics (e.g., is acyclic), then we can map
this net to an alternative representation using a mapping function λ. Using a
comparator ≤λ, we may then efficiently decide whether language inclusion holds
or not. As an example, Fig. 1 depicts a mapping function that maps every net to
its set of transitions. Using the subset operator as comparator, we can already
conclude that language inclusion does not hold, i.e., that the transition set of
the first net is not a subset of the transition set of the second net.

For the case, sound unlabelled WF-nets that are free-choice and contain no
loops, we prove that our approach is complete. If the net is not free-choice or
contains loops, we present mapping functions and corresponding comparators
that can signal that language inclusion does not hold.

1 http://www.win.tue.nl/coselog/

136 PNSE’13 – Petri Nets and Software Engineering

A

B

C

D

E

F

G

H

IA

B

D

E

F

H

I

≤λ

⊆

{A,B,D,E, F,H, I} {A,B,C,D,E, F,G,H, I}

λ λ(set of transitions) (set of transitions)

(⊆)
Fig. 1: General pattern of the framework: First, we map every net to an alterna-
tive representation (like its set of transitions); second, by efficiently comparing
these alternative representations (like the standard subset comparator on the
sets of transitions), language inclusion may be decided.

The structure of the paper is as follows. In Sect. 2, we present the approaches
from literature and present the mappings found in literature. Preliminaries are
provided in Sect. 3. Section 4 presents the general framework for our approach,
which includes different mapping functions and comparators to tackle the lan-
guage inclusion problem at hand. Finally, the conclusions and directions for
future work are elaborated on in Sect. 5.

2 Related Work

There are solutions for checking whether the language of a first Petri net is
included in the language of a second Petri net, see [6–8]. However, these solu-
tions use the transition systems underlying both Petri nets. Unfortunately, these
transition systems may become very large in the presence of parallelism. There-
fore, as mentioned, we are designing a framework for deciding whether and how
Petri-net-based language inclusion can be decided in a more efficient way. An
important element of this framework is mapping a net to an alternative repre-
sentation. In the remainder of this section, we present different candidates for
such mappings as found in the literature. Note that this list is not exhaustive,
but that our framework can easily incorporate other, new, mappings.

The first mapping we consider is based on the α-relation [9]. The α-relation
denotes direct succession between activities and was originally designed for pro-
cess discovery. In [10], a characterisation is given for the nets discoverable by
the α-relation. Extensions have been made to the α-relation in [11] to be able
to discover a larger set of nets.

The α-relation denotes direct succession, the relation used in behavioural
profiles [3,12,13] denotes the eventual succession. Based on the behavioural pro-
files, work has been done for language equivalence, but language inclusion has
not been addressed. A more generic approach based on behavioural profiles is
presented in [1], where eventual succession is still considered, but the distance
between occurrences of transition is bounded. Using behavioural profiles, [14]

D. Schunselaar et al.: Deciding Language Inclusion for SU-WF-Nets 137

considers an abstraction, but this abstraction is not language-equivalence pre-
serving, i.e., the language of the abstraction is different from the language of the
original net.

An approach similar to behavioural profiles is the approach using causal
footprints [15]. Causal footprints denote causality between activities. In [15],
causal footprints are used to deduce structural properties of sound WF-nets.
Using causal footprints, [16] denotes the similarity between nets. This similarity
can be used to deduce language equivalence (similarity of 1), but this approach
is not tailored towards language inclusion.

Causal nets [4] allow us to model processes in such a way that causality
between activities is made explicit. Language inclusion of causal nets has been
defined in [17]. Furthermore, [4] presents an operational algorithm to transform
a net to a causal net by transforming place and transition into activities.

Process nets [18] allow us to encode causal runs. Such a causal run is expressed
as a marked graph. The approach was originally designed for the validation of
nets. Therefore, no language equivalence or language inclusion is defined on
process nets.

The last mapping we mention is the mapping from a net to its basis of semi-
positive transition invariants [19]. The intuitive notion of such an invariant is
that if we start at a given marking, and execute all the transitions from the
invariant as many times as the invariant indicates, we return to the marking we
started with. As such, every behavioural cycle in the Petri net is covered by such
an invariant, but this not work the other way around: It may be possible that
an invariant does not correspond to any behavioural cycle (due to the fact that
we may not have sufficient tokens to execute exactly the transitions from the
invariant).

In this paper, we consider the α-mapping, and the work that has been done
on behavioural profiles, due to the fact they can be computed efficiently (in case
of free-choice Petri nets [20]) on the structure of the net. The other abstractions
can be used, but some do no always run in a time polynomial with respect to
the size of the net. Causal footprints are closely related to behavioural profile.
Therefore, using causal footprints yields similar results as using behavioural
profiles. Hence, we do not use causal footprints. To use causal nets, we would
need an approach to deal with the places introduced in the transformation as
the same place might have different names in different process models. To use
process nets, we would need an approach to deduce language inclusion between
sets of sets of marked graphs. Furthermore, the number of process nets might be
exponential in the number of choices, as there is no choice in a marked graph and
every trace needs to be encoded in at least one marked graph. Finally, the main
problem with semi-positive transition invariants is that the basis of invariant
may be exponential in the size of the net.

138 PNSE’13 – Petri Nets and Software Engineering

3 Preliminaries

We use the following general notions: A denotes the set of actions, and N denotes
the set of non-negative integers.

First, the notions of language, word of a language, and language inclusion
are defined. A word is a sequence of actions from A, a language is a set of words,
and a language is included in another language if and only if all the words of the
first language are part of the second language.

Next, we introduce the notion of a transition system, and the language of a
transition system.

Definition 1 (Transition System). A Transition System TS = (S,→, α, ω)
is a tuple where:

– S is the set of states,
– →⊆ S ×A× S is the set of transitions,
– α ∈ S is the initial state,
– ω ∈ S is the final state.

A word of a transition system is a sequence of transitions starting from the
initial state and ending in the final state. The language of a transition system is
the set of all words which can be produced by the transitions system.

Now we introduce some general Petri net concepts.

Definition 2 ((Unlabelled) Petri net). A Petri net N = (P, T, F) is a tuple
where:

– P is a set of places,
– T ⊆ A is a set of transitions, such that P ∩ T = ∅,
– F ⊆ (P × T) ∪ (T × P) is a flow relation.

The preset of a transition/place n, denoted by •n, is the set of places/transitions
in

⋃
i ∈ P ∪T : (i, n) ∈ F . The postset of a transition/place n, denoted by n•, is

the set of places/transitions in
⋃
i ∈ P ∪T : (n, i) ∈ F . A Petri net is free-choice

if and only if for every two transitions, either the presets of every two transitions
is disjoint, or they are the same.

Definition 3 (Bag over Set). Let S be a set. A bag over S is a function from
S to the natural numbers N such that only a finite number of elements from S
is assigned a non-zero function value.

Note that a finite set is also a bag, namely the function assigning 1 to every
element in the set and 0 otherwise.

The set of all bags over S is denoted B(S). For a bag b over S and s ∈ S,
b(s) denotes the number of occurrences of s in b, often called the cardinality of
s in b. We use brackets to explicitly enumerate a bag and superscripts to denote
cardinalities. For example, [a2, b3, c] is the bag with two a’s, three b’s and one
c; the bag [s2 | P (s)], where P is a predicate on S, contains two elements s for

D. Schunselaar et al.: Deciding Language Inclusion for SU-WF-Nets 139

every s such that P (s) holds. The sum of two bags b1 and b2, denoted b1 + b2,
is defined as [sn | s ∈ S ∧ n = b1(s) + b2(s)]. The difference of two bags b1 and
b2, denoted b1 − b2, is defined as [sn | s ∈ S ∧ n = (b1(s)− b2(s)) max 0]. Bag b1
is a subbag of b2, denoted b1 ≤ b2, if and only if ∀s ∈ S : b1(s) ≤ b2(s).

A marking of a Petri net is a bag over the set of places. A transition t is
enabled in a marking M , denoted by M [t〉, if and only if the preset of t is a
subbag of M . Firing an enabled transition t from a marking M resulting in
another marking M ′ is denoted by M [t〉M ′. Marking M ′ is obtained by taking
the difference between M and the preset of t and summing it with the postset
of t, i.e. M ′ = M − •t+ t•.

Definition 4 (Transition System of a Petri net). Let N = (P, T, F) be
a Petri net, let Mi be a marking of N , and let Mo be a marking of N , then
the transition system TS = TS(N,Mi,Mo), belonging to N , is constructed as
follows:

– α = Mi,
– ω = Mo,
– S is the smallest set X, such that:
• α ∈ X, ω ∈ X, and
• if s ∈ X ∧ s[t〉s′ for some t ∈ T and s′ ∈ B(P), then s′ ∈ X.

– →= {(s1, t, s2) | s1, s2 ∈ S ∧ t ∈ T ∧ s1[t〉s2}.

The language of a Petri net is the language of the transition system as con-
structed in Def. 4.

As mentioned, we limit ourselves to WF-nets [21]. A WF-net has a unique
input and output place, i.e., the preset of the input place is empty and the postset
of the output place is empty. Furthermore, every transition is on a path between
the input place and the output place. With TS(N), we denote the transition
system belonging to the WF-net N with unique input place i and output place
o (i.e., TS(N) = TS(N, [i], [o])).

We require a WF-net to be sound [21].

Definition 5 (Soundness [21]). Let N = (P, T, F) be a WF-net, let TS =
(S,→, α, ω) be a transition system belonging to N , i.e., TS = TS(N), then N
is sound if and only if (note that α is [i] and ω is [o]):

– ∀m ∈ S : (m,ω) ∈→∗, where →∗ is the transitive closure of →,
– ∀t ∈ T : ∃s, s′ ∈ S : (s, t, s′) ∈→.

In the remainder of this paper, N denotes the set of all sound unlabelled
WF-nets. Note that whenever we say WF-net the unlabelled variant is intended
unless stated differently.

As mentioned in the related work section, there exist approaches to compute
language inclusion on the transition system. However, this computation does
not need to be polynomial in the size of the Petri net. Therefore, we provide in
Sect. 4 an approach to deduce language inclusion based on the structure of the
Petri net.

140 PNSE’13 – Petri Nets and Software Engineering

4 Approach

In this section, we determine in which situations language inclusion can be effi-
ciently computed on the transition system, and what can be done to avoid using
the transition system in other situations. For the latter, we use our framework,
i.e., when the net has certain characteristics, this net is mapped onto an alter-
native representation. Using a comparator, language inclusion can be decided,
similar to the example given in the introduction.

Whether it is computationally efficient to use the transition system and, if
not, which mapping can be used, depends heavily on the constructs used in the
Petri nets, i.e., on the characteristics of both nets. For example, if both nets are
sequential and acyclic, then language inclusion can be efficiently computed on the
transition systems. If both nets are acyclic, then the eventually-follows relation
between transitions may provide valuable information on language inclusion,
where the eventually-follows relation between two transitions denote that the
first can be followed by the second.

The remainder of this section is organised as follows: We first define an ab-
stract mapping, then introduce characteristics, and finally define a comparator.
Afterwards, we revisit the used (concrete) mappings from literature. Having the
concrete mappings in place, the characteristics are defined, and a polynomial-
time algorithm is provided to compute these characteristics on the free-choice
WF-nets. Using the mappings and characteristics, we provide comparators and
accompanying abstractions together, as they are tightly linked.

4.1 Abstract framework

In our abstract framework, an abstraction consists of three elements: (1) a map-
ping function, mapping a Petri net into an abstract representation, (2) a set of
characteristics denoting when this abstraction can be applied, and (3) a com-
parator to compare the abstract representations (mapping to the booleans). The
first and the last follow straightforward from the previous explanations, but the
second requires some extra explanation and mainly on the can be applied part.

We say a Petri net adheres to certain characteristics if and only if these
characteristics are valid for this Petri net. This allows abstractions to be used
when characteristics are added, i.e., the addition of an characteristic does not
invalidate the results presented in this paper.

Two different kinds of abstractions are considered: (1) a positive abstraction
between N and N ′ denoting that: If the comparator yields true, N is guaranteed
to be language included in N ′, and (2) a negative abstraction between N and N ′
denoting that: If the comparator yields false, N is guaranteed to be not language
included in N ′. This allows our framework to be more flexible.

4.2 Mappings

Having the abstract framework with abstractions in place, we now present the
specific mappings used (based on the reasoning in Sect. 2) in the remainder of

D. Schunselaar et al.: Deciding Language Inclusion for SU-WF-Nets 141

A B

Fig. 2: Two WF-nets with different languages but with the same mapping.

this paper. Please note that we do not claim that these mappings are exhaus-
tive: Other mappings may exist that allow for efficient positive and/or negative
abstractions that are not covered by this paper. However, these mappings (and
corresponding comparator) can be easily added to our framework.

The T -mapping provides us with the set of transitions from a WF-net, as
explained in the introduction (we denote this set as λT (N)).

The α-mapping denotes that two transitions can follow each other directly
in a Petri net N , i.e., if (t1, t2) is part of the mapping (denoted by λα(N)), then
there is a trace in which t1 is directly followed by t2.

The∞-mapping denotes that two transitions can follow each other eventually
in a Petri net N , i.e., if (t1, t2) is part of the mapping (denoted by λ∞(N)), then
there is a trace in which t1 is eventually followed by t2.

The presence of loops may be problematic for the ∞-mapping. For this rea-
son, we also include the k-mapping (generalisation of the α-mapping), which
denotes that there are at most k other activities between two transitions in
a Petri net N . As such, this mapping (denoted by λk(N)) corresponds to the
eventually-follows-within-k-steps-relation between transitions. As a result, tran-
sitions that occur in a loop of length of at least k are not automatically related
in both ways by this mapping, e.g., assume a and b are in a loop, then (a, b)
in λk(N) but (b, a) does not need to be in λk(N) while (b, a) would have been
included in λ∞(N).

These latter three specific mappings are all based on relations between two
transitions, which poses a possible problem if a net only contains traces that
contain only a single transition. Clearly, for such a net these follows relations
are all empty, which yields equivalent mappings for the nets in Fig. 2. For this
reason, we add artificial start and end activities (>,⊥) to any net. Note that
this does not limit the expressivity of the process models.

4.3 Characteristics

Since our framework depends on the exact definition of the characteristics, this
section defines the characteristics of sound WF-nets, and shows that we can
compute these characteristics efficiently in case of free-choice nets.

The sequential characteristic denotes that from a state firing one transition,
means the other transitions enabled in the state are no longer enabled.

Definition 6 (Sequential Characteristic). Let N = (P, T, F) ∈ N be a
sound WF-net, let TS = (S,→, α, ω) be the transition system belonging to N ,
i.e., TS = TS(N), then N is sequential if and only if: ∀t1, t2 ∈ T, s ∈ S :
¬(•t1 + •t2 ≤ s)

142 PNSE’13 – Petri Nets and Software Engineering

The acyclic characteristic denotes that it is not possible to reach a previously
visited state.

Definition 7 (Acyclic Characteristic). Let N = (P, T, F) ∈ N be a sound
WF-net, let TS = (S,→, α, ω) be the transition system belonging to N , i.e.,
TS = TS(N), then N is acyclic if and only if: ∀n ∈ N, s0, . . . , sn ∈ S, t1, . . . , tn ∈
T : n < 1 ∨ s0 6= sn ∨ ∃1 ≤ k ≤ n : (sk−1, tk, sk) 6∈→.

In general, these characteristics are defined on the transition system, and
may be inefficient to compute. However, for free-choice nets we can compute
them in an efficient way, as the following theorems show.

A B C

Fig. 3: With the dashed place and arrows, we have a sequential construct, else
not.

In [1](Def. 26), a polynomial time algorithm is presented to compute the min-
imal structural successor between places and transitions (MSS) for a free-choice
net, i.e., the minimal set of transitions and places between the execution of two
transitions. For some characteristics, we require that the considered transitions
can follow each other directly , thus a MSS has a size of 1, i.e., only a single place
is between the transitions. Consider Fig. 3, without the dashed parts, B and C
are non-sequential. However, with the dashed parts, B and C are sequential. In
the first case, the size of the MSS between A and C is 1, in the latter case the
size of the MSS between A and C is 3.

Theorem 1. Let N = (P, T, F) be a sound, free-choice WF-net, then N is
sequential if and only if: ∀u1, u2, u3 ∈ T : u1 • ∩ • u2 = ∅ ∨ u1 • ∩ • u3 =
∅ ∨ •u2 ∩ •u3 6= ∅ ∨ |MSS(u1, u2)| 6= 1 ∨ |MSS(u1, u3)| 6= 1.

Proof. We need to prove: (∀t1, t2 ∈ T, s ∈ S : ¬(•t1 + •t2 ≤ s))⇔ (∀u1, u2, u3 ∈
T : u1 • ∩ • u2 = ∅ ∨ u1 • ∩ • u3 = ∅ ∨ •u2 ∩ •u3 6= ∅ ∨ |MSS(u1, u2)| 6=
1 ∨ |MSS(u1, u3)| 6= 1).

⇒ We prove this by contradiction, assume the left-hand side is true, but the
right-hand side is false, thus ∃u1, u2, u3 ∈ T : u1 • ∩ • u2 6= ∅ ∧ u1 • ∩ • u3 6=
∅ ∧ •u2 ∩ •u3 = ∅ ∧ |MSS(u1, u2)| = 1 ∧ |MSS(u1, u3)| = 1. From the right-
hand side it follows that u2 and u3 are both enabled after executing u1 (by
soundness, we know u1 can fire). Furthermore, u2 and u3 can fire directly
after u1 by the MSS, and because their presets are disjoint there is no
ordering between u2 and u3. Hence, there is a state s such that •u2+•u3 ≤ s.

⇐ Again we prove this by contradiction, assume the right-hand side is true,
but the left-hand side is false, thus ∃t1, t2 ∈ T, s ∈ S : •t1 + •t2 ≤ s. Since

D. Schunselaar et al.: Deciding Language Inclusion for SU-WF-Nets 143

we have a sound WF-net, we start with a single token in the input place.
This means there is a sequence of transitions to reach a state s where two
transitions are enabled say t1 and t2, let s be the first state. Then there is
a transition t to reach state s, let t fire from state s′, i.e., s′[t〉s. By the fact
that t1 and t2 can fire directly from s, we know that |MSS(t, t1)| = 1 and
|MSS(t, t2)| = 1. Now it remains to prove that the first 3 clauses are false,
that is: u1 • ∩ • u2 6= ∅ and u1 • ∩ • u3 6= ∅ and •u2 ∩ •u3 = ∅.
• Assume t • ∩ • t1 = ∅, this means that s′[t〉 and s′[t1〉. Then there are

two options: •t+ •t1 ≤ s′, this means s′ is an earlier state in which two
transitions are enabled (not possible by assumption), and ¬(•t + •t1 ≤
s′). We now obtain by free-choiceness that •t = •t1. From the fact that
t1 is still enabled after firing t, and the fact that t •∩ • t1 = ∅, we obtain
that •t + •t1 ≤ s′, this is not possible due to the free-choiceness and
soundness as this allows t1 to fire twice, and hence (by free-choiceness)
it is possible to mark the output place with two tokens.

• The proof for t • ∩ • t2 goes analogous.
• We only have the case where •t1 ∩ •t2 6= ∅, thus •t1 = •t2. Again by

soundness and free-choiceness it follows that t1 can fire twice from state
s, hence it is not sound.

ut

Theorem 2. Let N = (P, T, F) be a sound, free-choice WF-net, then N is
acyclic if and only if: ∀t1, . . . tn ∈ T : •t1∩ tn• = ∅∨ (∃1 ≤ k < n : tk •∩• tk+1 =
∅).

Proof. We need to prove: (∀n ∈ N, s0, . . . , sn ∈ S, t1, . . . , tn ∈ T : n < 1 ∨ s0 6=
sn ∨ ∃1 ≤ k ≤ n : (sk−1, tk, sk) 6∈→) ⇔ (∀t1, . . . tn ∈ T : •t1 ∩ tn• = ∅ ∨ (∃1 ≤
k < n : tk • ∩ • tk+1 = ∅)).

⇒ This follows from the free-choice property, i.e., as soon as we can mark a
place in the preset of a transition, then this token can only be removed after
this transition has been enabled. As a result, if we mark a place in the preset
of a previously enabled transition, then we can do this an infinite amount of
times as this transition has to be able to fire. Since the state-space is finite
(bounded net due to soundness) this means we have a path to a previously
visited state.

⇐ When we do not have a sequence of transition to mark a place again, this
means as soon as this place has been marked it will never be marked again.
Hence, we cannot revisit a state.

ut

From Thm. 1 and Thm. 2, we can conclude that, for free-choice WF-nets the
characteristics can be efficiently computed, i.e., in polynomial time. As a result,
we can use these characteristics in our framework.

144 PNSE’13 – Petri Nets and Software Engineering

4.4 Abstractions

This section builds on the previous sections by presenting concrete instantiations
of the framework, consisting of selected abstractions, that can be used to effi-
ciently decide language inclusion for nets with certain characteristics. Therefore,
in the remainder, we display different approaches, each tailored towards nets
with certain characteristics. We start with the approach which does not require
an abstraction of the Petri net.

No abstraction needed In case the Petri net is sequential and free-choice,
the transition systems will not suffer from the state-space-explosion problem.
For this reason, we do not need an abstraction, as we can efficiently decide the
language inclusion problem on the transition systems.

Negative abstraction using T -mapping The following negative abstraction
is valid for all sound WF-nets.

Definition 8 (T -Comparator). Let N = (P, T, F) and N ′ = (P ′, T ′, F ′) be
sound WF-nets, let λT be the T -mapping, then λT (N) ≤T λT (N ′) if and only
if: λT (N) ⊆ λT (N ′)

Theorem 3. (λT ,≤T , ∅) is a negative abstraction.

Proof. As both nets are sound WF-nets, all transitions of N are included in
L(N). That is, for every t ∈ T there exists a trace σ ∈ L(N) such that t ∈ σ.
Clearly, if there exists a transition t ∈ T such that t 6∈ T ′, then the traces in N
that contain t are not traces of N ′. Hence, language inclusion cannot hold. ut

Negative abstraction using α-mapping The following negative abstraction
is also valid for all sound WF-nets. However, to our knowledge, only for free-
choice WF-nets there is a polynomial-time algorithm to compute the α-mapping.
Hence we can use the negative abstraction to efficiently decide language inclusion
either if we have a free-choice net or if the required α-mappings are given.

Definition 9 (α-Comparator). Let N = (P, T, F), N ′ = (P ′, T ′, F ′), be sound
WF-nets, let λα be the α-mapping, then λα(N) ≤α λα(N ′) if and only if:
λα(N) ⊆ λα(N ′)

Theorem 4. (λα,≤α, ∅) is a negative abstraction.

Proof. We need to prove that ¬(λα(N) ≤α λα(N ′))⇒ ¬(L(N) ⊆ L(N ′)) which
can be rewritten to L(N) ⊆ L(N ′)⇒ λα(N) ≤α λα(N ′) which follows straight-
forward from the definition of λα. ut

Theorem 4 yields the following result: Given two sound WF-nets and their
corresponding α-mappings, Def. 9 can be computed in polynomial time. Hence,
Thm. 4 yields in polynomial time whether the language is not included, i.e., if

D. Schunselaar et al.: Deciding Language Inclusion for SU-WF-Nets 145

A BA

B

C D D

Fig. 4: Two process models where we have a false positive w.r.t. language inclu-
sion if we simply use inclusion of the α-relation.

λα(N) ⊆ λα(N ′) yields false then the inclusion does not hold. In case no α-
mapping is provided, we can, for free-choice WF-nets, compute the α-mapping
efficiently and determine if language inclusion does not hold.

Using the α-mapping, we did not obtain a positive abstraction, as we cannot
do an inclusion of the relations between the different process models. Consider
the models in Fig. 4. Here, it is easy to see that the relations of the right-
hand model are a subset of left-hand model. That is, in the left model we have
the relations λα(N) = {(A,B), (A,C), (B,C), (C,B), (B,D), (C,D)}, and in the
right model we have the relations: λα(N ′) = {(A,B), (B,D)}. However, the word
ABD is included in the right model, but not in the left model.

The problem is that we are omitting related activities, e.g., the A is followed,
in Fig. 4, by a C, while with omitting relations, we also omit these dependencies.

Consider Fig. 5, at the bottom, for both models, we have transformed the par-
allel execution into a sequential execution such that λα(right model) ⊆ λα(left
model). In the top two models, we have done the same, but this yields a model
allowing words not possible in the other model. So, we need to find an inclusion
operator, which can either differentiate between both models or considers both
models not to be included in the other. In the first case, we have false negatives
(see bottom model), in the second case, we have false positive (see top model).
The problem is: The α-mapping considers two activities exclusive if they cannot
follow each other directly. Hence, we have to look at the transitivity of these
relations.

Positive abstraction using ∞-mapping In case the WF-net is acyclic, we
can use the ∞-mapping instead of the α-mapping. Using this mapping, we can
compute the transitive closure of the α-relations to deduce the relations between
all activities. However, similar to the α-mapping, a simple inclusion of the sets is
not strong enough to deduce language inclusion. Therefore, we need an approach
which takes into account the alternatives between different activities. Alternative
activities are activities which do not occur together in a trace. So, if an activity
does not occur in a word, then an alternative activity occurs in that word.

Theorem 5. Let N = (P, T, F) be a sound acyclic free-choice net, then: ∀a ∈
T, σ ∈ L(N) : a 6∈ σ ⇒ ∃b ∈ T : b ∈ σ ∧ (a, b) 6∈ λ∞(N) ∧ (b, a) 6∈ λ∞(N).

Proof. Assume there is an a ∈ T and a 6∈ σ (by soundness we know a can be
executed). This means there is a choice to not execute a. Since we have free-
choice nets, this means somewhere there are two transitions t1, t2 (•t1 = •t2),

146 PNSE’13 – Petri Nets and Software Engineering

A

B

D

C

E

F A B D C

E F

A

B

C

D

E

A B C

D E

G

H

G H

Fig. 5: Using the α-relation, we cannot differentiate between valid transforma-
tions from parallel to sequential (bottom) and invalid transformations from par-
allel to sequential (top).

B

A C

> ⊥
D

B

A C

> ⊥
D

C

A

B

> ⊥

D

Fig. 6: The left and middle model are language included in the right model
without clause 3 in Def. 10.

such that after t1 a can still follow, but after executing t2 a cannot follow. Due
to the fact that the net is acyclic and free-choice, a cannot precede t2, i.e., if a
can, via firing some transitions, mark the preset of t2 then also the preset of t1
is marked and hence a can execute again. Since a is not in σ, we have chosen
t2, and thus t2 ∈ σ. Also because a cannot follow t2, and t2 cannot follow a,
(a, t2) 6∈ λ∞(N) ∧ (t2, a) 6∈ λ∞(N). ut

Now the comparator denotes that the activities have to be the same, the
relations have to be a subset (similar to Def. 9), and there is always at least one
alternative activity remaining. We have to require clause 3, as this allows us to
only remove alternative activities. Consider Fig. 6, the lower model is language
included in the right model, and this is valid since an alternative activity for
B (namely C) follows A. However, the left model is not language included in
the lower model, as there is no alternative activity for C following A. Without
clause 3, the comparator would have denoted that the left model is included in
the lower model.

D. Schunselaar et al.: Deciding Language Inclusion for SU-WF-Nets 147

Definition 10 (∞-Comparator). Let N = (P, T, F), N ′ = (P ′, T ′, F ′) be
sound FC-nets adhering to the {Acyclic} characterisation, let λ∞ be the ∞-
mapping, then λ∞(N) ≤∞ λ∞(N ′) if and only if:

1. T = T ′

2. λ∞(N) ⊆ λ∞(N ′)
3. (∀(a, b) ∈ λ∞(N ′) : (a, b) ∈ λ∞(N) ∨ (b, a) ∈ λ∞(N) ∨ (∃c ∈ T : ((a, c) ∈

λ∞(N) ∨ (c, a) ∈ λ∞(N)) ∧ (b, c) 6∈ λ∞(N ′) ∧ (c, b) 6∈ λ∞(N ′)))

Theorem 6. (λ∞,≤∞, {Acyclic}) is a positive abstraction.

Proof. We need to prove: λ∞(N) ≤∞ λ∞(N ′)⇒ L(N) ⊆ L(N ′).
We prove this by contradiction, thus L(N) 6⊆ L(N ′) but λ∞(N) ≤∞ λ∞(N ′).
By definition, this means there is a trace σ ∈ L(N) such that σ 6∈ L(N ′).
Now it remains to prove that this σ does not exist. We prove this by induc-

tion on the prefix of the trace. Let σ = 〈t1, . . . , tk−1, tk, . . . , tm〉 be a trace, the
prefix of σ (denoted by σprefix) are transitions before position k (i.e., σprefix =
〈t1, . . . , tk−1〉). It remains to show that if the prefix of σ corresponds to a prefix
of a trace σN ′ ∈ L(N ′) then tk has to be directly executable in N ′ after having
executed this prefix.

Base case k = 1. In this case, the prefix is empty and by definition we always
start with an unique start activity, hence both models can execute >.

Inductions hypothesis: assume σprefix = 〈t1, . . . tk−1〉 corresponds to a prefix
of a trace in N ′, then there are two options: (1) tk cannot follow σprefix in N ′,
or (2) tk cannot follow σprefix directly in N ′, i.e., there is at least on transition
in between σprefix and tk.

(1) If tk cannot follow σprefix in N ′, then either tk 6∈ T ′ (not possible due
to clause 1) or there is an alternative activity ti ∈ σ (Thm. 5). Note that this
alternative activity has to be in σprefix, because else from σprefix it cannot follow
that tk cannot follow σprefix in N ′. This latter option cannot happen due to
clause 2 (else (ti, tk) ∈ λ∞(N) but (ti, tk) 6∈ λ∞(N ′)). Hence tk must be able to
follow σprefix in N ′.

(2) When tk cannot directly follow σprefix this means there is an activity
between σprefix and tk in N ′. We denote this activity with b ∈ T ′. We know
that (b, tk) ∈ λ∞(N ′) but also that (tk, b) 6∈ λ∞(N ′) (else b does not need to be
between σprefix and tk, by free-choiceness and soundness). Furthermore, by the
absence of loops and soundness, we know that b 6∈ σprefix (else b can be followed
by b in N ′). Then there are two options; (a) either b can follow σprefix in N , or
(b) b cannot follow σprefix in N .

(a) Since (tk, b) 6∈ λ∞(N ′) it follows from clause 2, that (tk, b) 6∈ λ∞(N).
This means that if b can follow σprefix in N , it has to be executed before tk is
executed. In σ this is not the case, i.e., there is no activity executed between
σprefix and tk, and Thm. 5 yields that there has to be an alternative activity
for b in σ (note that it does not need to be an alternative activity for b in N ′)
and by free-choiceness it has to be before tk, thus in σprefix. From this it follows
that b cannot follow σprefix in N . We only need to prove that part (b) yields a
contradiction.

148 PNSE’13 – Petri Nets and Software Engineering

(b) Thm. 5 yields that somewhere we have made a choice in σprefix to not
execute b in N , we call the activity after making this choice a. Since σprefix can
be followed by b in N ′, we obtain that (a, b) ∈ λ∞(N ′), but also (a, b) 6∈ λ∞(N)
(note that (b, a) 6∈ λ∞(N), since this violates the acyclic property). From clause
3, we obtain there has to be an activity c such that (a, c) ∈ λ∞(N) ∨ (c, a) ∈
λ∞(N) and (b, c) 6∈ λ∞(N ′) ∧ (c, b) 6∈ λ∞(N ′). Finally, from Thm. 5, we obtain
that there has to be an alternative activity for b in σ, which c also is. Now it
remains to show that c is in σprefix. By free-choiceness, we obtain that c has
to be executed before tk. If c can be executed after tk, then dependent on the
activities chosen before tk, c can either be executed or not, which violates the
free-choice property. Since (c, tk) ∈ λ∞(N), it follows that c has to be in σprefix,
and thus no b can be between σprefix and tk in N ′.

From this it follows that both models can execute tk directly after prefix
σprefix, and hence both models are able to perform σ (note that termination is
taken care of by including ⊥ as unique end activity) and thus it follows that σ is
also in L(N ′). Thus by contradiction, we have shown that λ∞(N) ≤∞ λ∞(N ′)⇒
L(N) ⊆ L(N ′). ut

In case T = T ′, we can decide language inclusion based on the ∞-mapping.
However, in general it is the case that T 6= T ′. Therefore, we extend our approach
to the case in which T ⊂ T ′. Note that we do not need to consider the case that
T ′ ⊂ T as language inclusion cannot hold.

In order to achieve T = T ′, we have the following reduction on N ′:

– Remove all transitions t ∈ (T ′ \ T) from N ′

– Remove all places not connected to any transition

If the reduced net is sound then we can use Def. 10 on the transformed net
with T = T ′. It is easy to see that language inclusion is preserved as we only
remove transitions not present in T , i.e., we do not reduce the language w.r.t. the
overlap with T . If the resulting model is not sound, then a part of the language
of N cannot be part of N ′.

Apart from showing the soundness of the abstraction using the ∞-mapping,
we also want to show the completeness. This means that if the language of N is
included in N ′, then our comparator always yields true.

Theorem 7. (λ∞,≤∞, {Acyclic}) is complete, i.e., for two acyclic free-choice
WF-nets N and N ′, we have λ∞(N) ≤∞ λ∞(N ′)⇐ L(N) ⊆ L(N ′).

Proof. We prove this by contradiction. Assume L(N) ⊆ L(N ′), but λ∞(N) ≤∞
λ∞(N ′) does not yield true.

Then, at least one of the clauses has to be false. Clause 1 and 2 follow
in a straightforward way. Assume clause 1 is false, then there is an activity
x ∈ T which is not in T ′. Since T is sound, this means x occurs in at least
one trace and this trace cannot occur in L(N ′). Assume clause 2 is false, this
means there is a relation between 2 activities x, y ∈ T such that (x, y) ∈ λ∞(N),
which is not in λ∞(N ′). By definition, this means there is a word such that

D. Schunselaar et al.: Deciding Language Inclusion for SU-WF-Nets 149

A

E

B

CD

A

E

C

BD

Fig. 7: Two process models where using the ∞-mapping gives a false positive.

A

B

C

D

E

A DB

Fig. 8: Naive inclusion does not work for the k-mapping.

σ = 〈. . . , x, . . . , y, . . .〉, but this trace cannot be in L(N ′), else this relation was
also included in λ∞(N ′).

Assume clause 3 is not valid, this means that: ∃(a, b) ∈ λ∞(N ′) : (∀c ∈ T :
¬((a, c) ∈ λ∞(N) ∨ (c, a) ∈ λ∞(N)) ∨ (c, b) ∈ λ∞(N ′) ∨ (b, c) ∈ λ∞(N ′)) has to
hold (negation of the clause 3). Recall that due to > and ⊥, λ∞(N ′) cannot be
empty.

We choose an a and b, the universal quantifier denotes that either the activity
c is exclusive to a, or can occur together with b in a trace. Thus, there is no
alternative for b to occur together with a in the trace. If we chose b = c then
we have that either b does not occur with a in a trace in N , or (b, b) ∈ λ∞(N ′)
which is not possible due to the acyclicness. Thus, in N ′ a always occurs with
b, while in N they are alternatives. Hence, language inclusion cannot hold.

We can conclude that Thm. 7 holds, and Def. 10 is complete. ut

No abstraction using the k-mapping In the most general case, when the
characterisation does not pose any constraints, we have the same problems as
mentioned earlier, e.g., that a simple inclusion does not work. Furthermore, we
now have difficulties introduced by the combination of cycles and non-sequential
activities, e.g., short loops in the α-mapping. Furthermore, the ∞-mapping has
problems with cycles. For instance, see Fig. 7 where both models have the same
∞-mapping. However, the trace ACBDE is included in the right model, but
not in the left model. Obviously, with equivalent ∞-mapping, we should have
language equivalence, i.e., any comparator denotes that the sets are included in
each other.

Therefore, we consider the k-mapping. Again, using a naive approach, using
the inclusion of relations does not work. Consider, for instance, the models in
Fig. 8, where the relations in the right model are a subset of the relations in the
left model.

150 PNSE’13 – Petri Nets and Software Engineering

A

C

B

D

E

F

G

A

C

B

D E

F

G

Fig. 9: For the k-mapping, we cannot find a value for k such that it yields that
the right model is language included in the left model, but does not yield that
the left model is language included in the right model.

Table 1: The framework for sound free-choice WF-nets
Abstraction Characterisation Pos/Neg Complete
Trans. Syst. S Pos X

T ∅ Neg
α ∅ Neg
∞ A Pos X

The problem with looking at k elements in advance is that this k is bounded
by the shortest cycle. In other words, if k is larger than the shortest cycle then
activities are considered in parallel when they are in sequence. Consider Fig. 9,
from which it is clear that the right model is language-included in the left model.
However, if we compute the relation between the activities, we need to have a
relation between C and E (because present in right model, thus k ≥ 2), but also
k < 2 because 〈...EGC...〉 is a proper part of a trace due to the cycle, while this
would yield that C and E are in parallel in the right model, and thus that the
left model is language included in the right model.

4.5 The complete framework

In Table 1, the total framework is listed. Trans. Syst. denotes that language
inclusion can be efficiently computed on the transitions system. T is the negative
abstraction only considering transitions. The negative abstraction using the α-
mapping is listed under α. Finally, ∞ denotes the sound and complete positive
abstraction using the ∞-mapping. Under characteristics: A denotes acyclic, and
S denotes sequentiality. Pos/Neg denotes if it is a positive or negative approach,
and complete denotes if the approach is complete.

5 Conclusion

We have presented a framework that supports the decision of language inclusion
for sound unlabelled WF-nets in an efficient way. Apart from the framework,

D. Schunselaar et al.: Deciding Language Inclusion for SU-WF-Nets 151

we have provided a number of mappings, characterisations, and comparators to
be used in the framework. If there is sequentiality present in both WF-nets, the
language inclusion problem can be computed in polynomial time in terms of
the underlying transition systems. If one of the WF-nets is non-sequential, then
our framework may still efficiently decide language inclusion using a number
of abstractions. The first abstraction uses the sets of transitions: If the set of
transitions of the first net is not a subset of the set of transitions of the second,
then the language of the first net cannot be included in the language of the
second net. The second abstraction uses the directly-follows relation (also called
the α-relation) between transitions: If the α-relation of the first net is not a
subset of the α-relation of the second net, then the language of the first net
cannot be included in the language of the second net. The third abstraction uses
the eventually follows relation (also called the ∞-relation) between transitions:
If the ∞-relation of the first free-choice net is a subset of the ∞-relation of
the second free-choice net, and if some additional structural requirements hold,
then the language of the first net is included in the language of the second net.
For free-choice acyclic nets this third abstraction is complete. In other words,
language inclusion can only hold if the ∞-relation of the first net is a subset of
the ∞-relation of the second net, and if the additional structural requirements
hold.

In case of free-choice unlabelled WF-nets, all relations can be computed poly-
nomial in the size of the WF-net. On these relations, we mainly perform contain-
ment between sets. In the third abstraction, we search for an alternative activity
which, naively, entails trying every activity and adds a polynomial factor. Since
each of the steps is polynomial in the size of the WF-net, we can conclude that
our computations can be done polynomial in the size of the WF-net.

The framework cannot efficiently decide on language inclusion in all cases.
Especially for nets that are (1) non-sequential, (2) are cyclic or are not free-
choice, and (3) for which language inclusion is known to hold, our current set of
abstractions will not be able to provide an answer in polynomial time. Due to
the fact that the comparators of the first two abstraction will yield true and the
preconditions of the third abstraction are not met. However, we do not claim that
our framework is complete. Yet, our framework can be easily extended based on
the general pattern provided with new abstractions that may provide efficient
answers for cases uncovered by the current abstractions: Given an abstraction,
a characterisation, and a comparator, a positive (like the third abstraction) or
negative (like the first two abstractions) abstraction can be formulated.

In some cases, our abstractions can easily be applied to general Petri nets.
However, there does not exist, to our knowledge, a polynomial time algorithm
to compute the abstractions on general nets. One can argue that computing the
abstractions means analysing the behaviour in part or in full.

In the future, we plan to extend our framework with abstractions that also
can deal with labelled WF-nets and with nets that are cyclic, for example by
considering abstractions based on block-structured nets. For block-structured

152 PNSE’13 – Petri Nets and Software Engineering

nets (with a single entry and a single exit), the relations (like α and∞) between
transitions can often be derived efficiently from the block-structure.

Furthermore, we want to quantify the difference between two languages based
on our framework, i.e., if language inclusion does not hold, what portion of the
language in not included, and which part of the net is the main reason the
language is not included. This can then be used as a quantification measure of
inclusion between nets, and as a diagnostic result that can be used to align nets
in such a way that language inclusion will hold.

References

1. Weidlich, M., Werf, J.M.E.M.v.d.: On Profiles and Footprints - Relational Seman-
tics for Petri Nets. [22] 148–167

2. Glabbeek, R.J.v., Weijland, W.P.: Branching Time and Abstraction in Bisimula-
tion Semantics. Journal of the ACM (JACM) (1996)

3. Kunze, M., Weidlich, M., Weske, M.: Behavioral Similarity - A Proper Metric. In
Rinderle-Ma, S., Toumani, F., Wolf, K., eds.: BPM. Volume 6896 of Lecture Notes
in Computer Science., Springer (2011) 166–181

4. Aalst, W.M.P.v.d., Adriansyah, A., Dongen, B.F.v.: Causal Nets: A Modeling
Language Tailored towards Process Discovery. In Katoen, J.P., König, B., eds.:
CONCUR. Volume 6901 of Lecture Notes in Computer Science., Springer (2011)
28–42

5. Schunselaar, D.M.M., Verbeek, H.M.W., Aalst, W.M.P.v.d., Reijers, H.A.: Cre-
ating Sound and Reversible Configurable Process Models Using CoSeNets. In
Abramowicz, W., Kriksciuniene, D., Sakalauskas, V., eds.: BIS. Volume 117 of
Lecture Notes in Business Information Processing., Springer (2012) 24–35

6. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press
(1999)

7. Abdulla, P.A., Chen, Y.F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets
antichains. In Esparza, J., Majumdar, R., eds.: TACAS. Volume 6015 of Lecture
Notes in Computer Science., Springer (2010) 158–174

8. Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simula-
tion preorders. In Larsen, K.G., Skou, A., eds.: CAV. Volume 575 of Lecture Notes
in Computer Science., Springer (1991) 255–265

9. Aalst, W.M.P.v.d., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discover-
ing Process Models from Event Logs. IEEE Transactions on Knowledge and Data
Engineering 16(9) (2004) 1128–1142

10. Badouel, E.: On the α-reconstructibility of workflow nets. [22] 128–147
11. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with

non-free-choice constructs. Data Mining and Knowledge Discovery 15(2) (2007)
145–180

12. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal Behavioural Profiles
- Efficient Computation, Applications, and Evaluation. Fundamenta Informaticae
113(3-4) (2011) 399–435

13. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process com-
pliance analysis based on behavioural profiles. Information Systems 36(7) (2011)
1009–1025

D. Schunselaar et al.: Deciding Language Inclusion for SU-WF-Nets 153

14. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based
on behavioral profiles. In Maglio, P.P., Weske, M., Yang, J., Fantinato, M., eds.:
ICSOC. Volume 6470 of Lecture Notes in Computer Science. (2010) 1–16

15. Dongen, B.F.v., Mendling, J., Aalst, W.M.P.v.d.: Structural Patterns for Sound-
ness of Business Process Models. In: EDOC, IEEE Computer Society (2006) 116–
128

16. Mendling, J., van Dongen, B.F., van der Aalst, W.M.P.: On the degree of behav-
ioral similarity between business process models. In Nüttgens, M., Rump, F.J.,
Gadatsch, A., eds.: EPK. Volume 303 of CEUR Workshop Proceedings., CEUR-
WS.org (2007) 39–58

17. Solé, M., Carmona, J.: A High-Level Strategy for C-net Discovery. In Brandt, J.,
Heljanko, K., eds.: ACSD, IEEE Computer Society (2012) 102–111

18. Desel, J.: Validation of process models by construction of process nets. In Aalst,
W.M.P.v.d., Desel, J., Oberweis, A., eds.: BPM. Volume 1806 of Lecture Notes in
Computer Science., Springer (2000) 110–128

19. Lautenbach, K.: Liveness in Petri Nets. Internal Report of the Gesellschaft für
Mathematik und Datenverarbeitung. Bonn, Germany, ISF/75-02-1 (1975)

20. Desel, J., Esparza, J.: Free Choice Petri Nets (Cambridge Tracts in Theoretical
Computer Science). Cambridge University Press (1995)

21. Aalst, W.M.P.v.d.: Verification of Workflow Nets. In Azéma, P., Balbo, G., eds.:
ICATPN. Volume 1248 of Lecture Notes in Computer Science., Springer (1997)
407–426

22. Haddad, S., Pomello, L., eds.: Application and Theory of Petri Nets - 33rd Inter-
national Conference, PETRI NETS 2012, Hamburg, Germany, June 25-29, 2012.
Proceedings. In Haddad, S., Pomello, L., eds.: Petri Nets. Volume 7347 of Lecture
Notes in Computer Science., Springer (2012)

154 PNSE’13 – Petri Nets and Software Engineering

Introducing Catch Arcs to Java Reference Nets

Lawrence Cabac, Michael Simon

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics
{cabac,9simon}@informatik.uni-hamburg.de

http://www.informatik.uni-hamburg.de/TGI

Abstract. Modeling plays an important role during design and develop-
ment of systems and processes. Petri nets allow for well-defined models
that can be executed. For the implementation of these systems, how-
ever, still normal programming languages are used. In contrast, mod-
eling languages – also if executable, such as Petri net formalisms – are
not deemed fit for implementation. Besides the pragmatic power, one
thing that modern programming languages offer and which Petri net
formalisms are missing, is exception handling.
In this paper we present an approach that includes exception handling
for Java reference nets. Our goal is to make the designed systems more
robust and reliable. As a consequence, such executable models can be
cleanly integrated into real execution environments.
Our approach provides the information of an exception being thrown to
the level of modeling. We are thus able to model the exception handling
explicitly within the model as it is done in many modern programming
languages. This extension is conservative and does not alter the normal
behavior of the model, leaving the Petri net semantics untouched. We
discuss several possible extensions to our approach with respect to the
modeling possibilities, the ease of implementation and their pragmatic
usefulness.

Keywords: High-Level Petri Nets, Reference Nets, Exceptions, Catch Arcs,
Renew

1 Introduction

High-level Petri net formalisms have often been extended by new primitives.
This has been done mostly to improve modeling possibilities. The aim has been
to increase comprehensiveness and compactness as in the case of test arcs and
inhibitor arcs (see [2]) or flexible arcs (see [8]). We introduce a catch arc as a
new primitive, in order to raise the tightness of integration with the inscription
language. By this we improve the robustness of our executable models. With
the new construct we are able to handle exceptions that might occur during
execution of the model.

Renew1 has been missing the possibility to handle exceptions on the model
level, since it has been created. In this paper, we introduce a new kind of arc
– the catch arc – which fills that gap. Its functionality is straight forward: if
an exception is thrown during the execution of a transition inscription (in our
case Java code) while firing, the exception object is put into the connected place.
From this point, the exception can be treated in the model in an appropriate way.
This is the reason why we call this arc a catch arc. The arc initiates a sequence
of code that – in analogy to a catch statement in Java – follows the catch
statement. If no exception occurs, the normal Petri net semantics is followed
and the catch arc does not produce any token. We discuss in detail why this
arc is suitable for handling exceptions and how the firing of a transition should
be aborted on encountering an exception. Furthermore, we discuss a way to
implement handling of exceptions that are thrown in one net without having to
catch them all separately.

The structure of the paper is as follows: we introduce the catch arc and
discuss its behavior by the means of Petri net modeling in Section 2. This is the
central concept of this paper. Section 3 presents the complex process of the firing
of a transition in Renew. It shows the inability to fully abort a transition firing
and the consequent limitations on extensions of the Java reference net formalism.
These limitations motivate the try arc as a solution. Section 4 introduces the
try arc and discusses how a transition firing can be reverted after an exception.
Section 5 presents ways to isolate the tokens involved in an erroneous firing
for exception handling. Using the catch arc alone is compared to using it in
combination with a try arc. Section 6 discusses the (conservative) extension of the
catch arc by an expression whose result gets returned on catching an exception.
In Section 7 we extend the notion of exception handling from transitions to net
instances.

2 The Catch Arc

We extend reference nets [6] by adding catch arcs that put an exception into a
place as object reference, if one occurred. Avoiding uncaught exceptions in action
inscriptions is very complicated: the modeler would need to make sure that all
action inscriptions only call Java methods that do not throw exceptions. This
is not feasible, as the standard Java methods and well-written Java classes rely
heavily on throwing exceptions. We do not want to worry about exceptions in
every action inscription, but would rather prefer to have a simple way to handle
those in general without having to consider each possible error case.

Up until now, the possibility of an exception being thrown was simply not
covered by the reference net formalism. Thus, such an event was outside the
scope of well-defined behavior of the simulator. On encountering an exception,
the ingoing arcs would consume the bound tokens, but no token would be put
out by the outgoing arcs. The simulator would log the incident, but ignore it
1 Renew: The Reference Net Workshop [7], http://www.renew.de

156 PNSE’13 – Petri Nets and Software Engineering

in any other regard. By adding the possibility to catch and handle exceptions
we pull this behavior into the model level. The behavior of the Petri net models
itself is not changed as long as no exception occurs.

Unfortunately, there is no easy and clean way to completely reset a transition
that has already begun to fire, as we will discuss in Section 4.

Fig. 1. Usage example.

Fig. 1 shows a typical use-case where catch arcs enable the modeler to express
safe code with a few simple net elements, instead of modeling complex structures
or exporting the error handling functionality to Java helper code. The catch arc
can be identified by the catch inscription. The tokens in the places on the left
are given, but they may also be dynamically derived by other net segments,
for example through a user input dialogue. It is very difficult to ensure that
all input tokens to the transition are valid. In this case, there are also external
factors that determine the outcome of the action inscription as dbUrl is the
URL of a database to open, which might not be available. In a scenario like this,
catching exceptions is unavoidable to have a stable system. As already mentioned
above, usually the handling of the possibly thrown exceptions is implemented in
Java helper code that encapsulates the opening of the connection and catches
exceptions on that level. With the catch arc we are not only able to pull the
exception handling up to the model level, we also reduce the implementation of
wrapper code. In fact, we are able to treat the exceptions as first order concepts
within our models.

The reference net depicted in Fig. 2 illustrates the operational semantics of
catch arcs. The transition holds an action inscription which converts a String
into an Integer object. Naturally, this operation throws an exception, if the con-
version cannot be achieved due to an invalid argument. Fig. 3 shows the result
of executing the net in Fig. 2. The String 6 can be converted to an Integer which
is put into output, while the attempt to convert foo throws NumberFormatEx-
ception which is put out by the catch arc.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 157

Fig. 2. Example of a safe String to Integer conversion with a catch arc.

Fig. 3. Executed instance of the net in Fig. 2.

Fig. 4 is a conceptual model showing the execution semantics of the catch
arc, simulated by a reference net model and some possible Java code. This model
illustrates the implementation of the catch arc.

The
ExHandler.wrap(String) method returns the same result as the expression given as

String, if no exception is thrown. Otherwise, it returns the thrown exception.

Fig. 4. Net without catch arcs behaviorally equivalent to Fig. 2.

The transition String to Integer conversion in Fig. 4 is a refinement of
the one in Fig. 2. The ExHandler.wrap(String) method is not implemented, but
serves to illustrate how a wrapper that catches any error and returns it, or the
result would be used to emulate the behavior of catch arcs.

The catch arc itself serves as a clear identifier of where the control flow for
exception handling starts. All transitions that are dependent on the exception
output token, are part of the exception handling control flow. By directing a

158 PNSE’13 – Petri Nets and Software Engineering

catch arc to a place that is only used for exceptions, it is easy to separate the
control flow. Even though it is made easy, it is up to the modeler to separate
the exception handling parts of a reference net from the rest, like any other
software architecture design decisions. This is analogous to the catch block of a
try-catch-construct in a textual programming language: what is done inside is
up to the programmer. There is no difference between code that can be executed
inside the catch block or outside. Still it is good practise to separate exception
handling code from other code. The place to which a catch arc leads should be
regarded in the same way as a catch block in a textual programming language.

We implemented an extension to the catch arc, allowing it to be accompanied
by an expression. This is further discussed in Section 6.

Another possible improvement of the catch arc would be the ability to de-
clare the class of the exception to catch. This would deepen the analogy with
the common try-catch programming language construct and would simplify the
implementation of different ways to handle different exceptions. On the other
hand, this behavior is easy to achieve with guards that check the exception
types. These would be inscribed to the transitions which handle the exceptions.
Because of the flexibility that guard inscriptions offer, there is no need to catch
only some types of exceptions. This refinement of the catch arc could be imple-
mented by an expression that is given as an argument to the catch inscription. It
has to evaluate to a (sub)class of java.lang.Throwable (the exception rootclass).

A finally statement is not needed in the extended Java reference net formal-
ism. In Java it represents a section of code that is inserted into the control flow
of the erroneous as well as the normal execution. It is executed in all cases. In
the Java reference net formalism the control flow is explicitly modeled. The catch
arcs start the control flow of the erroneous case and the normal output arcs start
the control flow of the normal case. In Fig. 2 there is either one token put out
to output, or to exception. To introduce some code that gets executed as a
finally statement, we introduce a transition that is fired for every token in both
places. This can be done using only classic Java reference net elements.

3 Firing a Transition in Renew

Table 1 provides an overview of the different steps of Renew’s internal algorithm
which fires transitions (compare with [6, Sec. 14.7]). We did not change this
algorithm in any arc implementations presented in this paper. Before a transition
is fired, a valid binding has to be found in phase 0. During the actual firing, the
early executables are applied first. In phase 1 the early executables which mostly
represent the ingoing arcs and test arcs, need to lock the associated places. This
ensures that the tokens can not be taken by another transition firing. Then they
verify that they can still be applied, as concurrent changes to the net instance
state could have invalidated the found binding (phase 2). After this, the early
executables can finally be executed (phase 3). Then the locks are unlocked again
(phase 4) and the firing of the transition is already reported as successful, since
the firing can not be aborted anymore (phase 5). In the end, the late executables

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 159

0 Binding search (before firing)
1 Lock early executables
2 Verify possibility of applying early executables
3 Execute early executables
4 Unlock early executables
5 Report success
6 Execute late executables

Table 1. Order of steps when successfully firing a transition in Renew.

can be executed (phase 6). They mostly represent outgoing arcs and action
inscriptions.

If an exception is thrown while searching for a valid binding of a transition,
the corresponding search branch is discarded and the transition will never fire
that binding. Phase 0 from Table 1 is never left. If an early executable leads to
an exception in phase 2 or 3, the firing of the transition is aborted. In a case
where Java code is in an action inscription, on the other hand, it is not evaluated
in the binding search (phase 0), but in a late executable (phase 6) after a valid
binding was found. The firing can not be reverted and the exception has to be
thrown.

Early executables are designed to model actions that can be aborted and
reverted. They are executed first, so that as much error cases as possible lead to
a rollback. Late executables, on the other hand, model actions that can not be
reverted. Semantically these can not fail, but they can in practice, if they are not
modeled safely, e.g., if an action inscription throws exceptions. Safe modeling is
very complex and almost never achieved in practice. Thus, it might be tempting
to move as much unsafe actions as possible into the early executables, so that the
classic reference net semantics are never violated. However, a transition firing
attempt should only be reverted, if the current binding can not be found again.
This is possible, if the state of the net instance has evolved after the binding
search. An example is a token that is consumed by another thread between the
binding search and the current attempt to fire. In this case, the early executable
representing the input arc will fail and cause a rollback. On the other hand, if
there would be a case, where the current binding can be found again, the Renew
simulator would attempt to fire it in an infinite loop. Since in the existing Renew
implementation without any new arc implementations all changes of this firing
are reverted, this firing itself can not change the net instance’s state.

For a modeler who wants to use catch arcs, only action inscriptions are of
concern. The exceptions thrown by all other inscribed Java code are already
dealt with in the binding search. Renew does not fire bindings that lead to
exceptions in the binding search.

160 PNSE’13 – Petri Nets and Software Engineering

4 Resetting a Transition Firing after an Exception

It is possible to avoid infinite loops when resetting a transition. One way to
achieve this, is to have a special token which is consumed if an exception occurs.
If only one such token existed, this binding can not be found again until another
transition returns it.

We created an experimental implementation of this exception input arc,
called the try arc. The existence of a try arc does not change the behavior
of the classic late executables after an exception has been thrown. This includes
that no tokens are put out. Thereafter, the early executables are rolled back, as
if the exception had been thrown inside one of them. The try arc does noth-
ing when executed normally, but consumes the bound token when rolled back.
This behavior is the reverse of the normal input arcs. With this extension of the
simulator the late executables behave like the early executables, because we have
implemented a way to revert them.

Unfortunately, the possibilities of the try arc have their limits. Action in-
scriptions with side effects are not handled correctly. In this case, the transition
would look reverted, but the side effects could still have occurred.

Fig. 5. Net in Fig. 2 extended by a try arc.

Fig. 6. One possible executed instance of the net in Fig. 5.

Fig. 5 extends the net in Fig. 2 by a try arc. Fig. 6 shows one of two possible
executions of this net. In this execution the transition String to Integer con-
version was first fired with the string 6 as input. Then foo was tried and the
exception has been put out by the catch arc. The corresponding exception class
token has been consumed and the rest of the transition firing has been reverted.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 161

For this reason, the foo token is put back. The other possible execution of this
net is that foo is tried first. In that case, the exception class is removed before
6 can be tried.

Fig. 7. Net without try arcs behaviorally equivalent to Fig. 5.

In Fig. 7 you can see that the behavior of try arcs can be emulated in the
classic Java reference net formalism, extended only by catch arcs. In contrast
to the net in Fig. 4, which was used to illustrate the semantics of catch arcs,
we do not need any special, difficult to implement wrapper functionality in the
Java inscriptions. In fact, this net is executable. First, one of the two strings
is taken from input by store backup and passed on as str. The same string
is put to the place below as strBak. The places in the triangle between store
backup, inner String to Integer conversion and no ex can only hold one
token in total at any time. The transition inner String to Integer conversion
takes the string, attempts to convert it to an integer and returns the integer to
output, or the thrown exception to exception. On the inside, it either returns
a generic token to the white place in the lower left, or the catch arc returns
another Java reference of the exception to the lower red place. Depending on
this outcome, either no ex fires, consumes the just processed input string as
strBak and returns the generic token to the place in the triangle, where it was
originally, or ex handling fires and puts the input string back to input. In
this process, it consumes the class token in try class. If this token is no longer
present, store backup can not fire, because of the test arc to try class. This
models the inability of String to Integer conversion in Fig. 5 to fire, if the
try arc can not bind to an exception class token. Like no ex, ex handling also
puts back the generic token. This would enable store backup to fire again, if
try class contained another exception class token.

The model in Fig. 7 is only behaviorally equivalent to Fig. 5, if there are only
Java references to one exception class in try class. It is more flexible, if we want

162 PNSE’13 – Petri Nets and Software Engineering

to use more than one class of exceptions as possible token for the try arc. In our
current experimental try arc implementation, the try arc is first bound to an
exception class token, before the transition starts firing (in phase 0 of Table 1).
In every firing the try arc is bound to only one exception class. Thus, the try arc
may not reset the transition, even if the class of the thrown exception exists as a
token. One scenario, where this problem occurs, is a modification of Fig. 5 with
a number of exception classes in try class. In Fig. 7, on the other hand, the
ex handling transition can try every class in try class. The Renew simulator
would need to be changed considerably to implement this behavior for try arcs.

5 Handling Exceptions

In this chapter, we compare using the catch arc alone and along with a try arc
to model exception handling. We show that the try arc does not provide a real
advantage in this situation.

Fig. 8. Net in Fig. 7 modified to print out error.

Fig. 7 illustrates the behavior of the try arcs in Fig. 5. The fact that it is very
complex, suggests that try arcs simplify error handling greatly. However, when
handling the exception, one would normally want to ensure that it does not occur
again. For this purpose, the involved tokens usually need to be identified and
separated from the rest for special treatment. An example would be to generate
feedback to calling code or the user. In Fig. 7 there is already a transition for
exception handling present: ex handling. In order to generate feedback, instead
of resetting the firing, we need to remove the output arc from ex handling to
input, so no token is put back. We also need to change the arcs from try class
to prevent the class token from being consumed. The Java code generating the
output can be inscribed to ex handling. This is demonstrated in Fig. 8.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 163

If we change the net in Fig. 5 to give feedback, we have more work to do. A
possible implementation is presented in Fig. 9, which is very similar to Fig. 8.
In both models it is important to reconstruct which input string has induced an
exception. For this purpose, the capacity of the input place is restricted to 1. In
Fig. 8 there can only be one token in the triangle between store backup, inner
String to Integer conversion and no ex. In Fig. 9 there can only be one token
in the input place and the place below. In contrast to Fig. 8, there is no need to
store another Java reference of the input token, because this token is returned if
an exception occurs. For this reason, a transition such as no ex, which is fired
if no exception has occurred, is also not needed. Another difference is that the
exception class token in try class gets consumed in the event of an exception
and has to be replaced by ex handling when the exception is handled.

Fig. 9. Net with try arc modified to print out error (behaviorally equivalent to Fig. 8).

6 Catch Arc with an Expression

In order to further the expressiveness and thus simplify the scenarios, in which
we would like to retain the tokens involved in an erroneous transition firing, we
extended the catch arc by an expression whose result is produced alongside the
exception. Similar to input arc inscriptions, this expression has to be fully bound
before firing, and can thus not be dependent on any action inscriptions.

Fig. 10 emulates the try arc from Fig. 5. Unlike the model in Fig. 7, there
is no need to limit the capacity of the input place of the transition, which can
throw an exception. The involved input token can be reconstructed from the
result of the catch arc’s expression, which gets returned to exception as tuple
alongside the exception.

164 PNSE’13 – Petri Nets and Software Engineering

Fig. 10. Net without try arcs, but with a catch arc with an expression, behaviorally
equivalent to Fig. 5 and 7.

Fig. 11. Net in Fig. 10 modified to print out error (behaviorally equivalent to Fig. 8).

Fig. 12. Instance of the net in Fig. 11 after firing.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 165

Fig. 11 prints out an error message, exactly like the nets in Fig. 8 and 9.
The token put out by the catch arc can be seen in Fig. 12, which shows an
executed instance of the former net after firing the transition String to Integer
conversion twice. It is a 2-tuple that consists of the thrown exception and the
result of the expression.

ex handling is a transition that fires after String to Integer conversion
in the event of an exception. Because the transition ex handling takes in the
string together with the exception, it behaves as if it had the same preset as
String to Integer conversion and took the same token. If one wanted to fire
a exception handling transition with all the same input token as the original
transition, one could accompany the catch arc with a tuple of all input arc
inscriptions.

7 Uncaught Exceptions and Exception Propagation

In classic programming languages exceptions propagate outward and escape all
code sections, until they are finally caught and handled. If they are not handled
in program code, the program crashes on the occurrence of an exception. In Re-
new’s classic Java reference net formalism exceptions are logged, but otherwise
ignored. All ingoing tokens are consumed and no tokens are written out. Since
dependency is explicitly modeled in reference nets, it is reasonable to allow those
parts of the simulation that are not dependent on the part where the exception
occurred, to continue to run.

However, a concept of propagating exceptions upwards through a net hierar-
chy, can be realised. One step of this propagation can be achieved by a transition
that binds exception tokens to an uplink, so another net instance which knows
the current instance, can extract the exception. Binding to a downlink would
also be possible, but then the exception handling net instance must be known to
the current instance. (This would more accurately be described as propagating
downwards.)

It is also possible to have a specific uplink channel to pass on exceptions
that are not caught locally (for example :catch(e)). This can be done through
a normal net channel that gets bound to all these unhandled exceptions. To
achieve this, there can be one place in every net for unhandled exceptions and
one transition that binds every token of this place to the uplink of the channel.
All transitions without a catch arc receive one to this place. The only exception
from this rule is at a transition with an uplink. The exceptions thrown by a firing
that involves this transition, can be caught at the transition with the downlink.
The place and the transition for unhandled exceptions could be hidden to the
modeler, so they are only accessible through the channel. The catch arcs could
be created automatically, where there does not already exist one in the model.
If the modeler would like to manually mark an exception as unhandled (maybe
because the class is not expected), she can add an uplink transition to the channel
herself.

166 PNSE’13 – Petri Nets and Software Engineering

8 Related Work
There are many attempts to model the behavior of exceptions with various mod-
eling languages. This kind of exception modeling includes concepts for express-
ing the behavior of exceptions that occur in systems. We call these exceptions
model intrinsic. Examples are the exception handler in current versions of UML
(Unified Modeling Language, current version 2.4.1, see [9, Sec. 12.3.23]) and the
attempts to include exception handling to (hierarchical) Petri net formalisms
(cf. [3] and [4]). While the above mentioned examples model the behavior of
exceptions or errors, we strive for the treatment of exceptions that occur during
execution of these models. We call these (execution) extrinsic exceptions.

Jannach and Gut [5] discuss the possibilities of exception / error handling in
current modeling languages in detail and also point out the difference between
modeled exception behavior (intrinsic) and exception handling during model
execution (extrinsic). On the side of exception handling of executable models
they discuss (among others) the possibilities in workflow execution (e.g., offered
by YAWL, compare also with [1]) and WS-BPEL. The focus lies in both cases
on the cancellation of processes / workflows and the compensation of undesired
results. Cancellation of processes (or process regions) as by the cancel arc in
YAWL is tightly related to clear arcs (reset arcs) in Petri net formalisms (i.e.
Reset Nets). However, the cancellation / exception trigger comes from within
the model – a cancel task has to be modeled explicitly and triggered. In our
approach we tighten the integration of the executed model and the underlying
expression language.

9 Conclusion and Future Works
We presented an approach and a first implementation of the exception handling
as an extension of the Java reference net formalism and the Renew simulation
engine. The catch arc behavior can be expressed by a combination of net re-
finement and code wrapper implementation. Our first approach which has been
implemented within Renew, constitutes already a powerful and also conserva-
tive extension to the execution semantics of Java reference nets. The try arc was
discussed as a possible further extension. It was introduced and motivated by
the idea of resetting a erroneous transition firing. We have shown that it does
not add much to the expressiveness of the formalism in the context of exception
handling. We do not plan to incorporate it in our practical implementation. The
possibility of adding an expression to a catch arc whose result is returned along-
side the exception, is a conservative extension of the original catch arc concept.
In difference to the try arc, it greatly adds to the expressive power. It can be used
to provide relevant details of the binding, in which a firing of a transition failed
and allows for concise net models for detailed exception handling. This concept
can also effectively emulate the resetting of an erroneous transition firing and
thus, supersedes the try arc concept. Especially the questions of exception prop-
agation in reference net systems and the adequate compensation modeling is,
however, not satisfyingly resolved and needs to be further investigated.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 167

References

1. Michael James Adams. Facilitating dynamic flexibility and exception handling for
workflows. PhD thesis, Queensland University of Technology, 2007.

2. Søren Christensen and Niels Damgaard Hansen. Coloured petri nets extended with
place capacities, test arcs and inhibitor arcs. In Marco Ajmone Marsan, editor,
Application and Theory of Petri Nets, volume 691 of Lecture Notes in Computer
Science, pages 186–205. Springer, 1993.

3. W.L.A. de Oliveira, N. Marranghello, and F. Damiani. Exception handling with
petri net for digital systems. In Integrated Circuits and Systems Design, 2002.
Proceedings. 15th Symposium on, pages 229–234, 2002.

4. M. Doligalski and M. Adamski. Exceptions handling in hierarchical petri net based
specification for logic controllers. In Systems Engineering (ICSEng), 2011 21st
International Conference on, pages 459–460, 2011.

5. Dietmar Jannach and Alexander Gut. Exception handling in web service processes.
In Roland Kaschek and Lois M. L. Delcambre, editors, The Evolution of Concep-
tual Modeling, volume 6520 of Lecture Notes in Computer Science, pages 225–253.
Springer, 2008.

6. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
7. Olaf Kummer, Frank Wienberg, Michael Duvigneau, and Lawrence Cabac. Renew

– the Reference Net Workshop. Available at: http://www.renew.de/, March 2012.
Release 2.3.

8. Wolfgang Reisig. Elements of Distributed Algorithms: Modeling and Analysis with
Petri Nets. Springer-Verlag New York, October 1997.

9. UML. Unified modeling language: Superstructure. http://www.omg.org/spec/UML/
2.4.1/Superstructure/PDF, August 2011.

168 PNSE’13 – Petri Nets and Software Engineering

A System Performance in Presence of Faults
Modeling Framework Using AADL and GSPNs

Belhassen MAZIGH1 and Kais BEN FADHEL1

Department of Computer Science, Faculty of Science of Monastir,
Avenue of the environment, 5019, Monastir - Tunisia

belhassen.mazigh@gmail.com

Abstract. The increasing complexity of new-generation systems which
take into account interactions between hardware and software compo-
nents, particularly the fault-tolerant systems, raises major preoccupa-
tions in various critical application domains.These preoccupations con-
cern principally the modeling and analysis requirements of these sys-
tems.Thus, designers are interested in the verification of critical propri-
eties and particularly the Performance and Dependability analysis.
In this paper, we present an approach for modeling and analyzing sys-
tems with hardware and software components in the presence of faults: an
approach based on Architecture Analysis and Design Language (AADL)
and Generalized Stochastic Petri Nets (GSPN). This approach starts
with the description of the system architecture in AADL. This descrip-
tion is enhanced by the use of two annexes, the existing Error Model
Annex and the Activity Model Annex (proposed Annex). By applying
existing transformation rules of GSPN models, we build two models:
GSPNs Dependability and Performance models. Finally, we apply our
composition algorithm, to obtain a global GSPN model allowing to an-
alyze Dependability and Performance measurements.

1 Introduction

The quantity and complexity of systems continues to rise and generally the cost
of manufacturing these systems is very high. To this end, many modeling and
analysis approaches are more and more used in industry with the aim to control
this complexity since the design phase. These approaches must be accompanied
by languages and tools. An explicit approach presents the building of a GSPN
of a complex system from the GSPNs of its components, taking into account the
interactions between the components, is presented in [1]. These approaches are
referred to as block modeling approach and incremental approach respectively.
AADL is among the languages having a growing interest in industry-critical
systems. This language has been standardized by the "International Society of
Automotive Engineers" (SAE) in 2004 [2, 3] , to facilitate the design and analy-
sis of complex systems, critical, real-time in areas such as avionics, automotive
and aerospace [4]. It provides a standardized graphical and textual notation to
describe the hardware and software architectures. It is designed to be extensible

in order to adapt and analyze architectures execution that the core language
does not fully support. The extensions may take the form of new properties
and notations specific to analysis that may be associated with the architectural
description in the form of annexes. Among these approaches, the one proposed
in [5] allows specialists in AADL to obtain Dependability measures, based on a
formal approach. This approach aims to control the construction and validation
of Dependability models in the form of GSPN. But in reality the designers want
to have a final model of the system that allows them to analyze Dependability
and Performance which take into account functional and dysfunctional aspects
of the system. In this paper we propose an extension to this approach so that the
final model of the system allows us to analyze the attributes of Dependability
and Performance measures. The outline of the paper is as follows. In Section 2,
we define the AADL concepts. Then we present our approach in Section 3 and
its application on a simple example in Section 4. We conclude in section 5.

2 AADL concepts

The AADL core language is used to analyze the impact of different architectural
choices on the properties of the system [6] and [7]. An architecture specification in
AADL describes how components are combined into subsystems and how they
interact. Architectures are described hierarchically. Components are the basic
bricks of AADL architectures. They are grouped into three categories: 1) soft-
ware (process, subprogram, data, and thread), 2) hardware (processor, memory,
device, bus) and 3) composite (system). AADL components may be composed of
sub-components and interconnected through features such as ports. These fea-
tures specify how the components are interfaced with each other. Each AADL
system component has two levels of description: the component type and the
component implementation. The type describes how the environment sees that
component, i.e., its properties and features. Examples of features are in and out
port that represent access points to the component. One or more component
implementations may be associated with the same component type.
As mentioned in the introduction, AADL is designed to be extensible in order to
adapt and analyze architectures execution the core language that does not fully
support. The Error Model Annex is a standardized annex [3] that completes
description of the capabilities of the core language AADL, providing a textual
syntax with a precise semantics to be used to describe the characteristics of
Dependability related to AADL architectural models. AADL error models are
defined in libraries and can be associated with software and hardware compo-
nents as well the connection between them. When an error model is associated
with a component, it is possible to customize it by setting component-specific
values for the arrival rate or the probability of occurrence of error events and
error propagation declared in the error model.
In the same way as for AADL components, the error model has two levels of
description: the error model type and the error model implementation. The er-
ror model type declares a set of error states, error events and error propagation

170 PNSE’13 – Petri Nets and Software Engineering

circulating through the connections and links between architecture model. In
addition, the user can declare properties of type Guard to control the propaga-
tion. The error model implementation declares states transitions between states,
triggered by events and propagation declared in the error model type [8]. Note
that in and out features identify respectively incoming propagation and out-
going propagation. An out propagation occurs in an error model source with
property of occurrence specified by the user. The error model source sends the
propagation through all ports and connections of the component to which er-
ror model is associated. As a result, out propagation arrives at one or more
error models associated with receptor components. If an error model receiver,
declares in propagation with the same name as the out propagation received,
the in propagation can influence its behavior.

3 Modeling approach

Fig. 1. Proposed Approach

We can describe our method, presented in Figure 1, into five main steps:

1. The first step focuses on the modeling of the system architecture in AADL.

B. Mazigh et al.: System Performance in Presence of Faults 171

2. The second step concentrates on building an AADL Dependability Model
and a AADL Performance Model:
– Building Dependability model is done by the association of AADL Error

models to the components of AADL Architectural Model, see [5] for more
details.

– Building performance model is done by the association of our AADL
Activity models to the components of AADL Architectural Model. An
Activity Model is similar to the Error Model, this model works as an
Error Model, but the state change is performed by passing from a reliable
state to another with integration of performance metrics associated to
the properties that must be defined in AADL language. Syntactically it
is inspired by the standard Error Model. Activity models are devoted to
describe the components activities.

3. The third step is to build two GSPN models, of Dependability and Perfor-
mance, from two AADL models using the transformation rules presented in
[5].

4. The fourth step is dedicated to the application of our composition algorithm.
This algorithm receives as an input two GSPN models, a GSPN model of
Dependability and a GSPN model of Performance, each model is composed of
sub-networks of components and sub-networks of dependencies. We obtain a
global GSPN model which allows to analyze Dependability and Performance
measurements for hardware and software systems in the presence of faults.

5. The fifth step is dedicated to analyzing the global GSPN model to obtain
measures of Dependability and Performance. This last step is entirely based
on classical algorithms for processing GSPN models and it is not the subject
of this work, and therefore will not be detailed here.

The next section presents the application of our approach to a simple exam-
ple.

4 Application of our approach

To illustrate our approach, we use a simple system constituted by a processor PR
which executes a user process P. The processor allocation is made according to
the following policy: we define a quantum of time (e.g. q) for the processor PR. A
process P sends an allocation request for the processor PR. If the processor is free
then it accepts the request, the process pass to the execution state. The process
can pass into a blocking state (blocked) if it expects other resource (e.g. end of
an input output). If the execution time is smaller than the quantum then the
process completes its task and passes to termination state otherwise the processor
interrupt the execution of process, so that another process could be executed (the
processor is retained for the current process until the end of quantum). When the
process passes into the blocking state the processor can be allocated to another
process. The processor is not necessarily free. The process then moves to the
ready state. The ready state is the standby state of the processor. It is clear

172 PNSE’13 – Petri Nets and Software Engineering

that there is a structural dependence between the processor PR and process
P. Defects in materials could be propagated and influence behavior of software
associated with it.
We will first establish an AADL model of Dependability, with the corresponding
transformation steps into GSPN and we do the same thing to develop an AADL
Performance model. Finally, we apply our composition algorithm to obtain a
global Performance model in presence of software and hardware faults.

4.1 Construction of Dependability model

Fig. 2. Error Model of hardware component

We propose generic error models (without propagation) for the hardware
and software components (Figure 2 and 3) inspired by the works [8], [9], [10]
and [11]. These two models are respectively associated with the implementation
of the processor PR and the process P components. Because the fact that the
process P is running on the processor PR, the errors in the processor (hardware
faults) can affect the process executed as follows:

– If the fault is temporary, it can transmit errors in the process. The error sent
by the processor leads the process in state relating to the activation of fault
(state ’Detect_ERR’).

– If the fault is permanent, this failure has two consequences: stopping the
software components and synchronizing the restoration actions since the

B. Mazigh et al.: System Performance in Presence of Faults 173

relaunch of software components is conditioned by the end of the repair
of hardware component on which they were executed.

Fig. 3. Error Model of software component

Figure 4 shows only what is added to the error model associated with the pro-
cessor in order to describe the structural dependency after a recovery failure. The
error model type for processors, comp_hard, is completed with lines R1

O and R2
O

in order to include ’out’ error propagation declarations (’PR_Failed’,’PR_Ok’),
’PR_Failed’ causes the processes failures while ’PR_Ok’ is used to synchro-
nize the repair of the processor with the restart of the process. The error model
implementation, comp_hard.general, takes into account the sender side of the
recovery dependency, it declares one transition triggered by each of the two
newly introduced ’out’ propagation (see lines R11

O and R22
O of Figure 4). When

one of the ’out’ propagation occurs, the processor remains in the same state and
the propagation remains visible until the processor leaves this state. Figure 5
shows what is added to the error model associated with a process in order to
describe the structural dependency. The error model type, comp_soft, is com-

174 PNSE’13 – Petri Nets and Software Engineering

Fig. 4. Error Model for processor component

pleted with lines L0, L1and L2. Line L0 declares an additional state in which
the process is allowed to restart and Lines L1 and L2 declares ’in’ propagation.
The error model implementation, comp_soft.generale, takes into account the
recipient side of the structural dependency by declaring five transitions triggered
by the ’in’ propagation ’PR_Failed’ (see lines L1

1, L
2
1, L

3
1, L

4
1 and L5

1 of Figure
5) and leading the process from each state (other than ’Failed’) to the ’Failed’
state. The process is authorized to move from the ’Failed’ state to ’InRestart’
state only when it receives the ’PR_Ok’ propagation (see line L1

2 of Figure
5). Since the recovery procedure is now engaged by the ’InRestart’ state , the
AADL transition (Failed− [Restart]− > Error_Free) will be replaced by the
transition (Failed− [PR_Ok]− > InRestart, see line R).

Fig. 5. Error Model for process component

B. Mazigh et al.: System Performance in Presence of Faults 175

F
ig

.6
.
D
ep

en
da

bi
lit
y
G
SP

N
M
od

el

176 PNSE’13 – Petri Nets and Software Engineering

By applying transformation rules presented in [5], Figure 6 shows the GSPN
obtained when transforming the AADL model corresponding to the process P
linked to the processor PR. We note that places with dark circles are places with
capacity of one token.

4.2 Construction of Performances model

The following section presents the steps for constructing the AADL Performance
model with corresponding transformation steps. For more clarity, we model each
component (process P or processor PR) in the presence of internal events and ’in’
propagation and then we integrate the ’out’ propagation following the description
of the system. Figure 7 shows the activity model associated with the processor.
As for the error model, we associate the activity model, processor_PR.imp, to
the implementation of the component processor. The processor is initially free.
It will be occupied if it receives an allocation request, ’request’. It can go from
’Busy’ state to the ’Exp_termination’ state if the ’End_quantum’ event is
activated with a rate λ6h. Or it can pass to the ’Free’ state if it receives an ’in’
propagation ’FreePR’. From the ’Exp_termination’ state it can return to its
initial state with a rate λ7h.

Fig. 7. Activity Model for the processor component

The GSPN model of the processor PR (Figure 8) is obtained by applying the
transformation rules (incomplete model).

Figure 9 shows the Activity Model associated with the process P. Initially,
the process is in ’Ready’ state. It passes to ’Execution’ state when it receives
an ’in’ propagation ’Grant’ (it means that the processor starts its execution). It
can go from ’Execution’ state to a Ready state if it receives an ’in’ propagation

B. Mazigh et al.: System Performance in Presence of Faults 177

Fig. 8. GSPN model for the processor component

’FQ’ (it is temporarily suspended to allow the execution of another process). It
passes from the ’Execution’ state to the ’blocked’ state if the ’Even_R’ event
is activated with a rate λ11s. When the ’F_Even_R’ event occurs it passes to
’Ready’ state. It can go from the ’Execution’ state to a ’Ready’ state, if the
’End_T ’ event is activated with a rate λ10s.

Fig. 9. Activity Model for the process component

178 PNSE’13 – Petri Nets and Software Engineering

By applying the transformation rules we obtain the GSPN model of the
process P (figure 10, incomplete model).

Fig. 10. GSPN model for the process component

Figure 11 shows just what is added to the activity model associated with the
processor in order to describe the interaction between process P and the pro-
cessor PR. The activity model type for processor, processor_PR, is completed
with lines LO and L1 (see figure 11) in order to include ’out’ error propagation
declarations such as:

– Line LO declares an ’out’ propagation ’FQ’, which indicate the end of quan-
tum. Its name matches the name of the ’in’ propagation declared in the
activity model type, process_p (see figure 9).

– Line L1 declares an ’out’ propagation ’Grant’, which indicates that the pro-
cessor has given permission to move the process in ’Execution’ state. Its
name matches the name of the ’in’ propagation declared in the activity
model type, process_p (see figure 9).

The activity model implementation, processor_PR.imp, declares two transi-
tions (lines L′

O and L′
1) triggered by the newly introduced ’out’ propagation

’FQ’ and ’Grant’. When one of these two ’out’ propagation occurs, the pro-
cessor remains in the same state and the propagation remains visible until the
processor leaves this state.

Similarly, Figure 12 shows what is added to the activity model associated
with the process in order to describe the interaction between process P and
the processor PR. The activity model type for process, process_p, is completed
with lines SO and S1 (see figure 12) in order to include ’out’ error propagation
declarations such as :

– Line SO declares an ’out’ propagation ’request’, to indicate that the process
requires the processor. Its name matches the name of the ’in’ propagation
declared in the activity model type, processor_PR (see figure 7).

B. Mazigh et al.: System Performance in Presence of Faults 179

Fig. 11. Activity Model for processor component with interaction

– Line S1 declares an ’out’ propagation ’FreePR’. Its name matches the name
of the ’in’ propagation declared in the activity model type, processor_PR
(see figure 7).

The activity model implementation, process_p.general, declares three transi-
tions (lines S3, S4 and S5 of figure 12) triggered by the newly introduced ’out’
propagation ’request’ and ’FreePR’.

Fig. 12. Activity Model for process component with interaction

Figure 13 shows the GSPN model obtained by applying the transformation
rules.

180 PNSE’13 – Petri Nets and Software Engineering

F
ig

.1
3.

G
SP

N
M
od

el
of

P
er
fo
rm

an
ce

B. Mazigh et al.: System Performance in Presence of Faults 181

4.3 Application of composition algorithm

Now after the construction of the Performance and Dependability GSPN mod-
els, we apply our composition algorithm on these two models. Each model is
composed of components sub-nets and dependencies subnets. Each component
has a GSPN model of Dependability and a GSPN model of Performance. The
basic idea of this algorithm is to connect each component sub-net of Performance
with the corresponding component sub-net of Dependability. This algorithm is
defined to ensure that the obtained global GSPN model is correct by construction
(bounded, safe and no deadlock). The main steps of our composition algorithm
are the following:

– For each sub-network component of Performance, if the component has no
replicas, we add a bidirectional arc which connects the transitions of Perfor-
mance model component with the place that represents the initial state of
the corresponding Dependability model. This rule reflects that if the compo-
nent is in a state of Performance model, it can move to another state only if
there is no activation of a fault. Note that the number of tokens in a sub-net
component is always 1 because at a given time a component can be only in
one state. It is clear that if there is activation of a temporary fault, after
adding a bidirectional arc, the component remains in waiting until the reso-
lution of this fault since transitions in the Performance model are disabled.
We note that if there is a place in a Performance model where the activa-
tion of a temporary fault does not exist, for all transitions that represent
the output transitions of this place, the bidirectional arc is eliminated. In
our case if the processor PR in a free state, a temporary fault will never be
activated. Now if a permanent fault occurs, the component must regain its
initial state. The rule of the link consists in adding timed transitions, and
link with a bidirectional arc the initial place of Performance model with the
transition Restart of Dependability model.

– if the component has replicas, each replica has the same GSPN model of
Performance and Dependability. In first step, the addition of bidirectional
arcs is applied to each replica. Then immediate transitions are added to
represent the switching between the GSPN models.

By applying this algorithm on our models, we obtain Figure 14 which shows
the GSPNs models of processor PR and Figure 15 which shows the GSPN models
of the process P. The two models constitute the global model of the studied
system.

182 PNSE’13 – Petri Nets and Software Engineering

F
ig

.1
4.

T
he

fir
st

pa
rt

of
th
e
G
lo
ba

lG
SP

N
m
od

el
:p

ro
ce
ss
or

m
od

el

B. Mazigh et al.: System Performance in Presence of Faults 183

F
ig

.1
5.

T
he

se
co
nd

pa
rt

of
th
e
G
lo
ba

lG
SP

N
m
od

el
:p

ro
ce
ss

m
od

el

184 PNSE’13 – Petri Nets and Software Engineering

5 Conclusion

In this paper, we have presented an approach based on AADL and Generalized
Stochastic Petri Nets for modeling and analyzing Performance and Dependability
of systems in the presence of faults. This approach consists of several steps. After
modeling the system architecture in AADL, two AADL models are obtained,
Dependability and Performance models. They are transformed in two GSPN
models by applying transformation rules presented in [5]. Finally, by applying
our algorithm we build the global model related to the studied system. Our
composition algorithm was implemented in Java language. From Performance
and Dependability models of hardware and software components, our algorithm
builds a global GSPN model. The obtained GSPN model is a file type PNML
exchange format which can be analyzed by tools that support this format such
as Tina toolbox [12]. In [13] we applied this approach on the ABS anti-lock
complex system.

References

1. K. Kanoun, M. Borrel, Fault-tolerant system Dependability: Explicit model-
ing of hardware and software component-interactions, IEEE Transactions on
Reliability, 49, (2000).

2. SAE-AS5506. Architecture Analysis and Design Language, SAE, (2004).
3. SAE-AS5506/1, Architecture Analysis and Design Language Annex Volume 1.

SAE, (2006).
4. Ana Elena Rugina, Karama Kanoun, Mohamed Kaaniche, System Dependabil-

ity modeling using AADL langage, 15eme Congres de Maitrise des Risques et
de Surete de Fonctionnement, Lille, (2006).

5. Ana-Elena Rugina, Dependability Modeling and Evaluation: From AADL
to Stochastic Petri nets, PhD.D. thesis, Institut National Polytechnique de
Toulouse, France, (2007).

6. Thomas Vergnaud. Modelisation des Systemes Temps reel Repartis Embarques
pour la Generation Automatique d Application Formellement Verifiees. PhD
thesis, Ecole Nationale Superieure des Telecommunications, (2006).

7. P. Feiler, B. Lewis, and S. Vestal. The SAE Architecture Analysis & Design
Language (AADL) A Standard for Engineering Performance Critical Systems.
In Proceedings of the 2006 IEEE Conference on Computer Aided Control Sys-
tems Design, (2006).

8. Rogerio de Lemos, Cristina Gacek, Alexander B. Romanovsky, Architecting
Dependable Systems IV, Lecture Notes in Computer Science 4615, Springer,
(2007).

9. Jean-Claude Laprie, Dependable Computing: Concepts, Limits, Challenges,
Invited paper to FTCS-25, the 25th IEEE International Symposium on Fault-
Tolerant Computing,Pasadena, California, USA, June 27-30, Special Issue,
(1995).

10. M. Borrel, Interactions entre composants materiel et logiciel de systemes tol-
erant aux fautes - Caracterisation - Formalisation - Modelisation - Application
a la surete de fonctionnement du CAUTRA, LAAS-CNRS, These de doctorat,
Toulouse, France, (1996).

B. Mazigh et al.: System Performance in Presence of Faults 185

11. A. Bondavalli, S. Chiaradonna, F. D. Giandomenico, J. Xu, Fault-tolerant
system Dependability: Explicit modeling of hardware and software component-
interactions, Journal of Systems Architecture, 49, (2002).

12. B. Berthomieu, P.-O. Ribet, F. Vernadat, The tool TINA – Construction of Ab-
stract State Spaces for Petri Nets and Time Petri Nets, International Journal
of Production Research, Vol. 42, No 14,(2004).

13. Kais Ben Fadhel, une approche de modelisation et d’analyse des performances
et de la surete de fonctionnement : Transformation d’une specification AADL
en GSPN, Master de recherche, faculte des sciences de Monastir, Tunisie,
(2012).

186 PNSE’13 – Petri Nets and Software Engineering

Coloured Petri Nets Refinements

C. Choppy, L. Petrucci, and A. Sanogo

LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France

{Christine.Choppy, Laure.Petrucci, Alfred.Sanogo}@lipn.univ-paris13.fr

Abstract. Coloured Petri nets allow for modelling complex concurrent
systems, but the specification of such systems remains a challenging task.
Two approaches are generally used to lessen these difficulties: decompo-
sition and refinement.
Charles Lakos proposed three kinds of refinements for coloured Petri
nets: type refinement, subnet refinement, and node (place or transition)
refinement. This paper proposes new rules widening the scope of both
type and transition refinements.

1 Introduction

Coloured Petri nets are a specification language which presents the advan-
tages of both a graphical description, giving an easy understanding of the model,
and a formal semantics allowing for formal analysis techniques. However, as is
the case for many specification languages, the specification of a system remains
a difficult task. A way to alleviate these difficulties consists in using refinement
techniques.

First, a rather simple model of the system is built, at a high level of abstrac-
tion, with few details. This abstract model constitutes a general description of
the system. An incremental process of successive refinements is then applied,
adding new details in a stepwise manner. The model is thus enhanced until all
the expected behaviour and properties are taken into account. At each step, the
abstract model is replaced by a refined one.

For defining refinements, the following questions should be addressed:

– which relation should exist between the abstract and the refined models?
– what are the necessary conditions on the coloured Petri net models for this

relation to hold?
– which transformations of the abstract net satisfy these refinement condi-

tions?

Since a model is characterised by its observed behaviour, the comparison
between abstract and refined model will rely on it. Several notions of equiva-
lence and order have been proposed in the literature. In particular, Lakos and
Lewis [6, 8, 5, 7] propose that “a model R is a refinement of a model A if all
behaviour in R has a corresponding behaviour in A” (thus a refinement, while it
may introduce further details, cannot introduce behaviours that would be new

to the abstract model; this is useful to be able to explore the state space in a
modular and still meaningful way). They express this relation between coloured
Petri nets as a system morphism (behavioural morphism) from the refined model
to the abstract one. Three kinds of refinements were proposed, and the system
morphisms defined accordingly: type refinement, subnet refinement and node
(place or transition) refinement. Transformation rules on the net structure, the
colours and firing modes, that respect these morphisms, complete their work by
providing practical refinement mechanisms.

This paper extends these coloured Petri nets refinements, and more specif-
ically the type and transition refinements. Type refinement includes two con-
straints: the subtype relation defined by Liskov and Wing [9] as well as Lakos’
refinement condition. Four operations on types are now permitted: addition of a
component in a tuple, constraining a component value, addition and modifica-
tion of functions. The conditions for these operations to satisfy the refinement
constraints are checked. For node refinement, a new refinement rule satisfying
Lakos’s constraints is introduced: alternate transitions.

The paper is organised as follows. In Section 2 definitions of coloured Petri
nets and system morphisms are recalled. Then, Section 3 recalls the refinements
defined by Lakos and Section 4 the subtyping relation of Liskov and Wing. Our
new refinement rules are then defined and proven correct in Sections 5 and 6.
They are implemented in a tool for Petri net design, described in Section 7.

2 Coloured Petri Nets and Morphisms

In this section, we recall the necessary definitions and notations from [6].

2.1 Coloured Petri Nets

For a type universe Σ, we denote the set of functions from one type of Σ
to another by ΦΣ = {X → Y | X,Y ∈ Σ} and by µX = {X → N} the set of
multisets over a type X ∈ Σ.

Definition 1. A coloured Petri net is a tuple N = 〈P, T,A,C,E,M,Y,M0〉
where:

1. P is a set of places;
2. T is a set of transitions such that P ∩ T = ∅;
3. A is a set of arcs such that A ⊆ P × T ∪ T × P ;
4. C is a colour function which associates a type with each place and transition:

C : P ∪ T → Σ;
5. E is a function associating an expression with each arc: E : A → ΦΣ with

E(p, t), E(t, p) : C(t)→ µC(p);
6. M is the set of markings: M = µ{(p, c) | p ∈ P, c ∈ C(p)};
7. Y is the set of steps: Y = µ{(t, c) | t ∈ T, c ∈ C(t)}
8. M0 ∈M is the initial marking.

188 PNSE’13 – Petri Nets and Software Engineering

For a node x ∈ P ∪ T , we denote by

– •x the preset of x, i.e. •x = {y ∈ P ∪ T |(y, x) ∈ A};
– x• the postset of x, i.e. x• = {y ∈ P ∪ T |(x, y) ∈ A}.

In the following, E− denotes the expressions of arcs from places to transitions
and E+ from transitions to places. The firing rule of a coloured Petri net is now
defined.

Definition 2. Let N be a coloured Petri net. A step Y ∈ Y is firable from a
marking M ∈M, denoted M [Y 〉 iff M ≥ E−(Y).

In order to replace a node of a Petri net by a subnet during the refinement
process, the connections between these and their environment must be consid-
ered. Therefore, we now define the border nodes on each side, adapted from [6].

Definition 3. Let N be a Petri net, and N ′ a subnet of N .

1. The input border of N ′ is inpbdr(N ′) = {x ∈ P ′∪T ′|∃y ∈ (P∪T)\(P ′∪T ′) :
y ∈ •x};

2. The output border ofN ′ is outbdr(N ′) = {x ∈ P ′∪T ′|∃y ∈ (P∪T)\(P ′∪T ′) :
y ∈ x•};

3. The border of N ′ is bdr(N ′) = inpbdr(N ′) ∪ outbdr(N ′);
4. The set of input environment nodes of N ′ is inpenv(N ′) = {y ∈ (P ∪ T) \

(P ′ ∪ T ′)|∃x ∈ P ′ ∪ T ′ : y ∈ •x};
5. The set of output environment nodes of N ′ is outenv(N ′) = {y ∈ (P ∪ T) \

(P ′ ∪ T ′)|∃x ∈ P ′ ∪ T ′ : y ∈ x•};
6. The set of environment nodes of N ′ is env(N ′) = inpenv(N ′)∪ outenv(N ′).

Example: Let us consider the net in Figure 1, with the subnet in the large circle.
Its border sets are:

– inpbdr(N ′) = {inp1, inp2};
– outbdr(N ′) = {out1, out2};
– bdr(N ′) = {inp1, inp2, out1, out2};
– inpenv(N ′) = {te1, te2};
– outenv(N ′) = {ts1, ts2};
– env(N ′) = {te1, te2, ts1, ts2}.

2.2 System Morphisms

System morphisms were defined in [6] in order to capture behaviour com-
patibility between nets. In such a scheme, firing several transitions of Nr can
correspond to the firing of a single transition in Na. A step is then said to be
complete if all border transitions of Nr \ Na, i.e. the subset that remains after
Na has been removed from Nr, are fired with the same firing mode.

Definition 4. Let φ : Nr → Na. φ is a system (behavioural) morphism if:

C. Choppy, L. Petrucci and A. Sanogo: Coloured Petri Nets Refinements 189

te1

inp1

accept1

accept2

inp2

te2

buf

offer1

offer2

out1

out2

ts1

ts2

c

c

c

c

c

c

c

c

Fig. 1. Example of border nodes

1. φ is surjective on Pa, Ta, Aa;
2. φ is linear and total on the set of markings Mr and the set of steps Yr;
3. ∀Mr ∈ [M0〉r, ∀Yr ∈ Yr: if Yr is complete, can be decomposed into Y1, Y2 ...

Yn, and is realisable from marking Mr, then φ(Yr) can be decomposed into
φ(Y1), φ(Y2) ...φ(Yn), and is realisable from marking φ(Mr).

4. ∀Mr ∈ [M0〉r,∀Yr ∈ Yr : Yr is complete ⇒ φ(Mr + E+
r (Yr) − E−r (Yr)) =

φ(Mr) + φ(E+
r)(φ(Yr))− φ(E−r)(φ(Yr)).

In Definition 4, (3) indicates that when a step in Nr is decomposable, the
corresponding step can be obtained by projection on Na, while (4) states that
only the effect of a step can be projected as well.

Definition 5. Let φ : Nr → Na be a system morphism. A step Yr in Nr is said
to be complete if ∀ta ∈ Ta : ∀tr ∈ bdr(Tr \ Ta) : Yr(tr) = φ(Yr)(ta)

3 Existing Coloured Petri Nets Refinements

Three types of coloured Petri nets refinements are defined by Lakos in [6]:
type refinement, node refinement, and subnet refinement.

3.1 Type Refinement

Type refinement is used when it is necessary to detail further the description
of the information carried by tokens, and the transitions’ firing modes. Refine-

190 PNSE’13 – Petri Nets and Software Engineering

ment then consists in replacing an abstract token type by another one, more
detailed, called the refined type. The net structure remains unchanged. The
type modification addressed by Lakos is the addition of a component.

3.2 Subnet Refinement

Subnet refinement consists in adding new elements (places, transitions and
arcs) to the net.

[6] also considers extending type domains for places and transitions in the
abstract net, as a subnet refinement.

3.3 Node Refinement

Node refinement is used when the modeller wishes to give additional informa-
tion about one of the net elements (place or transition) by expliciting it further.
It can thus be a place refinement if details concern a place (superplace) or tran-
sition refinement if a transition is concerned (supertransition). Lakos defined
canonical refinements for both of these cases.

In its canonical form, a place refinement replaces a place by a place-bordered
subnet, whereas a transition refinement replaces a transition by a transition-
bordered subnet.

4 The Sub-typing Relation

A subtype relation was defined in [9] by Barbara Liskov and Jeannette Wing
so that the supertype properties should be preserved by the subtype. The prop-
erties considered are invariants (that should be true for any object state) and
“historical” properties (true on a state sequence). The substitutability principle
states that a subtype object could substitute a supertype object.

Types are denoted by a triple 〈O, V,M〉 where O is a set of objects, V is a
set of values, and M is a set of methods.

The type specification should contain the following information:

– the description of the set of authorised values;
– for each method, the description of (i) its signature (number and types of

arguments, result type and exceptions list), (ii) its behaviour in terms of pre-
and post-conditions.

B. Liskov and J. M. Wing distinguish three kinds of methods, constructors that
return a new object of the type, observers that return values of other types, and
mutators that modify object values.

They also identify two kinds of subtyping relations:

– Extension subtype where the subtype extends the supertype by introducing
new methods and adding new states (or values).

C. Choppy, L. Petrucci and A. Sanogo: Coloured Petri Nets Refinements 191

– Constrained subtype where the subtype constrains the supertype with more
details on the methods or on the supertype values. When the supertype spec-
ification keeps open several possibilities, subtyping may reduce or eliminate
some of them.

Considering the two kinds of subtyping relations above, we consider here the
following operations on types:
– add a component to a record
– fix a component value
– add a method
– modify a method.

These operations on types appear in the subtype relations as follows.
1. Extension Subtype The operations on types considered are the introduction

of new methods and/or the addition of new states.
– New method introduction
• if the method introduced is a constructor, it should take into account
the invariant preservation;
• if the method introduced is an observer, this has no consequence on
the fact that the subtype preserves the supertype properties;
• if the method introduced is a mutator, this may have consequences on
the fact that the subtype should preserve the supertype properties. After
a mutator is invoked, the new object value should belong to the set of
authorized type values (according to invariants and historical properties).

– Addition of new object states (or adding a new variable in records): this
has no effect on properties preservation, and the abstraction function
forgets the added variable.

2. Constrained Subtype The operations considered here are constraints on the
object values and/or method modification with the aim to add more preci-
sion.
– Constraints on the object values (this may correspond to fixing a variable

value in a record). This may be achieved by defining the set of values for
the subtype objects as a subset of the supertype values and this preserves
the supertype properties.

– Method modification. This modification must comply with the subtyp-
ing rules defined in [11], that are a rule on the signature (same number
of arguments, contravariance of arguments, covariance of result and ex-
ception rule), and a rule on methods.

Let us recall that if σ is a subtype of τ and mτ is the τ method corresponding
to method mσ of σ :
– arguments contravariance states thatmτ andmσ should have the same num-

ber of arguments, and type αi of the ith argument inmτ should be a subtype
of type βi of the corresponding argument in mσ.

– either mτ and mσ return a result or do not return a result. If both meth-
ods return a result, the result covariance states that the type of the result
returned by mσ should be a subtype of the type of the result returned by
mτ .

192 PNSE’13 – Petri Nets and Software Engineering

5 New Rules for Type Refinement

An initial definition of type refinement was proposed by Lakos in [6] requiring
that all behaviours of the refined type correspond to an abstract behaviour.
This constraint will be referred to as LC in the following (Lakos’s constraint).
The only operation allowed by Lakos for type refinement is the addition of a
component in a tuple. Although this kind of refinement is often used, it is still
restrictive in practical cases which allow for more substantial type modifications
and introduction of new operators on existing types.

Therefore, in this section, we extend the relation between the refined type
and the abstract type by considering the sub-typing relation defined by Liskov
and Wing in [10], as well as type modifications.

5.1 Type modifications and behaviour preserving

Data types modified

Net behaviour may be
changed ⇒ check LC

[arc expressions or methods used

in arc expressions modified]

Fig. 2. Summary of arc expressions modifications impact

When performing type refinement, the net structure remains unchanged.
Hence the only elements which may change the net behaviour are the values
of arc expressions, and transitions guards.

Arc expressions Subsequently to a type refinement, an arc expression function
might be modified. Figure 2 summarises the impact of type modification on arc
expressions.

In the following, Er denotes arc expressions in the refined net, and Ea the
corresponding arc expression in the abstract net.

C. Choppy, L. Petrucci and A. Sanogo: Coloured Petri Nets Refinements 193

Unchanged arc expressions If the arc expression is the same, i.e. Er = Ea, the
following cases may occur:

1. adding a component to a tuple, setting the value of a component, adding a
method, are changes that respect LC;

2. modification of a method leads to the following situations:
– Ea does not refer to a method modified by the refinement. The values

returned by Er and Ea are thus the same, and the net behaviour remains
unchanged ;

– Ea refers to methods changed by the refinement. Hence, although the
expressions are the same, the values returned by Er and Ea may differ.
Therefore the behaviour can be different as well, and we need to check
that the effect of firing for each firing mode in the refined net is the same,
once abstracted, as for the corresponding firing in the abstract net.

Modified arc expressions When an arc expression is modified due to the refine-
ment process, values of Er and Ea may differ, whatever the refinement operation.
Hence, adding a component, setting the value of a component, adding a method
may all modify the net behaviour. The expression modification should be per-
formed so that it satisfies LC.

Guards associated with transitions Type refinement does not change the
expression associated with a guard. However, two cases may occur (see Fig. 3):

– the guard does not refer to a method modified by the type refinement: it has
thus no influence on the transition behaviour;

– the guard refers to methods modified by the type refinement. Hence the
values returned by the refined and abstract guard expressions may differ.
If the guard returns true in the refined net, it must also return true in the
abstract net.

5.2 Example: request for material purchase

The net in Fig. 4(a) models a request for material issued from e.g. a ser-
vice to the accountant. When material is needed, a request is issued. After the
accountants check the request, they order the articles.

In a first approach to modelling the problem, the net describing the overall
process can de considered. It uses a neutral colour, as shown in Fig. 4(a).

Then additional detail can be introduced, giving characteristics of the article
to order, i.e. its number, its designation (name), its origin, the quantity required
(qty) and the unitary price. The new type is thus obtained by adding compo-
nents, as shown in the declarations below and Fig. 4(b). In this case, no arc or
guard expression is changed, therefore LC is satisfied. It is also consistent with
the subtyping conditions.

In order to take into account calls for offers when the price is above a cer-
tain level, a method is added which returns the total amount of the purchase

194 PNSE’13 – Petri Nets and Software Engineering

Type modification

Check that a guard return-
ing true for a refined marking
also returns true for the cor-
responding abstract marking

[Type methods changed in guards]

Fig. 3. Summary of the impact of type refinement on guards and net behaviour

Service
DOT

Order Accepted
DOT

Buy Delivered
DOT

x x x x

(a) Request for material purchase modelled with the neutral type (DOT)

Service
ARTICLE

Order Accepted
ARTICLE

Buy Delivered
ARTICLE

y y y y

(b) Request for material purchase modelled with the ARTICLE type

Service

ARTICLE_1

Order Accepted

ARTICLE_1

Buy Delivered

ARTICLE_1
z z z z

(c) Request for material purchase modelled with the ARTICLE_1 type

Fig. 4. Type refinement of a net model of a request for material purchase

price ∗qty (see type ARTICLE_1) in the declarations and Fig. 4(c)). This mod-
ification adds an observer method which returns a value, and is consistent with
the subtyping relation. It is not used in arc or guard expressions, and therefore
LC holds.

Declarations:
DOT is a predefined neutral type
Colset ARTICLE = record number:NAT * origin:STRING *

name:STRING * price:Rat * qty:Rat;

Colset ARTICLE_1 = record number:NAT * origin:STRING *
name:STRING * price:Rat * qty:Rat;

fun amount = (#price ARTICLE_1 * #qty ARTICLE_1)::Rat;
var x : DOT;
var y : ARTICLE;

C. Choppy, L. Petrucci and A. Sanogo: Coloured Petri Nets Refinements 195

var z : ARTICLE_1;
var name : STRING;
var price : Rat;
var qty : Rat;

6 New Rules for Transition Refinement: Alternate
Transitions

The canonical transition refinement proposed by Lakos, firing an abstract
transition features firing a set of sequences of refined transitions, starting with
transitions from the input border and ending with transitions from the output
border of the refined part.

The underlying idea of the new refinement we propose here is to replace an
abstract transition by a subnet containing alternative transitions plus internal
places and transitions. Each of the alternative transitions is abstracted as the
original abstract transition. This refinement aims at splitting a transition de-
scribing a general behaviour into several exclusive cases which then handle in
more detail specific situations. For example, the net in Fig. 5(b) is a refinement
of the one in Fig. 5(a): transition ta is replaced by a subnet Nta . To improve
readability, ta has a single input place and a single output place (but this is not
a constraint in the general case).

Definition 6. Let Nta = (Pta , Tta , Ata , Cta , Eta ,Mta ,Yta ,Mta0
) be a subnet.

A morphism
φ : Nr = (Pr, Tr, Ar, Cr, Er,Mr,Yr,Mr0)
→ Na = (Pa, Ta, Aa, Ca, Ea,Ma,Ya,Ma0)

is a refinement with alternative transitions of ta ∈ Ta, where Nr is the refined
net obtained by replacing abstract transition ta by Nta) in the abstract net Na if:

1. ∀pr ∈ Pr \ Pta : ∀tr ∈ Tr \ Tta :
φ(pr) = pr ∧ φ(tr) = tr ∧
(pr, tr) ∈ Ar ⇒ ((pr, tr) ∈ Aa ∧ Er(pr, tr) = Ea(pr, tr)) ∧
(tr, pr) ∈ Ar ⇒ ((tr, pr) ∈ Aa ∧ Er(tr, pr) = Ea(tr, pr)). Apart from transi-
tion ta the abstract net remains unchanged.

2. Tta = Talternative ∪ Tother The transitions replacing ta are of two kinds: the
alternatives, and the others.

3. ∀t ∈ Talternative , •ta = •t \ Pta ∧ ∀p ∈ •ta : Ea(p, ta) = Er(p, t)
All input places of ta are also input places of all alternative transitions, and
are the only such abstract places.

4. ∀t ∈ Talternative , t•a = t• \ Pta ∧ ∀p ∈ t•a : Ea(ta, p) = Er(t, p)
All output places of ta are also output places of all alternative transitions,
and are the only such abstract places.

5. ∀M ∈Mr : ∀t′ ∈ Talternative :
φ(M)[ta > ∧ M [t′ > ⇒ ∀t ∈ Talternative \ {t′},¬(M [t >)
There is at most one alternative transition that is firable in a given mark-
ing (so that the token flow is preserved). This can be ensured by guards or
internal places of the Nta subnet.

196 PNSE’13 – Petri Nets and Software Engineering

pin T pout
E1 E2

(a) Abstract transition to be refined

pin

talter1

[guard1]

taltern

[guardn]

pout

E1
E
2

E
1 E2

(b) Refinement of transition ta

Fig. 5. Refinement with alternative transitions

6. ∀t ∈ Talternative ∧ ∀c ∈ Cr(t) : φ(1 ‘(t, c)) = 1 ‘(ta, φ(c))
Firing an alternative transition has the same effect as firing ta. Firing a step
in the refined net has the same effect as in the abstract net.

7. ∀p ∈ Pr : ∀c ∈ Cr(p) : φ(1 ‘(p, c)) = 1 ‘(p, c) if pr ∈ Pr \Pta , φ(1 ‘(p, c)) = ∅
otherwise.
The internal marking of Nta is ignored by the refinement.

Proposition 1. A refinement with alternative transitions φ :Nr → Na is a
systems morphism.

Proof.
According to definition 6(1) φ is surjective over Pa, Ta, Aa.

C. Choppy, L. Petrucci and A. Sanogo: Coloured Petri Nets Refinements 197

From (8), the abstract marking is obtained by ignoring the subnet marking.
Hence, φ is linear and total over Mr.
From (6), the firing of an alternative transition corresponds to firing the abstract
transition. Hence, φ is linear and total over Yr.
From (6) ∀Yr ∈ Yr, Yr is complete since only one of the alternative transitions
can be fired in a given marking.
From (3), (4) and (7), ∀Yr ∈ Yr,∀Mr ∈Mr si Mr ≥ E−r (Yr) then
φ(Mr) ≥ φ(E−r)(φ(Yr)) and
φ(Mr + E+

r (Yr)− E−r (Yr)) = φ(Mr) + φ(E+
r)(φ(Yr))− φ(E−r)(φ(Yr)).

φ(Mr+E+
r (Yr)−E−r (Yr)) is the effect after abstraction of the firing of the refined

step Yr from the refined markingMr and φ(Mr)+φ(E+
r)(φ(Yr))−φ(E−r)(φ(Yr))

the effect of the firing of the abstract step φ(Ya) from the abstract marking
φ(Ma).

Let us consider again the example of Sect. 5.2, with the abstract net in
Fig. 6(a). We now want to explicit the accounting rules: if the amount of the
purchase is greater than some limit, a call for offers must be issued (see Fig. 6(b)).

Transition Buy has been replaced by two alternative transitions: Direct pur-
chase et Ask offer.

Service

ARTICLE_1

Order Accepted

ARTICLE_1

Buy Delivered

ARTICLE_1
y y y y

(a) Example abstract net

Service

ARTICLE_1

Order Accepted

ARTICLE_1

Direct Purchase
article.amount() ≤ LIMIT

Ask offer

article.amount() > LIMIT

Delivered

ARTICLE_1
y y

article article

article article

(b) Refined net including the accounting rules

Fig. 6. Refinement of the net model for purchases

7 CPN Refiner: Tool Support for Modelling

We designed CPN Refiner so as to support the development of coloured Petri
nets following the approach proposed in [3] and the refinement techniques pro-
posed in this paper.

Let us recall that the Petri net development method presented in [3] proposes
the following steps: (i) analyse the text describing the problem and extract the

198 PNSE’13 – Petri Nets and Software Engineering

Fig. 7. Workshop example: state observers and transitions

events (yielding a state change), state observers, data types, and possibly the
modules, (ii) establish the system properties (in particular pre and postcondi-
tions of events), (iii) build the coloured Petri net, (iv) check the resulting net
properties (some are built-in, but others can be model checked), and update it
if necessary.

CPN Refiner supports both the coloured Petri net development given the
(typed) state observers and the events (together with their pre and postcondi-
tions), and its refinement. CPN Refiner supports node refinement and subnet
refinement according to the principles stated in this paper. Type refinement is
supported via a mere type modification.

Figure 7 shows the screen where the user entered the state observers and the
events for a workshop example, and the generated Petri net is shown in Figure 8.
A refined Petri net obtained through alternate transition refinement is shown in
Figure 9.

CPN Refiner is build using Java Swing (Eclipse), API JDOM to handle the
XML resulting file, library JGraph for the graphical presentation Petri nets.

8 Conclusion and Perspectives

Refinement is used to build a more detailed model (the refined model) from an
abstract model. Several refinement notions have been proposed for different aims
and various languages, and the work of Lakos deals with refinement for coloured
Petri nets. An important point he states is that a model R is a refinement of
a model A if for each behaviour of R there is a corresponding behaviour of A.
More specifically, he defines three kinds of refinement, type refinement, node

C. Choppy, L. Petrucci and A. Sanogo: Coloured Petri Nets Refinements 199

Fig. 8. Workshop example: coloured Petri net

Fig. 9. Workshop example: refined Petri net

200 PNSE’13 – Petri Nets and Software Engineering

refinement (for places or transitions), and subnet refinement, so as to insure this
behaviour correspondence.

In this paper, we extend the type refinement and the node refinement pro-
posed by Lakos. For type refinement, we propose two constraints. The subtype
relation as defined by Liskov and Wing that should exist between the refined and
the abstract type, and Lakos’ refinement relation between the refined and the
abstract model. We consider four operations on types, that are to add a compo-
nent, to fix a component value, to add a method, and to modify a method. We
studied the conditions that ensure that these operations guarantee both Liskov
and Wing subtyping relation and Lakos refinement relation. We also extend the
node refinement with a new rule for transitions refined by alternate transitions.
This new rule complies with Lakos’ refinement principle.

A model development method was proposed for coloured Petri nets in [3].
We developed a tool, CPN-Refiner, for model development of coloured Petri
nets following this method, and integrated in this tool the refinement techniques
presented here [12]. In the future, we plan to develop large case studies using our
method and our tool. We also plan to work on property refinement. Interface
with other tools like CPN Tools [1] or CosyVerif [4] is also subject of future
work, which should be eased since CPN Refiner uses PNML [2].

References

1. CPN Tools Homepage. http://cpntools.org/.
2. PNML reference site. http://pnml.org/.
3. C. Choppy, L. Petrucci, and G. Reggio. Designing coloured Petri net models: a

method. In Proc. Workshop on Practical Use of Coloured Petri Nets, 2007.
4. CosyVerif group, The. CosyVerif home page. http://cosyverif.org.
5. Charles Lakos. On the abstraction of coloured Petri nets. In 18th Int. Conference

on Application and Theory of Petri Nets ICATPN ’97, volume 1248 of Lecture
Notes in Computer Science, pages 42–61. Springer-Verlag, 1997.

6. Charles Lakos. Composing abstractions of coloured Petri nets. In Nielsen, M.
and Simpson, D., editors, 21st Int. Conf. on Application and Theory of Petri Nets
(ICATPN), volume 1825 of Lecture Notes in Computer Science, pages 323–345.
Springer-Verlag, 2000.

7. Charles Lakos and Glenn Lewis. A catalogue of incremental changes for coloured
Petri nets. Technical report, Department of Computer Science, University of Ade-
laide, 1999.

8. Glenn Lewis. Incremental specification and analysis in the context of coloured Petri
nets. PhD thesis, University of Hobart, Tasmania, 2002.

9. Barbara Liskov and Jeannette M. Wing. Family values: A semantic notion of
subtyping. Technical report, Pittsburgh, PA, USA, 1992.

10. Barbara Liskov and Jeannette M. Wing. A new definition of the subtype relation.
In Proceedings of the 7th European Conference on Object-Oriented Programming,
ECOOP ’93, pages 118–141, London, UK, 1993. Springer-Verlag.

11. Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping.
ACM Trans. on Programming Languages and Systems, 16(6):1811–1841, 1994.

12. Alfred Sanogo. Raffinement des réseaux de Petri colorés. PhD thesis, Université
Paris 13, 2012.

C. Choppy, L. Petrucci and A. Sanogo: Coloured Petri Nets Refinements 201

202 PNSE’13 – Petri Nets and Software Engineering

Petri Nets-Based Development of Dynamically
Reconfigurable Embedded Systems

Tomáš Richta, Vladimı́r Janoušek, Radek Koč́ı

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence

Božetěchova 2, 612 66 Brno, The Czech Republic
{irichta,janousek,koci}@fit.vutbr.cz

Abstract. This paper deals with the embedded systems construction
process based on the system specification modeled as a set of Petri nets.
Modeling of the system starts with Workflow Petri Nets specification
describing the main modules and processes within the system. Workflow
model is then transformed to the multilayered Reference Nets structure,
that is finally used for the code generation of the target system. The
main goal of our approach is to provide for dynamic reconfigurability
of the system deployment according to the changes within its specifica-
tion. Dynamic reconfigurability means the possibility of system changes
within its runtime. This is achieved by the decomposition of the whole
functionality of the system to small interpretable pieces of computation.
This approach also introduces several layers of reconfigurability using
different translation rules operating on each layer. The heart of the sys-
tem lies within the reference nets hosting platform called Petri Nets
Operating System (PNOS) that includes the Petri Nets Virtual Machine
(PNVM) that performs the very Reference Nets interpretation.

Keywords: workflow modeling, reference nets, embedded systems, model-
based software engineering, code generation, model transformation

1 Introduction

Control systems are important border technology lying between the physical
and information world. The whole control process is described as a control loop
that consists of reading data from sensors and triggers a number of actuators
installed within the physical environment controlled by the system. Most of the
control systems are constructed using a set of programmable logic controllers
with appropriate suitable software installation. At a higher level of abstraction,
programmable logic controller and its software installation could be seen as an
embedded system. In this paper the considered target platform for system in-
stallation is set of minimalistic and low energy consumption hardware devices,
e.g. Atmel microcontrollers equipped with wireless transmission modules that
are often used within Wireless Sensor Networks (WSN).

A control system implementation could be divided into the hardware and
software part. The hardware part starts with selection of the proper set of mod-
ules and its installation within the physical environment, including the sensors
and actuators attachment. When there are multiple controllers, the hardware
part must also take into account the communication among them. The software
part then follows with the programming and installation of each control unit
with appropriate application that controls hardware. The main purpose of this
paper is to describe the software part of this construction process with the focus
on dynamic reconfigurability of the resulting system using executable models
and model continuity approach. The reconfigurability is necessary for the ability
of the system to adapt itself to changes in environment and also to enable the
system maintainer with the possibility to change the system behavior without
the necessity of its complete destruction and reconstruction.

Because there is strong demand on proper coverage of the system complexity
at the beginning of the construction process, there is a need for suitable descrip-
tion tools that preserve the user requirements semantics. During the system
lifetime there are also strong demands on its dynamic reconfiguration according
to the new requirements and also according to the changes within the physical
environment. The dynamic system specification change and following reconfig-
uration requirements are not easy to satisfy. Within this paper we introduce
our solution of the described problem using the Workflow Petri Nets model
[1] and MULAN-like multilayered Reference Nets control system structure[5],
which is constructed according to the workflow model and then translated into
the executable form. The system prototype then runs within the target platform
simulator that deduces the requirements for the hardware part of system instal-
lation. The main characteristics of the system - its dynamic reconfigurability -
is based on the ability of nets to migrate among places as tokens, which was
inspired by [5]. The new or modified nets could be sent over another nets to its
target place to change the system behavior. Within our solution, the nets are
maintained by Petri Nets Operating System (PNOS) and interpreted using the
Petri Nets Virtual Machine (PNVM).

Next two sections describe used formalisms and the reconfigurable system
architecture. The following section describes the whole system development pro-
cess using a running example, and the last section contains the evaluation and
conclusion.

2 Formalisms and Tools

2.1 Workflow Management

Will van der Aalst defined the way to construct workflow models using Petri
Nets[1]. His work is also well formally defined and so the workflow models could
be used for the processes verification and validation purposes. The way of mod-
eling the system in this way is also similar to the BPMN workflow models, so it
could be easily used by the business process modeling experts. For that reason
we decided to use the YAWL notation[2] and Workflow Nets formalism[1] in

204 PNSE’13 – Petri Nets and Software Engineering

the beginning of the embedded control system construction process. There are
two main concepts from this theory that we use at the moment - basic transi-
tion categories (AND-split, AND-join, OR-split and OR-join) and the concept
of workflow subprocess.

2.2 Reference Nets

The second part of the system construction then consists of the transforma-
tion of Workflow Petri Nets into the multilayered reference Nets model of the
system that comply with the nets-within-nets concept defined by Rudiger Valk
[3] formalized as Reference Nets[4]. The problem of generating code from for-
mal specification to the running prototype of target system is mainly based on
the decomposition of the whole net to a set of subnets, which is also called
partitioning problem. For this purpose we use similar concept to the MULAN
architecture defined by Cabac et al.[5]. This architecture divides the model into
four levels of abstraction - infrastructure, agent platform, agents, and protocols.
Our architecture is very similar, we use layers for the infrastructure, platform,
main processes and subprocess. Each of those layers is mapped to the target
platform and the transformation is used for the code generation. The main goal
of the architecture is to enable changes within the system specification during
its run-time. This is mainly achieved by the platform, process and subprocess
abstraction levels that specify the functionality of the system.

3 Reconfigurable Architecture

Reference Nets allow to construct a system hierarchically, in several levels. Such
an idea is a basis of the MULAN (MultiAgent Nets) architecture developed by
Cabac et al.[5]. Thanks to the nature of Reference nets, MULAN allows nets
to migrate among places in other nets and thus it is possible to dynamically
modify functionality of system components, specified by this kind of nets [5].
We use application-specific main processes and subprocesses, which are hosted
on platform that is considered to be a part of the operating system of the node,
PNOS (Petri Nets Operating System). The multi-layered nature of the system
and responsibilities of particular levels are described in Figure 1.

The main part of the the system is installed over the hardware as a PNOS
kernel with platform net, that are both able to host other nets. Each platform
then hosts some number of main processes nets that hosts subprocesses. The
whole communication is performed by sending messages using serial link. There
is also theoretical possibility for subprocesses to contain other subprocesses etc.
But presented example does not cover this.

The PNOS contains PNVM (Petri Net Virtual Machine) which interprets
Petri Nets that are installed in the system in the form of a bytecode called Petri
Nets ByteCode (PNBC). PNOS also provides the installed processes with the
access to inputs and outputs of the underlying hardware that are connected

T. Richta et al.: Development of Dynamically Reconfigurable Systems 205

Hardware

Platform

+

PNOS kernel

Processes

Subprocesses application bussiness logic

app. business logic,

install/remove subprocesses,

send/receive messages and commands

install/remove application processes,

forward messages to app. processes,

interaction with HW and communication

infrastructure, interpretation of all

reference nets in the system

communication infrastructure - physical

interpretation of the whole system

Fig. 1. System layers and their responsibility

to sensors and actuators, and also with the serial communication port that is
connected to the wired or wireless communication module (e.g. ZigBee)[8].

The main net (first process) interpreted in PNOS is so called platform net.
Platform net is responsible for interpretation of commands which are read from
buffered serial line. These commands allow to install, instantiate, and uninstall
other Petri nets. The Platform also allows to pass messages to the other lay-
ers, which are responsible for application-specific functionality. Since we need
reconfigurability in all levels, the installation and uninstallation functionality is
implemented in each level.

4 The Development Process

The whole process of system development is described in Figure 2. It starts with
the specification of the main system workflow and its subprocesses. Resulting
workflow model is then transformed to the layered architecture and might be
further debugged using the Renew reference nets tool [6]. After this, the final
set of Reference Nets is translated to Petri Nets ByteCode (PNBC) that is then
used either for the target prototype simulation using SmallDEVS tool [7] and
also to be transfered to the nodes of the system infrastructure. Here it serves as
a reconfigurable part of the running system.

More detailed description of the whole PNOS architecture and functionality
could be found in [8].

4.1 Running Example

As a running example, we use a subset of a home automation system. The home
automation is partly based on the optimization of the energy consumption from
multiple sources. There are diverse primary sources of the energy, but within

206 PNSE’13 – Petri Nets and Software Engineering

a
rc

h
ite

c
tu

re
s
im

u
la

tio
n

re
a
lity

Renew modeling and debugging

XSLT translation rules

Compiler
PNBC/HEX

code

generation

PNML

+

inscription

XSLT

SmallDEVS
Node

PNOS

PNOS
messages

Infrastructure

PNBC

Native

Code

+

PNBC

Model

of controlled

system

Model of

infrastructure

Node
Microprocessor

UART

I/O

External Components

ZigBee Ethernet
...

messages

s
p
e
c
i

c
a
tio

n

Work ow model
Graph

transformations

initial system speci cationreference

nets production

PNML

PNML

Fig. 2. System construction

our example we concern on the photothermic solar energy panels used for warm
water and heating circuits energy supply. The home automation problem used
as an example is described in more detail in [9], where also some preliminary
ideas about the system design and code interpretation principles are proposed.
In this paper we present refined and improved version of the design process and
its evaluation.

Home automation process could be described as an workflow model using
the Workflow Petri Nets described previously. Next section shows the workflow
model and its description.

4.2 House Workflow Model

Within this section, the workflow model of the part of house automation system
- the photothermic solar panel and hot water storage tank - is described, using
the Workflow Petri Nets defined by Van der Aalst[1]. The Figure 3 describes
two swimlines that represent two modules - solar panel and water tank. Each
swimline consists of the main process of the module, that is constructed using
a set of subprocesses. Within the solar panel module, there is a task of sending
data and measure temperature subprocess. In the water tank module, there is
a task of receiving the data and two subprocesses - measure temperature and
adapt settings. Measure data subprocess and the receive task are connected with
the adapt setting subprocess using the OR transition. Particular subprocesses
descriptions are shown in next figures.

T. Richta et al.: Development of Dynamically Reconfigurable Systems 207

Water Tank Module

Solar Panel Module

measure send

receive

measure

adapt

data

Fig. 3. House workflow example

In Figure 4 the measure subprocess was modeled also using the Workflow
Petri Nets. It consists of two tasks - reading the data and converting it to the
temperature value. Reading the data means getting the voltage from the in-
put and the conversion means the necessary calculations to produce the human
readable results.

read convert

Measure Subprocess

delay

Fig. 4. Measure subprocess net

The other subprocess shown on Figure 5 consists of the task of temperatures
reading and comparing them to use the result for the adequate reaction of the
automation system. If there is higher temperature on the solar panel than within
the water tank, corresponding circular pump is started to move the hot water
form panel to the tank.

In this way the system specification is basically defined. But there are some
other prerequisites, e.g. we need to know about the technical aspects of reading
and writing the input/output data. This information should be obtained from the
customer and must be included as a part of the PNOS system. At this moment,
these rules are stored in a proprietary format alongside the nets specifications,

208 PNSE’13 – Petri Nets and Software Engineering

adapt

solar temperature

tank temperature

Adapt Subprocess

Fig. 5. Adapt subprocess net

but in future we plan to add them as a next layer of the system called drivers.
The following section describes the derived four level reference nets architecture,
which is produced from described workflow model. The process of conversion
of workflow model into the multilayered Reference Nets system is done using
some coarsely defined rules, but in future it should be based on formally defined
translation rules.

4.3 Layered Reference Nets Architecture

The multilayered system architecture derivation starts with the subprocess nets.
In Figure 6 there is the measure subprocess reference net derived from the mea-
sure subprocess. This net is constructed adding the initial and final uplinks and
places. These uplinks serve as a starting and finishing transitions called from the
main process of the module. There are also primitive system functions calls, that
operate directly with the underlying operating system. Resulting value token is
prepared and sent using uplink : output(). All the subprocess protocol nets are
named using the name place and corresponding uplink.

Fig. 6. Measure subprocess net

The solar panel main process described in Figure 7 is derived from the solar
panel swimline in the workflow model. It consists of the place, where all the
subprocess nets are stored and according to their names are called in particular
order. Synchronization place is added between the subprocess protocol nets calls

T. Richta et al.: Development of Dynamically Reconfigurable Systems 209

matching the solar panel main process swimline place. The name of the protocol
net is derived from the name of the workflow subprocess, and it is not necessary
to be human readable.

Fig. 7. Solar panel main process

The measurement subprocess protocol net has already been described, so
the last net that remains is the settings adaptation subprocess protocol net. It is
described in Figure 8 and communicates with the operating system calling the
proper signals according to the decisions made in transitions.

Fig. 8. Adapt subprocess net

The water tank main process reflects the main process in the workflow model.
It calls all the subnets and performs the synchronization of subprocesses using
two temperature places, that are then synchronized within the adapt subprocess.
It is described in Figure 9.

210 PNSE’13 – Petri Nets and Software Engineering

Fig. 9. Water tank main process

Above the last net, called infrastructure, there is a part of the underlying
operating system called the platform net that describes the main required func-
tions of the operating system needed by the application processes installed on
it. The platform net is shown in Figure 10.

Finally the infrastructure layer, that is derived from the main workflow pro-
cess description, is shown in Figure 11. In our example, it is very simple. Each
swimline represents one place, where the module for hosting the platform, main
process and protocols will be placed. The communication between the two sub-
processes seated in different swimlines is represented here as an communication
transition, that should internally call the final transition of the send task, that
means the : output() downlink and the initial transition of the receive task, that
means the : input() downlink. Those transitions are part of the platform layer
and are propagated to the subprocesses nets.

4.4 Code Generation

Generally, in our approach, each layer of the system can be compiled to target
code independently. There are two possibilities: first - the target code can be the
native code of the controller processor, and second - target code is a bytecode
that is interpreted by some virtual machine. Regardless on the way the code is
generated, all the abstraction levels communicate with each other using uplinks
and downlinks. The difference is, that levels deployed as interpreted bytecode
are more flexible and dynamically changeable than the compiled ones. It is be-
cause such a modification needs a heavy compiler and (possibly) over-the-air
programming of the node, that consumes a lot of energy. On the other hand

T. Richta et al.: Development of Dynamically Reconfigurable Systems 211

Fig. 10. Platform net

Fig. 11. Infrastructure net

it is possible to send the bytecode to the node as data. It thus allows for very
high level of dynamic reconfigurability in the system runtime. E.g. new version
of the measure subprocess is produced, then the corresponding Reference Net is
derived and proper bytecode is generated. Finally the new version of the measure
net is sent to the relevant node, and installed by its platform net.

We currently use the virtual machine and bytecode for all Petri Nets-based
code. The only part which is implemented natively, is the PNOS kernel, includ-
ing PNVM [8]. The example of bytecode follows. It represents simple net that
reads data from some sensor and produces relevant output (the net is depicted
in Figure 6). In fact, it is a human-readable version of the bytecode. In this
representation, numbers are represented as a text and also some spaces and line

212 PNSE’13 – Petri Nets and Software Engineering

breaks are added. This means that the contents of the code memory is a bit
more condensed. Each byte of the code is either an instruction for PNVM, or
data.

(Nmeasure

(measure)

(arg/raw/val/name)

(Uoutput(val)()(P3(B1)(V1)))

(Uinput(arg)()(Y1(B1)(V1)(I1000)))

(Uname(name)()(P4(B1)(V1)))

(I(O4(B1)(S1)))

(Tread(arg/raw)

(P1(B1)(V1))

(A(:(V2)(r(V1))))

(O2(B1)(V2)))

(Tconvert(raw/val)

(P2(B1)(V1))

(A(:(V2)(/(*(V1)(I625))(I10000))))

(O3(B1)(V2))))

The bytecode contains symbols definitions and places definitions, allowed
by a code for each uplink (U), initialization (I), and each transition (T). Each
transition description consists of preconditions (P), guard (G), action (A) and
postconditions (O), in a form of instructions for the PNVM. Each data element
is a tuple consisting of a type and a value. Variables are declared as a part of
transition code and identified by indexes. When the code of the net template
is loaded to code memory of the PNVM, it is indexed in order to allow PNVM
to quickly access particular parts of the code, especially places declarations,
the uplinks and the transitions code. When the net template is instantiated,
a specific part of runtime memory is allocated according to number of places.
At the same time, the net transitions are scheduled for execution. Execution
of a transition consists of reading its bytecode and attempting to satisfy all
preconditions, downlinks and guards using recursive backtracking algorithm.

In guards and actions of transitions it is possible to call primitive operations
of the underlying PNOS. Those operations are available in the Reference Nets
inscription language as PNOS.operation, e.g., PNOS.readPort("solar1") reads
data from virtual port named solar1, PNOS.writePort("pump1",100) writes
value to the virtual port named pump1, PNOS.h(m) gets first space-separated
substring from string m, and PNOS.t(m) returns the rest of the string m without
the first substring.

Those primitive operations are directly mapped to the corresponding byte-
code. We use a subset of the Reference Nets inscription language here. It works
only on integers and strings as values with corresponding set of basic operations.

The important feature of the system is its reconfigurability. It is based on
operations of the operating system that are designated for manipulations with
nets (in the form of PNBC) and their instances. Nets could be sent to a node as a
part of the command for its installation. The command is executed by Platform

T. Richta et al.: Development of Dynamically Reconfigurable Systems 213

net. Using other commands, the platform can instantiate a net, pass a command
to it, destroy a net instance and unload a net template - see Figure 10. The
PNOS Platform functionality is described in more detail in [8].

4.5 Simulation in SmallDEVS

PNOS-based nodes can be simulated in SmallDEVS environment [7], together
with simulation models of sensors and actuators connected to the controlled
physical process, as well as with simulation model of communication infrastruc-
ture. While Renew is used for application business logic debugging, SmallDEVS
is used for realistic simulation of the system with its surroundings. Execution
steps delays are incorporated to the simulation model in order to make simula-
tion as realistic as possible. Statistics gathered from simulation experiments can
be used for verification purposes and also can support decisions about type of
hardware for target system implementation. Hardware-In-the-Loop simulation
is also possible.

5 Evaluation

For the testing purposes we use the Arduino and Raspberry Pi hardware plat-
forms with XBee modules for wireless communication. The Arduino is enabled
with the ATmega328P chip that introduces some important restrictions to the
implementation. The main one is the 2kB SRAM memory that makes extensive
use of direct Petri Nets interpretation very difficult. There is a strong limitation
for the number of nets and also for the complexity of problems solved. For that
purposes we consider now for further testing of the system to use the Raspberry
Pi platform, that offer much more memory for the interpretation purposes. The
energy consumption of the ARM could be reduced by underclocking, that is part
of our future work plans.

PNVM/PNOS prototype has been implemented in Smalltalk. The implemen-
tation resembles the way how it will be implemented in pure C language in order
to make final implementation easy. Up to now, we do not have C implementation
ready, because we are still doing minor improvements to the reference Smalltalk
version. Nevertheless, the automated generation of C version of PNVM/PNOS
is planned for very near future.

With the hardware limitations in mind, we have tested the PNVM/PNOS
prototype with a model containing the platform net and other three simple nets
(9 transitions in all nets), that are loaded and instantiated successively. The
code of nets occupies 718 B, 679 B, 147 B, and 115 B, what is 1659 B of total
used memory for code. The simulation generates 4 net instances, containing 14
places. The number of tokens is up to 31, and needs 1547 B of object memory.
The history of memory occupation is shown in Figure 12. Peaks in the graph
corresponds to receiving a net via serial line and its loading to code memory.

To investigate the time consumption of the simulation, we measured the time
needed for each step execution. It comprises evaluation of all transitions in all

214 PNSE’13 – Petri Nets and Software Engineering

 0

 500

 1000

 1500

 2000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
e

m
o

ry
 s

iz
e

 [
B

]

Step Number

Code Memory
Object Memory

Fig. 12. Memory usage

ten instances. The simulation was executed for 50 times to get average step
duration.

The history of simulation steps durations is shown in Figure 13. We can
see, that the duration increases depending on number of instances because the
number of transitions is increasing. Peeks in the graph correspond with net
loading, net instantiation, and uplink execution. These experiments has been
done on contemporary desktop computer. On Raspberry Pi the step duration is
about 100 times higher, because of slower CPU and slower access to the memory.
Nevertheless, we suppose that C version of the PNVM/PNOS for Raspberry Pi
will run reasonably faster which will make Arduino and Raspberry Pi platforms
well usable for Petri nets-specified control systems.

6 Related Work

The use of high-level languages, especially Petri Nets, allows to build and main-
tain control systems in a quite fast and intuitive way. There are many approaches
to relate high-level languages with embedded devices or microcontrollers. One
kind of that approaches is applicable in systems with not very limited resources.
For example, Java can be used as a high-level language and works on architec-
ture which can be successfully used in embedded systems [10]. To control robot
application, hierarchical Petri Nets are used for middleware implementation in
a RoboGraph framework [11]. Another approaches are focused to the devices
with limited resources. They obviously use high-level languages or models for
system design and the implementation is generated, usually into the C code.
An examle is a usage of Timed Petri Nets for the synthesis of control software
for embedded systems by generating C-code [12] or Sequential Function Charts
[13]. All these approaches allow to design systems using high-level languages or
models, but they either do not preserve models in the system implementation,

T. Richta et al.: Development of Dynamically Reconfigurable Systems 215

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
im

e
 [

m
ic

ro
s
e

c
o

n
d

s
]

Step Number

Step

Fig. 13. Time overhead of simulation steps

or are not applicable for systems with limited resources. The approach presented
in this paper allows not only for design of systems with limted resources, but
also for systems implementation using a high-level language, particularly the
Nets-within-Nets formalism, allowing for the dynamic reconfigurability.

7 Conclusion

In this paper, we described the process of system construction based on Petri
Nets-based models transformations and target prototype code generation. This
process starts with the workflow model defined according to the Van der Aalst’s
WF-Nets that describe the functionality of the system from the customers point
of view. This model is then transformed to the multilayered architecture based
on Reference Nets formalism. Each layer of the architecture is then translated to
the specific target representation. The main part of the system is translated to
the Petri Nets ByteCode (PNBC), that is interpreted by the Petri Nets Virtual
Machine (PNVM) that is part of the Petri Nets Operating System (PNOS) which
forms the remaining part of the system.

The whole system reconfigurability is based on the possibility of PNBC net re-
placement with the new version where the interpretation after reinstalling starts
to perform the new version of the process. In the current version, the reconfigura-
bility is considered to work on the granularity of processes and subprocesses. In
further research, we plan to focus on more fine grained reconfiguration, including
the platform primitive operations, and also on the processes migration.

Acknowledgment

This work has been supported by the European Regional Development Fund in
the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), by

216 PNSE’13 – Petri Nets and Software Engineering

BUT FIT grant FIT-11-1, and by the Ministry of Education, Youth and Sports
under the contract MSM 0021630528.

References

1. Van der Aalst, W.M.P., Van Hee, K.M. 2002. Workflow Management: Models, Meth-
ods, and Systems. IT press, Cambridge, MA.

2. Van der Aalst, W.M.P., Ter Hofstede, A.H.M. 2005. YAWL: yet another workflow
language. Inf. Syst. 30, 4 (June 2005), 245-275.

3. Valk, R. 1998. Petri Nets as Token Objects: An Introduction to Elementary Ob-
ject Nets. In Proceedings of the 19th International Conference on Application and
Theory of Petri Nets (ICATPN ’98), Jrgen Desel and Manuel Silva (Eds.). Springer-
Verlag, London, UK, 1-25.

4. Kummer, O. 2001. Introduction to petri nets and reference nets. SozionikAktuell
1:2001 / Rolf von Lüde, Daniel Moldt, Rüdiger Valk (Hrsg.).

5. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H. 2005. Modeling dynamic architec-
tures using nets-within-nets. In Proceedings of the 26th international conference
on Applications and Theory of Petri Nets (ICATPN’05), Gianfranco Ciardo and
Philippe Darondeau (Eds.). Springer-Verlag, Berlin, Heidelberg, 148-167.

6. Kummer, O., Wienberg, F., Duvigneau, M., Köhler, M., Moldt, D., and Rölke, H.
2003. Renew - the Reference Net Workshop. Tool Demonstrations. Eric Veerbeek
(ed.). 24th International Conference on Application and Theory of Petri Nets
(ATPN 2003).

7. Češka M., Janoušek V., Vojnar T. PNtalk - A Computerized Tool for Object Ori-
ented Petri Nets Modelling. Lecture Notes in Computer Science, vol. 1333, DE, p.
591-610, ISBN 3-540-63811-3, ISSN 0302-9743, 1997.

8. Richta, T., Janoušek, V. 2013. Operating System for Petri Nets-Specified Reconfig-
urable Embedded Systems, To appear in: Proceedings of the 14th Computer Aided
Systems Theory, Las Palmas de Grand Canaria, LNCS, Springer Verlag.

9. Richta, T., Janoušek, V., Koč́ı, R. 2012. Code Generation For Petri Nets-Specified
Reconfigurable Distributed Control Systems, In: Proceedings of 15th International
Conference on Mechatronics - Mechatronika 2012, Praha, CZ, FEL Č, 2012, s. 263-
269, ISBN 978-80-01-04985-3.

10. Pizlo, F., Ziarek, L., et al. 2010. High-level programming of embedded hard real-
time devices. In Proceedings of the 5th European conference on Computer systems,
ACM New York, 69-82.

11. Fernandez, J.L., Sanz, R., Paz, E., Alonso, C. 2008. Using hierarchical binary Petri
nets to build robust mobile robot applications: RoboGraph. In IEEE International
Conference on Robotics and Automation. 1372-1377.

12. Rust, C., Stappert, F., Kunnemeyer, R. From Timed Petri Nets to Interrupt-Driven
Embedded Control Software. In International Conference on Computer, Communi-
cation and Control Technologies (CCCT 2003), Orlando, Florida, USA. p. 6.

13. Bayo-Puxan, O., Rafecas-Sabate, J., Gomis-Bellmunt, O., Bergas-Jane, J. 2008. A
GRAFCET-compiler methodology for C-programmed microcontrollers, In Assembly
Automation, Vol. 28 Iss: 1, Emerald Group Publishing. 55-60.

T. Richta et al.: Development of Dynamically Reconfigurable Systems 217

218 PNSE’13 – Petri Nets and Software Engineering

Decomposing Replay Problems: A Case Study

H.M.W. Verbeek and W.M.P. van der Aalst

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

{h.m.w.verbeek,w.m.p.v.d.aalst}@tue.nl

Abstract. Conformance checking is an important field in the process
mining area. In brief, conformance checking provides us with insights
how well a given process model matches a given event log. To gain these
insights, we typically try to replay the event log on the process model.
However, this replay problem may be complex and, as a result, may take
considerable time. To ease the complexity of the replay, we can decom-
pose the given process model into a collection of (smaller) submodels, and
associate a (smaller) sublog to every submodel. Instead of replaying the
entire event log on the entire process model, we can then replay the corre-
sponding sublog on every submodel, and combine the results. This paper
tests this divide-and-conquer approach on a number of process models
and event logs while using existing replay techniques. Results show that
the decomposed replay may indeed be faster by orders of magnitude, but
that success is not guaranteed, as in some cases a smaller model and a
smaller log yield a more complex replay problem.

1 Introduction

In the area of process mining, we typically distinguish three different fields:
discovery, conformance checking, and enhancement [1]. The discovery field is
concerned with mining an event log for a process model (for the remainder
of this paper, we assume that these process models are represented using Petri
nets). We are given an event log, and we try to come up with some process model
that nicely represents the observed behavior in the event log. The conformance
checking field is concerned with checking whether an event log matches a process
model. We are given an event log and a process model, and we try to provide
insights how well these two match. The enhancement field is concerned with
enhancing a process model using an event log. We are given an event log and
a process model, and we copy data as found in the event log into the process
model. A popular enhancement technique is to add durations to a process model
based on timestamps in the log. This allows us to detect bottlenecks in a process
model. This paper focuses on the conformance checking field [10].

As mentioned, for conformance checking, it is vital that we can match the
event log with the process model. A popular approach for matching both is to
replay the entire event log on the process model. Every trace of the event log is
replayed in the process model in such a way that mismatches are minimized in

some way. Of course, our aim is to match every event in the trace to a possible
action in the process model. However, this is not always possible. In some cases,
we cannot match an event to any possible action in the process model, or vice
versa, we cannot match an necessary action according to the model to an event
in the log. The result of this matching process is an alignment [4] between every
trace of the event log and the process model. A situation where the alignment
cannot match an event to any action can be considered as a situation where we
decided to skip a position in the log during replay. This is referred to as a log
move: We handle the event in the log (by skipping it) but do not reflect this
move in the model. Vice versa, a situation where the alignment cannot match an
action to any event can be considered as a situation where we decided to skip the
action. Such a situation is referred to as a model move. The remaining situation
where an event and an action are matched is referred to as a synchronous move.
By associating costs to these situations, we can obtain a best alignment by
minimizing these costs. Based on this idea of associating costs, replay techniques
have been implemented in the process mining tool ProM6 [3].

Earlier work [5, 2] has shown that we can apply a divide-and-conquer ap-
proach to these cost-based replay techniques. Instead of replaying the entire
event log on the entire process model, we first decompose the process model into
a collection of submodels. Second, we create a sublog from the entire event log for
every submodel. Behavior not captured by a submodel will be filtered out of the
corresponding sublog, only behavior captured by the submodel will be filtered
in. Third, we compute subcosts for every combination of submodel and sublog.
Fourth and lasts, we replay every sublog on the corresponding submodel in such
a way that the subcosts are minimized. It has been proven that the weighted
accumulated subcosts are a lower bound for the actual overall costs [11]. More-
over, the fraction of fitting cases is the same with or without decomposition [11].
As a result, the accumulated subcosts is a lower bound for the actual costs.

Conceptually, the entire model can be regarded as a decomposition of itself
into a single submodel, with a single sublog. Nevertheless, proper decompositions
may exist as well. An example of a (most likely) proper decomposition is the
maximal decomposition as described in [2, 11]. This maximal decomposition uses
an equivalence class on the arcs in the process model to decompose the model
into submodels. This equivalence class corresponds to the smallest relation for
which the incident arcs of places, silent transitions, and visible transitions with a
non-unique label are equivalent. As a result, the maximal decomposition results
in submodels that only have visible transitions with unique labels in common.
Nevertheless, other proper decompositions of a process model may exist (like [7])
which may be of interest for the decomposed replay problem.

Replaying all sublogs on the corresponding submodels has two possible ad-
vantages:

1. It may highlight problematic areas (submodels) in the model, that is, sub-
models with a bad fitness. This information can hence be used for diagnostic
purposes.

220 PNSE’13 – Petri Nets and Software Engineering

2. It may be much faster than replaying the entire log on the entire model,
while the fraction of fitting cases is the same for both. Obviously, this may
save time while maintaining quality.

This paper focuses on the second advantage, that is on the possible speed-up of
the entire replay when using divide-and-conquer techniques. As the overall model
is bigger than any of its submodels, it is expected that the replay problem of
the entire log is more complex than the replay problem of all sublogs. As a
result, determining the actual costs may take simply way too much time, while
determining a decent lower limit may take an acceptable amount of time. This
paper takes four different process models with six corresponding different event
logs, and several ways to decompose the process models into submodels, and
checks whether determining the costs of more fine-grained decomposed replay
problems are indeed faster than that of more coarse-grained decomposed replay
problems. Furthermore, if it is indeed faster, it checks whether the obtained costs
are still acceptable. Note that a technique that return a trivial lower bound (like
0) for the costs is very fast, but is not acceptable as we do not gain any insights
by such a technique.

2 Preliminaries

This section introduces the basic concepts of process models and event logs as
used in this paper. Furthermore, it details how we determine the cost associated
by replaying an event log on a process model. For the remainder of this paper,
we use U to denote the universe of labels.

A process model contains a labeled Petri net [9, 8] (P, T, F, l), where P a set
of places, T is a set of transitions such that P ∩ T = ∅, F ⊆ (T × P) ∪ (P × T)
a set of arcs, and l ∈ (T 6→ U) a partial function that maps a transition onto
its label. For function l, we use dom(l) to denote the set of transitions that are
mapped onto some label, and rng(l) to denote the set of labels that are mapped
onto by some transition. A markingM of a net (P, T, F, l) is a multiset of places,
denoted M ∈ B(P). The input set of a place or transition n ∈ P ∪ T is denoted
•n and corresponds to the set of all nodes that have an arc going to n, that is,
•n = {n′|n′Fn}. In a similar way, the output set is defined: n• = {n′|nFn′}.
Transition t ∈ T is enabled by marking M in net N = (P, T, F, l), denoted as
(N,M)[t〉, if and only if M contains a token for every place in the input set of t,
that is, if and only ifM ≤ •t. An enabled transition t ∈ T may fire, which results
in a new markingM ′ where a token is removed from every place in the input set of
t and a token is added for every place in its output set, that is,M ′ = M− •t+t• .
We use (N,M)[t〉(N,M ′) to denote that transition t is enabled by marking
M , and that firing transition t in marking M results in marking M ′. Let σ =
〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. (N,M)[σ〉(N,M ′) denotes that
there is a set of markings M0,M1, . . . ,Mn such that M0 = M , Mn = M ′, and
(N,Mi)[ti〉(N,Mi+1) for 0 ≤ i < n. A marking M ′ is reachable from a marking
M if there exists a σ such that (N,M)[σ〉(N,M ′). A transition t ∈ dom(l) is
called visible, a transition t 6∈ dom(l) is called invisible. An occurrence of a

E. Verbeek et al.: Decomposing Replay Problems: A Case Study 221

visible transition t corresponds to an observable activity l(t). We can project a
transition sequence σ ∈ T ∗ onto its sequence of observable activities σv ∈ U∗ in
a straightforward way, where all visible activities are mapped onto their labels
and all invisible transitions are ignored. We use (N,M)[σv � (N,M ′) to denote
that there exists a σ ∈ T ∗ such that (N,M)[σ〉(N,M ′) and σ is mapped onto
σv.

Furthermore, a process contains an initial state and a final state, that is a
process model P is a triple (N,M0,Mn), where N = (P, T, F, l) is a labeled Petri
net,M0 ∈ B(P) is its initial marking, andMn ∈ B(P) is its final marking. The set
of visible traces for a process model P = (N,M0,Mn), denoted φ(P), corresponds
to the set of sequences of observable activities that start in the initial marking
and end in the final marking, that is, φ(P) = {σv|(N,M0)[σv � (N,Mn)}.

An event log [1] L is a multiset of traces, where a trace is a sequence of
activities. Thus, if A ⊆ U is the set of activities, then σ ∈ A∗ is a trace and
L ∈ B(A∗) is an event log. An event log L can be projected onto some set of
activities A′, denoted L�A′ , in a straightforward way: All events not in A′ are
filtered out, and all events in A′ are filtered in.

The replay problem [4] for an event log L and a process model P can now be
described as finding, for every trace σL ∈ L, the transition sequence σP ∈ T ∗ for
which its corresponding sequence of observable activities σP,v ∈ φ(P) matches
σL best. To determine which transition fits a trace best, we align σL and σP,v
and associate costs to every misaligned transition and/or event. A misaligned
transition means that we need to execute a visible transition in the process model
that is not reflected in the event log, and is called a model move. A misaligned
event means that an activity has been executed and logged that is not reflected
by a corresponding visible transition in the process model, and is called a log
move. An aligned transition-event pair means that both the event log and the
process model agree on the next activity, and is called a synchronous move. By
associating costs to model moves and log moves, and by minimizing the costs,
we can determine the transition sequence from the process model that best fits
a trace from the event log.

For the decomposed replay problem for an event log L and a process model P,
we first decompose the process model into a collection of smaller process models
{P1, . . . ,PM}. Second, we map the costs for replaying the entire log on the entire
net to costs for every smaller process model Pi = ((Pi, Ti, Fi, li),M0,i,Mn,i). In
earlier work [11], we have shown that these costs can be mapped in such away
that the accumulated costs for the decomposed replay problem is a lower bound
for the costs of the original replay problem. Third, we filter the log for every
smaller process model into a smaller log Li = L�rng(li). Fourth, we replay every
smaller log Li on the corresponding smaller process model Pi, using the adapted
costs. Fifth and last, we accumulate the resulting costs into a single costs, which
is a lower bound for the actual costs.

In [11], we have shown how to decompose a process model P = ((P, T, F, l),
M0,Mn) in such a way that the decomposition is maximal. For this maximal
decomposition, we introduce an equivalence class on the arcs of F . Arcs will

222 PNSE’13 – Petri Nets and Software Engineering

Table 1. Characteristics of process models

Process model Transitions Places Arcs Labels

RepairExample 12 12 26 8
A32 32 32 74 32
Bpic2012A 11 14 28 10
Bpic2012 58 44 124 36

end up in the same submodel Pi if and only if they are equivalent, where this
equivalence is defined as the smallest relation for which the following rules hold:

R1 An incident (input or output) arc of a place is equivalent to all incident arcs
of that place.

R2 An incident arc of an invisible transition is equivalent to all incident arcs of
that transition.

R3 An incident arc of a visible transition with a non-unique label (that is, there
exist other transitions that have the same label) is equivalent to all incident
arcs of all transitions with that label.

As a result of these rules, any place, any invisible transition, and any visible
transition with non-unique label will be part of a single submodel only, whereas
visible transitions with unique labels may be split over different submodels. As
a result, only these visible transitions with unique label interface between the
different submodels. In [11], we have proved that this decomposition preserves
perfect replay: The entire event log L can be replayed perfectly (that is, no costs
and/or mismatches) on process model P if and only if every sublog Li can be
replayed perfectly on submodel Pi. Moreover, a trace perfectly fits the overall
model if and only if its projection fits each of the submodels. Hence, the fraction
of fitting traces can be computed precisely using any decomposition.

3 Case Study Setting

For the case study, we will use four different process models (RepairExample,
A32, Bpic2012A, and Bpic2012) with six corresponding different logs (Repair-
Example, A32f1n00, A32f1n10, A32f1n50, Bpic2012A, and Bpic2012).
Table 1 shows the characteristics of these models, whereas Table 2 shows the
characteristics of the corresponding logs.

The RepairExample model comes with a single event log, which is typically
used for demonstration (or tutorial) purposes. The A32 model comes with three
event logs, which contain a varying amount of noise. The first log, A32f1n00,
contains no noise (‘0%’), the second log, A32f1n10, contains some noise (‘10%’),
and the third log, A32f1n50, contains much noise (‘50%’). This model and these
logs were used to test genetic mining algorithms on their ability to recreate the
original model from noisy event logs. The Bpic2012A model and event log stem
from the BPI 2012 Challenge log and originate from [6]. Note that this log is

E. Verbeek et al.: Decomposing Replay Problems: A Case Study 223

Table 2. Characteristics of event logs

Event log Cases Events Event Classes

RepairExample 1104 11,855 12
A32f1n00 1000 24,510 32
A32f1n10 1000 24,120 32
A32f1n50 1000 22,794 32
Bpic2012A 13,087 60,849 10
Bpic2012 13,087 262,200 36

Table 3. Replay results of event logs

Event log Running time Costs
(in seconds)

RepairExample 0.25 0.197
A32f1n00 11 0.000
A32f1n10 17 0.993
A32f1n50 32 4.521
Bpic2012A 0.59 1.293
Bpic2012 480 14.228

a real-life log, which was obtained from a company. The Bpic2012A event log
is obtained by filtering out all events that start with either “O” or “W”, that is,
it contains only the events that start with “A”. The corresponding model was
hand-made based on results of running the Transition System Miner on this
filtered log (cf. [13]). The Bpic2012 model and log also stem from this challenge
log. In contrast with the Bpic2012A log, the Bpic2012 log contains all events
from the Challenge event log, and some more. These extra events allowed us to
mine this log using a passage-based technique, of which the Bpic2012 model is
a result [2].

Table 3 shows the results of running the replayer on the six event logs, where
running times have been rounded to the two most significant digits (this is done
throughout the paper). For details on the replayer and other Prom6 plug-ins
used in this case study, we refer to [14]. Note that the absolute values for these
running times are not that important for this paper, as we only want to compare
them. In the next section, we will compare these results to the results of running
the decomposed replayer on these logs. Our goal will be to check whether the
decomposed replayer returns still-acceptable costs in better times for certain
decompositions.

4 Case Study Results

The first decomposition we will check for the results, is a near-maximal decom-
position. In Section 2, we have detailed a maximal decomposition based on an
equivalence class between arcs. In this maximal decomposition, it is possible

224 PNSE’13 – Petri Nets and Software Engineering

Table 4. Decomposed replay results of event logs using near-maximal decomposition

Event log Submodels Running time Costs
(in seconds)

RepairExample 6 (171%) 0.43 (99%) 0.196
A32f1n00 30 (12%) 1.3 (100%) 0.000
A32f1n10 30 (7%) 1.1 (45%) 0.444
A32f1n50 30 (4%) 1.2 (48%) 2.155
Bpic2012A 8 (378%) 2.2 (49%) 0.629
Bpic2012 12 DNF

to have a submodel ((Pi, Ti, Fi, li),M0,i,Mn,i) that subsumes some other sub-
model ((Pj , Tj , Fj , lj),M0,j ,Mn,j) when it comes down to the labels, that is,
rng(li) ⊆ rng(lj). A typical submodel where this might happen is the submodel
that contains the source (or sink) place in case of a workflow net [12]. As ev-
ery label of the subsumed submodel is contained in the subsuming model, every
event of the ‘subsumed’ event log will be contained in the ‘subsuming’ event log.
As a result, we can replay (almost for free) the ‘subsumed’ log while replaying
the ‘subsuming’ log. For this reason, we add the subsumed submodel to every
subsuming submodel (there may be more subsuming submodels), and do not
replay the subsumed submodel on its own. The resulting decomposition is called
a near-maximal decomposition.

Table 4 shows the results of replaying the event logs on the submodels as
obtained by the near-maximal decomposition. To enable easy comparison, Ta-
ble 4 also shows the reduction percentages for both running times and costs (for
example, 0.43 seconds is 171% of 0.25 seconds). These results show that the A32
logs are replayed much faster than with the regular replay (though the costs are
significantly lower), but that the other replays got worse, with the Bpic2012 log
as most negative example. For this log, the decomposed replay simply did not
finish (“DNF”), as it eventually ran out of resources (4 GB of memory). From
these results, we conclude that decomposing a replay problem need not improve
the time required for replay.

Figure 1 shows the submodel that was the bottleneck for the decomposed
replay of the Bpic2012 log. This submodel contains 12 invisible transitions (the
entire net contains 22, so more than half of these invisible transitions ended up in
this submodel), of which 3 loop back, 5 source transitions, and 5 sink transitions.
As a result, the replay of the corresponding sublog on this specific submodel is
very complex: In any reachable state, there are at least 5 enabled transitions, and
in many states there will be some invisible transitions enabled as well). It might
help the replay if we restricted the unlimited freedom of these source transitions
in some way. For this reason, we introduced a place that effectively restricts the
number of tokens, say n, that may be present in the submodel. Initially, this
place p contains n tokens. Any transition t in the original submodel is changed
in the following way:

E. Verbeek et al.: Decomposing Replay Problems: A Case Study 225

Fig. 1. Problematic submodel that results from near-maximal decomposition of
Bpic2012

– If t has more incoming arcs than outgoing arcs, that is, if | •t| > |t• |, then x
outgoing arcs from transition t to place p are added, where x = | • t| − |t• |.

– If t has more outgoing arcs then incoming arcs, that is, if |t• | > | • t|, then x
incoming arcs from place p to transition t are added, where x = |t• |− | • t|.

– If t has as many incoming arcs as outgoing arcs, that is, if |t• | = | • t|, then
nothing is added.

The exceptions to these rules are the arcs from source places and the arcs to sink
places, as these arcs will not be counted. Reason for doing so is that otherwise
all n tokens may end up in a sink place, which results in a dead submodel.
As a result of applying these changes, every transition in the resulting net has
as many incoming arcs as outgoing arcs (excluding source and sink places),
and hence the number of tokens in every reachable marking (again excluding
source and sink places) is constant, that is, equal to n. This amount of tokens
n is determined in such a way that the execution of a source transition can be
followed by the execution of a sink transition. Therefore, we will put a single
token into the place for a source transition, and as many tokens as needed to
fire (once) all other (non-source) transitions in the preset of this place. Figure 2
shows the resulting submodel, where the place in the middle (the one with the
many incident arcs) is the place that restricts the otherwise unlimited behavior
of the former source transitions. Given the structure of this submodel, this place
contains initially a single token, which allows for only a single thread in this
submodel during replay.

With this change made to the decomposition of the entire net (note that
only the behavior of the problematic submodel was restricted in the way as

226 PNSE’13 – Petri Nets and Software Engineering

Fig. 2. Restricted problematic submodel

described, other submodels were unaffected), the decomposed replay finished in
470 seconds (98%), with costs of 8.722 (61%). The replay of the problematic
submodel took 460 seconds (costs 5.210), which explains the better part of the
replay time (please recall that for the decomposed replay we allowed 4 threads
to be run simultaneously). Although the decomposed replay now finished, it
finished in almost the same time as the regular replay with significant lower
costs. Furthermore, by restricting the behavior of this submodel, we cannot
claim anymore that the resulting costs are a lower bound for the actual costs.
For this reason, we tried to reduce the number of invisible transitions instead.

An invisible transition with single input and single output can be reduced
in such a way, that the behavior of the resulting model is not a restriction,
but an extension of the behavior of the original model. In general, the single
input place of the invisible transition will have input transitions and additional
(not counting this invisible transition) output transitions. Likewise, its single
output place will have additional input transitions (not counting this invisible
transition) and output transitions. In general, a path from such an additional
input transition to such an additional output transition will not be possible in
the model, as the invisible transition works ‘the wrong way’. However, all other
paths are possible, like a path from an input transition to an output transition,
and a path from an input transition to an additional output transition. Thus,
if we merge the single input place and the single output place, and remove the
invisible transition, than we only add behavior in the model. As a result, the
replay costs might go down (which is safe for a lower bound), but cannot go up.
Figure 3 shows the resulting submodel.

With this change made, the decomposed replay finished in 190 seconds (40%),
with costs of 6.676 (47%). The replay of the problematic submodel took 140

E. Verbeek et al.: Decomposing Replay Problems: A Case Study 227

Fig. 3. Reduced problematic submodel

seconds (costs 3.163). The bottleneck submodel is now a different submodel,
which requires a replay time of 180 seconds.

Obviously, the reduction of invisible transitions has led to a 60% decrease in
running time (from 480 seconds to 190 seconds), but also to a 53% decrease in
the computed costs (from 14.228 to 6.676). As we know that the decomposed
replay returns a lower bound for the costs, this decrease in costs is okay, but
perhaps we can do better by not reducing all invisible transitions. Possibly, there
is some trade-off somewhere between the invisible transitions to reduce and the
decrease in computed costs. For this reason, we again focus on the reduction
of an invisible transition. Clearly, if (1) the single input place of an invisible
transition has no additional output transitions and (2) the single output place of
that invisible transition has no additional input transitions, then the reduction of
this invisible transitions leads to no extra behavior. In contrast, if there would be
3 additional output transitions and 4 additional input places, then this reduction
would lead to 3×4 = 12 possible new paths. If we want to retain as much of the
original behavior in the reduced net, then we want to reduce invisible transitions
for which the product of the number of additional output transitions and the
number of additional input transitions is below some threshold. If this threshold
equals 0, then no new paths are allowed, if it is sufficiently large (say, 100),
then any reduction is allowed. To check the effect of this threshold, we have run
the decomposed replay for a number of possible thresholds. Table 5 shows the
results. Please note that the result of the reduction with some fixed threshold
needs not be unique, the resulting net might be non-deterministic. We are aware
of this, but want to check its effect anyway.

This table indicates that if we set the threshold to 32, that then all invisible
transitions will be reduced (running time approx. the same and costs the same).
Furthermore, this table indicates that, to get a good lower bound for the costs

228 PNSE’13 – Petri Nets and Software Engineering

Table 5. Effects of reducing invisible transitions on running time and computed costs

Threshold Running time Costs
(in seconds)

32 (42%) 200 (47%) 6.676
16 (58%) 280 (50%) 7.091
8 (386%) 1900 (55%) 7.849

(if possible at all), we need to spend more running time than we would need for
the original (not decomposed) replay problem: To obtain a lower bound for the
costs that is slightly above half of the actual costs, we need to spend more than
three times as much running time. As a result, we conclude that this reduction
technique has its merits (it actually finishes with costs that are reasonable for
the running time required), but that there is no significant gain in fine-tuning
this technique.

A third option to cope with the problematic submodel could be to organize
the submodels into submodels that are better suited for the replay at hand.
Apparently, the replay techniques we are using have problems with certain sub-
models (many source transitions, many invisible transitions), so we should try to
avoid generating such submodels. For this reason, we propose a slightly changed
notion of equivalence, the only change being that the following rule is added:

R4 The i-th incoming arc of a visible transition with unique label is equivalent
to the i-th outgoing arc of that transition, if both arcs exist.

Note that only the fourth rule on visible transitions with unique labels has been
added. Also note that we now assume that some order exists among the incident
arcs of such a transition, as we link the i-th incoming arc to the i-th outgoing arc,
if possible. As a result, again, the result may be non-deterministic. Nevertheless,
this approach may help in suppressing submodels with many source transitions,
as the result of the fourth rule may be that a submodel with a visible sink
transition t is merged with a submodel with a visible source transition t. We use
the term near-minimal decomposition to refer to the decomposition that results
from these adapted equivalence rules, as many submodels will be linked together
using these new rules. Table 6 shows the results for this decomposition.

This table shows that we typically obtain good results (costs-wise) using
the near-minimal decomposition, but that we sometimes use slightly more time.
Furthermore, this table shows that for the Bpic2012A and Bpic2012 event logs
the near-minimal decomposition turns out to be the minimal decomposition, as
both resulted in only a single submodel. In both cases this is caused because
every parallel construct includes invisible transitions (either as split or as join).
To be able to split these constructs, we can relax two of the four equivalence rules
in such a way that we also allow the decomposition to split invisible transitions
in the same way as it splits visible transitions with unique labels:

R2’ The i-th incoming arc of an invisible transition is equivalent to the i-th
outgoing arc of that transition, if both arcs exist.

E. Verbeek et al.: Decomposing Replay Problems: A Case Study 229

Table 6. Decomposed replay results of event logs using near-minimal decomposition

Event log Submodels Running time Costs
(in seconds)

RepairExample 2 (136%) 0.31 (100%) 0.197
A32f1n00 4 (18%) 1.9 (100%) 0.000
A32f1n10 4 (13%) 2.1 (94%) 0.929
A32f1n50 4 (10%) 3.1 (96%) 4.322
Bpic2012A 1 (125%) 0.74 (100%) 1.293
Bpic2012 1 (101%) 480 (100%) 14.228

Table 7. Decomposed replay results of event logs using near-minimal (with invisible
transitions) decomposition

Event log Submodels Running time Costs
(in seconds)

Bpic2012A 3 (391%) 2.3 (98%) 1.272
Bpic2012 3 (83%) 400 (100%) 14.227

This relaxation maintains the property that any perfectly fitting trace in the
overall model is a perfectly fitting trace in the submodels (as we are still possible
to replay such a perfectly fitting trace in the submodels). However, it may break
the property that a perfectly fitting in the submodels is a perfectly fitting trace in
the overall model, as the invisible transitions on the border of the submodels may
not agree. When replaying a trace on the submodels, such a disagreement will
not be noticed, but when replaying it on the overall model, it will be noticed,
which leads to a mismatch and extra costs. Table 7 shows the results of this
decomposition for the two event logs. Both computed costs are quite good, and
the running time of the Bpic2012 log is better than that of the regular replay,
but the running time of the Bpic2012A log is worse.

Another way to split up the near-minimal decomposition a bit further is to
define a set of (visible) transitions for which the relaxed equivalence does not
hold, that is, that assume that all incident arcs are not equivalent. In this paper,
we will use the term milestone transitions for such transitions. As a result, we
then have the following changes in the rules for equivalence:

R2” The i-th incoming arc of an invisible non-milestone transition is equivalent
to the i-th outgoing arc of that transition, if both arcs exist.

R4” The i-th incoming arc of a visible non-milestone transition with unique
label is equivalent to the i-th outgoing arc of that transition, if both arcs
exist.

Note that the equivalence of milestone transitions is derived from these rules.
Initially, incident arcs of milestone transitions are not equivalent, but they may
become equivalent if this equivalence is the result of any combination of the four

230 PNSE’13 – Petri Nets and Software Engineering

rules mentioned above. As such, it is still possible that multiple incident arcs for
a milestone transition are equivalent.

As an example of this milestone decomposition, we have selected six such
milestone transitions in the Bpic2012 model:

1. t14402
2. t16523
3. W_Beoordelen fraude+SCHEDULE
4. W_Nabellen incomplete dossiers+SCHEDULE
5. W_Valideren aanvraag+COMPLETE
6. W_Valideren aanvraag+START

Please note that the first two milestone transitions are invisible transitions, which
have no counterpart in the event log, whereas the remaining four are visible.
Together, the first four transitions form a sparsest cut in the model, where the
middle two transitions link a submodel containing parallelism to a submodel
containing an invisible transitions that allows the former submodel to be started
over and over again during replay. Using this decomposition, the decomposed
replay takes only 100 seconds (22%) and results in a costs of 11.722 (82%), which
is quite acceptable. The left submodel (the large one) took 100 seconds to replay
(costs 7.102), the top-right submodel took 97 seconds (costs 2.806), the middle-
right submodel took 66 seconds (costs 0.951), and the bottom-right submodel
(the parallel one) took 2.8 seconds to replay (costs 0.863). Obviously, the fact
that we could run the decomposed replay on 4 different threads helped a lot in
reducing the running time, as the total running time would have taken not 100
but 100 + 96 + 66 + 2.8 ≈ 260 seconds.

5 Tool implementation

The decomposed replay has been implemented in the ProM61 Passage package,
which depends on the PNetReplayer package for the replayer. For sake of com-
pleteness, we mention that for this case study we have used version 6.1.122 of the
former and version 6.1.160 of the latter package. The Passage package contains
a number of plug-ins that are relevant for the decomposed replay.

Create Decomposed Replay Problem Parameters Using this plug-in, the
user can set the parameters which are to be used for both decomposing a
model and a log into submodels and sublogs, and the decomposed replay that
may follow this decomposition. Both an automated and a manual version
exist for this plug-in. The automated version takes a model (a Petri net)
and generates default parameters for this model. The manual version takes
either a model with default parameters or existing parameters, and allows
the user to change these parameters through a dialog. Figure 4 shows this
dialog. For additional details on the implementation, we refer to [14].

1 A nightly build version of ProM6 containing the required packages can be down-
loaded from http://www.promtools.org/prom6/nightly.

E. Verbeek et al.: Decomposing Replay Problems: A Case Study 231

Fig. 4. Dialog for setting decomposed replay parameters

Select visible transitions Using this list, the user can select the transi-
tions that are allowed to be present in multiple submodels. Only selected
transitions can appear on the interface between different submodels. By
default, the visible transitions will be selected.

Select milestone transitions Using this list, the user can select the mile-
stone transitions. When determining the equivalence classes between the
arcs, only the non-selected transitions will be taken into account. By
default, the visible transitions will be selected.

Select ILP threshold Using this slider, the user can influence for which
submodels the ILP-based replay will be used. This replayer will be used
for all submodels for which the number of transitions exceeds this thresh-
old. The non-ILP-based replayer will be used otherwise. By default, this
threshold is set to 8.

Select max loss Using this slider, the user can influence to what extend
singe-input-single-output invisible transitions are to be reduced. Such
a transition will be reduced if the product of its number of additional
inputs and its number of additional outputs (that is, the number of new
paths) is below this threshold. By default, this threshold is set to 0.

Select loss threshold Using this slider, the user can influence for which
submodels single-input-single-output invisible transitions are to be re-
duced. These transitions are only reduced if the number of transitions in
the submodel exceeds this threshold. By default, this threshold is set to

232 PNSE’13 – Petri Nets and Software Engineering

100 (the maximal value), which means that these transitions will only
be reduced for very large submodels.

Select Thread threshold Using this slider, the user can influence for which
submodels the behavior of the source transitions will be restricted by
adding a place. The submodel will only be restricted if the number
of transitions in the submodel exceeds this threshold. By default, this
threshold is set to 100 (the maximal value), which means that this re-
stricting place will only be added for very large submodels.

Select Threads Using this slider, the user can influence the number of
tokens in the place restricting the behavior of (otherwise) source tran-
sitions. The number of tokens equals the number set by this slider plus
the number of outgoing arcs from this place to non-source transitions.
By default, this number is set to 1.

Select Runs With this slider, the user can influence how many times the
regular replay and decomposed replay are to be run. The regular replay
and decomposed replay will be run as many times as indicated by this
slider.

Enter label With this textbox, the user can provide a meaningful name
to the selected parameter setting. This name will be used by ProM6 to
identify this parameters setting. By default, this name equals the name
of the process model prefixed by “Parameters for ".

Show Replay Costs Using this plug-in, the user can run the regular replay
and the decomposed replay as many times as indicated by the parameters
that are required as input. Additional inputs are the process model (a Petri
net) and the event log. This plug-in will result in an overview that contains
the parameter settings (for sake of reference) and the results (both running
times and costs for both the regular replay and the decomposed replay,
including the running times and costs for the replay of every sublog on the
corresponding submodel).

Create Decomposed Replay Problem Using this problem, the user can con-
struct a decomposed replay problem. Required inputs are the parameters,
the process model (a Petri net), and an event log. Please note that this
plug-in only constructs the decomposed replay problem, it does not solve it
by actually replaying it. To actually do this replay, the user can select the
“Visualize Replay” visualization, which first performs the replay and then
shows the results.

6 Concluding Remarks

In this paper, we have applied our decomposed replay techniques on six event
logs and four corresponding process models. For two out of six event logs any
decomposed replay we tried took longer than the regular replay. However, for
exactly these two event logs the regular replay takes less than a second. The four
remaining event logs all take longer than second to replay, where the actual time
needed varies from 11 seconds to 480 seconds. For all of these four event logs,

E. Verbeek et al.: Decomposing Replay Problems: A Case Study 233

Table 8. Result of (decomposed) replay for event logs that take longer than a second
to replay

Event log Submodels Running time Costs
(in seconds)

A32f1n00 1 11 0.000
4 (18%) 1.9 (100%) 0.000

A32f1n10 1 17 0.993
4 (13%) 2.1 (94%) 0.929

A32f1n50 1 32 4.521
4 (10%) 3.1 (96%) 4.322

Bpic2012 1 480 14.228
4 (22%) 100 (82%) 11.722

we could achieve better running times at acceptable decreases in costs. Table 8
shows the result of the decomposed replay for these event logs, and compares
these results to the results of the regular replay (where there is only a single
submodel).

Although this shows that we can use decomposed replay to achieve better
running times at acceptable costs, there is an issue with the actual decomposi-
tion. Especially the Bpic2012 event log has been a hard nut to crack, as the
replay of this event log turns out to be very sensitive to the actual decomposi-
tion. The replay simply fails to finish if we decompose the process model and
event log in as many submodels and sublogs as possible. Especially the replay of
one of the sublogs on its corresponding submodel caused the replay to not finish.

In the paper, we have shown that we can take several approaches to this
replay problem. First of all, we can restrict the possible behavior of the prob-
lematic submodel. This leads to a replay that finishes, but not to a costs that is
by definition a lower bound for the actual costs, which is what we need. Second,
we can reduce the single-input single-output invisible transitions such that none
remains. As a result of this reduction, we possibly introduce new paths (new
behaviors) in the resulting submodel, but this is safe as this only lowers the
costs. We also tried to fine-tune this reduction of invisible transitions, but that
did not help much: The costs did not improve more than the running time of the
replay did increase. Third, we can aim for submodels that suit the actual replay
techniques we are using in some way. Doing so leads to a decomposed replay
that finishes, although it might decompose the model in a single submodel.

To be able to use the decomposed replay technique effectively in practice, we
need to be able to come up with a good decomposition that decreases running
times while keeping the estimated costs at an acceptable level. We have shown
that even for the hard Bpic2012 log this was possible, but we haven’t shown
that we can do this for any log. For this, we need more research on what these
good decompositions are, how they look like, and how we can derive them from
a given model (possibly, given the corresponding event log). As shown, for some

234 PNSE’13 – Petri Nets and Software Engineering

logs, the default (near-maximal) decomposition works fine, but other logs require
more sophisticated decompositions.

References

1. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer-Verlag, 2011.

2. W.M.P. van der Aalst. Decomposing Process Mining Problems Using Passages. In
S. Haddad and L. Pomello, editors, Applications and Theory of Petri Nets 2012,
volume 7347 of Lecture Notes in Computer Science, pages 72–91. Springer-Verlag,
2012.

3. W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves
de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M.
Weijters. ProM 4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn
and A. Yakovlev, editors, Application and Theory of Petri Nets and Other Models of
Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484–494. Springer-Verlag, 2007.

4. A. Adriansyah, B. van Dongen, and W.M.P. van der Aalst. Conformance Checking
using Cost-Based Fitness Analysis. In C.H. Chi and P. Johnson, editors, IEEE
International Enterprise Computing Conference (EDOC 2011), pages 55–64. IEEE
Computer Society, 2011.

5. J. Carmona, J. Cortadella, and M. Kishinevsky. Divide-and-Conquer Strategies for
Process Mining. In U. Dayal, J. Eder, J. Koehler, and H. Reijers, editors, Business
Process Management (BPM 2009), volume 5701 of Lecture Notes in Computer
Science, pages 327–343. Springer-Verlag, 2009.

6. B. F. van Dongen. BPI challenge 2012. Dataset.
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f, 2012.

7. J. Munoz-Gama, J. Carmon, and W. M. P. van der Aalst. Hierarchical conformance
checking of process models based on event logs. In ATPN 2013, LNCS. Springer,
2013. Accepted for publication.

8. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

9. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

10. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008.

11. W. M. P. van der Aalst. Decomposing Petri Nets for Process Mining: A Generic
Approach. Technical Report BPM-12-20, BPMcenter.org, 2012.

12. Wil van der Aalst, Arya Adriansyah, and Boudewijn van Dongen. Replaying history
on process models for conformance checking and performance analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):182–192,
2012.

13. H. M. W. Verbeek. BPI Challenge 2012: The Transition System Case. In
M. La Rosa and P. Soffer, editors, BPM 2012 Workshops, volume 132 of LNBIP,
pages 225–226. Springer, 2013.

14. H. M. W Verbeek and W. M. P. van der Aalst. Decomposing replay problems: A
case study. Technical Report BPM-13-09, BPMcenter.org, 2013.

E. Verbeek et al.: Decomposing Replay Problems: A Case Study 235

236 PNSE’13 – Petri Nets and Software Engineering

Part IV

PNSE’13: Short Papers

Building Petri nets tools around Neco compiler

 Lukasz Fronc and Franck Pommereau
{fronc,pommereau}@ibisc.univ-evry.fr

IBISC, Université d’Évry/Paris-Saclay
IBGBI, 23 boulevard de France

91037 Évry Cedex, France

Abstract. This paper presents Neco that is a Petri net compiler: it
takes a Petri net as its input and produces as its output an optimised
library to efficiently explore the state space of this Petri net. Neco is also
able to work with LTL formulae and to perform model-checking by using
SPOT library. We describe the components of Neco, and in particular
the exploration libraries it produces, with the aim that one can use Neco
in one’s own projects in order to speedup Petri nets executions.

Keywords: Petri nets compilation, optimised transition firing, tools de-
velopment, explicit state space exploration

1 Introduction

Neco is a Petri net compiler: it takes a Petri net as its input and produces as
its output a library allowing to explore the Petri net state space. Neco operates
on a very general variant of high-level Petri nets based on the Python language
(i.e., the values, expressions, etc., decorating a net are expressed in Python) and
including various extensions such as inhibitor-, read- and reset-arcs. It can be
seen as coloured Petri nets [1] but annotated with the Python language instead
of the dialect of ML as it is traditional for coloured Petri nets.

Firing transitions of such a high-level Petri net can be accelerated by resorting
to a compilation step: this allows to remove most of the data structures that
represent the Petri net by inlining the results of querying such structures directly
into the generated code. Moreover, instead of relying on generic data structures
and algorithms, specialisations can be performed on a per-transition and per-
place basis. In particular, Neco can exploit various properties of Petri nets in
order to further optimise the representation of a marking (both for execution
time and memory consumption), as well as transitions firing algorithms. Finally,
Neco is able to type most of the Python code embedded in a Petri net thanks
to the typing information on places. This allows to generate efficient C++ code
instead of relying on the interpreted Python code.

All this yields a substantial speedup in transition firing (and consequently in
state-space exploration and explicit model-checking) that was evaluated in [2].
This was also confirmed by the participation of Neco to the model-checking

contest (satellite event of the Petri nets 2012 conference) that showed that
Neco was able to compete with state-of-the-art tools [3].

The goal of this paper is to introduce the main concepts of Neco and its
usage in order to enable tool developers for efficiently using the detailed on-
line documentation and exploit Neco in their own projects. This may concern
most tools that perform explicit exploration of Petri nets states spaces and take
advantage of the speedup that Neco can offer.

Neco is free software released under the Gnu lgpl and it can be downloaded
from http://code.google.com/p/neco-net-compiler where its documenta-
tion is also available, including a tutorial as well as the precise api of libraries
generated by Neco and concrete examples.

2 General architecture and usage guidelines

Neco is a collection of two compilers, one exploration tool and one model-checker:

– neco-compile is the main compiler that produces an exploration engine of
a Petri net (a library);

– neco-explore is a simple exploration tool that computes state spaces using
the engine produced by neco-compile;

– neco-check is compiler for LTL formulae that produces a library to handle
these formulae;

– neco-spot is a LTL model-checker that uses outputs of tools neco-compile
and neco-check, as well as SPOT library for model-checking algorithms [4].

As a compiler, Neco has two backends: the Python backend allows to generate
Python code while the Cython backend generates annotated Python [5] that
can be compiled to C++. Each tool composing Neco is dedicated to a specific
task. Here we focus on compilation but we will also say a few words about the
rest. The detailed compilation workflow is shown in Figure 1. In this section we
assume that we use the Cython backend which is the most efficient one. First
we present how the exploration engine is built and how to use it to build state-
spaces, this part remains globally valid for the Python backend. Next we present
how to perform LTL model-checking within Neco, and this part is currently
not supported by the Python backend. However, there are also features that are
currently only available in the Python backend, like reductions by symmetries [6],
thus not yet available for LTL model-checking.

2.1 Exploration engine builder and state-space construction

The first step using Neco is to create a module that provides exploration prim-
itives: a marking structure, successor functions specific to transitions, and a
global successor function that calls the transition specific ones [2]. As shown
in Figure 2, this exploration engine can be used by a client program (e.g., a
model-checker or a simulator) to perform its task. The generated library directly

240 PNSE’13 – Petri Nets and Software Engineering

ex
tr

ac
t

co
m

-
p

il
at

io
n

tr
ac

e

m
o
d

el

n
e
c
o
-
c
o
m
p
i
l
e

n
e
c
o
-
c
h
e
c
k

n
et

.s
o

ch
ec

ke
r.

so

L
T

L
fo

rm
u

la

in
fo

st
ru

ct
u

re
s

p
ro

d
u

ce
fu

n
ct

io
n

s

p
ro

d
u

ce
m

ar
k
in

g

ex
p

lo
ra

ti
o
n

fu
n

ct
io

n
s

ex
p

lo
ra

ti
on

fu
n

ct
io

n
s

ex
p

lo
ra

ti
on

fu
n

ct
io

n
s

m
ar

k
in

g
st

ru
ct

u
re

co
m

p
il

e
(
c
y
t
h
o
n

+
g
+
+
)

p
ro

d
u

ce
co

m
-

p
il

at
io

n
tr

ac
e

p
ro

d
u

ce
in

fo

co
m

p
il

at
io

n
tr

ac
e

d
ec

om
p

os
e

id
-a

to
m

m
ap

p
ro

d
u

ce
ch

ec
k

fu
n

ct
io

n
s

a
to

m
ic

p
ro

p
os

it
io

n
s

at
om

ic
p

ro
p

o
si

ti
on

s

at
om

ic
p

ro
p

os
it

io
n

s

m
a
in

ch
ec

k
fu

n
ct

io
n

co
m

p
il

e
(
c
y
t
h
o
n

+
g
+
+
)

co
m

p
il

at
io

n
tr

a
ce

sp
o
t

fo
rm

u
la

-
P

y
th

on
-

A
B

C
D

-
P

N
M

L
n
e
c
o
-
e
x
p
l
o
r
e

n
e
c
o
-
s
p
o
t

st
a
te

sp
a
ce

co
u

n
te

r-
ex

am
p

le
if

ex
is

ts

to
ol

s
in

p
u

ts
/

o
u

tp
u

ts
d

at
a

st
ru

ct
u

re
s

ex
te

rn
al

in
te

ra
ct

io
n

in
te

rn
al

in
te

ra
ct

io
n

l
e
g
e
n
d

co
m

p
u

ta
ti

on
s

Fig. 1. Compilation pipeline and exploration tools within Neco (Cython back-
end).

Ł. Fronc et al.: Building Petri Nets Tools around Neco Compiler 241

embeds code from the model (i.e., Petri net annotations) but also relies on ex-
isting data structures (in particular, sets and multisets) forming core libraries,
and accesses them through normalized interfaces. Model code itself has very few
constraints and may use existing libraries. This is detailed in [2].

client program (e.g., model-checker)

model code interfaces

predefined code (core lib, model libs)

exploration engine

data structures:

– Marking

– · · ·

functions:

– succ

– succt1

– init

– · · ·

hand written
by tool programmer

generated
by compiler

assumed
by compiler

provided
by existing libraries

hand written
by modeller

Fig. 2. The exploration engine (plain-line box) and its context (dotted boxes). [2]

This module is built using command neco-compile. To do so, Neco takes a
Petri net model as input which can be described programmatically in Python
using the SNAKES toolkit [7], or using the ABCD formalism [8], or specified
in PNML [9]. Once the model is loaded, some types are inferred allowing to
statically type Python code later, which is an important feature because Cython
language can produce optimized C++ code from annotated Python code [5].
However, because we allow a high degree of expressivity, all source code cannot
be typed and Neco falls back to calling the Python interpreter in such cases.
Basically, if a net contains only black tokens, integers or Boolean values, and
static strings, as well as collections (tuples, lists, sets, dictionaries) of such values,
it will be fully translated into C++.

The next step is to produce a marking structure to represent Petri net states.
It is optimized based on previously discovered types. This allows to use native
types or to generate per-place specialised implementations. Then, we can produce
exploration functions specific to the model (mainly an initial marking function
and successor functions), this allows to efficiently produce state spaces [2].

An additional step is to produce a compilation trace which contains informa-
tion about the marking structure and the model. This metadata is essential for
consistency preservation among tools, and it prevents the user from having to
call each tool with exactly the same options which is error-prone.

242 PNSE’13 – Petri Nets and Software Engineering

The last step is to compile generated code producing a native Python module
that is a shared library which can be used from C++ as a regular library as well
as from Python as a regular module. This is actually done with Cython compiler
and a C++ compiler.

State spaces can be built using neco-explore tool. This tool builds sets of
reachable states, and reachability graphs using a simple exploration algorithm
that aggregates discovered states by repeatedly calling successor functions.

2.2 LTL model checking

LTL model checking is performed using SPOT library [4], however, SPOT cannot
directly handle atomic propositions appearing in LTL formulae which are specific
to the used formalism. Moreover, because our marking structures are model
specific, we also need to generate an atomic proposition checker module for each
compiled net. This is made by neco-check compiler.

This tool takes two inputs, a LTL formula in Neco compatible LTL syn-
tax [10], and compilation metadata extracted from an exploration module (pre-
viously created with neco-compile).

The first step is to decompose the formula, extract atomic propositions and
map them to unique identifiers (“id-atom map”on Figure 1). A simplified formula
where all atomic propositions have been replaced by these identifiers is stored as
a file. This way, atomic propositions can be abstracted away leading to a simple
interface with the checking module. Basically, the interface is a function check

that takes a state and an atomic proposition identifier, and returns the truth
value of the atomic proposition at the provided state.

The next step is the creation of one check function for each atomic propo-
sition, plus the generic check function exposed to users. During this step, using
the compilation trace is essential because we need to create functions that are
compatible with the optimized marking structure, and thus be aware of used
types and memory layout. Finally the generated code is compiled using Cython
compiler and a C++ compiler.

The checker module finalized, it can be used together with the formula file
by neco-spot tool and it will output a counter-example if one exists, i.e., if the
formula is not satisfied.

3 Perspectives

Several new features are already planned for Neco. First, a method to reduce
symmetries based on [6] has been already prototyped in the Python backend.
We would like to implement it in the Cython backend also to achieve better
performance. Next, Neco will be adapted to compute unfoldings à la McMillan
using the approach described in [11, chap.6]. This should be feasible by reusing
most of the code that Neco already generates to discover bindings. Finally, we
would like to implement fast simulation in Neco, which could be a variant of
the current exploration algorithm that would compute only one successor for a

Ł. Fronc et al.: Building Petri Nets Tools around Neco Compiler 243

state instead of all its successors. However, for better performance, we would like
to experiment with a co-routine based implementation of Python [12] in order
to define a highly concurrent architecture while avoiding the overhead of using
threads.

Neco will also participate to the 2013 edition of the model-checking contest.
As a side effect, this will lead us to develop new case studies for Neco (i.e., those
models that are included in the contest), which will be extended later with more
case studies.

Based on case studies, we would like to perform extensive benchmarks of
the Cython backend by comparing it to a combination of the Python backend
with various Python compilers (in particular [13] and [14]) as well as with PyPy
implementation of Python that features efficient just-in-time compilation [15].
This should allow either to drop Cython backend if it happens that it is outper-
formed by other approaches, or, more probably, to define typical situations where
Cython should not be used. In particular, we expect PyPy to be more efficient
on Petri nets that embed a lot of Python objects that cannot be converted to
efficient C++ code.

Finally, we are working on an additional Java backend, allowing to compile
Petri nets and LTL formulae to Java code. This will require some internal re-
organisation of Neco so its core will become language-agnostic while only the
backends will have to deal with language-specific aspects. Thanks to this work,
we expect that more backends will be implemented in the future to handle Petri
nets annotated with a wider variety of languages.

References

1. Jensen, K., Kristensen, L.: Coloured Petri Nets: Modelling and Validation of Con-
current Systems. Springer (2009)

2. Fronc, L., Pommereau, F.: Optimizing the compilation of Petri nets models. In:
Proc. of SUMo’11. Volume 726., CEUR (2011)

3. Kordon, F., Fronc, L., Pommereau, F., et al.: Raw Report on the Model Checking
Contest at Petri Nets 2012. Technical report (2012)

4. Duret-Lutz, A.: LTL translation improvements in Spot. In: Proceedings of the 5th
International Workshop on Verification and Evaluation of Computer and Commu-
nication Systems (VECoS’11). Electronic Workshops in Computing, Tunis, Tunisia,
British Computer Society (2011)

5. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., Smith, K.: Cython:
The best of both worlds. Computing in Science Engineering 13 (2011) 31 –39

6. Fronc, L.: Effective Marking Equivalence Checking in Systems with Dynamic Pro-
cess Creation. In: Infinity’12. Electronic Proceedings in Theoretical Computer
Science, Paris (2012)

7. Pommereau, F.: Quickly prototyping Petri nets tools with SNAKES. Petri net
newsletter (2008)

8. Pommereau, F.: Algebras of coloured Petri nets. LAP LAMBERT Academic
Publishing (2010)

9. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the Petri
Net Markup Language and ISO/IEC 15909-2. In: 10th International workshop on
Practical Use of Colored Petri Nets and the CPN Tools (CPN’09). (2009)

244 PNSE’13 – Petri Nets and Software Engineering

10. Fronc, L.: Neco net compiler wiki. goo.gl/CXrry (2012)
11. Khomenko, V.: Model checking based on Petri net unfolding prefixes. PhD thesis,

PhD thesis, School of Computer Science, University of Newcastle upon Tyne (2002)
12. Tismer, C.: Continuations and stackless Python. In: Proceedings of the 8th Inter-

national Python Conference. (2000)
13. Dufour, M.: Shed skin. http://code.google.com/p/shedskin (2012)
14. Hayen, K.: Nuitka. http://nuitka.net (2012)
15. Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: PyPy’s

tracing JIT compiler. In: Proc. ICOOOLPS ’09, ACM (2009)

Ł. Fronc et al.: Building Petri Nets Tools around Neco Compiler 245

246 PNSE’13 – Petri Nets and Software Engineering

RT-Studio: A tool for modular design and analysis of
realtime systems using Interpreted Time Petri Nets

Rachid Hadjidj and Hanifa Boucheneb

Abstract. RT-Studio (Real Time Studio) is an integrated environment for mod-
eling, simulation and automatic verification of realtime systems modeled as net-
works of Interpreted Time Petri Nets (ITPNs). The tool allows to construct several
abstractions for ITPNs suitable to verify reachability, linear and branching prop-
erties, in addition to a TCTL model checker. In this paper we describe the ITPN
model as a proposed extension to the classical TPN model and describe the mod-
ular modeling capabilities of RT-Studio. The classical railroad crossing model is
used to illustrate these capabilities.

Keywords: Formal verification, Time Petri Nets, timed properties, model check-
ing, simulation

1 Introduction

Interpreted Time Petri Nets (ITPNs) are Time Petri Nets (TPNs) [15, 8, 11] we extended
with bounded data variables to increase their modeling power and expressiveness. TPNs
are Petri nets extended with temporal constraints in the form of time intervals associ-
ated with their transitions [15]. A transition can fire if it is enabled and if the time
elapsed since it became enabled most recently is within its time interval, but must be
fired or disabled if this elapsed time reaches the upper bound of its time interval. With
this extension, TPNs are powerful enough to model realtime systems. However, their
analysis is much more complicated than simple Petri nets. In fact, the state space of
the TPN model is in general infinite due to the continuous aspect of time. Further-
more boundedness is undecidable for this model [5, 4]. Hopefully, a subclass of TPNs
called bounded TPNs, for which reachability is decidable, allows to model most useful
systems. The analysis and verification of the TPN model is generally performed us-
ing model checking techniques. Model checking requires first to represent the behavior
of a system as a finite state transition system1, then specify properties of interest in a
temporal logic (LTL, CTL, CTL*,...), and finally explore the state transition system to
determine whether these properties hold or not [8, 11–13].

In the field of realtime systems modeling and verification, UPPAAL is one of the
best tools available [3]. UPPAAL allows for a modular design of realtime systems using
an extension of the Timed Automata (TA) model [2] instead of the TPN model. In this
extension, variables can be defined, and both guards and actions can be associated with
transitions. In addition to its modeling capabilities, UPPAAL integrates an efficient on
the fly model checker (a key success component) for a subset of TCTL [1].

1 Also called state graph or state space.

For the TPN model, many tools exist for modeling, analysis and verification. Some
well known tools are Roméo [10] and TINA [6]. But to our knowledge, there is no tool
for the TPN model that compares to UPPAAL in terms of modular design, extension
with variables and verification performance. TAPAAL2 [9], as an inspiration from UP-
PAAL, is an interesting reascent addition to the pool of tools dedicated to the modeling
and verification of real time systems using a timed extension of Petri Nets. In this exten-
sion clocks are associated with tokens and time intervals with arcs. A token cannot pass
trough an arc unless its clock is within the time interval of the arc. Time invariants asso-
ciated with places allow to model urgency. The tool, has good verification performance
and a nice graphical user interface capable of component based design. Even if it is a
great step forward toward tightening the gap with UPPAAL in terms of providing a sim-
ilar user experience and modeling power, UPPAAL still has a more powerful modular
design capability in addition to the use of variables which TAPAAL2 lacks. RT-Studio
presented here, attempts to tighten the gap with UPPAAL even more, by allowing for a
similar modular design capability based on the ITPN model. RT-Studio also allows to
simulate these models and analyze them using several means. In the ITPN model, each
transition has, in addition to a time interval, a guard and a set of update operations on
user defined data variables and places markings. An enabled transition can be fired if
it is enabled and the guard associated with it is true in the current state of the model.
When a transition is fired, its updates are applied.

2 Interpreted Time Petri Nets

To increase the modeling power and expressiveness of TPNs , we extended the TPN
model with bounded integer variables and associate guards and update actions with
transitions. The resulting model is called Interpreted TPN (ITPN). As a consequence,
in addition to the normal transition firing requirements, a transition requires also that its
guard is true in the current ITPN state. A guard is a condition on the ITPN state defined
on its marking, firing intervals of transitions, and the state of associated variables. After
a transition t is fired, associated updates are performed. Updates can target variables
associated with the ITPN, but also its marking. An update can only target places not
attached to t for not conflicting with the usual operational semantics of transition firing.
With the new extension, inhibitor arcs and priority on transitions firing can be modeled.
Note that if variables associated with an ITPN are always positive then they can be
implemented as normal places.

Let Q+, R+ and Z be respectively the set of positive rational numbers, the set of
positive real numbers and the set of integers. Let Q+

[] be the set of non empty intervals
of R+ which bounds are respectively in Q+ and Q+ ∪ {∞}. For an interval I ∈ Q+

[],
↓ I and ↑ I denote respectively its lower and upper bounds.

Definition 1. Interpreted Time Petri Net (ITPN)
An ITPN P is a tuple (P, T, V, Pre, Post,m0, v0, Is,G, U) where:

– P is a finite set of places,
– T is a finite set of transitions, with P ∩ T = ∅,
– V is a finite set of integer variables, with (P ∪ T) ∩ V = ∅,

248 PNSE’13 – Petri Nets and Software Engineering

– Pre and Post are respectively the backward and forward incidence functions: P ×
T → N, where N is the set of nonnegative integers,

– m0 : P → N, is the initial marking,
– v0 : V → Z, is the initial valuation on P variables.
– Is : T → Q+

[] associates with each transition t an interval [↓ Is(t), ↑ Is(t)] called
its static firing interval. The bounds ↓ Is(t) and ↑ Is(t) are called the minimal and
maximal static firing delays of t.

– G : T → Bool(P), associate with each transition a guard from the set Bool(P).
Bool(P) is the set of boolean functions on the set SP of states of P (The ITPN
state is defined next).

– U : T → Update(P), where Update(P) is the set of integer functions on the set
SP × (P ∪ V), associates with each transition t an update function on places and
variables associated with P .

Let M be the set of all markings of P . Let m ∈ M be a marking, and t ∈ T a
transition of P . t is said to be enabled in m, iff all tokens required for its firing are
present in m, i.e.: ∀p ∈ P,m(p) ≥ Pre(p, t). We denote by En(m) the set of all
transitions enabled in m. If m results from firing transition tf from another marking,
New(m, tf) denotes the set of all newly enabled transitions in m, i.e.: New(m, tf) =
{t ∈ En(m)|∃p,m(p)− Post(p, tf) < Pre(p, t)}.

Definition 2. ITPN state
The state of ITPN P is a couple (m, v, I), where m is a marking, v is a valuation on
the variables of P , and I is an interval function I : En(m)→ Q+

[] [5].

For a state s = (m, v, I), and t ∈ En(m), I(t) is called the firing interval of t. It is
the interval of time where t can fire. The initial state of P is s0 = (m0, v0, I0), where
I0(t) = Is(t), for all t ∈ En(m0). The state of P evolves either by time progression
or by firing transitions. When a transition t becomes enabled, its firing interval is set to
its static firing interval Is(t). The bounds of this interval decrease synchronously with
time, until t is fired or disabled by another firing. t can fire, if the lower bound ↓ I(t)
of its firing interval reaches 0 and its guard G(t) evaluates to true in the current state of
P , but must be fired, without any additional delay if the upper bound ↑ I(t) of its firing
interval reaches 0 while its guard evaluates true. The firing of a transition takes no time.

Let s = (m, v, I) and s′ = (m′, v′, I ′) be two states of P . We write s θ→ s′, iff state
s′ is reachable from state s after a time progression of θ time units (s′ is also denoted
s+ θ), i.e.:

∃θ ∈ R+,

∧
t∈En(m) θ ≤ ↑ I(t),

m′ = m, v′ = v,
∀t′ ∈ En(m′), I ′(t′) = [max(↓ I(t′)− θ, 0), ↑ I(t′)− θ].

We write s t→ s′ iff state s′ is immediately reachable from state s by firing transition t.
i.e.:

R. Hadjidj et al.: RT-Studio: A Tool for Modular Design and Analysis 249

t ∈ En(m),
↓ I(t) = 0 ∧G(t, s) = true,

∀p ∈ P
{
m′(p) = m(p)− Pre(p, t) + Post(p, t) if Pre(p, t) 6= 0 ∨ Post(p, t) 6= 0,
m′(p) = U(t, s, p) otherwise,

∀x ∈ V, v′(x) = U(t, s, x),

∀t′ ∈ En(m′)

{
I ′(t′) = Is(t′) if t′ ∈ New(m′, t),
I ′(t′) = I(t) otherwise.

Definition 3. ITPN state space
The state space of an ITPN model P is the structure (S,→, s0), where:

– s0 = (m0, v0, I0) is the initial state of P ,

– s→ s′ iff either s θ→ s′ for some θ ∈ R+ or s t→ s′ for some t ∈ T ,
– S = {s|s0 ∗→ s}, where ∗→ is the reflexive and transitive closure of→, is the set of

reachable states of P .

3 Modular design of realtime system

RT-Studio uses the concept of programming project2 to allow for a modular design of a
realtime system. A project is basically a collection of ITPN components, and a system
description file. An ITPN component is actually a template with possible parameters.
The system description file is where the system configuration is specified. It consists of
a list shared variable declarations and instantiations of ITPN components.

Instances of ITPN components within the same project can communicate and syn-
chronize using data variables defined in the system description file, and using shared
transitions and shared places. A transition or a place is shared between several ITPNs if
it has the same name and set as external (not local) in each one of them. When synchro-
nizing ITPN components instances, shared places with the same name are merged in
one single place. The marking of that place is the maximum marking of synchronized
places. For transitions, the synchronization is little bit more demanding. A transition
meant for synchronization is implicitly associated with a signaling channel having the
same name. Transitions which names end with and exclamation mark ’!’ represent send
actions on associated channels. Those with names ending with an interrogation mark
’?’ represent receiving actions on associated channels. When instances of ITPN com-
ponents are synchronized, transitions representing complimentary actions are synchro-
nized by merging each sending transition with a copy of a receiving transition having
the same name. A copy of a transition is created by duplicating the transition and all its
ingoing and outgoing arcs.

Each ITPN component element (place, transition, arc), including the ITPN itself
has an extendable list of attributes (properties). When an ITPN component or an ITPN
component element is created, a default list of attributes is associated with it. These
attributes describe its different features, like the number of tokens for a place, the guard
and update actions for a transition, the list of parameters for the ITPN component,

2 A collection of files.

250 PNSE’13 – Petri Nets and Software Engineering

including the visual appearance of ITPN elements like the color, the shape, the border
size, etc. The Attribute viewer is a panel for editing, modify and adding new attributes
for the currently selected ITPN element. Added attributes can be referred to in guards
and updates actions of transitions. Three attribute types are supported in the current
version of RT-Studio: number (real value), boolean and string.

To analyze a system designed as a project, its system description file need to be
compiled. The compilation consists in synchronizing all ITPN components instances in
one single ITPN. In the case of any error, error messages are displayed in a message
pane at the bottom of the main window, otherwise the synchronized ITPN is generated
and displayed in a separate panel and ready to be analyzed if it is self contained3. Note
that a self contained ITPN components can be analyzed without compilation.

4 Functionality

RT-Studio’s verification and analysis capabilities can be grouped in three categories:
abstract state spaces construction, model checking and simulation. Both known char-
acterizations of the TPN state (interval and clock characterizations) [11] can be used
to construct abstractions for ITPN models. For the interval characterization, computed
abstractions are: the classical State Class Graph (SCG), the Strong State Class Graph
(SSCG) and the Atomic State Class Graph (ASCG) [7]. Both the SCG and the SSCG
preserve linear properties, but the SCG is a better alternative for linear properties as
it is smaller and faster to compute. On the other hand, the SSCG is used as a start-
ing point in a refinement process to generate the ASCG which preserves branching
properties (CTL*). During the refinement, state classes are split by linear constraints
so that each state captured in a sub class has a successor in each one of the following
classes. Such sub classes are said to be atomic, and atomicity of all classes ensures
preservation of CTL* properties [8]. For the clock characterization of states, computed
abstractions are: the Concrete State Zone Graph (CSZG) for linear properties [11], and
its atomic version, the ACSZG [11] for CTL* properties. Compared with the ASCG,
the ACSZG is in general smaller and faster to compute. For reachability properties,
RT-Studio implements three contraction techniques (by inclusion, by convex combi-
nation and by convex hull) to rapidly generate contracted versions of the SCG, SSCG
and CSZG which are suitable to verify reachability properties [11, 14]. It also imple-
ments several post contraction operations to further contract abstractions after they are
constructed, and a minimizer under bisimulation. After computing any abstraction, RT-
Studio allow the user to explore and edit it graphically. It also generates some statistics
about the abstraction like its size (the number of nodes and edges) and the generation
time. To verify properties, RT-Studio implements two model-checkers: a classical CTL
model-checker and an innovative TCTL model-checker based on the forward on the
fly verification technique described in [12, 13]. Finally, the simulator implemented in
RT-studio allows for an assisted and interactive generation of any abstraction. Using the
simulator, the user can intervene during the generation process, guide the generator to
explore any branch of the state space graph being constructed, and even alter the model

3 A self contained ITPN has no parameters and does not need to be synchronized with other
ITPNs.

R. Hadjidj et al.: RT-Studio: A Tool for Modular Design and Analysis 251

during the simulation if needed. RT-Studio stores a project in a single XML file. It also
allows to import or export self contained ITPNs to a text file in a simple format accepted
by the TINA toolbox [6]. Generated state spaces can also be exported in a text format
supported by many model checkers.

open

m

m

[0,0]

c omin g

leaving

app

app

app

exit

exit

i n far
m

m - 1

m - 1

down

up

down L lowering

raising

R

closed

up

down

close_i

in_i

on_i

ex_i

left_i

exit

far_i

Controller
Train

Barrier

[0,0]

[0,0]

[1,2]

[1,2]

[3,5] [2,4]

2
2

Fig. 1. The level crossing TPN model

Fig. 2. Screen shots from the project "level crossing model": the controller, the barrier, the train.
The picture at the right bottom is the SCG of the model

252 PNSE’13 – Petri Nets and Software Engineering

Fig. 3. RT-Studio interface

5 An illustrative example

As an illustrative example, we consider the classical Railroad Crossing model. Com-
ponents of this system are shown in Figure 1 and also in Figure 2 as screen shots from
RT-Studio. The ITPN model of n trains crossing concurrently the road is obtained by
synchronously composing the controller model with its parameter m4 set to n, the bar-
rier model, and n instances of the train model. In Figure 2, we can see the system
description file for the railroad crossing project where two instances of the train model
(Train1 and Train2) are synchronized with one instance of the barrier model (Barrier)
and one instance of controller model (Controller). After compiling the project, we ob-
tain the synchronized ITPN of the whole system shown in Figure 3. Note that for clarity,
in Figure 3 each transition app is actually the superposition of two app transitions; one
synchronized with first train instance, the other one with the second train instance. At
the right bottom of Figure 2, we can see the SCG of the synchronized ITPN computed
by RT-studio.

4 m is a number of tokens.

R. Hadjidj et al.: RT-Studio: A Tool for Modular Design and Analysis 253

6 Installation

RT-Studio can be downloaded from http://faculty.qu.edu.qa/rhadjidj/rt-studio.aspx. The
tool comes in a Zip file that includes three files : RT-studio.jar, realtime.exe, readme.txt,
and a directory for examples. RT-studio.jar is a Java executable representing the graph-
ical interface of the tool. realtime.exe is the engine written in C++ for performance.
Installing the tool consists in simply unziping the zip file in chosen directory. Double
clicking on the file RT-studio.jar launches the tool.

On the download web page there are video tutorials that explain how to install and
use the tool to model, simulate and verify properties.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real-time. Information and
Computation, 104(1):2–34, 1993.

2. R. Alur and D. Dill. Automata for modelling real-time systems. In In Proc. Of ICALP’90,
volume 443 of LNCS, pages 322–335. Springer-Verlag, 1990.

3. G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and W. Yi. Uppaal im-
plementation secrets. In In Proc. of FTRTFT-02, pages 3–22, 2002.

4. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using
time petri nets. IEEE Trans. on Software Eng, 17(3):259–273, 1991.

5. B. Berthomieu and M. Menasche. An enumerative approach for analyzing time petri nets.
In In Proc. of IFIP83, volume 9, pages 41–46, September 1983.

6. B. Berthomieu, P.O. Ribet, and F. Vernadat. The tool tina – construction of abstract state
spaces for petri nets and time petri nets. In International Journal of Production Research,
2004.

7. B. Berthomieu and F. Vernadat. State class constructions for branching analysis of time petri
nets. In In Proc. of TACAS’03, volume 2619 of LNCS, pages 442–457. Springer-Verlag,
2003.

8. H. Boucheneb and R. Hadjidj. Ctl* model checking for time petri nets. Theoretical Computer
Science, TCS 353(1-3):208–227, 2006.

9. Alexandre David, Lasse Jacobsen, Morten Jacobsen, Kenneth Yrke Jørgensen, Mikael H.
Møller, and Jirí Srba. Tapaal 2.0: Integrated development environment for timed-arc petri
nets. In TACAS, pages 492–497, 2012.

10. D. Lime G. Gardey, M. Magnin, and O.H. Roux. Roméo: A tool for analyzing time petri
nets. In In 17th International Conference on Computer Aided Verification (CAV’05), 2005.

11. R. Hadjidj. Analyse et validation formelle des systèmes temps réel. Ph.D. Theses,University
of Montreal (Ecole plytechnique), 2006.

12. R. Hadjidj and H. Boucheneb. On the fly TCTL model checking for time petri nets using the
state class method. In In Proc of ACSD’06, pages 111–120. IEEE Computer Society Press,
2006.

13. R. Hadjidj and H. Boucheneb. On the fly TCTL model checking for time petri nets. Theo-
retical Computer Science, TCS 410(42):4241–4261, 2009.

14. R. Hadjidj and H. Boucheneb. Efficient reachability analysis for time petri nets. IEEE
Transaction on Computers, 60(8):1085–1099, 2011.

15. P. Merlin and D. J. Farber. Recoverability of communication protocols - implication of a
theoretical study. IEEE Trans. on Communications, 24(9):1036–1043, 1976.

254 PNSE’13 – Petri Nets and Software Engineering

Part V

PNSE’13: Poster Abstracts

A Tool to Synthesize Intelligible State Machine
Models from Choreography using Petri Nets?

Toshiyuki Miyamoto1 and Hiroyuki Oimura1

Graduate School of Engineering, Osaka University,
Suita, Osaka 565-0871, Japan

miyamoto@eei.eng.osaka-u.ac.jp

Abstract. Application of service-oriented architecture, which builds the
entire system by a combination of independent software components, to
a wide variety of computer systems is expected. The problem to synthe-
size state machine models of the services from a communication diagram
representing the overall specifications of service interaction is known as
the choreography realization problem. It should be minded on automatic
synthesis that software models should be simple to be understood easily
by software engineers. We have proposed a method to synthesize hier-
archical state machine models for the choreography realization problem
in the last PNSE. In this paper, we present a prototypical tool for the
method.

In recent years, the internationalization of activities and information tech-
nology in the enterprise has intensified competition between companies. Under
such circumstances, service-oriented architecture (SOA)[6] has been attracting
attention as the architecture of information systems in the enterprise. In SOA,
an information system is built by composing independent software units called
services.

In SOA, the problem to synthesize the concrete model from an abstract
specification is known as the choreography realization problem[5]. In which the
abstract specification, called choreography, is defined as a set of interactions
among services, which are given in a dependency relation of messages sent and
received; the concrete model is called the service implementation which defines
the behavior of the service. This paper utilizes the communication diagram and
the state machine of UML 2.x[4] to describe the choreography and the service
implementation, respectively.

Bultan and Fu formally introduced the choreography realization problem in
[2]. They used collaboration diagrams of UML1.x and showed some conditions
for a given choreography to be realizable. In addition, they showed a method
to represent the service implementation as the state space in which a state was
defined as a set of unsent messages, and they also showed a method to map to
a set of finite state machines. However, it is not intelligible because the number
of states increases exponentially as the number of messages increases.
? This work was supported by KAKENHI (23500045).

Table 1. Number of simple states(NSS), transitions(NT), and guards(NG) of synthe-
sized state machines.

ex service message projection CSCB
NSS NT NG NSS NT NG

1 4 10 32 52 0 11 32 4
2 3 4 7 10 0 7 10 0
3 4 6 15 23 0 8 15 0
4 4 7 17 25 0 7 20 0
5 5 7 15 22 0 10 18 0
6 6 12 48 88 0 16 36 1
7 5 10 23 32 0 16 27 4

Antonio et al. have experimentally evaluated the relationship between met-
rics and intelligibility of the state machines by measuring time to understand
state machines[1]. According to the result, state machines are intelligible the
smaller the following metrics: the number of simple states (NSS), the number of
transitions (NT), and the number of guards (NG).

In [3], we have proposed a method to synthesize hierarchical state machines
by using Petri nets from a choreography defined by single communication dia-
gram, where the method is called the CSCB method. So far, we have developed
a prototypical tool of the CSCB method and the projection method in [2], and
evaluated the CSCB method on several examples. Table 1 shows the results,
and the CSCB method is better than the projection method in term of several
metrics for the intelligibility by Antonio et al. We, however, found some points
to be improved in the algorithm and the intelligibility.

We are going to import the prototypical tool into an UML modeling tool
as a plug-in and extend the CSCB method so as to synthesize more intelligible
machines.

References

1. Antonio Cruz-Lemus, J., Genero, M., Piattini, M.: Metrics for UML Statechart
Diagrams. In: Genero, M., Piattini, M., Calero, C. (eds.) Metrics for Software Con-
ceptual Models, pp. 237–272. Imperial College Press, London (2005)

2. Bultan, T., Fu, X.: Specification of realizable service conversations using collabora-
tion diagrams. Service Oriented Computing and Applications 2(1), 27–39 (2008)

3. Miyamoto, T., Hasegawa, Y.: A Petri Net Approach to Synthesize Intelligible State
Machine Models from Choreography. In: International Workshop on Petri Nets and
Software Engineering 2012. pp. 222–236 (Jun 2012)

4. OMG: Unified modeling language, http://www.uml.org/
5. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service choreographies.

In: Proceedings of the 4th international conference on Web services and formal
methods. pp. 1–16 (2008)

6. Thomas, E.: Service-Oriented Architecture. Prentice Hall (2004)

258 PNSE’13 – Petri Nets and Software Engineering

Transforming Platform Independent CPN Models
into Code for the TinyOS Platform:
A Case Study of the RPL Protocol

Vegard Veiset and Lars Michael Kristensen

Department of Computing, Bergen University College
Email: vegard.veiset@stud.hib.no,lmkr@hib.no

Abstract. TinyOS is a widely used platform for the development of net-
worked embedded systems offering a programming model targeting re-
source constrained devices. We present a software engineering approach
where Coloured Petri Net (CPNs) models are used as a starting point for
developing protocol software for the TinyOS platform. The approach con-
sists of five refinement steps where a platform-independent CPN model is
gradually transformed into a platform-specific model that enables auto-
matic code generation. To evaluate our approach, we use it to obtain an
implementation of the IETF RPL routing protocol for sensor networks.

Introduction. Model-based software engineering and verification have several
attractive properties in the development of flexible and reliable software sys-
tems. In order to fully leverage modelling investments, it is desireable to use the
constructed models also for the implementation of the software on the platform
under consideration. Coloured Petri Nets [2] (and Petri Nets in general) con-
stitute a general purpose modelling language supporting platform-independent
modelling of concurrent systems. Hence, in most cases, such models are too ab-
stract to be used directly to implement software. In order to bridge the gap
between abstract and platform independent CPN models and the implementa-
tion of software to be deployed, the concept of pragmatics was introduced in
[4]. Pragmatics are syntactical annotations that can be added to a CPN model
and used to direct code generation for a specific platform. The contribution of
this paper is an approach [5] that exploits pragmatics in combination with a five
step refinement methodology to enable code generation for the TinyOS platform.
Applications for TinyOS [3] are implemented using the nesC programming lan-
guage (a dialect of C) providing an event-based split-phase programming model.
An application written in nesC is organised into a wired set of modules each
providing an interface consisting of commands and events.

Refinement Steps. The model refinement starts from a platform independent
CPN model constructed typically with the aim of specifying the protocol oper-
ation and performing model checking of the protocol design. Each step consists
of a transformation that uses the constructs of the CPN modelling language to
add details to the model. Furthermore, in each step pragmatics are added that
direct the code generation performed after the fifth step:

Step 1: Component Architecture consists of annotating CPN submodules
and substitution transitions corresponding to TinyOS components, and make
explicit the interfaces used and provided by components.

Step 2: Resolving Interface Conflicts resolves interface conflicts allowing
components to use multiple instances of an interface. This is done by an-
notating CPN arcs with information providing locally unique names.

Step 3: Component and Interface Signature adds type signatures to com-
ponents and interfaces by creating explicit submodules for command and
events, and by refining colour sets to reflect the interface signatures.

Step 4: Component Classification further refines the components by classi-
fying them into four main types: timed, external, boot, and generic.

Step 5: Internal Component Behaviour consists of refining the modelling
of the individual commands and events such that control flow and data
manipulation become explicit and organised into atomic statement blocks.

After the fifth refinement step has been performed, the CPN model includes
sufficient detail to be used as a basis for automated code generation.

The RPL Protocol and Code Generation. To evaluate our approach on
an industrial-sized example, we have conducted a case study based on the RPL
routing protocol [1] developed by the Internet Engineering Task Force. The RPL
protocol allows a set of sensor nodes to construct a destination-oriented directed
acyclic graph which can be used for multi-hop communication between sensor
nodes. To support the automatic code generation for TinyOS, we have developed
a software prototype in Java that performs a template-based model-to-text trans-
formation on the models resulting from the fifth refinement step. The software
prototype relies on the Access/CPN framework [6] to load CPN models created
with CPN Tools. The code generator performs a top-down traversal of the CPN
model where code templates are selected according to the pragmatic annotations
on the CPN model elements encountered.

References

1. T. Winter et. al. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.
RFC 6550, 2012. Internet Engineering Task Force.

2. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer, 9(3-4):213–254, 2007.

3. P. Levis. TinyOS Programming. Cambridge University Press, 2009.
4. K. Simonsen, L.M. Kristensen, and E. Kindler. Code Generation for Protocols from

CPN Models Annotated with Pragmatics. In Proc. of NWPT’12, volume 403 of
Report in Informatics, pages 46–48. University of Bergen, 2012.

5. V. Veiset. An Approach to Semi-Automatic Code Generation for the TinyOS Plat-
form using Coloured Petri Nets. Master’s thesis, Bergen University College, 2013.

6. M. Westergaard. Access/CPN 2.0: A High-Level Interface to CPN Models. In Proc.
of ICATPN’11, volume 6709 of LNCS, pages 328–337. Springer, 2011.

260 PNSE’13 – Petri Nets and Software Engineering

Editor: Daniel Moldt

Proceedings of the
International Workshop on

Mod eling and
B usiness
E nvironments
ModBE’13

University of Hamburg
Department of Informatics

These proceedings are published online by the editor as Volume 989 at

CEUR Workshop Proceedings
ISSN 1613-0073
http://ceur-ws.org/Vol-989

Copyright for the individual papers is held by the papers’ authors. Copying is per-
mitted only for private and academic purposes. This volume is published and copy-
righted by its editors.

Preface

These are the proceedings of the International Workshop on Modeling and
Business Environments (ModBE’13) in Milano, Italy, June 24, 2013. It is
a co-located event of Petri Nets 2013, the 34th international conference on
Applications and Theory of Petri Nets and Concurrency.

More information about the workshop can be found at

http://www.informatik.uni-hamburg.de/TGI/events/modbe13/

Business environments are a central application domain for modeling ap-
proaches. Basic paradigms of these approaches correspond to their central
concepts, such as processes, objects, components, agents, services or organi-
zations. Their inherent properties allow an adequate Business/IT-Alignment.
Within the models and systems of this alignment several principle notions
need to be incorporated, such as distribution, concurrency, correctness and
adaptability. In this workshop modeling approaches will be discussed from
various perspectives with several means.

While ModBE’13 (Modeling and Business Environments) will take place
as a satellite event of Petri Nets 2013 other modeling techniques than Petri
nets and their means are explicitly welcome. Furthermore, experts from the
application domain will challenge the technical and conceptual solutions.
ModBE’13 shall provide a forum for researchers from interested communities
to investigate, experience, compare, contrast and discuss solutions for mod-
eling in business environments. During the workshop a part of the available
time is reserved for a group wise discussion of challenging questions.
The program committee consists of:

Bernhard Bauer (Germany)
Olivier Boissier (France)
Fabian Büttner (France)
Jean-Michel Bruel (France)
Christine Choppy (France)
Ernesto Damiani (Italy)
Patrick Delfmann (Germany)
Susanna Donatelli (Italy)
Joaquín Ezpeleta Mateo (Spain)
Walid Fdhila (Austria)
Michael Felderer (Austria)
Luciano García-Bañuelos (Estonia)
Holger Giese (Germany)
Paolo Giogini (Italy)
Vincent Hilaire (France)
Lom Messan Hillah (France)
Viviana Mascardi (Italy)
Maristella Matera (Italy)

266 ModBE’13 – Modeling and Business Environments

Florian Matthes (Germany)
Jan Mendling (Austria)
Daniel Moldt (Germany) (Chair)
Ambra Molesini (Italy)
Berndt Müller (United Kingdom)
Andreas Oberweis (Germany)
Andrea Omicini (Italy)
Sietse Overbeek (Germany)
Alexei Sharpanskykh (The Netherlands)
Christophe Sibertin-Blanc (France)
Carla Simone (Italy)
Ingo Timm (Germany)
Ferucio Laurentiu Tiplea (Rumania)
Adelinde Uhrmacher (Germany)
Ulrich Ultes-Nitsche (Switzerland)
Wamberto Vasconcelos (United Kingdom)
Jan Martijn van der Werf (The Netherlands)
Mathias Weske (Germany)
Manuel Wimmer (Austria)

We received five high-quality contributions for which at least four reviews
were made. In addition we received two posters. The program committee
has accepted three of them for full presentation. Furthermore the commit-
tee accepted one papers as short presentations. Two more contributions were
accepted as posters.

Furthermore, we would like to thank our colleagues in the local organization
team at the University of Milano, Italy, for their support.

Without the enormous efforts of authors, reviewers, PC members and the or-
ganizational team this workshop wouldn’t provide such an interesting booklet.

Thanks!
Daniel Moldt Hamburg, June 2013

ModBE’13 Proceedings

Part VI ModBE’13: Invited Talk

Knowledge and Business Intelligence Technologies in Cross-
Enterprise Environments for Italian Advanced Mechanical
Industry
Ernesto Damiani and Paolo Ceravolo . 271

Part VII ModBE’13: Long Presentations

Optimizing Algebraic Petri Net Model Checking by Slicing
Yasir Imtiaz Khan and Matteo Risoldi . 275

A Proposal for the Modeling of Organizational Structures
and Agent Knowledge in MAS
Lawrence Cabac, David Mosteller, Matthias Wester-Ebbinghaus 295

Mining Declarative Models Using Time Intervals
Jan Martijn van der Werf, Ronny Mans and Wil van der Aalst 313

Part VIII ModBE’13: Short Presentation

Improving Emergency Department Processes Using Coloured
Petri Nets
Khodakaram Salimifard, Seyed Yaghoub Hosseini and Mohammad
Sadegh Moradi . 335

Part IX ModBE’13: Poster Abstracts

Advantages of a Full Integration between Agents and
Workflows
Thomas Wagner and Lawrence Cabac . 353

Cloud Transition for QoS Modeling of Inter-Organizational
Workflows
Sofiane Bendoukha and Lawrence Cabac . 355

Part VI

ModBE’13: Invited Talk

Knowledge and Business Intelligence
Technologies in Cross-Enterprise Environments

for Italian Advanced Mechanical Industry

Ernesto Damiani and Paolo Ceravolo

SESAR Lab, Department of Computer Science,
Università degli Studi di Milano, Italy

http://sesar.dti.unimi.it

Abstract. Today’s industry is pushed by the competitive pressure to
revise the business model by opening the organizational boundaries to
suppliers, clients and partners. As a side effect, knowledge sharing within
the market increases and organizations may lose control on strategical
knowledge that can be exploited by competitors. For this reason process
monitoring today cannot fail in controlling the collaboration activities
established inside and outside the organization.

KITE.it is a project, founded by the italian Ministry of Economic Devel-
opment, aimed at proposing a methodological and technological frame-
work to support the italian mechanical industry in adopting advanced
business network approached.1 The Kite framework is aimed at driving
the management process in the identification of the business values creat-
ing the network and in supporting the strategical analysis by monitoring
both the operational and collaborative processes.

The metric system was designed to integrate in a unified analysis metrics
insisting on the strategical, operational and collaborative level. From the
technological point of view this is achieved by decoupling the monitoring
format from the execution logs that can be integrated in the Kite model
from heterogeneous data sources.

1 Website: http://www.kite-project.it/en GB/home

272 ModBE’13 – Modeling and Business Environments

Part VII

ModBE’13: Long Presentations

Optimizing Algebraic Petri Net Model Checking
by Slicing

Yasir Imtiaz Khan and Matteo Risoldi

University of Luxembourg, Laboratory of Advanced Software Systems
6, rue R. Coudenhove-Kalergi, Luxembourg
{yasir.khan,matteo.risoldi}@uni.lu

Abstract. High-level Petri nets make models more concise and read-
able as compared to low-level Petri nets. However, usual verification
techniques such as state space analysis remain an open challenge for
both because of state space explosion. The contribution of this paper is
to propose an approach for property based reduction of the state space
of Algebraic Petri nets (a variant of high-level Petri nets). To achieve
the objective, we propose a slicing algorithm for Algebraic Petri nets
(APNSlicing). The proposed algorithm can alleviate state space even for
certain strongly connected nets. By construction, it is guaranteed that
the state space of sliced net is at most as big as the original net. We
exemplify our technique through the running case study of car crash
management system.

Key words: High-level Petri nets, Model checking, Slicing

1 Introduction

Petri nets (PNs) are a well-known low-level formalism for modeling concurrent
and distributed systems. Various evolutions of PNs have been created, among
others High-level Petri nets (HLPNs), that raise the level of abstraction of PNs
by using complex structured data [14]. However, HLPN can be unfolded (i.e.,
translated) into a behaviourally-equivalent low-level PN.

For the analysis of concurrent and distributed systems (including those mod-
eled using PNs or HLPNs) model checking is a common approach, consisting in
verifying a property against all possible states of a system. A typical drawback of
model checking is its limits with respect to the state space explosion problem: as
systems get moderately complex, completely enumerating their states demands
a growing amount of resources, which in some cases makes model checking im-
practical both in terms of time and memory consumption [2, 4, 8, 16]. This is
particularly true for HLPN models, as the use of complex data (with possibly
large associated data domains) makes the number of states grow very quickly.

As a result, an intense field of research is targeting to find ways to opti-
mize model checking, either by reducing the state space or by improving the
performance of model checkers. A technique called PN slicing falls into the first
category. It proposes to reduce the state space size by syntactically reducing a

PN model, taking only the portion of the model that impacts the properties to
be verified. The resultant model will typically have a smaller state space, thus
reducing the cost of model checking.

Slicing was defined for the first time in [17] in the context of program de-
bugging. The proposition was aimed at using program slicing for isolating the
program statements that may contain a bug, so that finding this bug becomes
simpler for the programmer. The first algorithm about PN slicing presented by
Chang et al. [3] slices out all sets of paths in the PN graph, called concurrency
sets, such that all paths within the same set should be executed concurrently.
Some further refined PN slicing algorithms are proposed in [10–13].

One limitation of the cited approaches is that they only apply to low-level
PNs. In order to be applied to HLPNs they need to be adapted to take into
account data types.

In this work, we propose a slicing algorithm that is adapted to Algebraic Petri
nets (APNs, a variant of HLPNs). To the best of our knowledge, there does not
exist any algorithm for slicing APNs. The proposed algorithm iteratively builds
a subnet from a given APN, according to a slicing criterion that is derived from
the property to be verified. The resulting subnet preserves LTL−X properties
under weak fairness assumptions.

UNFOLDING

APN-MODEL

APN-MODEL

PROPERTY

SLICING

UNFOLDED

APN-MODEL

PERFORMING

VERIFICATION

ON SLICED

APN-MODEL

PROPERTY

FULFILLED?
NOTIFICATION

COUNTER

EXAMPLE

YESNO

REFINING

APN-MODEL

EXTRACTING

CRITERION

PLACE(S)

Fig. 1. Process Flowchart of slicing based verification of APN models

Fig.1, gives an overview of the proposed approach for slicing based verifi-
cation of APNs using Process Flowchart. At first, APN-model is unfolded and
then by taking property into an account criterion places are extracted. After-

276 ModBE’13 – Modeling and Business Environments

wards, slicing is performed for the criterion places. Subsequently, verification is
performed on the sliced unfolded APNs. The user may use the counterexample
to refine the APN-model to correct the property.

The rest of the work is structured as follows: we give basic definitions and
concepts of the Algebraic Petri nets (APNs) in section 2. Section 3, illustrates the
steps of slicing based verification of APN-models shown in Fig.1. Details about
the underlying theory and techniques are given for each activity of the process.
In the section 4, we discuss related work and a comparison with the existing
approaches. A small case study from the domain of crisis management system
(a car crash management system) is taken to exemplify the proposed slicing
algorithm in section 5. An experimental evaluation of the proposed algorithm is
performed in section 6. In the section 7, we draw conclusions and discuss future
work concerning to the proposed work.

2 Basic Definitions

In this section, we give basic formal definitions of algebraic specifications used
in this paper. Formal definitions, propositions, lemmas and theorems are taken
as is or with slight modifications from [6,12,14,15].

Definition 1. A signature Σ = (S,OP) consists of a set S of sorts, OP =
(OPw,s)w∈S∗,s∈S is a (S∗×S)−sorted set of operation names of OP. For ε being
the empty word, we call OPε,s the set of constant symbols.

Definition 2. A set X of Σ-variables is a family X = (Xs)s∈S of variables set,
disjoint to OP.

Definition 3. The set of terms TOP,s(X) of sort s is inductively defined by:
1. Xs ∪OPε,s ⊆ TOP,s(X);
2. op(t1, . . . , tn) ∈ TOP,s(X) for op ∈ OPs1,...,sn,s, n ≥ 1 and ti ∈ TOP,si(X)

(for i = 1, . . . , n).

The set TOP,s ≡ TOP,s(∅) contains the ground terms of sort s, TOP (X) ≡⋃
s∈S TOP,s(X) is the set of Σ-terms over X and TOP ≡ TOP (∅) is the set of

Σ-ground terms.

Definition 4. A Σ-equation of sort s over X is a pair (l,r) of terms l, r ∈
TOP,s(X).

Definition 5. An algebraic specification SPEC = (Σ,E) consists of a signature
Σ = (S,OP) and a set E of Σ-equations.

Definition 6. A Σ-algebra A = (SA, OPA) consist of a family SA = (As)s∈S of
domains and a family OPA = (Nop)op∈OP of operations Nop : As1×. . . Asn → As
for op ∈ OPs1...sn,s if op ∈ OPε,s, Nop congruent to an element of As.

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 277

Definition 7. An assignment of Σ-variables X to a Σ-algebra A is a mapping
ass : X → A,with ass(x) ∈ Asiff x ∈ Xs. ass is canonically extended to ass :
TOP (X)→ A, inductively defined by

1. ass(x) ≡ ass(x) for x ∈ X;
2. ass(c) ≡ Nc for c ∈ OPε,s;
3. ass(op(t1, . . . , tn)) ≡ Nop(ass(t1)), . . . , ass(tn)) for op(t1, . . . , tn) ∈ TOP (X).

Definition 8. Let SPEC-algebra is SPEC = (Σ,E) in which all equations in E
are valid. Two terms t1 and t2 in TOP (X) are equivalent (t1 ≡E t2) iff for all
assignments ass : X → A, ass(t1) = ass(t2).

Definition 9. Let B be a set. A multiset over B is a mapping msB: B → N. εB
is the empty multiset with msB(x) = 0 for all x ∈ B. A multiset is finite iff
{∀b ∈ B | msB(b) 6= 0} is finite.

Definition 10. Let MSB = {msB: B → N} be a set of multisets. The addition
function of multisets is denoted by + : MSB ×MSB →MSB. Let ms1B ,ms2B
and ms3B ∈ MSB. (ms1B + ms2B) = ms3B ⇐⇒ ∀b ∈ B,ms3B(b) =
ms1B(b) +ms2B(b).

The subtraction function of multisets is denoted by − : MSB×MSB →MSB.
Let ms1B ,ms2B and ms3B ∈ MSB. (ms1B − ms2B) = ms3B ⇐⇒ ∀b ∈
B,ms1B(b) ≥ ms2B(b)⇒ ∀b ∈ B,ms3B(b) = ms1B(b)−ms2B(b).

Definition 11. Let MSB = {msB: B → N} be a set of multisets. Let ms1B ,
ms2B ∈ MSB . We say that ms1B is smaller than or equal to ms2B (denoted
by ms1B ≤ ms2B) iff
∀b ∈ B,ms1B(b) ≤ ms2B(b). Further, we say that ms1B 6= ms2B iff
∃b ∈ B,ms1B(b) 6= ms2B(b). Otherwise, ms1B = ms2B .

Definition 12. A marked Algebraic Petri Net APN =< SPEC,P, T, F, asg,
cond, λ,m0 > consist of
◦ an algebraic specification SPEC = (Σ,E),
◦ P and T are finite and disjoint sets, called places and transitions, resp.,
◦ F ⊆ (P × T) ∪ (T × P), the elements of which are called arcs,
◦ a sort assignment asg : P → S,
◦ a function, cond : T → Pfin(Σ − equation), assigning to each transition a

finite set of equational conditions.
◦ an arc inscription function λ assigning to every (p,t) or (t,p) in F a finite

multiset over TOP,asg(p),
◦ an initial marking m0 assigning a finite multiset over TOP,asg(p) to every

place p.

Definition 13. The preset of p ∈ P is •p = {t ∈ T |(t, p) ∈ F} and the postset
of p is p• = {t ∈ T |(p, t) ∈ F}. The pre and post sets of t ∈ T defined as: •t
= {p ∈ P |(p, t) ∈ F} and t• = {p ∈ P |(t, p) ∈ F}.

Definition 14. A marking m of an APN assigns to every place p ∈ P a multiset
over TOP,asg(p).

278 ModBE’13 – Modeling and Business Environments

Definition 15. An occurrence mode is a ground substitution of cond(t),m(p),
λ(p, t) and λ(t, p) where p ∈ P, t ∈ T . Obviously, ground substitutions are the
syntactical representations of assignments.

Definition 16. A transition t ∈ T of an APN is enabled in an occurrence mode
at a marking m iff for all p in P with (p,t) ∈ F, λ(p, t) ≤ m(p). If a transition
t is enabled in an occurrence mode at a marking m, then t may occur returning
the marking m′, where for all p ∈ P, m′(p) = m(p)− λ(p, t) + λ(t, p). We write
m[t〉m′ in this case.

Definition 17. A firing sequence σ of a marked APN is maximal iff either σ is
of infinite length or 6 ∃t ∈ T : m0([σt〉), where |σ| ∈ (N ∪ {∞}).

Definition 18. Let σ = t1, t2 . . . be an infinite firing sequence of APN with
mi[ti+1〉mi+1,∀i, 0 ≤ i. σ permanently enables t ∈ T iff ∃i, 0 ≤ i : ∀j, i ≤ j :
mj [t〉.

3 Unfolding and Slicing APNs

One characteristic of APNs that makes them complex to model check is the use
of variables on arcs. Computing variable bindings at runtime is extremely costly.
AlPiNA (a symbolic model checker for Algebraic Petri nets) allows the user to
define partial algebraic unfolding and presumed bounds for infinite domains [1],
using some aggressive strategies for reducing the size of large data domains.
Unfolding generates all possible firing sequences from the initial marking of the
APN, though maintaining a partial order of events based on the causal relation
induced by the net. Concurrency is preserved.

The basic idea of the slicing algorithm is to start by identifying which places
in the unfolded APN model are directly concerned by a property. These places
constitute the slicing criterion. The algorithm will then take all the transitions
that create or consume tokens from the criterion places, plus all the places that
are pre-condition for those transitions. This step is iteratively repeated for the
latter places, until reaching a fixed point.

We refine the slicing construction by distinguishing between reading and
non-reading transitions. The conception of reading and non-reading transitions
is some what similar notion introduced in [13]. The principle difference is that
we adapt the notion of reading and non-reading transitions in the context of
APNs. Informally, reading transitions are not supposed to change the marking
of a place. On the other hand non-reading transitions are supposed to change
the markings of a place. In our proposed slicing construction, we discard reading
transitions and include only non-reading transitions. Formally, we can define the
conception of reading and non-reading transitions such as:

Definition 19. Let N be an unfolded APN and t ∈ T be a transition. We call
t a reading-transition iff its firing does not change the marking of any place
p ∈ (•t ∪ t•) , i.e., iff ∀p ∈ (•t ∪ t•), λ(p, t) = λ(t, p). Conversely, we call t a
non-reading transition iff λ(p, t) 6= λ(t, p).

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 279

Due to partial unfolding, there could be some domains that are not unfolded.
For some cases, we are still able to identify non-reading transitions even if do-
mains are not unfolded. If for example, we have a case where the multiplicities
or cardinalities of terms in λ(p, t), λ(t, p)are different then we can immediately
state λ(p, t) 6= λ(t, p). But for some cases, we don’t have such a clear indication
of the inequality between λ(p, t) and λ(t, p), for example, in the Fig.2, we see
that λ(p, t) = 1 + y and λ(t, p) = 2 + x (defined over naturals). Both terms has
the same multiplicity and cardinality, so we need to know for which values of
the variables it would be a non-reading transition. In general, the evaluation of
terms to check their equality for all the values is undecidable. For this partic-
ular case, we would like to have a set of constraints from the user. Informally,

P 0…10

1+y

2+x

t

Fig. 2. An example APN model with non-unfolded terms over the arcs

a constraints set denoted by CS, is a set of propositional formulas, predicate
formulas or any other logical formulas for certain specific values of variable as-
signements, describing the conditions under which we can evaluate terms to be
equal or not. Consequently, constrains set CS will help to identify under which
cases the transitions can be treated as non-reading.

A function eval : TOP,s(X)× TOP,s(X)×CS → Bool is used to evaluate the
equivalence of terms based on the constraint set. Let us take the same terms
shown over the arcs in Fig.2, term1 = 1 + y, term2 = 2 + x and a constraint set
CS = {∃y, x ∈ (0, . . . , 2)|y = x + 1} . It is important to note that we are not
unfolding the domain but evaluating the terms for some specific values provided
by user to identify reading and non-reading transitions. Of course, the user can
provide sparse values too. Let us evaluate the terms term1 and term2 based on
the constraints set CS provided. For all those values of x, y for which we get eval
function result true are considered to be reading transitions and rest of them are
non-reading transitions. It is also important to note that we include this step
during the unfolding. The resulting unfolded APN will contain only non-reading
transitions for the unfolded domains as shown in Fig.3.

The algorithm proposed in this article assumes that such an unfolding takes
place before the slicing. Since this is a step that is involved in the model check-
ing activity anyway, we do not consider this assumption to be adding to the
complexity of the algorithm. In this section, we will make an extremely simple
example of how the slicing algorithm works, starting from an APN, unfolding it
and slicing it.

280 ModBE’13 – Modeling and Business Environments

P

0…10

t
0,2

t
0,1

2+1

t
1,0

t
0,0

t
1,1

t
1,1

t
1,2

t
2,0

t
2,2

t
2,1

1+1

2+0

1+0

2+0

1+1

2+0

1+2

2+1

1+0

2+1

1+1

2+1

1+2

2+2

1+0

2+2

1+2

2+2

1+1

Fig. 3. Resulting unfolded APN after applying the eval function

3.1 Example: Unfolding an APN

Fig. 4 shows an APN model. All places and all variables over the arcs are of sort
naturals (defined in the algebraic specification of the model, and representing
the N set).

Since the N domain is infinite (or anyway extremely large even in its finite
computer implementations), it is clear that it is impractical to unfold this net
by considering all possible bindings of the variables to all possible values in N.
However, given the initial marking of the APN and its structure it is easy to
see that none of the terms on the arcs (and none of the tokens in the places)
will ever assume any natural value above 3. For this reason, following [1], we
can set a presumed bound of 3 for the naturals data type, greatly reducing the
size of the data domain. By assuming this bound, the unfolding technique in [1]

[]

A

[]C[]

x

[]

[1,2]

t1

[1]

[1,2]

t3

t2

t5

t4

x

x x

y

x+1

yy

y

y+2

z

zz

B

C

E

D

F

G

Fig. 4. An example APN model (APNexample)

proceeds in three steps. First, the data domains of the variables are unfolded up

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 281

to the presumed bound. Second, variable bindings are computed, and only that
satisfy the transition guards are kept. Third, the computed bindings are used
to instantiate a binding-specific version of the transition. The resulting unfolded
APN for this APN model is shown in Fig. 5. The transitions arcs are indexed
with the incoming and outgoing values of tokens. A complete explanation of
the unfolding algorithm, and in particular the existence of the tokens 4 and 5
between transition t23, t42, t43 and place C,F is rather complex and out of the
scope of this article. The interested reader can find details about the partial
unfolding in [1].

3.2 The slicing algorithm

The slicing algorithm starts with an unfolded APN and a slicing criterion Q ⊆ P .
Let Q ⊆ P a non empty set called slicing criterion. We can build a slice for

an unfolded APN based on Q, using following algorithm:

Algorithm 1: APN slicing algorithm
APNSlicing(〈SPEC,P, T, F, asg, cond, λ,m0〉, Q){
T ′ = {t ∈ T | ∃p ∈ Q : t ∈ (•p ∪ p•) : λ(p, t) 6= λ(t, p)};
P ′ = Q ∪ {•T ′} ;
Pdone = ∅ ;
while ((∃p ∈ (P ′ \ Pdone)) do

while (∃t ∈ (•p ∪ p•) \ T ′) : λ(p, t) 6= λ(t, p)) do
P ′ = P ′ ∪ {•t};
T ′ = T ′ ∪ {t};

end
Pdone = Pdone ∪ {p};

end
return 〈SPEC,P ′, T ′, F|P ′,T ′ , asg|P ′ , cond|T ′ , λ|P ′,T ′ ,m0|

P ′
〉;

}

Initially, T ′ (representing transitions set of the slice) contains set of all pre
and post transitions of the given criterion place. Only non-reading transitions
are added to T ′ set. And P′(representing places set of the slice) contains all
preset places of transitions in T ′. The algorithm then iteratively adds other
preset transitions together with their preset places in T ′ and P ′. Remark that
the APNSlicing algorithm has linear time complexity.

Considering the APN-Model shown in fig. 4, let us now take an example
property and apply our proposed algorithm on it. Informally, we can define the
property:

“The values of tokens inside place D are always smaller than 5”.
Formally, we can specify the property in LTL asG(∀tokens ∈ D|tokens < 5).

For this property, the slicing criterion Q = {D}, as D is the only place concerned
by the property. Therefore, the application of APNSlicing(UnfoldedAPN, D)
returns SlicedUnfoldedAPN (shown in Fig. 6), which is smaller than the original
UnfoldedAPN shown in Fig. 5).

282 ModBE’13 – Modeling and Business Environments

A

[1,2] t1
2

t1
3

t1
1

B

t2
1

t2
3

t2
2

t5
1,2

t5
1,3

t5
3,3

t5
1,1

[1]

C

G

t5
2,1

t5
2,2

t5
2,3

t5
3,1

t5
3,2

1

2

3

1

2

3

1

2

3

1

1

1

2

2

2

3

3

3

E

[1,2]

t3
1,3

t3
1,2

t3
1,1

t3
2,1

t4
3

D

F

t3
3,1

t3
3,2

t3
3,3

t3
2,3

t3
2,2

3

1

1

1

2

2

2

3

3

3

1

2

3

1

2

3

1

2

3

3

1

2

3

1

2

3

1

2

3

1

2

3

2

3

4

t4
2

t4
1

2

1

4

5

1

1

1

2

2

2

3

3

1

2

3

1

2

3

1

2

3

3

Fig. 5. The unfolded example APN model (UnfoldedAPN)

Transitions t31,1, t31,2, t31,3, t31,3, t32,1, t32,2, t32,3, t33,1, t33,2, t33,3, t51,1, t51,2,
t51,3, t52,1, t52,2, t52,3, t53,1, t53,2, t53,3, and places C,E, F,G has been sliced away.
The proposed algorithm determines a slice for any given criterion Q ⊆ P and
always terminates. It is important to note that the reduction of net size depends
on the structure of the net and on the size and position of the slicing criterion
within the net.

A

[1,2] t1
2

t1
3

t1
1

B

t2
1

t2
3

t2
2

t4
2

D
11

2

3

1

2

3

1

2

3

1

2

3

t4
3

t4
1

2

3

Fig. 6. Sliced and Unfolded example APN model (SlicedUnfoldedAPN)

3.3 Proof of the preservation of properties

To allow the verification by slice, we have to make restrictions on the formulas
and on admissible firing sequences in terms of fairness assumptions. The original
Algebraic Petri net has more behaviors than the sliced APN, as we intentionally
do not capture all the behaviors.

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 283

Definition 20. Let A be the set of atomic propositions. Let ϕ,ϕ1, ϕ2 be LTL
formulas. The function scope associates with an LTL formula ϕ the set of atomic
propositions used in ϕ i.e. scope : ϕ→ PA.

scope(a) = {a} for a ∈ A;
scope(⊗ϕ) = scope(ϕ) with ⊗ ∈ {¬, X};
scope(ϕ1 ⊗ ϕ2) = scope(ϕ1) ∪ scope(ϕ2) with ⊗ ∈ {∧, U}.

Definition 21. Let N be a marked APN. Let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ = t1t2t3 . . .be a firing sequence of N and mi the markings
with mi[ti+1〉mi+1,∀i, 0 ≤ i < |σ|. σ is slice-fair w.r.t N ′ iff either σ is finite
and m|σ| does not enable any transition t ∈ T ′;

or σ is infinite and if it permanently enables some t ∈ T ′, it then fires in-
finitely often some transition of T ′ (which may or may not be the same as t).

Slice-fairness is a very weak fairness notion. Weak fairness determines that every
transition t ∈ T of a system, if permanently enabled, has to be fired infinitely
often, slice-fairness concerns only the transitions of the slice, not of the entire
system net and if a transition t ∈ T of the slice is permanently enabled, some
transitions of the slice are required to fire infinitely often but not necessarily t.

Definition 22. Let N be a marked APN and ϕ an LTL formula. N |= ϕ slice-
fairly iff every slice-fair (not necessarily maximal) firing sequence of σ |= ϕ.

Definition 23. Let N and N ′ be two marked Algebraic Petri nets with T ′ ⊆ T
and P ′ ⊆ P . We define the function: slice(N,N ′) ∈ [(T ∗ ∪ Tw) → (T ′∗ ∪ T ′w)] ∪
[N|P | → N|P ′|] such that a finite or infinite sequence of transitions σ is mapped
onto the transition sequence σ′ with σ′ being derived from σ by omitting every
transition t ∈ T \ T ′. A marking m of N is projected onto the marking m′ of
N ′ with m′ = m |p′ .
The function slice is used to project markings and firing sequences of a net N
onto the markings and firing sequences of its slices.

Proposition 1. Let N be a marked APN. Let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ be a weakly fair firing sequence of N. σ is slice fair with
respect to N ′.

Proof. Let us assume, σ is not slice-fair. In case σ is finite this means that
m|σ|[t〉 for a transition t ∈ T ′. In case σ is infinite, there is permanently enabled
transition t ∈ T ′ but all transitions of T ′ are fired finitely often including t. So
both cases contradict the assumption that σ is weakly fair.

Lemma 1. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . The coefficients cij of the incidence matrix equal to zero for
all places pi ∈ P ′ and transitions tj ∈ T \ T ′.
Proof. Let N ′ be its sliced net for a slicing criterion Q ⊆ P . A transition t ∈ T
is also an element of T ′ ⊆ T , if it is a non-reading transition of a place p ∈ P ′.
Thus a transition t ∈ T \ T ′ either is not connected to a place p ∈ P ′ or it is a
reading transition.

284 ModBE’13 – Modeling and Business Environments

Lemma 2. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let m be a marking of N and m′ be a marking of N ′ with
m′ = m |p′ . m[t〉 ⇔ m′[t〉,∀t ∈ T ′.

Proof. Let N ′ be its sliced net for a slicing criterion Q ⊆ P . Since a transition t ∈
T ′ has the same preset places in N and N ′ by the slicing algorithm APNSlicing,
m′ = m |p′ implies m[t〉 ⇐⇒ m′[t〉.

Every firing sequence σ of N projected onto the transitions of T ′ is also a firing
sequence of slice net N ′. The resulting markings m and m′ assign the same
number of tokens to places p′ ⊆ P .

Proposition 2. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ be a firing sequence of N and let m be a marking of N .
m0[σ〉m⇒ m0 |p′ [slice(σ)〉m |p′ .

Proof. We prove this Proposition by induction over the length l of σ. Let N be
a marked APN, σ be a firing sequence of N .

l = 0: In this case slice(σ) equals ε. Thus the initial marking of N and N ′

is generated by firing ε. By defintion 23 and the slicing algorithm APNSlicing,
m′0 = m0 |p′

l → l + 1 : Let σ be a firing sequence of length l and ml be a mark-
ing of N with m0[σ〉ml. Let tl+1 be a transition in T and ml+1 a marking
of N such that ml[tl+1〉ml+1. By induction hypothesis, m′0[slice(σ)〉m′k with
ml |p′= m′k. If tl+1 is an element of T ′, it follows by Lemma 2, that m′k en-
ables tl+1, since ml enables tl+1. The resulting marking m′k+1 is determined by
m′k+1(P ′i) = m′k(P ′i) + ci l+1,∀pi ∈ P ′ and ml+1 is determined by ml+1(i) =
ml(i) + ci l+1,∀pi ∈ P ′.

Since ml|P ′ = m′k, it thus follows that mll+1|P ′ = m′k+1. If tl+1 is an element
of t ∈ T \ T ′, then it must be a reading transition for all p ∈ P ; slice(σ) =
slice(σtl+1) and thus m′0[slice(σtl+1)〉m′k a transition t ∈ T \ T ′ can not change
the marking of on any place p ∈ P ′. By Lemma 1 and the resultant markings,
mll+1|P ′ = m′l |P ′ . �

A firing sequence σ′ of the slice net N ′ is also a firing sequence of N . The
resulting markings of σ′ on N and N ′, respectively assigns the same markings
to places p ∈ P ′.

Proposition 3. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ′ be a firing sequence of N ′ and let m′ be a marking of
N ′.

m′0[σ′〉m′ ⇒ ∃m ∈ N|P | : m′ = ml|P ′ ∧m0[σ′〉m.

Proof. We prove this Proposition by induction over the length l of σ′.
l = 0: The empty firing sequence generates the marking m0 on N and the

marking m′0, which is defined as m0|P ′ , on N
′, by definition 23.

l → l + 1: Let σ′ = t1 . . . tl+1 be firing sequence of N ′ with length l + 1. Let
m′l and m

′
l+1 be markings of N ′ such that m′0[t1 . . . tl〉m′l[tl+1〉m′l+1. Let ml be

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 285

the marking of N with m0[t1 . . . tl〉ml and ml|P ′ = m′l, which exists according to
the induction hypothesis. Lemma 2, ml enables tl+1. The marking ml+1 satisfies
ml+1(Pi) = ml(Pi) + ci l+1,∀pi ∈ P ′ and m′l+1 satisfies m′l+1(Pi) = m′l(Pi) +
ci l+1,∀si ∈ P ′. With ml|P ′ = m′l, it follows that (ml+1 |P ′) is equal to m′l+1. �

Proposition 4. Let N be a marked APN and let φ be an LTLx formula such
that scope(φ) ⊆ P . Let N ′ be its sliced net for a slicing criterion Q ⊆ P where
Q = scope(φ). Let σ be a firing sequence of N . Let us denote the sequence of
markings byM(σ). Then,M(σ) |= φ⇔M(slice(σ)) |= φ.

Proof. We prove this Proposition by induction on the structure of φ. Let σ =
t1t2 . . . and slice(σ) be σ′ = t′1t

′
2 Let M(σ) = m0m1 . . . and M(σ′) =

m′0m
′
1

φ = true: In this case nothing needs to be shown. φ = ¬ψ, φ = ψ1 ∧ ψ2:
Since the satisfiability of φ depends on the initial marking of scope(φ) only and
scope(φ) ⊆ P ′ ⊆ P , both directions hold.

φ = ψ1Uψ2: We assume that M(σ′) |= ψ1Uψ2. We can divide up σ′ such
that σ′ = σ′1σ

′
2 with m′|σ′1|m

′
|σ′1|+1 . . . |= ψ2 and ∀i, 0 ≤ i < |σ′1| : m′im

′
i+1 . . . |=

ψ1. There are transition sequences σ1 and σ2 such that σ = σ1σ2, slice(σ1) =
σ′1, slice(σ2) = σ′2 and σ1 does not end with a transition t ∈ T \ T ′.

By proposition 2, it follows that m′|σ′1| = (m|σ1| |P ′). Since m′|σ′1|m
′
|σ′1|+1 . . . |=

ψ2,m|σ1|m|σ1|+1 . . . |= ψ2 by induction hypothesis. Let % be a prefix of σ1
such that |%| < |σ1|. Let %′ be slice(%). The firing sequence % truncates at
least one transition t ∈ T ′, consequently |%′| < |σ′1|. Since m′|%′1|m

′
|%′1|+1 . . . |=

ψ1,m|%|m|%|+1 . . . |= ψ1 by the induction hypothesis. Analogously, it can be
shown thatM(σ) |= ψ1Uψ2 impliesM(σ′) |= ψ1Uψ2. �

Proposition 5. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ′ be a maximal firing sequence of N ′. σ′ is a slice-fair
firing sequence of N .

Proof. Let σ′ = t1t2 Letm′i be the marking ofN ′, such thatm′i[ti+1〉m′i+1,∀i,
0 ≤ i < |σ′|. By Proposition 3 σ′ is a firing sequence of N . Letmi be the marking
of N , such that mi[ti+1〉mi+1,∀i, 0 ≤ i < |σ′|. In case σ′ is finite, m′|σ′| does not
enable any transitions t′ ∈ T ′.

By Lemma 2, m|σ′| does not enable any transition T ′ ∈ T ′ , If σ′ is infinite
it obviously fires infinitely often a transition t′ ∈ T ′ and thus is slice-fair. �

Proposition 6. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Slice(σ) is maximal firing sequence of N ′.

Proof. Let σ = t1t2 . . . with mi[ti+1〉mi+1,∀i, 0 ≤ i < |σ|. By Proposition 2,
slice(σ) is a firing sequence ofN ′. Let slice(σ) be σ′ = t′1t

′
2 . . . withm′i[t′i+1〉m′i+1,

∀i, 0 ≤ i < |σ|. Let us assume σ′ is not a maximal firing sequence of N ′. Thus
σ′ is finite and there is a transition t′ ∈ T ′ with m′|σ′|[t′〉. Let σ1 be the smallest
prefix of σ such that slice(σ1) equals σ′.

286 ModBE’13 – Modeling and Business Environments

By Proposition 2 (m|σ1| |P ′= m′|σ′|. By Lemma 2, and the state equation it
follows, that (m|σ1| |P ′= m′|σ′|+1 = So t′ stays enabled for all markings mj

with |σ1| ≤ j ≤ |σ| but is fired finitely many times only. This is a contradiction
to the assumption that σ is slice-fair. �

Theorem 1. Let N be a marked APN and let φ be an LTL formula such that
scope(φ) ⊆ P . Let N ′ be its sliced net for a slicing criterion Q ⊆ P . Let Ψ be an
LTL−X formula with scope(Ψ) ⊆ P .

N |= φ slice-fairly ⇒ N ′ |= φ, for an LTL formula φ.
N |= Ψ slice-fairly ⇐ N ′ |= Ψ , for an LTL−X formula Ψ .

Proof. We first show “ N |= φ slice-fairly ⇒ N ′ |= φ ”. Let us assume that
N |= φ slice-fairly holds. Let σ′ be a maximal firing sequence of N ′. Since σ′ is a
slice-fair firing sequence of N by Proposition 5M(σ′) |= φ. Let us now assume
N ′ |= Ψ . Let σ be a slice-fair firing sequence of N . By Proposition 6, slice(σ) is
maximal firing sequence of N ′ and thus satisfies Ψ . By Proposition 4, it follows
that σ satisfies Ψ. �

Verification is possible under interleaving semantics if we assume slice-fairness.
A firing sequence σ is fair w.r.t T ′ , if σ is either maximal and if σ eventually
permanently enables a t′ ∈ T ′, a transition t ∈ T ′ will be fired infinitely often,
t may not equal t′. Unfolded APN |= ϕ fairly w.r.t. T ′ holds if all fair firings
sequences of N, more precisely, their corresponding traces satisfy ϕ.

4 Related Work

Slicing is a technique used to reduce a model syntactically. The reduced model
contains only those parts that may affect the property the model is analyzed for.
Slicing Petri nets is gaining much attention in the recent years [3,10–13]. Mark
Weiser introduced the slicing term in [17], and presented slicing as a formaliza-
tion of an abstraction technique that experienced programmers (unconsciously)
use during debugging to minimize the program. The first algorithm about Petri
net slicing was presented by chang et al [3]. They proposed an algorithm on
Petri nets testing that slices out all sets of paths, called concurrency sets, such
that all paths within the same set should be executed concurrently. Lee et al.
proposed the Petri nets slice approach in order to partition huge place transi-
tion net models into manageable modules, so that the partitioned model can
be analyzed by compositional reachability analysis technique [9]. Llorens et al.
introduced two different techniques for dynamic slicing of Petri nets [10]. A slice
is said to be static if the input of the program is unknown (this is the case of
Weiser’s approach). On the other hand, it is said to be dynamic if a particular
input for the program is provided, i.e., a particular computation is considered.
In the first technique of Llorens et al. the Petri net and an initial marking is
taken into account, but produces a slice w.r.t. any possibly firing sequence. The
second approach further reduces the computed slice by fixing a particular firing
sequence.

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 287

Astrid Rakow developed two flavors of Petri net slicing, CTL∗−X slicing and
Safety slicing in [13]. The key idea behind the construction is to distinguish
between reading and non-reading transitions. A reading transition t ∈ T can
not change the token count of place p ∈ P while other transitions are non-
reading transitions. For CTL∗−X slicing, a subnet is built iteratively by taking
all non-reading transitions of a place P together with their input places, start-
ing with given criterion place. And for the Safety slicing a subnet is built by
taking only transitions that increase token count on places in P and their input
places. CTL∗−X slicing algorithm is fairly conservative. By assuming a very weak
fairness assumption on Petri net it approximates the temporal behavior quite
accurately by preserving all CTL∗−X properties and for safety slicing focus is on
the preservation of stutter-invariant linear safety properties only.

We notice that all the constructions are limited to low-level Petri nets. The
main difference between High-level and low-level Petri net is that in high-level
Petri nets tokens are no longer black dots, but complex structured data. Whereas
in case of low-level Petri nets, all (black) tokens correspond to the same data
object. The idea of reading and non-reading transitions introduced in [13] deals
only with the token count of places in low-level Petri nets. In Algebraic Petri
nets there are properties that may concern to the values of tokens. The main
difference between the existing slicing constructions such as, CTL∗−X , Safety
slicing and our is that in CTL∗−X , Safety slicing only transitions are included
that change the token count whereas in APNSlicing, we include transitions that
change the token values together with the transitions that change the token
count. A comparison between APNSlicing, CTL∗−X and safety slicing algorithms
is shown in Fig. 7.

Slice CTL*
-X

Preserving all CTL*
-X

properties assuming a weak
fairness assumption

Properties are about token
count only

Designed for Low-level
Petri net

Safety Slicing
Preserving safety properties

only
Properties are about token

count only
Designed for Low-level

Petri net

APNSlicing
Preserving all LTL-X

properties assuming a weak
fairness assumption

Properties are about token
count and token values

Designed for High-level
Petri net (APNs)

Fig. 7. A comparison between APNSlicing, CTL∗
−X and Safety slicing

5 Case Study

We took a small case study from the domain of crisis management systems (car
crash management system) for the experimental investigation of the proposed

288 ModBE’13 – Modeling and Business Environments

approach. In a car crash management system (CCMS); reports on a car crash are
received and validated, and a Superobserver (i.e., an emergency response team)
is assigned to manage each crash.

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd,false)]

System

validatecrisis

[system(getcrisistype($sy),
 true)]

assigncrisis
isvalidcrisis($sy=true)&

invalidsobs($sob,
getcrisistype($sy)=true)

[$sy] [assigncrisis($sob,$sy)]

Superobserver Ready

[$sob]

ExecutingCrisis

[$sy]

sendreport

[$ec]

[]

ExecutedCrisisReport

[rp($ec)]

[Fire, Blockage]

[sobs(YK,Fire)]

[]

Fig. 8. Car crash APN model

The APN Model can be observed in Fig. 8, it represents the semantics of the
operation of a car crash management system. This behavioral model contains
labeled places and transitions. There are two tokens of type Fire and Blockage in
place Recording Crisis Data. These tokens are used to mention which type of data
has been recorded. The input arc of transition sendcrisis takes the cd variable
as an input from the place Recording Crisis Data and the output arc contains
term system(cd,false) of sort sys. Initially, every recoded crisis is set to false. The
sendcrisis transition passes recorded crisis to system for further operations. The
output arc of validatecrisis contains system(getcrisistype(sy),true) term which
sends validated crisis to system. The transition assigncrisishas two guards, first
one is isvalid(sy)=true that enables to block invalid crisis reporting to be exe-
cuted for the mission and the second one is isvalid(sob,getcrisestype(sy))=true
which is used to block invalid Superobserver (a skilled person for handling crisis
situation) to execute the crisis mission. The Superobserver YK will be assigned
to handle Fire situation only. The transition assigncrisis contains two input arcs
with sob and sy variables and the output arc contains term assigncrisis(sob,sy)
of sort crisis. The output arc of transition sendreport contains term rp(ec). This
enables to send a report about the executed crisis mission. We refer the interested
reader to [7] for the algebraic specification of car crash management system.

An important safety threat, which we will take into an account in this case
study is that the invalid crisis reporting can be hazardous. The invalid crisis
reporting is the situation that results from a wrongly reported crisis. The ex-

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 289

Fire,Blockage

Fire

Blockage

validatecrisis
(Fire,false),(Fire,true)

validatecrisis
(Blockage,false),

(Blockage,true)

sobs(YK,Fire)

assigncrisis
(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

sendreport
((Fire,true),(YK,Fire)),((Fire,true),

(YK,Fire))

sendcrisis
Fire,(Fire,false)

sendcrisis
Blockage,

(Blockage,false)

Recording Crisis Data System

(Fire,false)

(Blockage,false)

(Fire,false)

(Blockage,false)

(Fire,true)

ExecutingCrisis

Superobserver Ready

((Fire,true),(YK,Fire))

(YK,Fire)

((Fire,true),(YK,Fire))

((Fire,true),(YK,Fire)) ExecutedCrisisReport

(Fire,true)

(Blockage,true)

Fig. 9. The unfolded car crash APN model

ecution of crisis mission based on the wrong reporting can waste both human
and physical resources. In principle, it is essential to validate the crisis that it
is reported correctly. Another, important threat could be to see the number of
crisis that can be sent to place System should not exceed from a certain limit.
Informally, we can define the properties:

ϕ1 : All the crisis inside place System are validated eventually.
ϕ2 : Place System never contains more than two crisis.

Formally we can specify the properties as, let Crises be a set representing
recorded crisis in car crash management system. Let isvalid : Crises→ BOOL,
is a function used to validate the recorded crisis.

ϕ1 = F(∀crisis ∈ Crises|isvalid(crisis) = true)
ϕ2 = G(|Crises| ≤ 2)
In contrast to generate the complete state space for the verification of ϕ1

and ϕ2, we alleviate the state space by applying our proposed algorithm. For
both ϕ1, ϕ2 LTL formulas, scope(ϕ1 ∧ ϕ2) ⊆ Q. The criterion place(s) for both
properties is System.

The unfolded car crash APN model is shown in Fig. 9. The slicing algorithm
APNSlicing(Unfolded car crash APN model,System) takes the unfolded car crash
APN model and System (an input criterion place) as an input and iteratively
builds a sliced net. The sliced unfolded car crash APN model is shown in Fig. 10,
places named ExecutedCrisis and ExecutedCrisisreporting together with transi-
tion named sendreport are sliced away. From the initial marking of Car Crash
APN Model 36 states are reachable, whereas sliced car crash APN model has
27 reachable states. The resultant sub net is sufficient to verify both properties
(see proof in Theorem 1).

6 Evaluation

In this section, we evaluate our slicing algorithm with the existing benchmark
case studies. We measure the effect of slicing in terms of savings of the reachable

290 ModBE’13 – Modeling and Business Environments

Fire,Blockage

Fire

Blockage

validatecrisis
(Fire,false),(Fire,true)

validatecrisis
(Blockage,false),

(Blockage,true)

sobs(YK,Fire)

assigncrisis
(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

sendcrisis
Fire,(Fire,false)

sendcrisis
Blockage,

(Blockage,false)

Recording Crisis Data System

(Fire,false)

(Blockage,false)

(Fire,false)

(Blockage,false)

(Fire,true)

Superobserver Ready

(YK,Fire)(Fire,true)

(Blockage,true)

Fig. 10. Sliced and unfolded car crash APN model

state space, as the size of the state space usually has a strong impact on time
and space needed for model checking. Instead of presenting case studies where
our methods work best, it is equally interesting to see where it gives an average
or worst case results, so that we will present a comparative evaluation on the
benchmark case studies.

To evaluate our approach, we made the follwing assumptions:

– Evaluation procedure is independent of the temporal properties. In general,
it is not feasible to determine which places correspond to the interesting
properties. Therefore, we generated slices for each place in the given APN
model (later, we take some specific temporal properties about the APN mod-
els under observation) .

– We abandoned the initially marked places (we follow [13] to assume that
there are not interesting properties concerning to those places).

Let us study the results summarized in the table.1, the first column shows
different APNs models under observation. Based on the initial markings, total
number of states is shown in the second column. Best reduction and average
reduction (shown in the third and fourth column) refers to the biggest and an
average achievable reduction in the state space among all possible properties.
In the fifth column total number of places is given, for the properties related
to these places, our slicing does not reduce the number of states. Finally, the
structure of APN models under observation is given. Results clearly indicate the
significance of slicing; the proposed APNSlicing algorithm can alleviate the state
space even for some strongly connected nets.

To show that the state space could be reduced for the practically relevant
properties. Let us take some specific examples of the temporal properties from
the APNmodels shown in table.2 and compare the reduction in terms of states by
applying the APNSlicing algorithm. For the Daily Routine of two Employees and
Boss APN model, for an example, we are interested to verify that: “Every time

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 291

Table 1. Results on different APN models

System T.States Bst.Reduct Avg.Reduct Worst P laces
no reduction

N.Type

Complaint Handling 2200 98.01% 40.54% 2 Weak.Connect

Divide & Conqure 117863 99.09% 14.22% 1 Weak.Connect

Bevarage Vending
& Machine

136 80.14% 02.15% 2 Weak.Connect

Daily Routine of 2
Employees & Boss

80 93.75% 86.12% zero Str.Connect

Simple Protocol 1861 95.91% 39.01% 1 Str.Connect

Producer Consumer 372 0.00% 0.00% 5 Str.Connect

the boss does not schedule a meeting, he will be at home eventually”. Formally,
we can specify the property:

ϕ1 = G(NM ⇒ FB1), where “NM" (resp. B1) means “place NM (resp. B1)
is not empty".

For a Producer Consumer APN model an interesting property could be to
verify that: “Buffer place is never empty”. Formally, we can specify the property:

ϕ2 = G(|Buffer| > 0).
And for a Complaint Handling APN model, we are interested to verify: “All

the registered complaints are collected eventually”. Formally, we can specify the
property:

ϕ3 = G(RecComp ⇒ FCompReg), where “RecComp" (resp. CompReg)
means “place RecComp (resp. CompReg) is not empty".

Table 2. Results with different properties concerning to APN models

System Tot.States Property Crit.Place(s) Percent.Reduction

Daily Routine of 2
Employees & Boss

80 ϕ1 {NM,B1} 75.00%

Producer Consumer 372 ϕ2 {Buffer} 0.00%

Complaint Handling 2200 ϕ3 {RecComp,RegComp} 50.54%

Let us study the results summarized in the table shown in table. 2, the first
column represents the system under observation whereas in the second column
total number of states are given based on the initially marked places. The third
column refers the property that we are looking for the verification. In the fourth

292 ModBE’13 – Modeling and Business Environments

column, places are given that are considered as criterion places, and for those
places slices are generated. The fifth column represents the number of states that
are reduced (in percentage) after applying APNSlicing algorithm.

We can draw the following conclusions from the evaluation results such as:

– The choice of the place can have an important influence on the reduction
effects (As the basic idea of slicing is to start from the criterion place and
iteratively include all the non-reading transitions together with their input
places. The less non-reading transitions attached to the criterion place, the
more reduction is possible).

– Reduction can vary with respect to the net structure and markings of the
places (The slicing refers to the part of a net that concerns to the property,
remaining part may have more places and transitions that increase the over-
all number of states. If slicing removes parts of the net that expose highly
concurrent behavior, the savings may be huge and if the slicing removes dead
parts of the net, in which transitions are never enabled then there is no effect
on the state space).

– For certain strongly connected nets slicing may produce a reduced number
of states (For all the strongly connected nets that contain reading transitions
slicing can produce noteworthy reductions).

– Slicing produces best results for not strongly connected nets (By definition
work-flow nets are not strongly connected and since they model work flows,
slicing can effectively reduce such nets).

7 Conclusion and Future Work

In this work, we developed an Algebraic Petri net reduction approach to alleviate
the state space explosion problem for model checking. The proposed work is
based on slicing. The presented slicing algorithm (APNSlicing) for Algebraic
Petri net guarantees that by construction the state space of sliced net is at
most as big as the original net. We showed that the slice allow verification and
falsification if Algebraic Petri net is slice fair. Our results show that slicing can
help to alleviate the state space explosion problem of Algebraic Petri net model
checking.

The future work has twofold objectives; first to implement the proposed
slicing construction in AlPiNA (Algebraic Petri net analyzer) a symbolic model
checker [5]. As discussed in the section 3.1, we are using the same unfolding
approach for APNs as AlPiNA. Obviously, this will reduce the effort in terms
of implementation. Secondly, we aim to utilize the sliced net when verifying the
evolutions of the net. Slicing can serve as a base step to identify those evolutions
that do not require re-verification.

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 293

References

1. D. Buchs, S. Hostettler, A. Marechal, A. Linard, and M. Risoldi. Alpina: A sym-
bolic model checker. Springer Berlin Heidelberg, pages 287–296, 2010.

2. J. R. Burch, E. Clarke, K. L. McMillan, D. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. In Logic in Computer Science, 1990. LICS ’90,
Proceedings., Fifth Annual IEEE Symposium on e, pages 428–439, 1990.

3. J. Chang and D. J. Richardson. Static and dynamic specification slicing. In In
Proceedings of the Fourth Irvine Software Symposium, 1994.

4. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8:244–263, 1986.

5. S. Hostettler, A. Marechal, A. Linard, M. Risoldi, and D. Buchs. High-level petri
net model checking with alpina. Fundamenta Informaticae, 113(3-4):229–264, Aug.
2011.

6. K. Jensen. Coloured petri nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, volume 254 of Lecture
Notes in Computer Science, pages 248–299. Springer Berlin Heidelberg, 1987.

7. Y. I. Khan. A formal approach for engineering resilient car crash management
system. Technical Report TR-LASSY-12-05, University of Luxembourg, 2012.

8. L. Lamport. What good is temporal logic. Information processing, 83:657–668,
1983.

9. W. J. Lee, H. N. Kim, S. D. Cha, and Y. R. Kwon. A slicing-based approach to
enhance petri net reachability analysis. Journal of Research Practices and Infor-
mation Technology, 32:131–143, 2000.

10. M. Llorens, J. Oliver, J. Silva, S. Tamarit, and G. Vidal. Dynamic slicing techniques
for petri nets. Electron. Notes Theor. Comput. Sci., 223:153–165, Dec. 2008.

11. A. Rakow. Slicing petri nets with an application to workflow verification. In
Proceedings of the 34th conference on Current trends in theory and practice of
computer science, SOFSEM’08, pages 436–447, Berlin, Heidelberg, 2008. Springer-
Verlag.

12. A. Rakow. Slicing and Reduction Techniques for Model Checking Petri Nets. PhD
thesis, University of Oldenburg, 2011.

13. A. Rakow. Safety slicing petri nets. In S. Haddad and L. Pomello, editors, Applica-
tion and Theory of Petri Nets, volume 7347 of Lecture Notes in Computer Science,
pages 268–287. Springer Berlin Heidelberg, 2012.

14. W. Reisig. Petri nets and algebraic specifications. Theor. Comput. Sci., 80(1):1–34,
1991.

15. K. Schmidt. T–invariants of algebraic petri nets. Informatik– Bericht, 1994.
16. A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic

Models, Advances in Petri Nets, the volumes are based on the Advanced Course on
Petri Nets, pages 429–528, London, UK, UK, 1998. Springer-Verlag.

17. M. Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

This work has been supported by the National Research Fund, Luxembourg,
Project MOVERE, ref.C09/IS/02.

294 ModBE’13 – Modeling and Business Environments

A Proposal for the Modeling
of Organizational Structures

and Agent Knowledge in MAS

Lawrence Cabac, David Mosteller, Matthias Wester-Ebbinghaus

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics
{cabac,2mostell,wester}@informatik.uni-hamburg.de

http://www.informatik.uni-hamburg.de/TGI

Abstract. One of the most important tasks when developing multi-
agent systems (MAS) is to determine the overall organizational structure
of the system. In this paper we present a service-oriented perspective on
the organizational structure of MAS and we present modeling techniques
and tools for supporting this perspective. We pursue a model-driven ap-
proach and a tight integration between various models on the one hand
and between the models and the generated code on the other hand.
In particular, we combine ontology modeling and organization structure
modeling in a way that we can easily generate the initial content of agent
knowledge bases in the form of FIPA semantic language (SL) fragments
(depending on what positions the agents occupy in the context of the
organizational structure). In addition, this allows the agents to reason
about and to communicate about their organizational embedding using
the same ontology.

Keywords: Renew, Mulan, Paose, Petri nets, multi-agent systems,
model-driven development, organizational structure

1 Introduction

The modeling of the fundamental organizational structure is one of the central
tasks during the development of a multi-agent system (MAS) [9]. While agents
are considered autonomous in their actions, they are also supposed to fulfill cer-
tain functions in relation to the purpose of the overall multi-agent application
(MAA). A wide spectrum of approaches for organizing multi-agent systems ex-
ists [15] and some of them are quite sophisticated in drawing inspiration from or-
ganizing principles of social systems (including multiple organizational modeling
dimensions like social structures, tasks, social interactions, norms etc., cf. [1,8]).
We argue that at the core of most of these approaches lies the determination of
an organizational structure in terms of agent functions and agent dependencies
based on functional dependencies. This concerns the questions, which agents are
required / allowed to do what (responsibilities / abilities) and to whom they can

refer for help in certain cases (support / delegation). Basically, this is a service-
oriented perspective on agent relationships. Agents offer functional services to
other agents and in turn require the services of other agents in order to fulfill
some of their own functionality.

We apply this functional and service-oriented perspective for the design of
the basic organizational structure of a MAS in our Paose approach (Petri
net-based Agent- and Organization-oriented Software Engineering, http://www.
paose.net). It provides a general basis for MAS organization that can be ex-
tended if necessary.1 We have presented our Paose approach on previous occa-
sions and we have particularly elaborated on the model-driven nature of Paose
in [6]. Our multi-agent platform Mulan/Capa [16,22] tightly combines model
and code as it is based on a fusion of high-level Petri nets and Java. This allows
us to model / implement all processes as directly executable Petri nets. In addi-
tion, we use UML-style modeling techniques for development where we need a
more declarative perspective than is offered by Petri nets.

In this paper, we specifically refer to the part of Paose that is concerned
with modeling organizational structures in terms of agent roles and service de-
pendencies between roles. This part relies on ontology modeling as we explicate
the concepts used for organizational structures as an ontology. This has the ad-
ditional benefit that we can easily translate an organizational structure model
into multiple initial knowledge bases for multiple agents (depending on what
positions the agents occupy in the organizational structure). The content of the
knowledge bases is generated in FIPA semantic language (http://www.fipa.org),
which provides the technical basis for agents to reason about and to communi-
cate about their organizational embedding. Compared with our previous work
presented in [6,7], we present a considerable rework including new tools. Our
revision basically takes care of a better and tighter integration between the tools
used as well as between the models and the generated code.

In Section 2 we provide an overview of role and service (dependency) mod-
eling in the MAS field and motivate our own approach. In Section 3, we present
our concrete models and the supporting tools. We place our contribution in the
context of our development process Paose and introduce the agent framework
Mulan/Capa. We also describe how the tools fit into the model-driven nature
of our Paose approach. Section 4 gives an example of our tools in use, demon-
strated in a concrete application scenario. We close with a short summary and
some aspects of future research and development that builds upon the results
presented in this paper in Section 5.

1 For example, we have developed the Sonar model [17,18] for multi-agent teamwork
support, where we use a more elaborate model of functional service dependencies
between agents based on task delegation structures and a behavior-based notion of
service refinement.

296 ModBE’13 – Modeling and Business Environments

2 Organizational Structures of Multi-Agent Systems

In this section we elaborate on our conceptual approach to modeling organiza-
tional structures in terms of agent roles and service dependencies. We motivate
the use of the two core concepts of roles and services in the context of related
work.

2.1 Modeling Agent Roles and Service Dependencies

The interest in establishing organizational structures in a MAS has always been
an important part of agent research. One can argue that it is an important
part of software design in general (although the architecture metaphor is more
established than the organization metaphor). However, in the case of MAS this
topic becomes even more imperative. Artificial social agents are regarded as
very sophisticated software components with complex knowledge and reasoning
mechanisms that often only offer a limited visibility. Consequently, high-level
system perspectives are necessary, in which one can abstract from agent-internal
details and still comprehend the system on a more abstract level.

The concept of a role has been used extensively in this context and has been
established as one of the core concepts of agent-oriented software design [19].
Rights and responsibilities are associated with roles independently from the
specific agents that will occupy the roles. Consequently, this leads to a cer-
tain degree of predictability and controllability of global MAS behavior without
knowing anything about the agents’ internals. Examples of bringing the concept
of roles to use (cf. [1]) is to enable as well as constrain agent behavior in terms of
(1) which roles belong together to a common group context (allowing acquain-
tance and communication between group members), (2) defining which roles are
expected to be associated with which goals, tasks and necessary capabilities and
(3) which roles are supposed to take part in which conversations in which way.

Basically, all these efforts boil down to the abstract question what an agent
occupying a specific role is supposed to do just because of it taking on that
role. We are mainly interested in an explication of a functional perspective on
roles and role relationships. Of special interest is the specification of function-
ality of roles occupants in the context of the wider multi-agent application and
the dependencies that exist between different role occupants. Thus, we apply a
service-oriented perspective on agent roles: Which roles are associated with the
provision of which services and on which other services are they dependent? We
are aiming at a rather minimalistic model of agent roles and their relationships
in terms of service dependencies that can be enriched with more sophisticated
concepts if needed (e.g. goal / task hierarchies, conversation guidelines).

2.2 Related Work

Not only in agent-oriented approaches to software development the modeling
of component dependencies is one of the major challenges. One main problem
(also applying to some of the approaches for role-based specifications mentioned

L. Cabac et al.: Modeling the Organizational Structure of MAS 297

above) is that dependencies are often hidden underneath quite complex specifi-
cations. Ensel and Keller summarize Gopal [13] in the following way: “However,
the main problem today lies in the fact that dependencies between services and
applications are not made explicit, thus making root cause and impact analysis
particularly difficult” [10, p. 148]. Therefore our motivation is to gain the ability
to explicitly model dependencies for MAS and our choice is to model component
dependencies (agent dependencies) in terms of roles and service dependencies.
The actual dependencies between running agents then result from the roles they
occupy.

In the context of the different approaches to software development there exist
various ways of handling component dependencies. Some of them are restricted
to managing service dependencies by utilizing declarative service descriptions,
i.e. using XML [10, p. 148], [24]. From our point of view the more promising
approach consists in making use of diagram-based methods.

The most obvious benefit lies in the incomparably better visualization of
diagram-supported models over declarative service descriptions. This was iden-
tified as a central issue, taking up the above mentioned citation by Ensel and
Keller again. On the one hand, the diagram is the means to make the dependen-
cies explicit [3] instead of an implicit declaration located in the configuration files
of the (distributed) components as it is for example the case in OSGI service de-
scriptions [24]. An explicit representation of the dependencies is of special value
during the design phase for a developer / administrator. On the other hand, the
capabilities of model transformation are given in both possibilities to describe
dependencies as model-based and as declarative descriptions. A similar approach
was taken in [26] for Web Services and BDI-Agents. Service dependencies are
specified in the model domain and tool support is realized as a Rational Software
Modeler extension. “Dependencies between the various components are modeled
at the PIM-level and two-way model transformations help us to ensure inter-
operability at the technical level and consistency at the PIM-level” [26, p. 114].
There are other efforts, which mainly address specification of dependencies be-
tween agents and Web Services (e.g. [14]) whereas our work is focused on agent
relations.

Most software developing methodologies contain a technique for modeling
some kind of dependencies between their components. The Tropos methodology
distinguishes four kinds of dependencies between agents, from hard dependen-
cies (resource) to soft ones (soft-goal). Silva and Castro [23] display how Tropos
dependency relations can be expressed in UML for real time systems. Ferber et
al. [11] show how the organizational structure of an agent-based system can be
modeled using the AGR technique. One of the proposed diagrams, the organi-
zational structure diagram, shows roles, interactions and the relations between
roles and interactions. This diagram is comparable to the Roles/Dependencies
diagram.

In Gaia Zambonelli et al. [25] focus strongly on the organizational modeling.
One of the important models is the service model. Our Roles/Dependencies dia-
gram can be regarded as an implementation of the Gaia service model. However,

298 ModBE’13 – Modeling and Business Environments

Gaia does not recognize hierarchical roles. Padgham and Winikoff [21] explicitly
model acquaintances in Prometheus. But from these models they do not derive
any agent (role) dependencies. Roles are not modeled in Prometheus, instead the
focus lies on agents. The system model in Prometheus gives a good overview of
the system comparable with the overview of the Roles/Dependencies diagram.
It is much more detailed but does not explicitly show any dependencies except
the interaction protocols or messages that connect agents. The structure of the
system model reflects the one of the acquaintances model.

In the following, we introduce our approach for a minimalistic (but extensible)
comprehension of organizational structures of MAS in terms of role descriptions
and role dependencies based on service relationships. Our previous work covered
details on the conceptual side of modeling the basic organizational structure of
MAS, introducing modeling techniques [7,5,4] and tools [6]. In our current work
we improve the methods and tools by putting an even stronger focus on the
model-driven nature of our approach. We pursue a tighter integration of different
tools and to minimize the gap between the models and the code generated from
the models. One specific benefit of our approach lies in the fact that the meta-
model for organizational structures is expressed in the agents’ language – i.e. as
an agent ontology. Thus, the agents are able to communicate and reason about
their own organizational structures.

3 Role/Dependency Tool Support for Model-Driven
Development in PAOSE

In the following we point out how the integration of the conceptional basis we
introduced in the previous section is established in our Mulan framework and
the Paose development process. We introduce two types of diagrams, namely
for ontology modeling and for roles/dependencies modeling. They support the
discussed features in a clear and intuitive way, making use of well-known con-
structs from UML. We also present our tool solution to support our model-driven
development approach. All our Paose tools are realized as plugins for the high-
level Petri net tool Renew (http://www.renew.de).2 They extend Renew with
modeling techniques that are not based on Petri nets.

3.1 The Paose Development Process

This section puts the subsequent work into the context of the Paose approach,
which aims at the development of Mulan applications. The approach focuses on
aspects of distribution, concurrency and model-driven development. The frame-
work Mulan offers the basic artifacts and structuring for the application. Its
four layered architecture features as basic artifacts the communication infrastruc-
ture, the agent platforms, the agents and the agent internals (protocols, decision
components and knowledge bases). With the exception of the communication

2 Renew also provides the virtual machine that executes Mulan applications.

L. Cabac et al.: Modeling the Organizational Structure of MAS 299

infrastructure, all artifacts are implemented as Java Reference nets. Capa ex-
tends the Mulan architecture with FIPA-compliant communication features,
providing inter-platform (IP-based) agent communication. Also the Mulan ap-
plications (MAA) are – similar to the Mulan/Capa framework – implemented
in Java Reference nets and Java. They are executed, together with the Mu-
lan/Capa framework, in the Renew virtual machine. While the implementa-
tion in Java Reference nets introduces concurrency for Mulan applications, the
Capa extension enables the agents to run in distributed environments.

Figure 1. The Paose development process and techniques. Modified from [3, p. 133]

The organization of MAS can be explicitly modeled using model-driven tech-
niques [6], as described in the following sections. However, in addition to the
organizational structure of the MAA, we apply the agent-oriented view onto the
organizational structure of the development team through the metaphor of the
multi-agent system of developers [2]. The metaphor provides the perspective that
human participants of the development team form an organization, similar to
agents in an MAA, and their collaborative efforts constitute the development
process, similar to the MAA process. During development the responsibilities
for the diverse tasks are distributed among the developers, which allows for
concurrent and distributed collaboration as well as explicit identification of de-
pendencies between the team participants. In the previous sections we motivated
a service-oriented composition of MAS based on roles and service dependencies.
Here we argue that developers dependencies result from the organizational struc-
ture and the application’s dependencies. These dependencies are also reflected
in the Paose development process, which consists in iterative repetitions of spe-
cific fundamental steps of design and implementation, as shown in Figure 1. The
figure depicts a simplified Petri-net process of the Paose design cycle.

300 ModBE’13 – Modeling and Business Environments

A project starts with the requirements analysis resulting in a coarse design of
the overall structure of the MAA. The coarse design identifies essential roles and
interactions of the organization. It is used to generate the initial structure (de-
velopment artifacts) of a project. The main step of an iteration consists of three
tasks of modeling and implementation. These are the modeling of interactions,
agent roles and ontologies, as well as generating sources from the models and
refining the implementation. The integration of the resulting artifacts completes
an iteration. In the diagram annotations refer to modeling techniques, which are
utilized to carry out a corresponding task and the artifacts, which are generated
from the design models. Taking up the aforementioned view on the organization
of a development team, the completion of an iteration requires the synchronized,
collaborative effort of the participants.

In the context of this work we introduce a technique and a tool for the
modeling of agent roles. To this end, we utilize the ontology model used in
Paose as a meta-model. In this sense the following section describes how our
integration approach essentially applies ontology concepts for the design of a
new modeling technique and a corresponding tool – in this case the modeling of
organizational structures of MAA.

3.2 Integration Approach

Within our development process we apply a few presumptions. The approach
taken relies on two fundamental ideas. These are the support for the develop-
ment process by making use of methods from model-driven development (MDD)
and the tightening of the integration of models (diagrams), generated code and
serialized representations. This leads to a threefold integrative approach that is
illustrated in Figure 2 and that we discuss in the following.

Integration encompasses three parts: (1) an ontology including multiple con-
cepts, (2) the code generated from the ontology and (3) the serialized represen-
tations of concept instances in FIPA Semantic Language (SL) format [12].

Ontologies are modeled using a light-weight technique called Concept Dia-
gram3. The concepts defined in the ontology are transformed into Java classes,
one class for each concept. Instances of these classes (ontology objects) can be
extracted into SL-formatted text. Through an SL parser the serialized SL text
representations can be used to instantiate Java ontology objects in the reverse
direction. Consequently, we utilize three tools for these three tasks: (1) the Con-
ceptDiagramModeler, (2) the OntologyGenerator and (3) the SL parser.

This basic integration approach described so far has several benefits. The
development process takes on a model-driven approach, which allows for the
specification of ontological concepts in a graphical notation. Concept Diagrams
are very similar to the widely-used UML Class Diagrams. They are quite in-
tuitively comprehensible and easy to manage. Manipulation of attributes can
be carried out directly in the diagram. Additionally, by making use of code
3 An example of a Concept Diagram will be discussed in the context of defining a
knowledge base format in the following section (3.3).

L. Cabac et al.: Modeling the Organizational Structure of MAS 301

Figure 2. The three-part basic model of agent knowledge

generation and the bi-directional conversion between Java objects and SL text
representations for concept instances, the integration of the different representa-
tions is very tight, i.e. transformation is transparent to a user. By using SL for
the text representations of ontology objects we employ an agent-comprehensible
format, as Mulan agents use SL text representations for message encoding. In
addition, our experience has indicated that SL text is also better human-readable
in comparison to an equivalent XML representation and shows a lower overhead.

In the following, we show how we apply this method in the case of modeling
service dependencies and agent knowledge.

3.3 Concept Diagrams for Role and Knowledge Base Concepts

The previous section provides a general overview of our model-driven approach
based on the integration of multiple representations. Now we describe how the
three basic parts (ontology, Java code, SL text representation) are applied in the
case of modeling as well as establishing organizational structures in multi-agent
applications (MAA). The model-driven approach starts with the specification
of an ontology encompassing organizational concepts (roles, services, protocols)
and concepts necessary for the generation of agent knowledge from organizational
structure models (knowledge base as an aggregation of role definitions resulting

302 ModBE’13 – Modeling and Business Environments

from a mapping between agents and roles, in which multiple roles can be assigned
to each agent). The ontology we use is shown in Figure 3 as a Concept Diagram.
It is created with the ConceptDiagramModeler.

Figure 3. A Concept Diagram for agent knowledge base concepts

The Concept Diagram serves in a twofold way. First, it defines all the content
types of the agent communication in an application. Second, it serves as a meta-
model for the tools that handle the modeled contents.

From here on, we rely on further tool support for code generation and conver-
sion between the different representations of concepts and concept instances. We
use the OntologyGenerator (based on Velocity, http://velocity.apache.org) and
the SL parser provided by the Mulan framework. Ontology modeling in terms
of Concept Diagrams and code generation from these models is already a part of
the Paose development process (cf. [3, p. 173]). Thus, the approach described
here for handling organizational structures and agent knowledge fits neatly into
the context of our wider work.

Basically, Figure 3 can be regarded as capturing the ontology for knowledge
bases of Mulan agents (the schema of a knowledge base). It illustrates the
modeling technique of Concept Diagrams in terms of inheritance and the use
of concepts for the definition of other concepts (this could also be modeled via
associations between different concepts).

Besides capturing the ontology for knowledge bases, the ontology is also used
by the AgentRoleModeler tool presented in the next subsection. Java ontology
classes that are generated by the OntologyGenerator tool are specializations
of generic ValueTuple (VT) and KeyValueTuple (KVT) classes. VT and KVT
structures are the root interfaces of an implementation of the FIPA SL.

As mentioned above, by using an SL parser, ontology objects can be instanti-
ated from their SL string representations. This is a feature that lies at the heart
of creating agent instances from knowledge base patterns (because knowledge-
base is a concept in the diagram from Figure 3 and thus each knowledge base

L. Cabac et al.: Modeling the Organizational Structure of MAS 303

as a whole has an SL representation). Ontology classes provide getters, setters
and convenience methods for operations on the data structures. The Ontology-
Generator tool is integrated into the build environment of the Mulan framework
and the SL parser can be used on the fly in a running Mulan MAA. All in all,
this supports our ambition of realizing a tight integration of different models,
tools and code.

Using the knowledge base ontology shown in Figure 3 the following section
explains how we model roles and dependencies in multi-agent applications.

3.4 Roles/Dependencies Diagrams

Roles and role dependencies are modeled with the AgentRoleModeler tool. The
corresponding Roles/Dependencies Diagrams combine notations from Class Dia-
grams and Communication Diagrams. The tool is embedded in our model-driven
development approach. The content of Roles/Dependencies Diagrams (Figure 5)
is based on the concepts that were already defined in the ontology from Figure 3.
Because of this, the AgentRoleModeler tool allows for the generation of knowl-
edge base descriptions in FIPA SL from Roles/Dependencies Diagrams using
the knowledge base ontology from Figure 3 as a meta-model. Thus the concepts
from the Concept Diagram reappear as stereotypes in the Roles/Dependencies
Diagram. The knowledge base descriptions resulting from a Roles/Dependen-
cies Diagram are used as patterns for the initialization of agent instances in the
Mulan multi-agent framework.

Renew-Editor-Palette

Figure 4. The Renew-Editor-Palette

The AgentRoleModeler is a drawing plugin for Renew and adds a custom
palette for drawing elements of Roles/Dependencies Diagrams as shown in Fig-
ure 4 (the AgentRoleModeler palette is shown at the bottom, under Renew’s
standard palettes). The graphical representation of Roles/Dependencies Dia-
gram elements is displayed in Figure 5. The nodes of Roles/Dependencies Dia-
grams (roles and services) contain the text in FIPA SL format, specifying the
corresponding attributes of the element. For a compact representation all draw-
ing elements can be collapsed to a smaller view. This provides a very compact

304 ModBE’13 – Modeling and Business Environments

and high-level view of an organizational structure in terms of roles and role
dependencies based on service dependencies. Expanding the drawing elements
allows manipulation of their attributes.

Figure 5. Constructs of a Roles/Dependencies Diagram.

Following Figure 3, the knowledge base of a Mulan agent contains an ar-
bitrary number of agent role descriptions, depending on which roles the agent
occupies. The attributes of agent roles (besides having a role name) are basi-
cally of three different types: (1) service dependencies, (2) protocol triggers and
(3) state descriptions. Such (initial) knowledge base content can be generated
from Roles/Dependencies Diagrams. Required and provided services of a role
(i.e. hard dependencies) are shown explicitly as independent service nodes and
offer / use associations connected to role nodes4. Protocol triggers are key-value
tuples that define, which conversation protocol (value) an agent should initiate in
reaction to incoming messages of a certain message pattern (key). They are not
represented in a Roles/Dependencies Diagram as explicit nodes but are inserted
directly into the corresponding role description. Further, state descriptions for a
role may contain any kind of key-value tuples that shall serve as initial knowledge
for role occupants. In addition to this flat specification of role dependencies, it
is also possible to define inheritance relationships between roles. This introduces
hierarchical relationships.

A Roles/Dependencies Diagram contains exactly one node that defines an
agent-role mapping. Basically, this node serves to define agent types in terms of
what roles a specific agent type should encompass. For each such agent type,
a pattern in FIPA SL can be generated that serves as the basis for the initial
knowledge of instantiated agents of that type.

4 Refer to [7] for a discussion of our view on hard and soft dependencies.

L. Cabac et al.: Modeling the Organizational Structure of MAS 305

4 Application

Aforementioned, we motivate the modeling of organizational structures in MAS.
Our approach to modeling organizations grounds on a ontological content defini-
tion, namely the three-part basic model of agent knowledge. We introduced the
three-part basic model in Section 3.2. We showed how the concrete realization
of a tool for modeling organizations utilizes the ontological content definition. In
this spirit the previous section introduced the notation of the Roles/Dependen-
cies diagram and the AgentRoleModeler tool. We will now use the technique of a
Roles/Dependencies diagram to model a sample application. The organizational
structure is brought into the MAS by the means of generic knowledge base pat-
terns. In the following example we demonstrate our method of extracting initial
agent knowledge and structural information from the graphical model and show
how they are brought into the running system. We illustrate the modeling of
organizational structures and agent knowledge in sample applications.

The AgentRoleModeler tool was developed in the context of a bachelors thesis
[20] at the University of Hamburg. After its completion it was used in several
student projects for agent-oriented software development. In one of these projects
about 20 team members worked on implementing applications for an agent-based
collaboration platform. The following example from Figure 6 is taken from this
project. It displays the scenario of a chat application, in which agents occur in
the roles of chat senders and receivers.

Figure 6. ARM of WebChat.

Figure 6 shows an instance of a Roles/Dependencies diagram. The model
consists in the concepts that were already used in the previous section, intro-
duced in Section 3.2 and illustrated in Figure 5. The Sender/Receiver-Scenario is
an example we regularly use to demonstrate the Mulan-Framework in student
projects. It consists in two roles, a Sender and a Receiver. Both roles inherit
attributes from the generic CapaAgent role, thus they are specializations of this
role. We will go into more detail about this later. The Sender is in possession of

306 ModBE’13 – Modeling and Business Environments

a decision component SenderDC, which enables him to sporadically participate
in conversation. He is dependent on a service (ChatMessageReception) allowing
him to find and address chat partners. The Receiver is a role, which provides
such a service, as can be seen by the realization relation between the Receiver
role and the ChatMessageReception service. Upon receiving a chat message, the
Receiver role reacts by initiating a chat protocol. The role specification formal-
izes reactive behavior as a protocol trigger, which can be seen on the lower right
part of the above figure. A protocol trigger maps a type of message, identified
by a message pattern, to a protocol. Every time a message of the defined type
is received, the protocol will be triggered. The chat protocol passes chat mes-
sages to a decision component of the Receiver (ReceiverDC) allowing him to
process the message. He can carry out internal reasoning about the conversa-
tion and decide on his further actions, such as creating a response or initiating
a new conversation. The diagram constructs described up to this point make
up the Roles/Dependencies model. There is a part we have not yet discussed.
The agent-roles mapping construct shown on the upper left formalizes an in-
stance specification. It determines, which agents occupy a previously defined set
of roles. The agent-roles mapping in this case maps both roles to one type of
agent, a ChatterAgent. The reason is that a ChatterAgent should naturally have
the ability to do both, send and receive chat messages.

The example displays our notion of functional rights and responsibilities in
terms of services dependencies. This specification of roles and services in form of
the Roles/Dependencies diagram can be used to generate initial knowledge base
contents for the agent instances dedicated to fulfill the corresponding roles. The
following example focuses on the succeeding step of extracting the information
required to initialize agent instances from the model.

Figure 7 shows a fragment of the Roles/Dependencies diagram that basically
refers to one of the roles from the example above. The blue-bordered role figure
(round corners) displays the attributes for the role name, protocol triggers and
state descriptions. On the right hand side one can see a snippet of the FIPA SL
code generated from the Roles/Dependencies diagram. Here, the service provided
by the Receiver role (ChatMessageReception) is also included directly in the
FIPA SL text. It can also be seen that the FIPA SL fragment contains more
than one state descriptions. The additional state descriptions are inherited from
the CapaAgent super role.

The roles and their mutual service dependencies are compiled into knowledge
base patterns. The knowledge base patterns are in FIPA SL text, so they can
directly be used to initialize agent instances, as they are specified in the lan-
guage (ontology) of Mulan-agents. The example shows how this information is
extracted from the model. It also shows how the model can express hierarchies
of roles in terms of role specializations, enabling inheritance of attributes. Be-
sides using the specialization relation between role constructs inside one single
diagram, the mechanism implemented in the AgentRoleModeler tool also allows
using inheritance across diagrams. This is also shown in the above figure. The
CapaAgent role is accessed from the Roles/Dependencies diagram named Agent-

L. Cabac et al.: Modeling the Organizational Structure of MAS 307

Figure 7. Role attributes and FIPA SL code generation.

Role. This is denoted by the displayed notation containing double colons. With
the support for expressing specializations with the AgentRoleModeler tool it is
possible to build graphical models containing hierarchies and compile them into
knowledge base patterns, which allows us to project the overall organizational
structure onto the MAA.

The approach for modeling basic organizational structures of MAS in terms
of roles and role relationships fits neatly into the general model-driven nature of
our Paose approach. In particular, in this case it helps to generate initial agent
knowledge.

5 Conclusion

In agent-oriented software engineering and especially in the context of develop-
ing Mulan applications two essential design aspects are the modeling of the
organizational structures and the initial knowledge of the agents. For the pur-
pose of modeling these fundamental features it requires a conceptional basis as
well as corresponding techniques, methods and tools.

5.1 Summary

In the context of the Paose approach we utilize the technique of Concept Di-
agrams and the OntologyGenerator tool to specify ontology concepts in order
to design multi-agent applications. In the context of this paper this technique
and tool is introduced together with the method of modeling agent roles and
service dependencies. Furthermore we present a technique and a supporting tool

308 ModBE’13 – Modeling and Business Environments

– also implemented as plugin for our IDE Renew – for a light-weight modeling
of service dependencies and agent roles.

In Section 2 we elaborate on organizational concepts in MAS research and
motivate our approach to modeling organizational structures. The main part
of our contribution is preceded by an introduction to the Paose development
process and the Mulan framework (Section 3.1), which constitute the context
of our work. Our approach to modeling roles and dependencies is introduced
in three steps. First, we introduce the three-part basic model of our approach
(Section 3.2). Second, we illustrate the modeling of ontology concepts utilizing
Concept Diagrams and the OntologyGenerator (Section 3.3). Third, we present
the modeling of agent roles and dependencies with Roles/Dependencies Dia-
grams and the AgentRoleModeler (Section 3.4). The presented technique is an
occurrence of the Roles/Dependencies Diagram – a Class Diagram that includes
notations from Communication Diagrams for the modeling of agent role de-
pendencies – that makes use of the Semantic Language (SL) as a description
language for the agents’ initial knowledge base contents. Finally, the techniques
and tools presented in the course of this contribution are demonstrated in a
application scenario in Section 4.

5.2 Future Work

In the context of our current research we elaborate on generalizing the approach
that was presented in this paper to a further step. The idea is not only to apply
the model-driven approach for code generation, conversion and transformation
of models, but to generate special purpose tools from ontology diagrams as well.
A step in this direction is generalizing the AgentRoleModeler tool to a generic
SLEditor tool. The UI of a current prototype is shown in Figure 8. It displays the
previously introduced role description of a Receiver from the Sender/Receiver
application in a nested graphical figure. The outer frame is that of the agent-role.
The highlighted constructs (in gray) indicate ValueTuples. This representation
allows for displaying any nested structure of KeyValueTuples and ValueTuples.
It can be seen as an alternative view to the plain text representation in Semantic
Language. Further efforts are being made to utilize an ontology – modeled with
the technique of a Concept Diagram – as a meta-model to generate specialized
structures and at the same time generate the modeling tools by using the generic
SLEditor. We are occasionally confronted with criticism against grounding our
work on an outdated infrastructure, because we still rely on the FIPA Semantic
Language for the specification of MAA. We address this subject with our devel-
opment plan on extending the SLEditor. With the generic SLEditor tool we can
support the modeling of MAA using other languages for content specification,
such as XML. This can be achieved by extending the ontology to support XML
to express knowledge contents.

Taking up the Figure 2 from Section 3.2 the three-part basic model of agent
knowledge is extended to display an XML ontology of an agent role. The Figure
reveals what is required to enable this feature: an XML schema definition speci-
fying the format of our ontologies and the methods for conversion of representa-

L. Cabac et al.: Modeling the Organizational Structure of MAS 309

Figure 8. Alternative representation of SL content.

Figure 9. The three-part basic model of agent knowledge, extended to support XML
for content specification.

tions between XML-Text and Java-Object. They are at this time not integrated
in Mulan, but there exist standard tools that support XML conversion.

References

1. Olivier Boissier, Jomi Hübner, and Jaime Simão Sichman. Organization ori-
ented programming: From closed to open organizations. In G. O’Hare, A. Ricci,
M. O’Grady, and O. Dikenelli, editors, Engineering Societies in the Agents World

310 ModBE’13 – Modeling and Business Environments

VII, volume 4457 of Lecture Notes in Computer Science, pages 86–105. Springer,
2007.

2. Lawrence Cabac. Multi-agent system: A guiding metaphor for the organization
of software development projects. In Paolo Petta, editor, Proceedings of the Fifth
German Conference on Multiagent System Technologies, volume 4687 of Lecture
Notes in Computer Science, pages 1–12, Leipzig, Germany, 2007. Springer-Verlag.

3. Lawrence Cabac. Modeling Petri Net-Based Multi-Agent Applications, volume 5 of
Agent Technology – Theory and Applications. Logos Verlag, Berlin, 2010.

4. Lawrence Cabac, Ragna Dirkner, and Daniel Moldt. Modeling with service depen-
dency diagrams. In Daniel Moldt, Ulrich Ultes-Nitsche, and Juan Carlos Augusto,
editors, Proceedings of the 6th International Workshop on Modelling, Simulation,
Verification and Validation of Enterprise Information Systems, MSVVEIS-2008,
In conjunction with ICEIS 2008, Barcelona, Spain, June 2008, pages 109–118,
Portugal, 2008. INSTICC PRESS.

5. Lawrence Cabac, Ragna Dirkner, and Heiko Rölke. Modelling service dependen-
cies for the analysis and design of multi-agent applications. In Daniel Moldt,
editor, Proceedings of the Fourth International Workshop on Modelling of Objects,
Components, and Agents. MOCA’06, number FBI-HH-B-272/06 in Report of the
Department of Informatics, pages 291–298, Vogt-Kölln Str. 30, D-22527 Hamburg,
Germany, June 2006. University of Hamburg, Department of Informatics.

6. Lawrence Cabac, Till Dörges, Michael Duvigneau, Daniel Moldt, Christine Reese,
and Matthias Wester-Ebbinghaus. Agent models for concurrent software systems.
In Ralph Bergmann and Gabriela Lindemann, editors, Proceedings of the Sixth
German Conference on Multiagent System Technologies, MATES’08, volume 5244
of Lecture Notes in Artificial Intelligence, pages 37–48, Berlin Heidelberg New
York, 2008. Springer-Verlag.

7. Lawrence Cabac and Daniel Moldt. Support for modeling roles and depen-
dencies in multi-agent systems. In Michael Köhler-Bußmeier, Daniel Moldt,
and Olivier Boissier, editors, Organizational Modelling, International Workshop,
OrgMod’09. Proceedings, Technical Reports Université Paris 13, pages 15–33, 99,
avenue Jean-Baptiste Clément, 93 430 Villetaneuse, June 2009. Université Paris
13. Preeproceedings available online at http://www.informatik.uni-hamburg.
de/TGI/events/orgmod09/#proceedings.

8. Luciano Coutinho, Jaime Sichmann, and Olivier Boissier. Modelling dimensions for
agent organizations. In Virginia Dignum, editor, Handbook of Research on Multi-
Agent Systems: Semantics and Dynamics of Organizational Models, pages 18–50.
Information Science Reference, 2009.

9. Virginia Dignum. The role of organization in agent systems. In Virginia Dignum,
editor, Handbook of Research on Multi-Agent Systems: Semantics and Dynamics
of Organizational Models, pages 1–16. Information Science Reference, 2009.

10. Christian Ensel and Alexander Keller. An approach for managing service depen-
dencies with xml and the resource description framework. Journal of Network and
Systems Management, 10:147–170, 2002.

11. Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From agents to organiza-
tions: An organizational view of multi-agent systems. In Paolo Giorgini, Jörg P.
Müller, and James Odell, editors, Agent-Oriented Software Engineering IV, 4th
International Workshop, AOSE 2003, Melbourne, Australia, Ju ly 15, 2003, Re-
vised Papers, volume 2935 of Lecture Notes in Computer Science, pages 214–230.
Springer-Verlag, 2003.

12. Foundation for Intelligent Physical Agents (FIPA). FIPA SL Content Language
Specification. http://www.fipa.org/specs/fipa00008/index.html, 2002.

L. Cabac et al.: Modeling the Organizational Structure of MAS 311

13. R. Gopal. Layered model for supporting fault isolation and recovery. In Network
Operations and Management Symposium, 2000. NOMS 2000. 2000 IEEE/IFIP,
pages 729–742. IEEE, 2000.

14. C. Hahn, S. Jacobi, and D. Raber. Enhancing the interoperability between mul-
tiagent systems and service-oriented architectures through a model-driven ap-
proach. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010
IEEE/WIC/ACM International Conference on, volume 2, pages 415–422. IEEE,
2010.

15. Bryan Horling and Victor Lesser. A survey of multi-agent organizational
paradigms. The Knowledge Engineering Review, 19(4):281–316, 2005.

16. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the structure and
behaviour of Petri net agents. In J.M. Colom and M. Koutny, editors, Proceedings
of the 22nd Conference on Application and Theory of Petri Nets 2001, volume 2075
of Lecture Notes in Computer Science, pages 224–241. Springer-Verlag, 2001.

17. Michael Köhler-Bußmeier, Daniel Moldt, and Matthias Wester-Ebbinghaus. A for-
mal model for organisational structures behind process-aware information systems.
volume 5460 of Lecture Notes in Computer Science, pages 98–115. Springer-Verlag,
2009.

18. Michael Köhler-Bußmeier, Matthias Wester-Ebbinghaus, and Daniel Moldt. Gen-
erating executable multi-agent system prototypes from sonar specifications. In
Nicoletta Fornara and George Vouros, editors, 11th Workshop on Coordination,
Organizations, Institutions, and Norms in Agent Systems, COIN@Mallow 2010,
pages 82–97, 2010.

19. Xinjun Mao and Eric Yu. Organizational and social concepts in agent oriented
software engineering. In James Odell, Paolo Giorgini, and Jörg Müller, editors,
Agent-Oriented Software Engineering V, volume 3382 of Lecture Notes in Computer
Science, pages 1–15. Springer Berlin / Heidelberg, 2005.

20. David Mosteller. Entwicklung eines Werkzeugs zur Modellierung der initialen Wis-
sensbasen und Rollen-Abhängigkeiten in Multiagentenanwendungen im Kontext
von PAOSE / MULAN. Bachelor’s thesis, University of Hamburg, Department of
Informatics, December 2010.

21. Lin Padgham and Michael Winikoff. Developing Intelligent Agent Systems : A
Practical Guide. Wiley Series in Agent Technology. Chichester [u.a.] : Wiley, 2004.
isbn:0-470-86120-7, Pages 225.

22. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

23. Carla T. L. L. Silva and Jaelson Castro. Modeling organizational architectural
styles in UML: The tropos case. In Oscar Pastor and Juan Sánchez Díaz, editors,
Anais do WER02 - Workshop em Engenharia de Requisitos, pages 162–176, 11
2002.

24. Andre L.C. Tavares and Marco Tulio Valente. A gentle introduction to OSGi.
SIGSOFT Softw. Eng. Notes, 33:8:1–8:5, August 2008.

25. Franco Zambonelli, Nicholas Jennings, and Michael Wooldridge. Developing multi-
agent systems: The Gaia methodology. ACM Transactions on Software Engineering
and Methodology, 12(3):317–370, 2003.

26. Ingo Zinnikus, Gorka Benguria, Brian Elvesæter, Klaus Fischer, and Julien
Vayssière. A model driven approach to agent-based service-oriented architectures.
In Klaus Fischer, Ingo Timm, Elisabeth André, and Ning Zhong, editors, Multi-
agent System Technologies, volume 4196 of Lecture Notes in Computer Science,
pages 110–122. Springer Berlin / Heidelberg, 2006.

312 ModBE’13 – Modeling and Business Environments

Mining Declarative Models Using Time Intervals

Jan Martijn van der Werf ?, Ronny S. Mans ??, and Wil M.P. van der Aalst

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{ j.m.e.m.v.d.werf, r.s.mans, w.m.p.v.d.aalst }@tue.nl

Abstract. A common problem in process mining is the interpretation of the time
stamp of events, e.g., whether it represents the moment of recording, or its oc-
currence. Often, this interpretation is left implicit. In this paper, we make this
interpretation explicit using time intervals: an event occurs somewhere during a
time window. The time window may be fine, e.g., a single point in time, or coarse,
like a day. As each event is related to an activity within some process, we obtain
for each activity a set of intervals in which the activity occurred. Based on these
sets of intervals, we define ordering and simultaneousness relations. These rela-
tions form the basis of the discovery of a declarative process model describing
the behavior in the event log.

Keywords: Process mining, time intervals, concurrency theory, declarative process
models

1 Introduction

Information systems of today collect large amounts of data. For example, banks are
saving information about the granting of mortgages and loans, insurance companies are
saving information concerning the handling of claims, and hospitals are saving the ac-
tions taken to treat patients. Many of the recorded data concern events which have been
performed in the context of a certain business process. For each event, different aspects
are stored, for example, the activity and case for which the event is raised, its type, and
when it has been raised. Process mining [1] aims to extract process knowledge from
these recorded events to discover, monitor and improve the actual processes supported
by these systems.

The information about when the event occurred, for example using the order in
which events are recorded, or its recorded timestamp is used to discover, monitor and
check the control flow of processes. The implicit assumption many of the process min-
ing algorithms make is that if two events are recorded consecutively, e.g. one is recorded

? supported by the PoSecCo project (project no. 257129), partially co-funded by the European
Union under the Information and Communication Technologies (ICT) theme of the 7th Frame-
work Programme for R&D (FP7).

?? supported by the Dutch Technology Foundation STW, applied science division of NWO and
the Technology Program of the Ministry of Economic Affairs.

before the other, or the timestamp of the first is before the latter, they occurred consecu-
tively. However, in many cases, this assumption may not hold, as systems implement log
recording differently. So, although time information is recorded, it can be interpreted in
many different ways.

One interpretation of the timestamp is that it is the time on which the event actually
occurred. More likely, many systems implement this as the time on which the event
is recorded. Other systems implement logging using a queue system, i.e., the event is
placed in the queue, and then written. Thus, if two events occur at the same time, their
timestamp may differ as they are written consecutively.

A second problem of timestamps is their scale. On the one hand, a too fine time
scale introduces causality that in reality does not exist. For example, consider an infor-
mation system consisting of many different components each with their own logging
mechanism. To construct the process of the information system, the recordings of each
component need to be combined in a single event log. As a result, one needs to ensure
that all components have the same time. On the other hand, a too coarse time scale may
falsely introduce concurrency. For example, if the time scale is in days, the order of
activities executed on the same day cannot be discovered.

A third problem lies in the reliability of the time information. For example, the order
based on timestamps of events is more reliable if the same timestamp generator is used.
Thus, timestamps of events in the same component are more reliable than when the
events are recorded by different components. Another source of unreliability is whether
time information depends on user input, such as calendars, or if it is generated by the
system.

As a result, one should always first check the order in which events occur. One way
to resemble this is to use intervals for event occurrences instead of single timestamps.
This allows to change the time scale from a very fine scale, such as single points, to
very coarse time scales, such as days. For example, an event that occurred on timestamp
‘2013/04/12 12:24:36.3’, can be seen as an interval of a single point, or, if the required
time scale under consideration is in days, it can be seen as an event that occurred on
April 12, 2013, i.e., in the interval ‘2013/04/12 0:00’ - ‘2013/04/12 23:59:59’.

Process mining focuses on the extraction of process knowledge. Whereas process
knowledge mainly focuses on the level of activities, systems recordings are on an event
level, which is not necessarily the same level, as several events may be raised for the
same activity, for example when the activity started or completed. Thus, to be able to
reason on the level of activities, events should be combined into activities. Aggregration
of events in activities can be done in many ways, such as the life-cycle of activities [1].
Depending on the aggregration, each activity may occur several times, each in its own
time interval, resulting in a set of time intervals for each activity.

In this paper, we want to make the time intervals in which an activity occurs ex-
plicit. Based on a set of intervals for each activity, we reason about which relations
can be inferred. For example, do two activities occur simultaneously or do they occur
sequentially. As we use intervals instead of single time points, many activities may oc-
cur concurrently. Procedural languages, like Petri nets [3], model explicitly the order in
which activities occur. For example, places in a Petri net are used to control choices and
to reduce the degree of concurrency in a model. As a consequence, concurrency needs

314 ModBE’13 – Modeling and Business Environments

to be modelled explicitly, rather than being a language primitive. In a declarative ap-
proach, all events may be executed concurrently, unless it is prohibited by constraints.
Therefore, we choose a declarative modelling language instead, called Declare [2], and
show how a declarative model can be derived from the intervals induced by the times-
tamps of the events.

This paper is structured as follows. In Sec. 2 we introduce the basic notions used
throughout the paper. Sec. 3 discusses the role of intervals within an event log. These
events and their intervals can be mapped onto activities in many different ways, as
shown in Sec. 4. Next, in Sec. 5, we define simultaneousness and causality relations on
sets of intervals. Sec. 6 presents a method to build a declarative model based on these
interval relations. Last, Sec. 7 concludes the paper.

2 Basic Notions

Let S be a set. The powerset of S is denoted by P(S) = {S ′ | S ′ ⊆ S }. We use |S | for
the number of elements in S . Two sets U and V are disjoint if U ∩V = ∅. We denote the
cartesian product of two sets S and T by S × T . On a cartesian product we define two
projection functions π1 : S × T → S and π2 : S × T → T such that π1((s, t)) = s and
π2((s, t)) = t for all (s, t) ∈ S × T . We lift the projection function to sets in the standard
way.

A binary relation R from S to T is defined by R ⊆ (S × T). For (x, y) ∈ R, we
also write x R y. For a relation R ⊆ (S × T), the inverse relation R−1 is defined as
R−1 = {(y, x) ∈ (T ×S) | x R y}. A relation R is called a function if x R y and x R z implies
y = z for all x ∈ S and y, z ∈ T . It is called a binary relation over S if R ⊆ (S × S).
A binary relation R is reflexive if x R x for all x ∈ S . It is transitive if x R y and y R z
implies x R z for all x, y, z ∈ S . It is reflexive if (x, x) ∈ R for all x ∈ S , and irreflexive
if (x, x) < R for all x ∈ S . Relation R is symmetric if x R y implies y R x for all x, y ∈ S
and asymmetric if x R y implies ¬y R x for all x, y ∈ S . The relation is antisymmetric if
x R y and y R x imply x = y for all x, y ∈ S . The transitive closure of a binary relation R
is defined as the smallest relation R+ such that x R+ y if either x = y, or x R+ z and z R y
for some z ∈ S .

A binary relation R over some set S is an equivalence relation if it is reflexive,
symmetric and transitive. A transitive, irreflexive binary relation is called a strict order.
It is a preorder, denoted by (S ,R), if R is reflexive and transitive. A preorder is a partial
order if (S ,R) is also antisymmetric. A partial order is called a total order, if in addition
also x R y or y R x for all x, y ∈ S .

A sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S . If n > 0 and
σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉. The length of a sequence is
denoted by |σ|. The sequence of length 0 is called the empty sequence, and is denoted
by ε. The set of all finite sequences over S is denoted by S ∗. Let ν, γ ∈ S ∗ be two
sequences. Concatenation, denoted by σ = ν; γ is defined as σ : {1, . . . , |ν| + |γ|} → S ,
such that for 1 ≤ i ≤ |ν|: σ(i) = ν(i), and for |ν| + 1 ≤ i ≤ |ν| + |γ|: σ(i) = γ(i − |ν|).

Given a set S and a, possibly infinite set T ⊆ R, a function f : S → T × T is called
an interval function if π1(f (a)) ≤ π2(f (a)) for all a ∈ S .

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 315

2.1 Event Logs

For each user action on the system, an event is raised. An event records its type, for
which activity it has been raised, for which case or business process instance, when
it was raised, by whom, and the data inserted by the user. Such a recording is called
an event log [1]. The set of all possible events, i.e., the event universe is denoted by E.
Similarly, we denote the case, attribute and value universes by C,A andV, respectively,
such that E,C,A ⊆ V and E, C and A are pairwise disjoint. We assume A ⊆ V to be
the (possibly infinite) set of activities.

Definition 1 (Event log). An event log is a 3-tuple L = (C, E, #) where

– C ⊆ C is a set of case identifiers in the event log;
– E ⊆ E is a set of event identifiers in the log;
– # : A× (C ∪ E)→ P(V) is an attribute mapping.

For an attribute n ∈ A we write #n(·) as a shorthand for #(n, ·). The following attributes
are always defined:

– Each event belongs to exactly one case and each case has at least one event, de-
noted by the mandatory attribute case ∈ A, i.e., for all events e ∈ E, a case c ∈ C
exists with #case(e) = {c}, and for all c ∈ C an event e ∈ E exists with #case(e) = {c};

– Each event belongs to some activity, denoted by the mandatory attribute act ∈ A,
i.e., for all events e ∈ E an activity a ∈ A exists such that #act(e) = {a};

– An event may record the time it was recorded using the timestamp attribute time ∈
A, i.e., for all events e ∈ E we have #time(e) = {t} for some timestamp t ∈ T, where
T resembles the set of timestamps.

3 Intervals in Event Logs

There are many techniques for discovering a process model out of an event log. An ex-
tensive overview of available process discovery techniques can be found in [24]. Some
examples are the alpha miner [4], the ILP miner [27] and the declarative miner [17].
In many discovery methods, events are considered to be instantaneous: they occur at a
single point in time. However, in many information systems, such as electronic patient
records, or financial statements, only a date is recorded. Consequently, even if events
are considered to occur instantaneously, if they are observed within the same interval,
the only conclusion to be drawn is that these occurred simultaneously.

The more coarse the chosen time scale (e.g., days, weeks or months), the more
events will occur concurrently. Another consequence of a more coarse time scale is that
events occur in some time window, rather than occurring at a single moment in time.
It is important to note that there are some techniques which do not consider events to
be instantaneous. That is, the authors of [15], exploit the fact that activities take time,
i.e. each activity has a start and complete event. As a result, parallelism can be detected
explicitly. Two activities are considered to occur in parallel if there is at least one case
in which the activities overlap in time. In [20], the authors consider the execution of an
activity as a time interval based on a starting and ending event. Parallelism is detected

316 ModBE’13 – Modeling and Business Environments

Table 1. Example event log, time scale in days

date events date events
7-1-2013 (1, A) 14-1-2013 (3, G) (4, A)
8-1-2013 (1, B), (1, E) 15-1-2013 (4, F), (5, A), (6, A)
9-1-2013 (2, A), (1, G) 16-1-2013 (4, G), (5, D)
10-1-2013 (2, E), (2, C), (3, A) 17-1-2013 (5, G), (6, F)
11-1-2013 (2, G), (3, D) 18-1-2013 (6, G)

by identifying two executions in which one activity occurs before the other one, and the
other way around. The work described in [21] is comparable to [20], which presents a
different control-flow discovery algorithm based on the notion of time intervals. All the
aforementioned techniques only use one notion for determining intervals for activities
and whether they overlap. In this paper, we study the case where activities occur in
multiple intervals within the same execution.

Consider the events presented in Tbl. 1 showing for each day the events that oc-
curred. For each event, its case and activity are recorded. The time stamps of these
events are in days, e.g., event (1, B) occurred on January 1, 2013, as well as event
(1, E). Based on this information, we cannot infer any order between B and E, the only
fact that can be inferred is that these events occurred simultaneously.

As the time scale is relatively coarse, a first analysis of this event log would be the
degree of concurrency. We can build a graph that depicts the intervals on a time scale,
as shown in Fig. 1(a). Based on this graph, we derive a concurrency relation I ⊆ E × E,
such that a I b if and only if a and b occur within the same time interval. This results in
a graph as depicted in Fig. 1(b), where the dashed and solid edges together represent the
relation I. For readability, the self loops have been omitted. Note that (A,G) is an edge
in the graph, while no case exists in which activities A and G occur simultaneously.
Therefore, we can partition the relation I into two relations IS and IG such that a IS b if
and only if #case(a) = #case(b), and IG analogously. In Fig. 1(b), the edges of relation IS

are solid, the edges of relation IG are dashed. Similarly, the concurrency relation is not
transitive with respect to the event log: even though (B, E) and (E,C) are edges in the
graph, B, C and E never occur simultaneously in any case.

Whereas in Fig. 1(b) an absolute time window is taken, one could also choose to
map each event to a relative interval, e.g. the respective day from the start of the day,
as shown in Fig. 1(c). To allow such abstractions, we introduce the notion of an event
interval mapping function that maps each event onto a time interval.

Definition 2 (Event interval mapping function). Let L = (C, E, #) be an event log. A
function mL : E → T × T is an event interval mapping function for L if it is an interval
function. The default interval mapping function DL : E → T × T of L is defined by
DL(e) = (#time(e), #time(e)) for all e ∈ E.

Based on the event interval mapping function, two notions of concurrency can be
observed: one based on the whole event log, called the concurrency relation, and one
based on the individual executions: the simultaneousness relation. Thus, the simultane-
ousness relation I for an event log L can be defined as the events that occur in the same
interval defined by some interval mapping function.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 317

(1,A) (1,E)

(1,B)

(1,G)

(2,A)

(2,C)

(2,E)

(3,A)

(3,D)

(2,G)

(4,A)

(3,G)

(5,A)

(4,F)

(6,A)

(4,G)

(5,D)

(5,G)

(6,F)

(6,G)

(a) intervals

G D

E

B

A

C

F

(b) concurrency graph

(1,A) (1,E)

(1,B)

(1,G)

(2,A)

(2,C)

(2,E)(3,A)

(3,D)

(2,G)

(4,A)

(3,G)

(5,A)

(4,F)(6,A)

(4,G)

(5,D)

(5,G)

(6,F)

(6,G)

(c) Relative time, intervals

Fig. 1. Intervals of Tbl. 1

Definition 3 (Concurrency, simultaneousness relation). Let L be an event log, and m
a corresponding event interval mapping function. Its concurrency relation Īm ⊆ E × E
is defined by a Īm b iff π1(m(a)) ≤ π2(m(b)) and π1(m(b)) ≤ π2(m(a)) for a, b ∈ E. Its
simultaneousness relation Im ⊆ E × E is defined by a Im b iff both a Īm b and #case(a) =

#case(b) for a, b ∈ E.

In the literature, the graph imposed by the concurrency relation is called the interval
graph [11, 16]. Following [11], we can define an ordering relation � that is defined by
a � b iff π2(m(a)) < π1(m(b)), stating that b “wholly occurs after” a. Relation � is
called an interval order [28, 29], as proven in [11].

Definition 4 (Interval order). A binary relation R over some set S is an interval order
if a R b and c R d imply a R d or c R b for all a, b, c, d ∈ S .

Using intervals in concurrency is not new. For example, Janicki and Koutny [14]
show that the notion of interval orders naturally follows from a basic assumption on
concurrency: “the observer can state that one event preceded another event, or that two
events occurred simultaneously”. The authors show that for finite event logs, events can
be interpreted as intervals on a discrete time scale. The authors introduce a model as
a set of relations defining (weak) causalities, commutativity and synchronisation. An
observation is called a history of a model if the relations induced by the observation
coincide with the relations of the model.

318 ModBE’13 – Modeling and Business Environments

In [6], Allen defines a set of assertions and properties based on time intervals: “be-
fore”, “equal”, “meets”, “overlaps”, “during”, “starts” and “finishes”. Based on these
predicates, the authors introduce the assertion “occurs” with two variables: an event
and an interval. This approach is often used in the area of artificial intelligence to rea-
son over time using logic programming [7, 22].

4 Activities as Sets of Intervals

The interval mapping function on event logs introduced in the previous section induces
an interval order on the events in the event log. In this way, approaches like in [9,14] are
directly applicable on this interval mapping function. These approaches mainly focus
on a single run of a system: each event occurs exactly once. However, process mining
mainly focuses on the analysis of the process implied by the activities for which the
events in the event log occurred.

Different events for the same activity may indicate that the activity has been exe-
cuted several times. Or, if an event represents the different stadia of some life cycle of
activities, like a start and complete type, multiple events occur for the same activity.
In [19] an approach is given for identifying pairs of events which denote the start and
end of an activity. Thus, a single execution involves multiple occurrences of activities
with some duration. Therefore, we search for new relations such that we can describe
the relations on activity level, rather than on the level of events.

One way to lift the interval functions from events to activities is by defining a re-
lation based on the interval order. Similar to the concurrency and simultaneousness
relation, one would obtain two relations R̄ and R such that

a R̄ b⇔ ∃e1, e2 ∈ E : #act(e1) = a ∧ #act(e2) = b ∧ e1 � e2

a R b⇔ ∃e1, e2 ∈ E : #case(e1) = #case(e2) ∧ #act(e1) = a ∧ #act(e2) = b ∧ e1 � e2

In fact, using the default event interval mapping of an event log, relation R coincides
with the weak order relation of [25], which allows us to construct a relation set [26]
based on intervals. In this paper, we will focus on behavioural relations based on the
interval in which an activity is executed.

Although the above relation R̄ is transitive, it abstracts away from the observed
sequences in the event log. As activities may have multiple occurrence intervals, it is
not an interval function. Therefore, we need to generalize the interval function to sets
of intervals.

Definition 5 (Generalized interval function). Given a set S and a, possibly infinite
set T ⊆ R, a function f : S → P(T × T) is called a generalized interval function if
x ≤ y for all (x, y) ∈ f (a) and a ∈ S .

A generalized interval function can define a large set of small intervals, or a small
set of large intervals. We call this the granularity of the interval function. Given any
generalized interval function, we can define its most fine granular interval function, i.e.,
each point is its own interval, and the most coarse granular interval function, i.e., the
conjunction of all intervals.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 319

Table 2. Event log of a single case

Act. Type Time Act. Type Time
A start 1 B start 9
B start 2 D complete 10
B complete 3 B complete 11
C start 4 E complete 12
A complete 5 D start 13
C complete 6 F start 14
D start 7 D complete 15
E start 8 F complete 16

A
B
C
D
E
F

(a) Per instance of the activity

A
B
C
D
E
F

(b) Total time

Fig. 2. Possible occurrence intervals of Tbl. 2

Definition 6 (Finest and coarsest interval functions). Let f : S → P(T × T) be a
generalized interval function. Its finest interval function, denoted by f ↓: S → P(T×T),
is defined by

f ↓ (s) = {(t, t) | ∃(x, y) ∈ f (s) : x ≤ t ≤ y}
The coarsest interval function of f , denoted by f ↑: S → P(T × T), is defined by:

f ↑ (s) = { (min{ π1(f (s)) },max{ π2(f (s)) }) }

Consider as an example the event log shown in Tbl. 2 representing the events of
a single case. In this example, the time scale is defined as hours since the start of the
execution. Many different ways exists to map these events to a generalized interval
function on activities.

Two example mappings are given in Fig. 2. In the first example, the start and com-
plete events of each activity are used to define the different intervals, whereas in the
second example the very first start event of the activity defines the begin of the interval,
and the very last complete event of the activity the end of the interval. Observe that in
Fig. 2(a) activities B and C have no overlap, whereas in Fig. 2(a) these activities do
have overlap.

In general, an event log records many different executions. Therefore, we map each
execution to its own activity interval function. This results in an activity interval map-
ping for an event log.

As each event belongs to a single activity, we require that an activity interval map-
ping defines a unique interval for each event in the event log. On the other hand, as an
activity may be represented by multiple occurrences, multiple events may be related to
the same activity interval.

320 ModBE’13 – Modeling and Business Environments

Definition 7 (Activity interval mapping). Let L = (C, E, #) be an event log with cor-
responding event interval mapping m, let A be a set of activities of L, and let T ⊆ R
be the time scale. The function G : C × A → P(T × T) is called an activity interval
mapping iff

– each event has a unique corresponding interval, i.e.,

∀e ∈ E : (∃I ∈ G(#case(e), #act(e)) : m(e) ⊆ I)
∧ (∀I, J ∈ G(#case(e), #act(e)) : (m(e) ⊆ I ∧ m(e) ⊆ J) =⇒ I = J)

– each interval has at least one event occurrence, i.e.,

∀a ∈ A, c ∈ C, I ∈ G(c, x) : ∃e ∈ E : #case(e) = c ∧ #act(e) = a ∧ m(e) ⊆ I

The default activity interval mapping of an event log L, denoted by L̄ : C × A→ T × T,
is defined by:

L̄(c, a) = {m(e) | ∃e ∈ E : #case(e) = c ∧ #act(e) = a}
Many different interval functions can be defined for an event log. As the next corol-

lary shows, such activity interval mappings are related, as intervals may be combined
into larger intervals, or split into several smaller intervals. It is simple to see that given
some activity interval mapping, its coarsest interval function is also an activity interval
mapping. Further, the finest interval function of the minimal activity interval mapping
is contained in the finest interval function of the activity interval mapping.

Corollary 8. Given an event log L with corresponding event interval mapping m and
activity interval function G. Let A be the set of activities in L. Then (1) G↑is an activity
interval mapping, (2) L̄ ↓⊆ G ↓, and (3) π1(G ↑ (a)) ≤ π1(L̂ ↑ (a)) and π2(G ↑ (a)) ≥
π2(L̄↑ (a)) for all activities a ∈ A.

5 Relations on Interval Sets

In general, a generalized interval function does not define any interval order. Conse-
quently, approaches like in [6, 14] cannot be used to determine causality and similarity
relations. In this section, we derive such notions based on the generalized interval func-
tion.

5.1 Notions of Simultaneousness

In an interval order two intervals are unrelated if one does not wholly occur after the
other, and vice versa. With sets of intervals, different degrees of simultaneousness can
be defined.

The weakest form of simultaneousness is when two elements have some overlap-
ping intervals. For example, in the intervals shown in Fig. 3(a), activities A and B have
some intervals that overlap. Note that the relation is not transitive, as shown in the same
figure. We say an element s is dependent simultaneous with some other element t if for
every interval of s, an overlapping interval of t exists. Thus, everytime s is started, t will
be started as well, whereas if t occurs, s does not have to occur. If s always overlaps
with t, we say they are strongly dependent.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 321

A
B
C

(a) Weakly simultaneous

A
B
C

(b) Dependent simultaneous

A
B
C

(c) Strongly simultaneous

Fig. 3. Simultaneousness relations

Definition 9 (Simultaneousness). Let f be a generalized interval function over some
set S . Let s, t ∈ S . Then:

– s and t are weakly simultaneous, denoted by s ↔ t, if s and t share some interval,
i.e., ∃I ∈ f (s), J ∈ f (t) : I ∩ J , ∅;

– s is dependently simultaneous with t, denoted by s ⇒ t, if always if s occurs, then
t occurs in the same interval, i.e., ∀I ∈ f (s) : ∃J ∈ f (t) : I ∩ J , ∅;

– s and t are strongly simultaneous, denoted by s� t, if s and t always overlap, i.e.,
s� t if and only if s⇒ t and t ⇒ s.

Consider again Fig. 3. In Fig. 3(a) we have A ↔ B and B ↔ C but not A ↔ C,
in Fig. 3(b) we have A ⇒ B as every interval of A overlaps with some interval of B,
B ⇒ C as each interval of B overlaps with some interval of C and A ↔ C but not
A ⇒ C as not every interval of A overlaps with an interval of C. Last, in Fig. 3(c) we
have A � B, B � C and A ⇒ C but not A � C, as every interval of A overlaps some
interval of C but not vice versa.

Based on their definitions, it is trivial to see that strong simultaneousness implies
dependent simultaneousness which in turn implies weak simultaneousness.

Corollary 10. Let f be a generalized interval function over some set S , and let s, t ∈ S .
Then (1) s⇒ t ∧ f (s) , ∅ =⇒ s↔ t, and (2)� and↔ are symmetric and reflexive.

As shown in Fig. 3, none of these relations is transitive. Consequently, we cannot
obtain equivalence classes based on the intervals. As the relation � is symmetric and
reflexive, it can be used as a dependence relation over the set of activities, which allows
us to use Mazurkiewicz trace theory [10] for e.g. synthesis and to check completeness
of event logs.

5.2 Notions of Causality

Fishburn showed in [11], that given an interval function f , any order � with x � y iff
π2(f (x)) < π1(f (y)), i.e., that the interval of x is wholly after the interval of y, is an
interval order. Similarly, the > relation in relation sets [4,26] states that if a > b but not

322 ModBE’13 – Modeling and Business Environments

A
B
C

(a) Wholly succeeded by

A
B
C

(b) Succeeded by

A
B
C

(c) Strictly succeeded by

A
B
C

(d) Preceeded by

A
B
C

(e) Strictly preceeded by

Fig. 4. Different causal relations based on the intervals

b > a, then a and b are causally ordered, i.e., a is followed by b, but b never followed by
a. In terms of intervals, similar relations can be defined. Again, as an activity possibly
has multiple intervals, we need to adapt the notion of causality to sets of intervals.

The first causality relation we introduce is if all intervals of some activity t occur
after the intervals of s occurred, i.e., s is wholly succeeded by t. An example is depicted
in Fig. 4(a), in which A is wholly succeeded by B and B is wholly succeeded by C. If
for each interval of s some interval of t can be found that wholly succeeds the interval
of s, we say that s is succeeded by t. In Fig. 4(b), A is always succeeded by B, and B is
always succeeded by C. Note that this allows intervals of t to occur simultaneously with
intervals of s, or even occurring before s, as shown in Fig. 4(b) where B occurs before
A. If s is succeeded by t and they have no overlapping intervals, we say that s is strictly
succeeded by t. An example is shown in Fig. 4(c), where A is strictly succeeded by B,
and B strictly succeeded by C. Note that whereas the succeeded relation is transitive,
the strictly succeeded is not, as A and C have overlap.

Symmetrically, if for each interval of t an interval of s can be found that wholly
preceeds the interval of t, we say that t is preceeded by s. This allows intervals of s
to occur after intervals of t, or even simultaneously, as shown in Fig. 4(d) where B is
preceeded by A, and C by B. The relation is called strict, if s and t are not simultane-
ously. Again, as shown in Fig. 4(e), the strictly preceeded relation is not transitive, as
B is strictly preceeded by A, and C by B, but A and C have overlap. This leads to the
following notions of causality.

Definition 11 (Causality). Let f be a generalized interval function over some set S .
Let s, t ∈ S . Then:

– s is wholly succeeded by t, denoted by s�t, if all intervals of t are after the intervals
of s, i.e., π2(f ↑ (s)) < π1(f ↑ (t));

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 323

– s is succeeded by t, denoted by s D t, if each interval of s is followed by an interval
of t, i.e., ∀(a, b) ∈ f (s) : ∃(c, d) ∈ f (t) : b < c;

– s is strictly succeeded by t, denoted by s� t, if s D t and not s↔ t;
– t is preceeded by s, denoted by s w t, if each interval of t is preceeded by an interval

of s, i.e. ∀(c, d) ∈ f (t) : ∃(a, b) ∈ f (s) : b < c;
– t is strictly preceeded by s, denoted by s = t, if s w t and not s↔ t.

It is easy to see that the wholly succeeded relation is a strict order. Similarly, the
followed by and preceeded by relations are transitive. However, these relations are not
irreflexive in general. Only if the set of intervals for some activity is finite, the relations
are irreflexive as well, and thus a strict order. If an activity has an infinite set of intervals,
then it is succeeded by itself.

If some activity is wholly succeeded by some other activity, then it is easy to show
that the former activity is strictly succeeded by the latter, and the latter is strictly pre-
ceeded by the former.

Corollary 12. Let f be a generalized interval function over some set S . Then (1) � is
a strict order, (2) D, and w are transitive, and (3) x � y =⇒ x � y ∧ x = y for all
x, y ∈ S .

Further, the strictly succeeded by and strictly preceeded by relations are subsets of
the succeeded by and preceeded by relations, respectively.

Corollary 13. Let f be a generalized interval function over some set S . Then (1) � ⊆
D, and (2) = ⊆ w.

As for the interval order � defined on events, the wholly succeeded by relation on
activities is an interval order, which follows directly from the definitions.

Lemma 14 (Wholly succeeded is an interval order). Let f be a generalized interval
function over some set S . Then � is an interval order.

Proof. Let a, b, c, d ∈ S such that a � b, and c � d. We need to show that either a � d
or c� b holds.

Suppose a� d does not hold, i.e., π2(f ↑ (a)) ≥ π1(f ↑ (d)). Then π2(f ↑ (c)) < π1(f ↑
(d)) ≤ π2(f ↑ (a)) < π1(f ↑ (b)). Hence, c� b.

Similarly, suppose c � b does not hold, i.e., π2(f ↑ (c)) ≥ π1(f ↑ (b)). Then π2(f ↑
(a)) < π1(f ↑ (b)) ≤ π2(f ↑ (c)) < π1(f ↑ (d)). Hence, a� d. ut

5.3 Other Control-Flow Relations

The simultaneousness and causality relations form the basic building blocks of any pro-
cess modelling language. Many other control-flow relations can be defined, depending
on the needs within the process modelling notation. For example, one can define a next-
to relation on activities, defining whether two activities are directly after one another,
without any activitiy in between. As for simultaneousness, this can be a weak relation,
i.e., for two activities there are intervals next to each other, or a strong relation, i.e., for
all intervals.

324 ModBE’13 – Modeling and Business Environments

Definition 15 (Next-to relation). Let f be a generalized interval function over some
set S . Let s, t ∈ S . We say s is next to t, denoted by s ◦ t, if some interval of s is directly
followed by an interval of t, without any occurrence of other activities in between, i.e.,
∃(k, l) ∈ f (s), (o, p) ∈ f (t) : (l < o ∧ ¬(∃u ∈ S : (m, n) ∈ f (u) : l < n ∧ m < o))

Similarly, s is followed by t, denoted by s • t, if all intervals of s are directly followed
by an interval of t, without any occurrence of other activities in between, i.e.,
∀(k, l) ∈ f (s) : (∃(o, p) ∈ f (t) : l < o ∧ ¬(∃u ∈ S : (m, n) ∈ f (u) : l < n ∧ m < o))

Naturally, if s is followed by t, then s is also succeeded by t.

Corollary 16 (Follows implies succeeded). Let f be a generalized interval function
over some set S , and let s, t ∈ S . Then if s • t then also s D t.

As activities are represented by sets of intervals, an activity can be enclosed by
some other activity, i.e., some activity B always occurs between two intervals of A. We
call this relation betweenness. Again, this can be a strong notion, requiring this for all
intervals of B, or a weak notion, only requiring the existence of such an interval of B.

Definition 17 (Betweenness). Let f be a generalized interval function over some set
S . Let s, t ∈ S . We say t is weakly in between s, denoted by s# t, if some interval of t
is in between two intervals of s, i.e., ∃(m, n) ∈ f (t), (k, l), (o, p) ∈ f (s) : l < m ∧ n < o.

Similarly, we say t is in between s, denoted by s	 t, if all intervals of t are between
two intervals of s, i.e., ∀(m, n) ∈ f (t) : (∃(k, l), (o, p) ∈ f (s) : l < m ∧ n < o).

Altough betweenness seems a natural choice, it can be expressed in terms of the
basic causality notions defined in Def. 11.

Corollary 18 (Betweenness implies basic causality). Let f be a generalized interval
function over some set S , and let s, t ∈ S . If s	 t then s w t and t D s.

6 Discovering Declarative Models

The density of the time scale has a great impact on the level of concurrency in an event
log, and hence in the model that describes the allowed behaviour of the executions in
the event log. Procedural languages prescribe the order in which activities are supposed
to occur. Consequently, concurrency needs to be modelled explicitly in such languages.
Instead, we use a declarative approach that has concurrency as a language primitive:
activities may occur simultaneous, unless constraints prohibit the execution of the ac-
tivity.

6.1 Declare Language

In this paper, we use the declarative language Declare [2]. The language provides a
graphical layout to visualize the activities and constraints in the model. It does not
come with a predefined set of language constructs. Instead it offers a set of language
constructs called constraint templates, which the user may adapt to its own needs. These
constraint templates are based on Linear Time Logic (LTL) [8]. Declare comes with a

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 325

Table 3. Basic language constructs in Declare

Constraint Template Graphically

init σ(1) = A
A

init

response �(A =⇒ �B)
A B

precedence ((¬B) U A) ∨ �¬B
A B

non coexistence ¬((�A) ∧ (�B))
A B

(n..m) occurrences |{i | σ(i) = A}| ∈ [n..m] ⊆ N A

n..m

Table 4. Newly introduced constraints in Declare

Constraint Template Graphically

strongly simultaneous A� B
A B

Dependently simultaneous A⇒ B
A B

wholly succeeded A� B
A B

strict response A� B
A B

strict precedence A = B
A B

basic set of language constructs. Tbl. 3 depicts the language constructs from Declare
used in this paper.

The first constraint template, init, states that the first activity of any sequence, rep-
resented by σ, should start with A, where A is a placeholder for the actual activity.
Similarly, the response template states that every A should eventually be followed by
some activity B. The precedence constraint template expresses that some activity B has
to be preceeded by some activity A. With the non coexistence template, it is possible to
express that two activities should not occur together in any sequence. Last, we allow to
limit the number of times an activity can be executed using the n..m occurrences tem-
plate, where n ≤ m specifies the minimal and maximal number of times some activity
A is executed.

6.2 Interval-Based Constraints

The constraints in Declare do not take activity duration into account. Consequently, we
need to relate the constructs used in Declare with the simultaneousness and causality
relations defined in the previous section.

First, consider the response constraint template. This constraint expresses that ac-
tivity A is always eventually followed by B. This can be interpreted in many different

326 ModBE’13 – Modeling and Business Environments

ways, e.g., “once activity A is started, activity B will eventually start”, or “once activ-
ity A is finished, activity B will eventually start”. We choose the latter interpretation,
i.e., after activity A finished, eventually activity B will start. A second consideration is
whether the response and precedence templates should allow the activities in the con-
straint to occur simultaneously. As the response template is transitive in the Declare
language, we allow the activities to overlap. Thus, we interpret the response template
with the succeeded by relation introduced in the previous section. Similarly, we interpret
the preceeds template as “before activity B starts, activity A should be finished”, which
coincides with the preceeds by relation introduced in the previous section. Therefore,
the strictly succeeded by and strictly preceeded by relations are added to the Declare
language, as shown in Tbl. 4.

Although in Declare concurrency is a language primitive, each activity in the model
is considered to be instantaneous. The language does not provide any constraint that
limits concurrency without destroying it. Thus, the weak simultaneousness relation as
presented in the previous section is directly supported in the language. The two stronger
simultaneousness relations impose an order on the activities: although the activities
may overlap, the other activity must be executed simultaneously. This is expressed by
the strongly simultaneous template and dependent simultaneous template as depicted in
Tbl. 4.

6.3 Discovery

In the previous section, we introduced several notions of simultaneousness and causal-
ity. Up to now, these relations only consider a single execution of the system. An event
log contains a set of executions that are executed by, most likely, the same process.
Hence, to come to a model that describes each of the executions in the event logs, we
need to aggregate the relations over the different executions in the event log.

In what follows, we sketch a declarative discovery algorithm based on time inter-
vals. Here, it is important to mention that the choice of the generalized interval functions
for the activities breaks or makes the approach presented in this paper.

Events to interval First step in the approach is to map each event to an interval. In
many cases the default event interval mapping, i.e., that maps each event to a single-
point interval, can be used. In some cases, for example if event logs of multiple systems
are combined, a reliability interval can be attached to each interval.

Activities to sets of intervals Next step is the construction or discovery of an accurate
activity interval mapping. For example, one can fix the granularity of the time scale,
make it relative or absolute, and then map each event to the corresponding time interval.
Or, one can use the event types to determine the life cycle of an activity, and base the
activity interval mapping on this information. Although at first sight this seems to be
a trivial step, there are many pitfalls [12]. For example, if two instances of the same
activity run simultaneously, which interval should be used to map the activity on?

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 327

Strongly
simultaneousness

Dependently
simultaneousness

Weakly
simultaneousness

(a) Simultaneousness

Wholly succeeded by

Strictly
succeeded by

Strictly
preceeded by

succeeded by preceeded by

(b) Causality

Fig. 5. Hierarchy of simultaneousness and causality relations

Derive relations Once the activity interval mapping has been established, we can start
to derive the different relations. For example, the (n..m) occurrences template can be
easily constructed by analyzing the number of occurrences in each of the sequences in
the event log. Similarly, the non-coexistence relation can be calculated by a single walk
through the sequences of the event log.

Next step would be to derive the different simultaneousness relations and causality
relations. For this, we use the relation hierarchy as depicted in Fig. 5, which follows
directly from Cor. 10 and Cor. 12. An arrow from one relation to another relation means
that the former is included in the latter. For example, the strongly simultaneousness
relation is included in the dependently simultaneousness relation. The algorithm starts
with assuming the strongest relation between each of the activities. By going through
the different intervals, relations are weakened, until all intervals of all sequences in the
event log have been inspected.

The algorithms to derive the simultaneousness and causality relations do not take
transitivity into account, which results in models with many constraints, expressing the
complete transitive closure of the respective relations. Therefore, these relations need
to be reduced, such that the transitive closure of this reduced relations remain the same.
For this, standard algorithms as described in [5] can be used. Although at first sight this
seems a straightforward task, it is not, as one wants to take the hierarchy of relations
into account during the reduction, which is closely related to the “minimum equivalent
graph” problem [18], which is NP-hard.

Last, we sugar the models using nesting, as has been done in e.g. Dynamic Condi-
tion Response Graphs [13]. In this approach, set of nodes having the same constraints
are nested in a so called “super nodes”.

For the example event log of Tbl. 1, the discovery algorithm that has been sketched
above results in the model depicted in Fig. 6. For the activities B, C, and E, we briefly
illustrate the steps of the algorithm. In the first step, we take a relative time scale for
the activity interval mapping. Moreover, a “start” event denotes the start time of an
activity and a “complete” event denotes the end time of an activity. Secondly, all three

328 ModBE’13 – Modeling and Business Environments

A

1..1

init

B

0..1

E

0..1

C

0..1

G

1..1

D

0..1

F

0..1

A

B

0..1

E

0..1

C

0..1

G

1..1

D

0..1

F

0..1

Fig. 6. Model discovered from the event log in Tbl. 1

activities occur at most once in each of the sequences of the event log resulting into a
0..1 occurrence relation for each of them. Also, activity A and B never occur together
in each sequence. In the third step, it is discovered that activities B and C are strongly
simultaneous. Also, the tree activities are all preceeded by activity A and succeeded by
activity G. Finally, in the last step, activities B, E and C are nested, as these activities
are all preceeded by A, do not coexist with D and F, and are all succeeded by G.

7 Conclusions

Timestamps in an event log play an essential role in process mining to determine the
order in which events occur. A typical problem in process mining is the impreciseness
of these timestamps. In this paper, we overcome this problem by assuming that each
event occurs in some time window, i.e., in some interval. As the intervals in an event
log are on the level of events, rather than on the level of activities, we have presented
an approach based on sets of intervals to represent the occurrences of the activities in
the model. On these sets of intervals new notions of simultaneousness and causalities
are derived. These notions form the basis to discover declarative models.

The simultaneousness relation forms a natural candidate for the dependency relation
in Mazurkiewicz traces. In this way, simultaneousness can be used to test the complete-
ness of event logs, by exploring the Mazurkiewicz equivalent traces.

Although intervals are a natural choice to overcome the impreciseness of times-
tamps, choosing the right time window is a hard problem. The events and activities can
be mapped to intervals in many different ways. The granularity of the time scale, like
milliseconds, hours or days, can be used to define the intervals, the time scale can be
relative or absolute. Or, if the event log contains a transition life cycle, like a start and
complete event, then the first and last event of each execution can be used to deter-
mine the intervals in the activity interval mapping. Empirical research is needed to test,
validate and compare the different alternatives.

As the proof of the pudding is in the eating, we will implement the presented ap-
proach in ProM [23] to perform more case studies to test and fine tune the resulting
declarative models.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 329

Acknowledgements The authors would like to thank Jetty Klein for the fruitful discus-
sions about paradigms of concurrency and interval orders.

References

1. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer-Verlag, Berlin, 2011.

2. W.M.P. van der Aalst, M. Pesic, and M.H. Schonenberg. Declarative workflows: Balancing
between flexibility and support. Computer Science - Research and Development, 23:99–113,
2009.

3. W.M.P. van der Aalst and C. Stahl. Modeling Business Processes -Ű A Petri Net-Oriented
Approach. The MIT Press, 2011.

4. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering
Process Models from Event Logs. Knowledge & Data Engineering, 16(9):1128–1142, 2004.

5. A.V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a Directed Graph.
SIAM Journal on Computing, 1(2):131–137, June 1972.

6. J.F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23(2):123–
154, July 1984.

7. J.F. Allen. Actions and Events in Interval Temporal Logic 1 Introduction. Journal of Logic
and Computation, 4:531–579, 1994.

8. E. Clarke and E. Emerson. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In Logics of Programs, volume 131 of LNCS, pages 52–
71. Springer-Verlag, Berlin, 1982.

9. P. Degano and U. Montanari. Concurrent Histories: A Basis for Observing Distributed Sys-
tems. Journal of Computer and System Sciences, 34(2-3):422–461, 1987.

10. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore,
1995.

11. P.C Fishburn. Interval graphs and interval orders. Discrete Mathematics, 55(2):135–149,
July 1985.

12. T. Gschwandtner, J. Gärtner, W. Aigner, and S. Miksch. A Taxonomy of Dirty Time-Oriented
Data. In G. Quirchmayr, J. Basl, I. You, and E. Weippl, editors, CD-ARES 2012, volume 7465
of LNCS, pages 58–72. Springer, 2012.

13. T. Hildebrandt, R. Mukkamala, and T. Slaats. Nested dynamic condition response graphs.
Fundamentals of Software Engineering, pages 343–350, 2012.

14. R. Janicki and M. Koutny. Structure of concurrency. Theoretical Computer Science,
112(1):5–52, April 1993.

15. Wen. L., J. Wang, W.M.P. van der Aalst, B. Huang, and J. Sun. A Novel Approach for
Process Mining based on Event Types. Journal of Intelligent Information Systems, 32:163–
190, 2009.

16. R.D. Luce. Semiorders and a Theory of Utility Discrimination. Econometrica, 24(2):178–
191, 1956.

17. F.M. Maggi, R.P.J.C. Bose, and W.M.P. van der Aalst. Efficient discovery of understandable
declarative process models from event logs. In CAiSE, volume 7328 of LNCS, pages 270–
285. Springer-Verlag, Berlin, 2012.

18. D.M. Moyles and G.L. Thompson. An algorithm for finding the minimum equivalent graph
of a digraph. Journal of the ACM, pages 455 – 460, 1969.

19. J. Nakatumba and W.M.P. van der Aalst. Analyzing Resource Behavior Using Process Min-
ing. In S. et al. Rinderle-Ma, editor, BPM 2009 Workshops, volume 43 of LNBIP, pages
69–80. Springer, 2009.

330 ModBE’13 – Modeling and Business Environments

20. S.S Pinter and M. Golani. Discovering Workflow Models from Activities’ Lifespans. Com-
puters in Industry, 53:283–296, 2004.

21. Y.-L. Qu and T.-S. Zhao. Building Process Models Based on Inverval Logs. In M. Ma, editor,
Communication Systems and Information Technology, volume 100 of LNEE, pages 71–78.
Springer, 2011.

22. G. Rosu and S. Bensalem. Allen Linear (Interval) Temporal Logic – Translation to LTL and
Monitor. In Computer Aided Verification, pages 263–277. Springer, 2006.

23. H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. XES, XE-
Same, and ProM 6. In Information System Evolution, volume 72, pages 60–75. Springer,
2011.

24. J. de Weerdt, M. de Backer, J. Vanthienen, and B. Baesens. A Multi-dimensional Quality
Assessment of State-of-the-Art Process Discovery Algorithms using Real-Life Event Logs.
Information Systems, 37:654–676, 2012.

25. M. Weidlich, J. Mendling, and M. Weske. Efficient consistency measurement based on be-
havioral profiles of process models. IEEE Trans. Software Eng., 37(3):410 – 429, 2011.

26. M. Weidlich and J.M.E.M. van der Werf. On Profiles and Footprints – Relational Semantics
for Petri Nets. In Application and Theory of Petri Nets, LNCS, pages 148–167. Springer,
2012.

27. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process Dis-
covery Using Integer Linear Programming. Fundamenta Informatica, 94(3 – 4):387 – 412,
2009.

28. N. Wiener. A contribution to the theory of relative position. Proceedings of the Cambridge
Philosophical Society, 17:441–449, 1914.

29. N. Wiener. A new theory of measurement: A study in the logic of mathematics. Proceedings
of the London Mathematical Soc., s2-19(1):181–205, 1921.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 331

332 ModBE’13 – Modeling and Business Environments

Part VIII

ModBE’13: Short Presentation

Improving Emergency Department Processes Using Coloured
Petri Nets

Khodakaram Salimifard1, Seyed Yaghoub Hosseini2, Mohammad Sadegh Moradi1

1 Industrial Management Department, Persian Gulf University, Bushehr, Iran

salimifard@pgu.ac.ir, msadeghmoradi@gmail.com

2 Business Management Department, Persian Gulf University, Bushehr, Iran

hosseini@pgu.ac.ir

Abstract. With increasing demand for medical services, emergency departments (ED)
are facing problems such as overcrowding and dissatisfaction. Improving the key per-
formance indicators of EDs has been the focal point of healthcare management. This
paper addresses performance analysis of ED of a general hospital. To this aim, a dis-
crete event dynamic modeling approach is used to model the ED processes. The mod-
el employs a hierarchical timed Coloured Petri net framework in a concise and de-
tailed way to capture patient flow and care processes within the ED. The simulation
model was validated against historical data and then different types of scenarios were
used to assess, compare and improve ED key performance indicators, such as patients
waiting time, length of stay (LOS), and resource utilization rate. The proposed model
helped the hospital policy makers to configure the ED in a way to improve its effi-
ciency and staff satisfaction.

Keywords: Healthcare System, Emergency Department, Coloured Petri Net, Perfor-
mance Analysis

1 Introduction

Emergency departments (ED) are facing different problems which affect their performance.
Of these, overcrowding is a common issue around the world which provides EDs patient
with long length of stay (LOS), waiting times for receiving services and then dissatisfaction
[1]. Although most emergency departments are under growing demand, they often face
with insufficient staffing and budget constraints. One solution to this problem is to increase
capacity of ED, providing adequate facilities and manpower, but this is not the best ap-
proach for solving the problem, and perhaps not achievable [2]. Recently, the need for im-
provement in ED processes due to cost, overcrowding and safety of patients admitted to a
large extent [3].To improve the efficiency and quality of ED processes, different methods
were used which include process mapping, demand management, critical path identifica-
tion, queuing systems, statistical forecasting, balanced scorecard and computer simulation
[4].

In the last years, the use of computer simulation to help effective decision making in
health care and to improve the medical operations has been rising [5]. One of the main rea-

sons that simulation has become a common practice in solving medical problems is its abil-
ity to dynamically analyze situations and present to the stakeholders a more realistic view
of the system [6]. The main purpose of the use of simulation studies in health care is to
reduce waiting times and length of stay for patients, better use of resources and reducing
operating cost [7]. Among the various methods for simulation in health care, discrete event
simulation is the most used method especially in EDs, and it seems to be a better alternative
with less time and cost compared to more traditional statistical methods [8].

This study is intended to present a general simulation model for studying hospital emer-
gency department. For this purpose, we used Coloured Petri Nets modeling and simulation
formalism for making a general model of emergency department of a general hospital. In
addition to internal processes, external relations between ED and other hospital wards, such
as Radiology and Laboratory, is also considered. The main objective of this paper is, hence,
to improve ED processes. The problem we are dealing with is ED overcrowding which
provide patient with long length of stay and waiting times.

The remainder of the paper is organized as follows. Section 2 covers a brief literature re-
view of the application of simulation in emergency departments. Research methodology,
simulation model, input data and variables are presented in Section 3. Section 4 focuses on
improvement scenarios and results of simulation runs. Finally, the paper is concluded in
Section 5.

2 Literature review

In the literature, the main focal point of discrete-event simulation models that are used
for analysis of hospital emergency department is improving the flow of patients to reduce
waiting times. Examples of this include studying patient flow and forecasting ED over-
crowding using simulation by Hoot et al. [9], defining buffer concept to reduce waiting
times and increase throughput, and comparing amount of improvement gain by buffers by
Kolb et al. [10], and Khandekar et al. [11] paper on rearranging sequence of activities of
care process in order to reduce waiting times. Another area of ED simulations study focus
is on capacity estimation which determines the optimum number of personnel and physical
resources such as bed [12], [13] and also ED layout [14]. Improving quality of services and
ED processes is another area of study [5], [15].

 Although the use of Petri nets in the health sector is less than other fields such as com-
puter networks and production system, but it can be a useful method in this area. Here some
related works in this area are presented. Xiong et al. [16], apply petri nets for modeling and
analysis of health care process. They used a Petri net model to examine the effect of chang-
es in arrival pattern and resources on performance metrics such as waiting times and re-
source utilization. Chockalingam et al [17] used Petri nets to model patient and resource
flow in a hospital system. Using the Petri net model they obtained a stochastic representa-
tion of a metric termed distance to divert which measure the proximity of a hospital to a
divert state. Dotoli et al. [18] focused on pulmonology department workflow and drug dis-
tribution system and used simulation as a decision support system. They employed a timed
Petri net (TPN) framework to describe the workflow in the department. Another example
is the work done by Ronny Man et al [19] of using process mining and Petri nets for pre
hospital stroke care. In the paper, process mining is used to extract process related infor-
mation e.g. timing information. Jorgensen et al [20] have used CPN for implementing a
new Electronic Patient Record Workflow System at two stages. The first CPN model is

336 ModBE’13 – Modeling and Business Environments

used as an execution engine for a graphical animation called EUC and the second CPN
model is a Coloured Workflow Net (CWN). Together, the EUC and the CWN are used to
close the gap between the given requirements specification and the realization of these re-
quirements with the help of an IT system.

In this paper, care processes of ED are modeled using hierarchical timed CPN. The main
focus of the model is on patient flows. The model also concentrates on the inter-department
care processes. It is aimed to find a suitable operating scenario to improve some perfor-
mance metrics of the department. Similar to [17], this paper has considered the relationship
between different departments (Labs, Radiology) of the hospital. Performance metrics in-
cluding waiting time, patient length of stay, and resource utilization are calculated under
different operating scenarios. Compared to existing literature, this paper puts more empha-
sis on using features of CPN (color, time, and hierarchy) to capture the complex nature of
the system.

3 Research methodology

In this paper, CPN Tools is utilized to create the Coloured Petri net model of the system
and to simulate the model to produce desired outputs. CPN Tools [21] is a powerful soft-
ware tool for modeling and simulation of discrete event systems modeled in CPN. Our
choice of using CPNs to model ED patient flow stems from the fact that PNs capture struc-
tural properties of the underlying system which we can study and use. Petri nets provide the
foundation of the graphical notation and the basic primitives for modeling concurrency and
synchronization, conditions which are common in our model. After reviewing a wide range
of related literature, an initial model was prepared. Based on the initial model, the generic
conceptual model was developed. The generic model aimed to capture the characteristics of
an emergency department of a general hospital in Iran. Information required for the model-
ing and simulation of processes were collected using hospital information system, sampling
in ward, and also open interview with employees. In order to simulate the model under
different configurations, different types of improvement scenarios were defined and com-
pared against performance criteria. Please note that here the term “Generic” as Gunal and
Pidd [22] mentioned means that the model has a defined structure with probability distribu-
tions that can be parameterized by the user.

The hospital under study is a general hospital in the city of Yazd of Iran. The emergency
department of the hospital consists of one triage room, one primary visit room, admission
and discharge unit, CPR room, and two inpatient areas with 24 inpatient bed. It works 3
shifts a day with 1 triage nurse, 1 general practitioner (GP), 1 emergency medicine special-
ist (SP), 1 admission staff and 6 nurses.

3.1 Process flow chart

Fig.1. depicts an overall patient flow of Emergency Department of the hospital. This flow
chart is depicted based on researcher observation of the process and also domain expert
opinion. The process diagram was drawn in such a way that in addition to our hospital it
could also be used in other Iranian hospitals. Patients are triaged on arrival at the emergen-
cy department. The triage nurse makes an initial evaluation of patient symptoms. Then,
according to Emergency Severity Index (ESI), she classifies the patient in one of the 5 lev-
els of emergency. A patient in level 1 is with more acuity while a patient in level 5 is in fact

K. Salimifard et al.: Improving Emergency Department Processes 337

an outpatient with less acuity. After this stage, patient is referred to the GP. The GP deter-
mines whether or not the patient requires other care services. Usually, patients with acuity
level 5 will leave the ED as soon as the payment cleared. Other patients who need more
medical services, such as diagnostic tests, need to be registered and will be directed through
the other processes. The final decision about the patient including discharge, inpatient at
ED, or being referred to other wards is taken by SP.

3.2 Performance variables

For each process improvement project, establishing quantitative measures to implement
changes and develop monitoring system for continuous improvement is crucial. In this
paper, we investigate three key performance metrics including patients waiting times,
length of stay, and ED resource utilization.

• Waiting times [min]. It is the mean duration a patient need to spend in the ED waiting
room.

• Length of stay (LOS) [min]. The total time of staying at ED, from arrival to the time of
final decision made by SP.

• Resource utilization [%]. Represents the total busy time of resources compared with total
working time.

3.3 Data collection

Model inputs are distribution functions of ED activities. Random sampling was used to
estimate required data for patient’s arrival times and service time for all resources. All
distributions determined from the data and used in the model were validated by using Kol-
mogorov Smirnov goodness of fit test with a 5% significance level. Using statistical good-
ness of fit method, the distribution of processing time of different activities have been de-
fined.

338 ModBE’13 – Modeling and Business Environments

Fig. 1. Process flow of emergency department

Table 1. Simulation input distribution functions

Input parameter Distribution
Patients inter arrival pattern Exponential , expel(9)

Triage time Lognormal , 0.21 + LOGN(0.875, 0.613)
GP visit time Gamma , 1 + GAMM(0.732, 2.2)

admission Lognormal , 0.16 + LOGN(1.11,0.729)
SP visit time Triangular (1,2,3)

CPR time Triangular (5,15,30)
ED outpatient surgery(OR) Triangular (10,20,30)

In cases where there was no possibility of sampling, based on information available in the
hospital information system and also hospital staff experience, minimum, average and max-
imum duration of each activity were chosen as the statistical distribution.

K. Salimifard et al.: Improving Emergency Department Processes 339

3.4 The Hierarchical Timed Petri Net Model of the ED

We used Color Petri-nets (CPNs) to model patient flow in an emergency department of a
hospital. A PN consists of a set of places, and a set of transitions and arcs that connect
place(s) to a transition and vice-versa. Non-negative integers assigned to every place in the
net are known as tokens.

Overview of Colored Petri Nets. Coloured Petri nets are a discrete-event modeling lan-
guage combining the capabilities of Petri nets with the capabilities of a high-level pro-
gramming language. Petri nets are directed, bipartite graphs that can be used to model dis-
crete distributed systems. A CPN as defined by [23] is a nine-tuple
𝐶𝑃𝑁 = (𝑃,𝑇,𝐴, Σ,𝑉,𝐶,𝐺,𝐸, 𝐼), where 𝑃 is a finite set of place 𝑇, is a finite set of transitions 𝑇
such that 𝑃 ∩ 𝑇 = ∅, 𝐴 ⊆ 𝑃×𝑇 ∪ 𝑇×𝑃 is a set of directed arcs, Σ is a finite set of non-empty
color sets, 𝑉 is a finite set of typed variables such that type [𝑣]𝜖Σ for all variable 𝑣𝜖𝑉 s,
𝐶:𝑃 → Σ is a color set function that assigns a color set to each place, 𝐺:𝑇 → 𝐸𝑋𝑃𝑅! is a
guard function that assigns a guard to each transition 𝑡 such that type 𝐺 𝑡 = 𝐵𝑜𝑜𝑙,
𝐸:𝐴 → 𝐸𝑋𝑃𝑅! is an arc expression function that assigns an arc expression to each arc 𝛼 such
that type, 𝐸 𝑎 = 𝑐(𝑝)!" where 𝑝 is the place connected to the arc 𝛼, 𝐼:𝑃 → 𝐸𝑋𝑃𝑅! is an
initialization function that assigns an initialization expression to each place 𝑝 such that
type. 𝐼 𝑝 = 𝑐(𝑝)!". A CP-net has a distinguished initial marking, denoted by 𝑀!, and
obtained by evaluating the initialization expressions. The marking can be viewed as a
‘snapshot’ of how tokens are distributed in the PN [24].

The simulation model of ED. Fig.2. shows the key structures of the model. The top layer
of the ED model is illustrated in this figure. This layer is the core part of the model. In the
model each place (circle) represents the state where patients may to be exposed there (table
2). Entry of each patient to the ED is modeled by a token on the place New Patient
(Fig.2). This place has the color set PAT, whose elements are 5-tuples (ESI, at,
qtr., wt, pt) consisting of patient Emergency Severity Index (ESI=1,...,5),
patient arrival time to the ED (at), an intermediate variable for Calculating wait time (qt),
patient wait time for receiving services (wt) and activities process time (pt). In the initial
marking, the New Patient has a random integer ESI number Between 1 to 5, an arrival
time based on an exponential distribution with mean 9, qt is equal to at and wt and pt are
equal to 0. In the ED layer (Fig.2) there are 8 transitions (the rectangles) with tag beside
them which called substitution transitions. Each of this transition has a subnet page belong
to it that corresponds to one of the considered tasks in the process. To know about the mod-
el mechanism in each subnet consider GP visit subnet page as an example (Fig.3).The oc-
currence of the transition Start visit models the situation where a general Practitioner
(resource) changes from being ready to being busy until the transition End visit occurs.
Patients wait to seize GP and after stochastic delay (GP visit time) and receiving GP orders,
they release that resource and come back to top layer to carry on rest of the process. The
other page is as the illustrated mechanism.

340 ModBE’13 – Modeling and Business Environments

Table 2. Place Description of the ED core layer

Place description
P1 State for non urgent patient

P2 State for urgent patient (CPR needed)

P3 Patients visited and need extra services

P4 Patients visited and will be discharge

P5 Patients admitted

P6 Patients admitted and need surgery

P7 Number of patients waiting for radiology

P8 Number of patients waiting for laboratory

P9 Patients have done radiology test

P10 Patients have done radiology and also need lab test

P11 Surgery result with success

P12& P13 Patients with their Lab test result

P14 Patients have done radiology and do not need Lab

The model contains resources (shown in Table 3) like nurses; physicians etc. in the form of
tokens, and patients use these resources according to model logic to receive care. These
resource tokens are held by the patients until they move to the next stage. The delay in
availability of a resource is represented as non-availability of tokens to advance the patient
tokens through the net. This delay increases the number of patient tokens in the system
waiting for a resource. Also Sets of variables used on the transitions in Fig. 2 are showed in
Table 4.

Table 3. Initial resource-token distribution

resources places tokens
Triage nurse 1

GP Doc 1
admission 1
SP Doctor 1

Radiology staff 6
Laboratory staff 12
CPR equipment 1

K. Salimifard et al.: Improving Emergency Department Processes 341

Table 4. Model variables and description

variable description

p Represent each patient and carry five attribute: ESI, arrival
time, qt, wait time, process time which are assigned to them

l determine that patient need laboratory test or not

r determine that patient need radiology test or not

LR Laboratory result

RR Radiology result

gp General Practitioner (resource)

sp Emergency medicine specialist (resource)

342 ModBE’13 – Modeling and Business Environments

Fig. 2. Core page of ED simulation model using Coloured Petri net (top layer)

 In Fig.3 the function on output arc from end visit transition determines whether pa-
tients need diagnostic tests (laboratory or radiology) or surgery or to be discharged. In SP
visit subnet page shown in Fig.4, the SP Doctor place is a common resource that is shared
by three activities in the page. Patients with Lab result, Radiology result or both of them are
coming to SP, because SP should decide about them. Patients may need to be inpatient in
ED. So go to the ED inpatient place or maybe it is necessary to go to other hospital ward
for special care, then go to the refer place. Finally, patient after visit by SP may be dis-
charged, so they go to discharge place in SP visit page.

Model validation. We validate final results of the simulation model at first by interviewing
ED senior managers and nursing staff in order to validate the final results of the simulation
model. Secondly output of the simulation model is compared with real performance indica-
tors (Table 5) and it shows the validation of our model

p

p

gp

gp

p

p

(p,LR,RR)
(p,LR)

(p,l,RR)

(p,RR)

(p,RR)

(p,l,RR) (p,l,RR) (p,l,RR)

(p,LR,RR)(p,LR)

(p,l,RR)(p,l)

(p,l)

(p,l,r)

if	 result=0
then	 1`p	
else	 empty

if	 result=1
then	 1`p	
else	 empty

p

p

p

p

pp

(p,l,r)

(p,l,r)

p

sp

p

NewPatient	 (p)

p@+expTime(9)

((p,l,r),or)

p

(p,l,r) (p,l,r)

sp

sp

p

p

p p

((p,l,r),or)

p

p

t4[l=N]

t
3

[l=Y]

t5

[result=bernoulli(0.4)]

t2[r=notneed]

Arrival

t
6

t1

[r=need]

SP	 visit

SP	 visit

CPR
CPRP_HIGH

GP	 visit
GP	 Visit

LAB

LAB

Radiology

Radiology
ED	 OR

OR

Triage

Triage

Admission

Admission

GP
Doc

1`gp@0

GP

p13 PAT6
p12 PAT5

p14

PAT3

p10

PAT2

p9 PAT2

p11 PAT

PATPATPAT

p7 PAT1

p6

PAT

next
patient

1`(1,0,0,0,0)@0

PAT

p5

PAT1

p2

PAT

p4

PAT

p8 PAT4

SP
Doctor

1`sp@0

SP

p3OPAR

p1 PAT

new
patient

PAT

PAT

Admission

Triage

OR
Radiology

LAB

GP	 Visit

CPR

SP	 visit

inpatient dischargereferdead

K. Salimifard et al.: Improving Emergency Department Processes 343

Fig. 3. GP visit page of substitution transition GP visit in ED page (subnet layer)

Finally we also used CPN Tools state space graph to investigate whether the model works
truly or not. The state space tools are used to calculate state spaces and to generate state
space reports. Because our graph is very large, it is not possible to show it here.

Table 5. Comparison between simulated and real data.

real data	 Simulation
output	 Performance criteria	

2.9 	 3.2 	 Wait for GP visit	
5.5 	 5.12 	 Wait for Admission	
1 	 1.15 	 Wait for SP visit	

37.5 	 38.2 	 ESI 1&2 LOS	
187 	 185 	 ESI 3 LOS	
136 	 140 	 ESI 4 LOS	
12 	 11.5 	 ESI 5 LOS	

The performance metrics are investigated using 5 different replications with 95% confi-

dence interval. In each case the system is simulated by a long simulation run of 3 years.

p

((p,l,r),or)

((p,l,r),or)

p

((p,l,r),or)

(((esi,at,qt,wt,pt),labNEEd(),radNEEd()),OrNEed())

(esi,at,qt,wt,pt)upd_p@+proctime

gpgp

t2t1

end
visit

start
visit

input	 (p);
output	 (upd_p,proctime);
action
startGPVisit(p);

p3
Out OPAR

p4
Out

PAT

p1
In

PAT

visit
ed

PAT0

GP
Doc

I/O

1`gp@0

GP

visit
room

PAT

I/O

In

Out Out

[l=N,r=notneed,or=no]

344 ModBE’13 – Modeling and Business Environments

Fig. 4. SP visit page of substitution transition SP visit in ED page (subnet layer)

4 Improvement scenarios

In order to improve processes in terms of system performance metrics, four types of scenar-
ios were defined. These alternate scenarios are validated with domain experts and then were
implemented in simulation model. They are as fallow:

• Current scenario (benchmark):
A – Current state of the ED as a basis for comparisons.

• Increase or decrease scenarios. It is, in fact, the most common type of scenario associ-
ated with simulation studies. In this scenarios (increase or decrease) number of re-
sources, the number of emergency room doctors, nurses, beds and other physical re-
sources will be changed. In this view, one scenario is defined here:

B – Increase an emergency medicine specialist (SP)

• Displacement Scenarios. In these scenarios, if possible, an alternative resource will be
replaced with available resource.

C – Putting in place an emergency medicine specialist instead of GP

p

p

p
p

p

p
p

(p,RR)(p,RR)(p,LR)(p,LR)
(p,LR,RR) (p,LR,RR)(p,LR,RR)

sp

sp

sp

sp

sp

sp

((esi,at,qt,wt,pt),LR) ((esi,at,qt,wt,pt),RR)

((esi,at,qt,wt,pt),RR)

(upd_p,RR)@+proctime

(p,RR)

((esi,at,qt,wt,pt),LR,RR)

((esi,at,qt,wt,pt),LR,RR)

(upd_p,LR,RR)@+proctime

(p,LR,RR)(p,LR)

((esi,at,qt,wt,pt),LR)

(upd_p,LR)@+proctime

t3

[LR=unnatural	 andalso	 RR=notok]

t1
[LR=natural]

t7

[RR=notok]

t6 [RR=ok]t5

[LR=natural	 andalso	 RR=ok]

t4

[LR=unnatural	 andalso	 RR=ok	 orelse
LR=natural	 andalso	 RR=notok]

t2[LR=unnatural]

start
visit3

input	 (p,RR);
output	 (upd_p,proctime);
action
startSPVisit3(p,RR);

end
visit3

start
visit2

input	 (p,LR,RR);
output	 (upd_p,proctime);
action
startSPVisit2(p,LR,RR);

end
visit2

end
visit1

start
visit1

input	 (p,LR);
output	 (upd_p,proctime);
action
startSPVisit1(p,LR);

PAT
PAT

SP
Doctor

I/O

1`sp@0

SP

p14
In

PAT3

p3 PAT3

p6 PAT3p5PAT6p4 PAT5

p2PAT6

p13
In

PAT6p12
In

PAT5

p1 PAT5

In In In

I/O

PATinpatient
OutOut

refer
OutOut

dicharge
OutOut

K. Salimifard et al.: Improving Emergency Department Processes 345

• Structural scenarios. The purpose of these scenarios is change of the process activities
and even delete or add new activities as part of the process.

D – Remove triage unit and refer patients for triage and visit to GP

• Hybrid scenarios. These scenarios are defined as a combination of two or more than
two of the above scenarios. For example, displacement scenarios, and a structural sce-
nario combined to make a hybrid one.

 E – Replace GP visit and triage activities with a substitute emergency medicine
specialist who does these two.

In scenario B, we have added 1 specialist to SP Doctor place and then run the simula-

tion model. To implement scenarios D and E, we have to change our basic model. In these
scenarios triage and visit is done simultaneously by a substitute doctor (GP or SP). The
difference is on the time of visit done by each of them. It’s less for SP than GP.

The results of running simulation model with scenarios A to E alongside with their im-
provement are shown in Table 6. We ran each of the improvement options individually as
separate scenario for this purpose.

Table 6. Improvement rate of each scenario considering its resources

Sc
en

ar
io

s

Resources Improvement rate (%)

G
P

SP

A
dm

is
si

on
 S

ta
ff

Resource utilization rate
(%)

W
ai

t f
or

 G
P

W
ai

t f
or

 S
P

W
ai

t
fo

r A
dm

is
si

on

ES
I 1

&
2

 L
O

S

ES
I 3

 L
O

S

ES
I 4

 L
O

S

ES
I 5

 L
O

S

A
dm

is
si

on
 S

ta
ff

SP

G
P

A 1 1 1 62 63.7 58 3.2 5.12 1.1 38 185 140 11.5

B 1 2 1 +9.67 -10.5 0 0 +23 0 +5.2 +2.7 +2.65	 0

C - 2 1 +7.25 -1.8 - - -21 -7.2 +5.2 +0.5 +1 +8.7

D 1 1 1 +8 -0.3 +14.5 -65 +0.3 -81 +8.6 +1 +1.42 +19.1

E - 2 1 +11.3 -0.3 - - -2 -81 +9.2 +1.35 +2.15 +21.7

 Benchmark scenario, A, represent current situation in terms of three performance
measures. Waiting time is one of the effective measures of patient satisfaction. Here are
three main areas of patients waiting for service. Current scenario has the lowest waiting for
GP. Scenario B and C reduce SP waiting by about 45% and 0.4%. Scenario B reduces
admission waiting by 10%. Patients’ length of stay is a measure of ED efficiency and very
important in hospital performance evaluation. We compare LOS for patients with different
ESI level. ESI 1 and 2 include those patients who need CPR and then go to inpatient. In this
level, E has 9.2% improvement. D reduces LOS by about 8.6% and B and C by about 5.2%.
Patients with ESI 3 are patients who need two diagnostic tests here include Laboratory and

346 ModBE’13 – Modeling and Business Environments

Radiology. In this level B, C, D and E reduced LOS by about 2.7%, 0.5%, 1% and 1.35%.
Patients with ESI 4 just need one diagnostic test, laboratory or radiology. In this level B, C,
D and E reduced LOS by about 2.65%, 1%, 1.42% and 2.15%. Finally, patients with ESI 5
are outpatient and leave ED after GP visit. In this level B, C, D and E reduced LOS by
about 0%, 8.7%, 19.1% and 21.7%. Resource utilization represents total busy time of re-
sources to available working time under the simulated conditions.it is a good measure for
ED manager in the allocation of resources. Scenario A improves GP utilization by 18%.
Scenario B, C, D and E improve admission staff utilization by about 9.67%, 7.25%, 8% and
11.3%. Scenario A has the most SP utilization and other scenarios reduced it. Substituted
SP utilization for scenario E is more than C by about 2.1 minute. Also ED staff reaction to
our work was positive and they helped us through the work but due to the reluctance of ED
managers, we failed to implement the proposed changes in reality.

5 Conclusions and future work

 In this research a CPN model was developed to analyze the performance of an emergency
department. To evaluate the system under different conditions and improve processes, im-
provement scenarios were defined. These scenarios may not greatly improve the perfor-
mance of the model parameters, but could be considered as an existing and potential alter-
native. We compare 5 scenarios by three variables.

In table 7, improvement rate of each scenario, considering its resources, presented.
To have a better analysis in choosing scenarios, it is necessary to see cost and benefit of
each scenario simultaneously. Another option which should be considered is ED’s mission,
saving patients with high acuity (ESI 1&2), and scenarios that aim to facilitate this pur-
pose even if they cost more than other, are selected. Among defined scenarios, E and D
have more improvement especially about patient with ESI 1&2. Although the cost of sce-
nario E to scenario D is some more, but given the purpose of the improvements resulting
from the scenario E, this scenario is selected as major one. In the next stage scenario D due
to lower cost and also more overall improvement than the other two scenarios have been
chosen as the second better scenario.
 Based on the model proposed in this paper, it is possible to translate the flow diagram
into a Generalized Stochastic Petri net. It would be interesting to compare the results of the
two modeling approaches. That is, the exact values of different performance indices can be
compared with the simulated values. Because of the hierarchical nature of the model and
that every activity has a separate page belong to it; acceptance and use of this model in
various conditions may seem easy and by just few change it could be localized. Using Col-
oured Petri net, we were able to assign different attributes to patients entered into the ED
and therefore, the model traces them to calculate performance metrics. The tools and fea-
tures that are available for simulating CPN models in CPN Tools e.g. hierarchy, functions,
guards, state space analysis etc. made it a useful option in simulating complex systems
specially healthcare. Future development to this work would be to add other attributes to
tokens color such as cost of each activity in the process and engage other wards. Also, it
would be of value to consider other resources including beds, facilities and equipment.

K. Salimifard et al.: Improving Emergency Department Processes 347

Reference

1. Buckley, B., Castillo, E., Killeen, J., Guss, D., Chan, T.: Impact of an express admit unit on
emergency department length of stay. Journal of emergency medicine 39(5), 669-673 (Nov
2010)

2. Soremekun, O., Takayesu, J., Bohan, S.: Framework for analyzing wait times and other
factors that impact patient satisfaction in the energency department. The Journal of
Emergency Medicine 41(6), 686-692 (2011)

3. Holden, R.: Lean Thinking in Emergency Departments: A Critical Review. Annals of
Emergency Medicine 57(3), 265-278 (2010)

4. Eitel, , Rudkin, S., Malvehy, A., Killeen, J., Pines, J.: Improving service quality by
understanding emergency department flow: a white paper and position statement prepared
for the american academy of emergency medicine. The Journal of Emergency Medicine
38(1), 70-79 (2010)

5. Zeng, Z., Ma, X., Hu, , Li, J.: A simulation study to improve quality of care in the
emergency department of a community hospital. Journal of Emergency Nursing 38(4), 322-
328 (2011)

6. Baldwin, L., Eldabi, T., Paul, R.: Simulation in healthcare management:a soft approach
(MAPIU). Simulation Modelling Practice and Theory 12(7 - 8), 541 - 557 (2004)

7. Alvarez , A., Centeno , : Enhancing simulation models foremergency rooms using VBA. In
: Proceedings of the I999 Winter Simulation Conference, New York, NY, USA, vol. 2,
pp.1685-1693 (1999)

8. Villamizar, J., Coelli, F., Pereira, W., Almeida, R.: Discrete-event computer simulation
methods in the optimisation of a physiotherapy clinic. Physiotherapy 97(1), 71 - 77 (2011)

9. Hoot, N., LeBlanc, , Jones, I., Levin, S., Zhou, , Gadd, C., Aronsky, D.: Forecasting
Emergency Department Crowding: A Discrete Event Simulation. Annals of Emergency
Medicine 52(2), 116-125 (2008)

10. Kolb , E., Peck , J., Schoening , S., Lee , T.: Reducing emergency department
overcrowding – five patient buffer in comparison. In : Proceedings of the 2008 Winter
Simulation Conference, Austin, TX, pp.1516-1525 (2008)

11. Khandekar, S., Mari, J., Wang, S., Gandhi, T.: Implementation of Structural Changes to the
Care Process in the Emergency Department using Discrete Event Simulation. In :
Proceedings of the 2007 Industrial Engineering Research Conference (2007)

12. Nagula, P.: Redesigning the patient care delivery processes at an emergency department.,
New York (2006)

13. Park, , Park, J., Ntuen, , Kim, D., Johnson, K.: Forecast Driven Simulation Model for
Service Quality Improvement of the Emergency Department in the Moses H. Cone
Memorial Hospital. The Asian Journal on Quality 9(3) (2008)

14. Khadem, M., Bashir, H., Al-Lawati, Y., Al-Azri, F.: Evaluating the Layout of the
Emergency Department of a Public Hospital Using Computer Simulation Modeling: A
Case Study. In : Industrial Engineering and Engineering and Management, Singapore,
pp.1709-1713 (2008)

15. Gonzilez, , Gonzilez, , Rios, N.: Improving the quality of service in an emergency room
using simulation-animation and total quality management. In : Proceedings of the 21st
international conference on Computers and industrial engineering, Tarrytown, NY, USA ,
vol. 33, pp.97-100 (1997)

16. Xiong, , Zhou, M., Manikopoulos, : Modeling and Performance Analysis of Medical

348 ModBE’13 – Modeling and Business Environments

Services Systems Using Petri Nets. In : Systems, Man, and Cybernetics, San Antonio, TX,
pp.2339-2342 (1994)

17. Chockalingam, A., Jayakumar, , Lawley, : A stochastic cotrol approach to avoiding
emergencydepartment overcrowding. In : Proceedings of the 2010 Winter Simulation
Conference, Baltimore, MD, pp.2399-2411 (2010)

18. Dotoli, M.: Modeling and Management of a Hospital Department via Petri Nets. In : 2010
IEEE Workshop on Health Care Management (WHCM), Venice, pp.1-6 (2010)

19. Mans, R., Schonenberg, H., Leonardi, G., Panzarasa, S., Cavallini, A., Quaglini, S., van der
AALST, W.: Process Mining Techniques: an Application to Stroke Care 136. Stud Health
Technol Inform (2008)

20. Jørgensen, J., Lassen, K., van der Aalst, W. M.: From task descriptions via Coloured Petri
nets towards an implementation of a new electronic patient record workflow system.
International Journal on Software Tools for Technology Transfer 10(1), 15-28 (2008)

21. CPN Tools. In: AIS group, Eindhoven University of Technology, The Netherlands.
(Accessed 2012) Available at: http://www.cpntools.org

22. Günal , M., Pidd , : Moving from specific to generic: Generic modelling in health care. In :
Proceedings of the 2007 INFORMS Simulation Society Research Workshop (2007)

23. Jensen, K., Kristensen, L.: Coloured Petri Nets , Modelling and Validation of Concurrent
Systems. Springer, Denmark (2009)

24. Jensen, K.: An introduction to the practical Use of coloured Petri nets. Lecture Notes in
Computer Sciencee, Springer-Verlag, 1-14 (1996)

K. Salimifard et al.: Improving Emergency Department Processes 349

350 ModBE’13 – Modeling and Business Environments

Part IX

ModBE’13: Poster Abstracts

Advantages of a Full Integration
between Agents and Workflows

Thomas Wagner and Lawrence Cabac

University of Hamburg, MIN Faculty, Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. This poster describes the notion of a full integration of agents
and workflows. It differentiates the term from the more common partial
integrations already well documented and researched. Finally, the advan-
tages of a full integration are discussed.

Multi-agent systems feature a very structure-centric perspective on a software
system. Agents are the main modelling abstraction, and other aspects are al-
ways seen in relation to them. Workflow systems on the other hand feature a
very behaviour-centric perspective. The main abstraction here are the work-
flows/processes, which incorporate the data/information about other aspects.
An integration of the two concepts agent and workflow can offer many advan-
tages. These advantages represent the first outcomes in our current research on
modelling systems and are the main result presented in this poster.

It is possible to differentiate between two kinds of integrations: partial and
full. In a partial integration one of the concepts is used to enhance the other
one. This includes agent-based workflow management systems (WFMS) and
workflow-based agent management systems. Partial integrations feature only one
of the two concepts main abstraction. This main abstraction may be enhanced
and enriched in a number of ways, but still remains, at its core, either an agent
or a workflow. This limits the potential benefits in a partial integration.

A full integration between agents and workflows aims to address that limit.
In contrast to partial integrations it features both agents and workflows incor-
porated into one main modelling unit. This unit can serve as agent, workflow, or
a hybrid between the two and can dynamically change its role during runtime.
We call these hybrids that provide all the functionality agents and workflows
would usually provide, including communication and user interaction facilities,
entities. Using entities enables a system modeller to dynamically switch and mix
structural and behavioural aspects of a system. This allows for a new integrated
perspective on the system during development.

There are numerous examples of partial integrations. Agent-based WFMS
are, for example, presented in [1,2]. A workflow-based agent management system
is discussed in [3]. All of these make use of both concepts to provide an enhanced
modelling experience. They still only offer extended classical workflow or agent
functionality and do not feature the possibilities of a full integration. To the best
of our knowledge there are no examples of full integrations.

A full integration between agents and workflows exhibits a number of ad-
vantages to the system modeller. These assume an efficient and comprehensive
implementation of a full integration system (see last paragraphs for outlook).

Abstraction The abstraction of the individual concepts into one unified
entity enables a freedom to work with dynamic and hybrid constructs. Entities
can operate as agents, workflows, or something in between. They can dynamically
adapt to the requirements before, acting as an agent at one point and processing
like a workflow at another. Entities naturally and directly incorporate any and
all mechanisms, facilities, and properties of agents and workflows. Consequently,
providing these characteristics in dynamic ways becomes far easier.

Flexibility Allowing a modeller to use agents and workflows on the same
abstraction level, allows to model a system along the two dimensions structure
and behaviour. Classically, only one of these dimensions was in the foreground,
while modelling aspects of the other was heavily biased by the original dimen-
sion. This two-dimensional modelling enables a modeller to utilise the dynamic
interaction between agents and workflows on a conceptual level.

Simplicity A full integration offers the combined capabilities of agents and
workflows. It does so by providing simple-to-use and predefined constructs (en-
tities) which allow a modeller to make full use of the strengths of agents and
workflows. The entities in themselves can be used similarly to agents and work-
flows, but possess a larger spectrum of capabilities.

Expressiveness A full integration cannot necessarily express more then the
classical paradigms. However, in the classical paradigms complex helper con-
structs might be necessary to implement more complicated structures available
directly in a full integration. This means that a full integration is capable of
expressing more constructs in a natural and simple way.

Enrichment The enrichment aspect, the main advantage of partial integra-
tion, is also applicable in a full integration. In fact, it is even more emphasised,
since an entity can be improved from both its agent and workflow side.

Concerning future work the provision of a comprehensive implementation of
a full integration is the main focus. Currently, the work is centred on establishing
a working prototype as proof-of-concept. In conclusion, a full integration offers
many beneficial advantages in comparison to classical systems. When extensively
and efficiently implemented, it is a powerful tool for a system modeller to use.

References

1. P. Czarnul, M. Matuszek, M. Wójcik, and K. Zalewski. BeesyBees - efficient and
reliable execution of service-based workflow applications for BeesyCluster using dis-
tributed agents. In Proceedings of IMCSIT 2010, pages 173 –180, oct. 2010.

2. F. Hsieh. Collaborative Workflow Management in Holonic Multi-Agent Systems. In
J. O’Shea et al., editors, Agent and Multi-Agent Systems: Technologies and Appli-
cations, volume 6682 of LNCS, pages 383–393. Springer Berlin Heidelberg, 2011.

3. A. Mislevics and J. Grundspenkis. Workflow based approach for designing and
executing mobile agents. In Digital Information Processing and Communications
(ICDIPC), 2012 Second International Conference on, pages 96 –101, july 2012.

354 ModBE’13 – Modeling and Business Environments

Cloud Transition for QoS Modeling of
Inter-Organizational Workflows

Sofiane Bendoukha and Lawrence Cabac

University of Hamburg, Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. In this paper we present an architecture for enabling com-
plex workflow execution in Cloud-like environments. We focus mainly
on modeling concepts and techniques to enhance accessibility to Cloud
services by different kind of users.

Complex workflow tasks need in some cases to be mapped to distributed
resources and involves the cooperation between several partners. Workflow man-
agement is critical to a successful long-term Cloud computing strategy. The
notion of inter-organizational workflow still needs conceptual and technical sup-
port especially in complex and dynamic environments like Clouds. New ways to
tackle this problem have to be found. Therefore, existing workflow architectures
need to be adapted for the Cloud and workflow management systems (WfMS)
should be integrated with Cloud infrastructure and resources [3].

In this paper we use Inter-Cloud Workflow Petri Nets (ICWPN), an ap-
proach for enabling workflows in an (Inter)-Cloud environment. A specialized
Cloud Task Transition (CTT) is introduced to facilitate the connection to the
Cloud and to support Quality of Service (QoS) management [1]. The CTT (see
Fig. 1 (a)) is based on the Workflow Task Transition [2], which is the core of
the workflow net formalism in Renew1 (Reference Net Workshop). Workflow
modelers specify their requirements as parameters to the CTT in form of tuples
(S, Q, I), which correspond respectively to the Cloud service (S) that they want
to use (it can be a storage or a compute service), the QoS constraints (Q) con-
sisting of deadlines or costs and input data (I) consisting either of required files
in case of a storage or scripts if they want to execute their codes on the Cloud.
Synchronous channels are used to make the connection with the WfMS, which
controls the completion of the task. It either initiates the firing or cancels it and
all input parameters are put back onto the input places.

To see how the CTT is used in practice, we introduce a Cloud-based workflow
architecture, it is depicted in Fig. 1 (b). It includes three basic layers from top to
bottom: user applications layer (UL), middle-ware layer (ML) and the resource
layer (RL), which consits mainly of Cloud services. In our approach we view the
process of executing an application in an Inter-Cloud environment as a 6-phase
process: (1) Users use the offered modeling tools consisting mostly of Renew
and the introduced CTT to specify the requirements (Cloud services, QoS con-
straints, specific input data) for their applications using Petri nets models. (2)
1 Renew is available at http://www.renew.de

(a) The Cloud Transition (b) General Cloud Workflow Architecture

Fig. 1. Cloud-based Workflow Management

A list of requirements is created consisting of required services as well as their
related QoS constraints. (3) Make a request to the Cloud Service Repository
(CSR) which is accessible by the WfMS to achieve workflow tasks (4) Based on
the above steps (2-3) a decision is made by the Decision Maker who determines
whether the workflow tasks will be executed locally or using Cloud resources. (5)
After that the workflow tasks are mapped to the adequate resources. (6) When
the workflow is deployed, information about Cloud providers and the state of
their services are constantly updated.

Here we focused primarily on Cloud technologies. Nevertheless, the intro-
duced model (see Fig. 1(b)) can be also applicable to other dynamic domains
where distributed resources are shared and dynamically allocated and usually
priced.

References

1. Sofiane Bendoukha and Thomas Wagner. Cloud transition: Integrating cloud calls
into workflow Petri nets. In Lawrence Cabac, Michael Duvigneau, and Daniel Moldt,
editors, PNSE, volume 851 of CEUR Workshop Proceedings, June 2012.

2. Thomas Jacob, Olaf Kummer, Daniel Moldt, and Ulrich Ultes-Nitsche. Implemen-
tation of workflow systems using reference nets – security and operability aspects.
In Kurt Jensen, editor, Fourth Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools, August 2002.

3. Suraj Pandey, Dileban Karunamoorthy, and Rajkumar Buyya. Workflow Engine
for Clouds, pages 321–344. John Wiley & Sons, Inc., 2011.

356 ModBE’13 – Modeling and Business Environments

