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Abstract

Automatic classification by machines is one of the basicsasiuired in any pattern recognition and human computer-int
action applications. In this paper we discuss training pbilistic classifiers with labeled and unlabeled data. Weioie a new
analysis which shows under what conditions unlabeled databe used in learning to improve classification performange
also show that if the conditions are violated, using unletbelata can be detrimental to classification performancedigéaiss the
implications of this analysis to a specific type of probaidi classifiers, Bayesian networks, and propose a newtsteulearning
algorithm that can utilize unlabeled data to improve classtion. Finally, we show how the resulting algorithms anecessfully
employed in two applications related to human-computerattion and pattern recognition; facial expression raitamgn and face

detection.
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|. INTRODUCTION

Many pattern recognition and human computer interactiguliegtions require the design of classifiers.
Classifiers are either designed from expert knowledge orgusaining data. Training data can be either
labeled to the different classes or unlabeled. In many egiins, obtaining fully labeled training sets is a
difficult task; labeling is usually done using human exertwhich is expensive, time consuming and error
prone. Obtaining unlabeled data is usually easier sinewaives collecting data that is known to belong to

one of the classes without having to label it, e.g., in faeigdression recognition, it is easy to collect videos
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of people displaying expressions, but it is very tedious diffccult to label the video to the corresponding
expressions. Learning with both labeled and unlabeledid&i@own as semi-supervised learning.

We start with a general analysis of semi-supervised legrfanprobabilistic classifiers. The goal of the
analysis is to show under what conditions unlabeled datdearsed to improve the classification accuracy.
We review maximum likelihood estimation when learning wabeled and unlabeled data. We provide an
asymptotic analysis of the value of unlabeled data underftaimework to show that unlabeled data helps
in reduce the estimator’s variance. We show that when thenasd probabilistic model matches the true
data generating distribution, the reduction in varianeel$eto an improved classification accuracy; which is
not surprising, and has been analyzed before [1, 2]. Howexeshow how when the assumed probabilistic
model does not match the true data generating distributisimg unlabeled data can be detrimental to the
classification accuracy; a result that was generally igtharemisinterpreted by previous researchers who
observed it empirically before [1, 3, 4].

This new result emphasizes the importance of using corredeting assumption when learning with
unlabeled data. As classifiers in our applications, we chd@smyesian networks. For Bayesian network
classifiers, our analysis of semi-supervised learningigs@ need to find a structure of the graph that matches
the true distribution generating the data. What we try to lessjze is that, while in many classification
problems simple structures learned with just labeled data been used successfully (e.g., the Naive-Bayes
classifier [5, 6]), such structures failed when trained oithh labeled and unlabeled data [7].

Bayesian networks are probabilistic classifiers, in whiehjoint distribution of the features and class vari-
ables is specified using a graphical model [8]. The graphegaesentation has several advantages. Among
them are the existence of algorithms for inferring the clabgl (and in general to complete missing data),
the ability to intuitively represent fusion of different mialities with the graph structure [9, 10], the ability
to perform classification and learning without completeagand most importantly, the ability to learn with
both labeled and unlabeled data. We discuss possibleg&afer choosing a good graph structure and argue
that in many problems, it is necessary to search for suchuatate. Most structure search algorithms are
driven by likelihood based cost functions, which are patdiytinadequate for classification [11, 12] due to

their attempt to maximize the overall likelihood of the datdile largely ignoring the important quantity



for classification; the class a-posteriori likelihood. AgB, we propose a classification driven stochastic
structure search algorithm (SSS), which combines botHddend unlabeled data to train the classifier and
search for a better performing Bayesian network structure.

Following the new understanding of the limitations impodsdthe properties of unlabeled data, and
equipped with an algorithm to overcome these limitations,apply the Bayesian network classifiers to to
two human-computer interaction problems: facial expmssecognition and face detection. In both of these
applications, obtaining unlabeled training data is re@yi easy; any image can be classified as being a face
or not being a face, and any video of humans can contains t{heaagnce of facial expressions. However,
in both cases, labeling of the data is difficult. For facigbmssion recognition, accurate labeling requires
expert knowledge [13] and for both applications, labelifig targe amount of data is time consuming for the
human labeler. We show that the structure search is berlefi@a for relatively small labeled data sets, with
large amount of unlabeled data in both of these problems.

The rest of the paper is organized as follows. In Section lbwerview learning with labeled and unlabeled
data, discuss the value of unlabeled data and illustratpdbsibility of unlabeled data to degrade the classi-
fication performance. In Section Il we propose possibletsahs for Bayesian network classifiers to utilize
unlabeled data positively by learning the network struetie introduce a new stochastic structure search
algorithm driven by classification performance and emallycshow its ability to learn with both labeled and
unlabeled data using datasets from the UCI machine learepasitory [14]. In Section IV-A we describe
the components of our real-time face recognition systeatding the real-time face tracking system and the
features extracted for classification of facial expressidiVe perform experiments of our facial expression
recognition system using two databases and show the alilitiilize unlabeled data to enhance the classifi-
cation performance, even with a small labeled training E&periments of Bayesian network classifiers for

face detection are given in Section IV-B. We have concludergarks in Section V.

[I. LEARNING A CLASSIFIER FROM LABELED AND UNLABELED TRAINING DATA

This section presents notation, terminology, and dessrébenathematical analysis of semi-supervised
learning that is used throughout this paper.

The goal is to classify an incoming vector of observalesEach instantiation oK is asample There



exists aclass variable”; the values of” are theclassesWe want to builcclassifiershat receive a sampte
and output a class. We assume 0-1 loss, and consequentligjeatiee is to minimize the probability of error
(classification erroy. If we knew exactly the joint distributiop(C, X), the optimal rule would be to choose
the class value with the maximum a-posteriori probability;|x) [15]. This classification rule attains the
minimum possible classification error, called Bayes error

We take that the probabilities §€, X), or functions of these probabilities, are estimated frota @ad
then “plugged” into the optimal classification rule. We assuthat a parametric modg(C, X|0) is adopted.
An estimate off is denoted b)é. If the distributionp(C, X) belongs to the family(C, X|6), we say the
“model is correct”; otherwise we say the “model is incorfecFor Bayesian networks, we say that the
assumed structure (the directed acyclic gragh$ correctwhen it is possible to find a distribution satisfying
the Markov condition onS and that matches the distribution that generates datarvates the structure
is incorrect We use “estimation bias” loosely to mean the expected reiffee betweep(C,X) and the
estimatech (C, X|§) .

We consider the following scenario. A samptex) is generated fromp(C, X). The valuer is then either
revealed, and the sample idadoeledone; or the value is hidden, and the sample is anlabeledone. The
probability that any sample is labeled, denoted\bis fixed, known, and independent of the sampl@hus
the same underlying distributigr{C, X) models both labeled and unlabeled data. Given a sa} tdbeled
samples andV,, unlabeled samples, we use maximum likelihood for estingatinVe consider distributions
that decomposg(C, X|0) asp(C|X, 0) p(X|8), where bothp(X|C, ) andp(C|6) depend explicitly ord.
This is referred to as generative modelThe log-likelihood function of a generative model for aatat with

labeled and unlabeled data is:

L(0) = Li(8) + Ly (8) + log (A (1 — \)™), (1)

whereL, () = Z;V:’J(rfv\l]ﬁl) log [p(x;]0)], and Ly(8) = SN, log [Hc(p(C = c|6) p(xs|c’, 0)) o= | with
I4(Z) the indicator function: 1iZ € A; 0 otherwise L;(f) andL, () are the likelihoods of the labeled and
unlabeled data, respectively.

Statistical intuition suggests that it is reasonable toeekan average improvement in classification per-

'This is different from [3] and [16], whera is a parameter that can be set.



formance for any increase in the number of samples (labeladhlabeled). Indeed, previous theoretical
works [17, 18] showed that unlabeled data are always asytioglly useful for classification. Information
theoretic arguments provided by [2] and [1] further stregtthe asymptotic arguments. However, in all
such works there is an assumption that the model is correetpéiformed extensive experiments providing
empirical evidence that degradation of performance canro&ad is directly related to incorrect modeling
assumptions (see [19-21] for a detailed description). ©wide a theoretical explanation to the empirical
evidence, we derived the asymptotic properties of maximketihood estimators for the labeled-unlabeled
case. The analysis, presented in the rest of this sectionjdas a unified explanation of the behavior of
classifiers for both cases; when the model is correct and wieenot.

We base our result on the work of White [22] on the propertiesaximum likelihood estimators without
assuming model correctness. White [22] showed that undetdel regularity conditions, maximum likeli-
hood estimators converge to a parametefséhat minimizes the KL distance between the assumed family
of distributions,p(Y'|6), and the true distributiom(Y’). He also shows that the estimator is asymptotically
Normal, i.e./N Oy — 6*) ~ N'(0,Cy(6)) asN (the number of samples) goes to infini6 (9) is a covari-
ance matrix equal taly (9) 1By (0) Ay (0) !, evaluated af*, where Ay (§) and By () are matrices whose

(1,7)'th element {, j = 1, ...d, whered is the number of parameters) is given by:
Ay(0) = E[8logp(Y0) /86,0;],

By(0) = E[(0logp(Y|0) /06;)(0log p(Y'|0) /00;)].
In semi-supervised learning, the samples are realizatibns

(C,X) with probability A; )
X with probability (1 — ).

For our analysis, it is convenient to obtain a single expoesfor both situations. Denote by a random
variable that assumes the same value€’'qilus the “unlabeled” value. We havep (C‘ #* u) = A. The
actually observed samples are realizations{CBIX), SO we can summarize Expression (2) compactly as
follows:

p(C =X =x) = (Wp(C = e, X =)@ (1 = Np(X = )"0, 3)



wherep(X) is a mixture density obtained frop(C, X). Accordingly, the parametric model adopted for

(C,X) is:
5(C = e X=xI6) = (W(C = ¢, X =x]6))"e (1 = Np(X = x]9))16=1 (4)

Using these definitions, we obtain:

Theorem 1:Consider supervised learning where samples are randobjela with probability\. Adopt
the regularity conditions in Theorems 3.1, 3.2, 3.3 from|[2@ith Y replaced by(C, X) and byX, and
also assume identifiability for the marginal distributicfsX. Then the value of*, the limiting value of

maximum likelihood estimates, is:
arg max (AE[log p(C, X[6)] + (1 — A) Ellog p(X[9)]) , (5)
where the expectations are with respegi (6, X). Additionally, vV N (8 — 6*) ~ N (0,Cx(h)) asN — o,
whereC, (0) is given by:
CA(0) = Ax(0)'Bx(0)A5(0)"" with, (6)
A\0) = (Mex)(0) + (1 — N)Ax(0)) and

By(0) = (ABx)(9)+ (1 —X)Bx(6)),

evaluated af*. O
Proof. Theorems 3.1, 3.2, 3.3 from [2Z]}; maximizesSE [logﬁ(é‘,XW)] (expectation with respect to
ﬁ(é, X)). We have:

Elog5(C,X10)| = B[l¢)(C) log A + logp(C, XI0)) + Lje_y (C) (log(1 — A) + log p(X0))|
= AogA+ (1 —A)log(l—))+
B|I16.4(C) 10gp(C, XI0)| + B|I1¢_,y(C) 10gp(X]6) |
The first two terms of this expression are irrelevant to mazaton with respect td. The last two terms are

equal to

AE [1ogp(c, X|0)|C # u] + (1 — N Ellogp(X|0) |C = u] .



As we havep (C’, X|C # u) = p(C,X) andﬁ(X\C‘ = u) = p(X) (Expression (3)), the last expression is
equal to

AE[log p(C, X|0)] + (1 — A) Eflog p(X[6)],
where the last two expectations are now with respegi€3 X). Thus we obtain Expression (5). Expres-
sion (6) follows directly from White's theorem and Expressi(5), replacingt” by (C, X) and X where
appropriate

Expression (5) indicates that semi-supervised learnimgoeaviewed asymptotically as a “convex” com-
bination of supervised and unsupervised learning. Thectigefunction for semi-supervised learning is a
combination of the objective function for supervised léagn(E[log p(C, X|#)]) and the objective function
for unsupervised learning/(log p(X|6)]).

Denote byd; the value of) that maximizes Expression (5) for a givenThend; is the asymptotic estimate
of ¢ for supervisedearning, denoted by;. Likewise,6; is the asymptotic estimate éffor unsupervised
learning, denoted b§;.

The asymptotic covariance matrix is positive definiteBag6) is positive definite andly (#) is symmetric
for any Y, 0A(0)"'By(0)A(0)'6" = w(0)By(0)w(®)" > 0, wherew(d) = 6Ay(0)~'. We see that
asymptotically, an increase ¥, the number of labeled and unlabeled samples, will lead édlaation in the
variance of.

Such a guarantee can perhaps be the basis for the optimeéstithat unlabeled data should always be used
to improve classification accuracy. In the following, we stthis view is valid when the model is correct,

and that it is not always valid when the model is incorrect.

A. Model is correct

Suppose first that the family of distribution3(C,X|#) contains the distributionP(C, X); that is,
P(C,X|6r) = P(C,X) for somef+. Under this condition, the maximum likelihood estimatoc@nsis-
tent, thusf; = 6; = 6+ given identifiability. Thus@; = 6+ forany0 < A < 1.

Consider the Taylor expansion of the classification errouad 6+, as suggested by Shahshahani and
Landgrebe [1], linking the decrease in variance associatddunlabeled data to a decrease in classification

error, and assuming existence of necessary derivatives:



Oe(0)

ef) ~ e+ 50

(-0 + 3+ (¢

(é . eT) (é _ eT)T> . 7)

Take expected values on both sides. Asymptotically theardevalue of the second term in the expansion is

o+ o0+

zero, as maximum likelihood estimators are asymptoticailyiased when the model is correct. Shahshahani

and Landgrebe thus argue that
E [e(é)} ~ s + (1/2)tr ((62e(0) /392)\,,T00v(é))

where Co‘(éN) is the covariance matrix foty ande, = e(fr) is the Bayes error rate. They show that if
Cov(¢') > Cov(8") for somef’, #”, then the second term in the approximation is largemfahan for6”.

Becausd, (f) is always positive definitd,(#) < I(6). Thus, using the Cramer-Rao lower bound,
. 1 .
Cov(On) > N(I(O)) ;

the covariance with labeled and unlabeled data is smaker tthe covariance with just labeled data, leading
to the conclusion thainlabeled data must cause a reduction in classificationremtwen the model is correct
It should be noted that this argument holds as the numbecofde goes to infinity, and is an approximation
for finite values.

A more formal, but less general, argument is presented bye§zdingam and McLachlan [23] as they
compare the relative efficiency of labeled and unlabeled.d2astelli [17] also derives a Taylor expansion of
the classification error, to study estimation of the mixiagtbérs p(C = c); the derivation is very precise and

states all the required assumptions.

B. Model is incorrect

We now study the more realistic scenario where the disiohu?(C, X) does not belong to the family of
distributionsP(C, X|#). In view of Theorem 1, it is perhaps not surprising that ualatl data can have the
deleterious effect observed occasionally in the liteetBuppose that, # 0 and thate(0) > e(6;), as

in the example in the next sectidrif we observe a large number of labeled samples, the classificerror
2We have to handle a difficulty wita(8};): given only unlabeled data, there is no information to dediu labels for decision regions, and then
the classification error is 1/2 [17]. Instead of actuallyngst(6;,), we could considee(8;) for any value ofe > 0. To simplify the discussion,

we avoid the complexities af(8; ) by assuming that, whek = 0, an “oracle” will be available to indicate the labels of trexiion regions.



is approximatelye(6;). If we then collect more samples, most of which unlabeled ewentually reach a
point where the classification error approachét ). So, the net result is that we started with classification
error close te(6;), and by adding a large number of unlabeled samples, clagsfigperformance degraded.
The basic fact here is that estimation and classificatios &ia affected differently by different values xf
Hence, a necessary condition for this kind of performanagatation is thae(0:) # e(6;); a sufficient
condition is thae(6;) > e(6;).

The focus on asymptotics is adequate as we want to elimirteegmena that can vary from dataset to
dataset. lle(6;) is smaller thare(6;), then a large enough labeled dataset can be dwarfed by a emgen |
unlabeled dataset — the classification error using the wita@set can be larger than the classification error

using the labeled data only.

B.1 Example: Bivariate Gaussians with spurious corretatio

The previous discussion alluded to the possibility #1@f;) > e(6;) when the model is incorrect. To the
skeptical reader who still may think that this won’t occurpiractice, or that numerical algorithms, such as
EM, are to blame, we analytically show how this occurs withreaample of obvious practical significance.
More examples are provided in [21] and [20].

We will assume that bivariate Gaussian sam{l&sY’) are observed. The only modeling error is an
ignored dependency between observables. This type of immgdsairor is quite common in practice and has
been studied in the context of supervised learning [24,185].often argued that ignoring some dependencies
can be a positive decision, as we may see a reduction in théeruof parameters to be estimated and a
reduction on the variance of estimates [26].

Example 1:Consider real-valued observatio(, Y) taken from two classes and¢”. We know that
X andY are Gaussian variables, and we know their means and vasigieen the clas§’. The mean of
(X,Y) is (0,3/2) conditional or{C = ('}, and(3/2,0) conditional on{C' = ¢"}. Variances forX and for
Y conditional onC' are equal to 1. We do not know, and have to estimate, the mfactgrn = p(C = ¢).
The data is sampled from a distribution with mixing factouakfo 3/5.

We want to obtain a Naive-Bayes classifier that can appraem@’| X, Y'); Naive-Bayes classifiers are

based on the assumption thdtandY are independent givefi. Suppose thak andY are independent



conditional on{C = ¢'} but thatX andY are dependent conditional d = ¢"}. This dependency is
manifested by a correlation = E[(X — E[X])(Y — E[Y])] = 4/5. If we knew the value op, we would
obtain an optimal classification boundary on the plang Y. This optimal classification boundary is shown

in Figure 1, and is defined by the function

y = (403: — 87 + /5265 — 2160z + 57622 + 576 log(100/81)) /32.

Under the incorrect assumption that 0, the classification boundary is then linear:

y ==z +2log((1—7)/n)/3,

and consequently it is a decreasing functiomyoiWith labeled data we can easily obtdjr{a sequence of
Bernoulli trials); thery = 3/5 and the classification boundary is givengy= = — 0.27031.
Note that the (linear) boundary obtained with labeled dateot the best possible linear boundary. We can

in fact find the best possible linear boundary of the fare = + . For anyy, the classification errag(y) is

3 [ ety 0 _ 9 [ [> 3/2 1 4/5
5/ / N ,diag1,1] dyda:—i-g/ / N , dydzx.
~o0J 00 3/2 oo Jaty 0 4/5 1

By interchanging differentiation with respect towith integration, it is possible to obtaide(y)/dy in
closed form. The second derivatiiée(v)/d~? is positive wheny € [—3/2,3/2]; consequently there is

a single minimum that can be found by solvidg(v)/dy = 0. We find the minimizingy to be (-9 +

24/45/4 +10g(400/81))/4 ~ —0.45786. The liney = x — 0.45786 is the best linear boundary for this
problem. If we consider the set of lines of the foym= x + ~, we see that the farther we go from the best
line, the larger the classification error. Figure 1 showdittear boundary obtained with labeled data and the
best possible linear boundary. The boundary from labeléalid&above” the best linear boundary.

Now consider the computation gf, the asymptotic estimate with unlabeled data:

W = arg max /_ N /_ " log (nN ([0, 3/2]", diagiL, 1)) + (1 — m)N((3/2,0)", diag, 1]))

n€l0,1

: 3/2 1 4/5
(3/5)N([0,3/2]",diad1,1]) + (2/5)N , dydz.
0 4/5 1



~
A
&/

N

0 /7
<
-1
2 .
2 py 7 __ Bestlinear
3t - - Labeled
— Unlabeled
3 2 1 0 1 2 3 4 3 2 1 0 1 2 3 4
X X

Fig. 1. Graphs for Example 1. On the left, contour plots ofritigture p(X,Y"), the optimal classification boundary (quadratic
curve) and the best possible classification boundary ofdh@§ = = + . On the right, the same contour plots, and the best
linear boundary (lower line), the linear boundary obtaifredh labeled data (middle line) and the linear boundary ioleth from

unlabeled data (upper line); thus the classification erftilm@unlabeled classifier is larger than that of the labelasisifier

The second derivative of this double integral is always tiegéas can be seen interchanging differentiation
with integration), so the function is concave and there isgle maximum. We can search for the zero of the
derivative of the double integral with respectrto We obtain this value numerically;; ~ 0.54495. Using
this estimate, the linear boundary from unlabeled daga4s z — 0.12019. This line is “above” the linear
boundary from labeled data, and, given the previous dismusieads to a larger classification error than the
boundary from unlabeled data. We haeéy) = 0.06975; e(f;) = 0.07356; e(f;:) = 0.08141. The boundary
obtained from unlabeled data is also shown in Figurg 1.

This example suggests the following situation. Supposealleat a large humbeh, of labeled samples
from p(C, X), with n = 3/5 andp = 4/5. The labeled estimates form a sequence of Bernoulli trigtls w
probability3/5, so the estimates quickly approagh(the variance of) decreases &/ (25/V;)). If we add a

very large amount of unlabeled data to our dgtapproaches; and the classification error increases.

C. Finite sample effects

The asymptotic analysis of semi-supervised learning ®#fto show the fundamental problem that can
occur when learning with unlabeled data. But what occurk vitite sample size datasets? We performed

extensive experiments with real and artificial datasetsanibus sizes, described in [7,20]. Here we bring
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Fig. 2. (a) LU-graphs for the example with two Gaussian oledgles. Each sample in each graph is the average of 10Q trials
classification error was obtained by testing in 10000 labstenples drawn from the correct model. (b) Naive Bayesifikassfrom
data generated from a TAN model (introduced in Section lithw9 observables (each variable with 2 to 4 values); paimtke
graphs summarizes 10 runs on testing data (bars cover 30gerééntiles). (c) Same graph as (b), enlarged. Note thabaldd
data does lead to a significant improvement in performancenvddded to 30 or 300 labeled samples. There is performance

degradation in the presence of 3000 labeled samples.

some of the main results. Throughout our experiments we trsedEM algorithm [27] to maximize the
likelihood (Expression (1)) [27], and we start the EM algiom with the parameters obtained using labeled
data, as these starting points can be obtained in closed-for

To visualize the effect of labeled and unlabeled samplesswggest that the most profitable strategy is
to fix the percentageof unlabeled samples\] among all training samples. We then plot classificatioorerr
against the number of training samples. Call such a grdpb-graph

Example 2:Consider a situation where we have a binary class vari@bleith valuesc¢’ and¢”’, and

p(C = ¢’) = 0.4017. We also have two real-valued observablesndY” with distributions:
p(X|) =N(2,1), p(X|c")=N(3,1),

p(Y|d,z) = N(2,1), pY|c",z) = N(1+ 2z,1).

There is dependency betwe¥rand X conditional on{C = ¢"}. Suppose we build a Naive Bayes classifier
for this problem. Figure 11-C(a) shows the LU-graphs for Otdalbeled samples, 50% unlabeled samples
and 99% unlabeled samples, averaging over a large enseinblassifiers. As expected, the asymptotes

converge to different values. Suppose then that we staritixdb@ labeled samples as our training data. Our



classification error would be about 7.8%, as we can see inlthgraph for 0% unlabeled data. Suppose we
added 50 labeled samples; we would obtain a classification ef about 7.2%. Now suppose we added 100
unlabeledsamples. We would move from the 0% LU-graph to the 50% LU-gr&assification error would
increase to 8.2%! And if we then added 9800 unlabeled sampéewould move to the 99% LU-graph, with
classification error about 16.5% — more than twice the ermhad with just 50 labeled sampl€s.

It should be noted that in difficult classification problemdyere LU-graphs decrease very slowly, unla-
beled data may improve classification performance for oerigions of the LU graphs. Problems with a
large number of observables and parameters should reqoire tnaining data, so we can expect that such
problems benefit more consistently from unlabeled dataurEgll-C(b-c) illustrate this possibility for Naive-
Bayes classifiers with 49 features. Another possible phemomis that the addition of a substantial number
of unlabeled samples may reduce variance and decreas#icédss error, but an additional, much larger,
pool of unlabeled data can eventually add enough bias soiasrgase classification error. Such a situation
is likely to have happened in some of the results reportedilggi et al [3], where classification errors go

up and down as more unlabeled samples are added.

D. Short summary

To summarize the results so far, we can say the following:
« Labeled and unlabeled data contribute to a reduction iramad in semi-supervised learning under maxi-
mum likelihood estimation.
« When the model is correct, the maximum likelihood estim&ambiased and both labeled and unlabeled
data contribute to a reduction in classification error byucdg variance. Also, unlabeled data suffice to
define the decision regions and labeled data can be usey &wlabel the regions.
« When the model is incorrect, there may be different asynpéstimation biases for different valuesxf
Asymptotic classification error may also be different fdfatient values ofA. An increase in the number of
unlabeled samples may lead to a larger estimation bias ardex Iclassification error. Example 1 illustrated
this possibility.
« For finite size datasets and incorrect models, unlabelem ctat be observed to improve or degrade the

classification performance, a behavior that can be chaizeteby the LU-graphs.



In essence, semi-supervised learning displays an odddaiiurobustness: for certain modeling errors,
more unlabeled data can degrade classification perform&stienation bias is the central factor in this phe-
nomenon, as the level of bias depends on the ratio of labeledlabeled samples. Most existing theoretical
results on semi-supervised learning are based on the assarapno modeling error, and consequently bias

has not been an issue so far.

IIl. SEMI-SUPERVISED LEARNING FORBAYESIAN NETWORK CLASSIFIERS

We now turn our attention to the implication of the analysiBayesian network classifiers. As stated
before, we chose Bayesian network classifiers for sevesaslores; classification is possible with missing
data in general and unlabeled data in particular, the gcaphépresentation is intuitive and can be easily
expanded to add different features and modalities for squpkcations, and there are efficient algorithms for
inference. Other popular classifiers, such as support vewchines and Neural networks, cannot currently
handle unlabeled data, and therefore we do not considerithdris paper.

The conclusion of the previous section indicates the ingpae of obtaining the correct model when using
unlabeled data to learn a classifier. In the context of Bayasetworks, finding the correct model amounts to
obtaining a correct structure. If a correct structure ioted, unlabeled data improve a classifier; otherwise,
unlabeled data can actually degrade performance. Somewhaisingly, the option of searching for better
structures has not been proposed by researchers that lesveusty withessed the performance degradation
when learning with unlabeled data.

Bayesian networks [8] have become popular in recent yearsads for modeling and classification. A
Bayesian network is composed of a directed acyclic graphhichvevery node is associated with a variable
X; and with a conditional distributiop(X;|I1;), wherell; denotes the parents &f; in the graph. The joint
probability distribution is factored to the collection afraditional probability distributions of each node in

the graph as:

n

p(X1, ... Xn) = [ [ p(XGIIL) .

=1

The directed acyclic graph is tis¢ructure and the distributiong(X; |I1;) represent thparameterof the net-

work. We say that the assumed structure for a netwgfrks correctwhen it is possible to find a distribution,



p(C,X|S"), that matches the distribution that generates gz, X); otherwise, the structure iscorrect,*.
Maximum likelihood estimation is one of the main methodsearh the parameters of the network. When
there are missing data in training set, the Expectation Meedtion (EM) algorithm [27] can be used to
maximize the likelihood.

As a direct consequence of the analysis in the previousosedi Bayesian network that has the correct
structure and the correct parameters is also optimal fasiflaation because the a-posteriori distribution of
the class variable is accurately represented.

A Bayesian network classifier generativewhen the class variable is an ancestor (e.g., parent) of some
or all features. A Bayesian network classifiediagnosti¢ when the class variable has non of the features
as descendants. As we are interested in using unlabelethdataning the Bayesian network classifier, we

restrict ourselves to generative structures, and excludetares that are diagnostic.

A. Switching between generative models: Naive Bayes and TAN

One attempt to overcome the performance degradation frdabeled data could be to switch models as
soon as degradation is detected. Suppose then that we lelass#ier with labeled data only, and we observe
a degradation in performance when the classifier is learngdaibeled and unlabeled data. We can switch to
a more complex structure at that point. As we saw in the ptesatapter, bias and variance play an important
role in the utilization of unlabeled data. To preserve thiatee between the bias from the true distribution
and the variance we might want to use a small subset of simptels which can be learned efficiently.

We start with the simplest generative structure, the Naiagel. Despite having a non-zero classification
bias, the Naive-Bayes classifier performs well for many sashen trained with labeled datarhe success
is explained in the literature using several arguments, gagle-offs between classification bias and variance
when learning with scarce data [26] and tendency of manyilligions to be close (in the Kullback-Leibler
sense) to the product distribution of the Naive Bayes di@s§P8]. However, in semi-supervised learning,
the same success is not always observed (see experiments).

If a problem is such that Naive Bayes classifiers suffer fremiggmance degradation with unlabeled data,

3These definitions follow directly from the definitions of cect and incorrect models described in the previous section
4There isn’t necessarily a unique correct structure, d.g.siructure is correct (as defined above), all structuraisate from the same Markov

equivalent class are also correct since causality is ngsarei



we should then switch to a larger family of models. The mostpsing such family is represented by TAN
classifiers, in which the class variable is a parent of alhefdabservables, and the observables are connected
so as to form a tree. Friedman et al. [11] showed that learntiagnost likely TAN structure can be done
efficiently using the Chow-Liu algorithm [29]. An importaaktension of the TAN learning algorithm was
proposed by Meila [30], who constructed an EM algorithm @thive call EM-TAN [7]) for learning with
both labeled and unlabeled data. The algorithm enjoys fiwesfcy of the supervised TAN algorithm, while
guaranteeing convergence to a local maximum of the likelihfoinction.

We have observed that EM-TAN produces classifiers that ictipearegularly surpass Naive Bayes classi-
fiers. Still, performance degradation can still occur bathNaive Bayes and TAN (as actually observed in
Table I). In such cases, we are faced with several options.fif$t is to discard the unlabeled data and use

only the available labeled samples. The other options @@idsed in the next sections.

B. Beyond Naive Bayes and TAN classifiers: unrestrictectire learning

If we observe performance degradation, we may try to find teerect” structure for our Bayesian network
classifier — if we do so, we can profitably use unlabeled dalas Aearning Bayesian network structure is not
a trivial task. We begin by investigating the behavior ofisture learning algorithms in the context of semi-
supervised learning, presenting new algorithms whereateathd deriving new techniques that improve on

existing methods.

B.1 Independence-based methods

The first class of structure learning methods we considéeislass of independence-based methods, also
known as constraint-based or test-based methods. Theseweeal such algorithms; a relevant subset is
composed of the PC algorithm [31], the IC algorithm [32], &imel CBL1 and CBL2 algorithms [33]. All of
them can obtain the correct structure if there are fullyatdk independence tests available; however not all of
them are appropriate for classification. For example, thalg@rithm starts with a fully connected network,
and has the tendency to generate structures that are “t@e’td@onsequently requiring many parameters to
be learned, negatively affecting the variance of estimgtehtities and increasing the classification error).

The CBL1 and CBL2 algorithms seem patrticularly well-suited classification, as they strive to keep



the number of edges in the Bayesian networks as small ashpms3ihe performance of CBL1 on labeled
data only has been reported to surpass the performance of @¥éw with arbitrary node orderings [34].
Conceptually CBL1 and CBL2 are similar, with CBL1 requiriag ordering to start. We used conditional
independence (Cl) tests based on mutual information: wiauwdeeariablesX andY” to be independent given
variableZ when their mutual information conditional dhis smaller than a constaatwhich we set to 0.01.

A few modifications are necessary to adapt CBL1 and CBL2 fomisipervised learning. First, the
algorithms are started with a Naive Bayes classifier, andBhXCarcs from the class variable to observed
variables are allowed to be removed, leading to some resirforms of feature selection. More importantly,
a simple method to generate orderings for CBL1 is developeddmerating a fixed number of random
orderings, and running the algorithm for all of them. Beea@BL1 is quite fast, hundreds of candidate
orderings are easily tested, selecting the one that predineebest classifier (using either testing data or
cross-validation to select the classifier, depending omtheunt of available labeled data).

Because independence-based algorithms like CBL1 do nttilypoptimize a metric, they cannot handle
unlabeled data directly through an optimization scheme ElM. To handle unlabeled data, the following
strategy was opted (denoted as EM-CBL): Start by learningygeBian network with the available labeled
data; then use EM to process unlabeled data followed by artignce tests with the “probabilistic labels”
generated by EM, to obtain a new structure. EM is used agdheimew structure and the cycle is repeated,
until two subsequent networks are identical. It should bteddhat such a scheme, however intuitively
reasonable, has no convergence guarantees; one test splayed oscillating behavior.

Despite such difficulties, EM-CBL1 has been observed toaigtimprove the performance obtained with
EM-TAN in many problems (see experiments). This apparectoy must be taken carefully though: the
algorithm takes much more computational effort than EM-TANd its improvement over EM-TAN is only
marginal. Moreover, the algorithm relies on the computatb mutual information with the “probabilistic
labels” generated by EM; such a method has been observeddddeunreliable CI tests. Given the fact
that all independence-based algorithms depend criticallthese tests, the lack of robustness of such tests
creates difficulties for EM-CBL1 in several classificatiawiplems. The EM-CBL2 has been observed to be

consistentlyworsethan EM-TAN, hence it was not explored further.



To conclude, experience shows that the use of independsse® methods in semi-supervised learning is

not promising.

B.2 Likelihood and Bayesian Score-based methods

Here we turn to a different family of algorithms, those basadscores. At the heart of most score based
methods is the likelihood of the training data. To avoid éttang the model to the data, likelihood is offset by
a complexity penalty term, such as the minimum descriptmgth (MDL), Bayesian information criterion
(BIC) and others. A good comparison of the different methisd®und in [35]. Most existing methods
cannot, in their present form, handle missing data in geéa@cunlabeled data in particular. The structural
EM (SEM) algorithm [36] is one attempt to learn structurehmmissing data. The algorithm attempts to
maximize the Bayesian score using an EM-like scheme in theespf structures and parameters; the method
performs an always-increasing search in the space of gteg;tbut does not guarantee the attainment of even
a local maximum. Algorithms using other scores could mdéstiyi be extended to handle unlabeled data in
much the same way as the SEM algorithm.

When learning the structure of a classifier, score basedtstrilearning approaches (such as BIC and
MDL) have been strongly criticized. The problem is that witlite amounts of data, the a-posteriori prob-
ability of the class variable can have a small effect on tleescthat is dominated by the marginal of the
observables, therefore leading to poor classifiers [11, EBpdman et al. [11] showed that TAN surpasses
score-based methods for the fully labeled caglgen learning classifiersThe point is that with unlabeled
data, score-based methods such as SEM are likely to go astesiymore than it has been reported in the
supervised case; the marginal of the observables furthaimddes the likelihood portion of the score as the
ratio of unlabeled data increases.

Bayesian approaches to structure learning have also bepoged in [37,38]. Madigan and York [38]
construct a Markov Chain Monte Carlo (MCMC) over the spaceassible structures, with the stationary
distribution being the posterior of the structures givea dlata. Metropolis-Hastings sampling [39] is used
to sample from the posterior distribution. Friedman andé&tdB7] use a two step method in their sampling
— first they sample from the distribution over the orderinghe variables followed by exact computation of

the desired posterior given the ordering. As with likelid@eores, we can expect these two methods to face



difficulties when learning classifiers, since they focustomjbint distribution given the data, and not on the

classification error or the a-posteriori probability of ttiass variable.

C. Classification driven stochastic structure search (SSS)

Both the score-based and independence-based methodsfing tihe correct structure of the Bayesian
network, but fail to do so because there is not enough dataifoer reliable independence tests or for a
search that yields a good classifier. Consider the follovahernative. As we are interested in finding a
structure that performs well as a classifier, it would be ratto design algorithms that use classification
error as the guide for structure learning. Here we can fultheerage on the properties of semi-supervised
learning: we know that unlabeled data can indicate incostacture through degradation of classification
performance, and we also know that classification perfoomamproves with the correct structure. Thus,
a structure with higher classification accuracy over anoitmgicates an improvement towards finding the
optimal classifier.

To learn the structure using classification error, we muspad strategy of searching through the space of
all structures in an efficient manner while avoiding localkmaa. In this section, we propose a method that
can effectively search for better structuvgth an explicit focus on classificatiolVe essentially need to find a
search strategy that can efficiently search through theespiagtructures. As we have no simple closed-form
expression that relates structure with classificationrerravould be difficult to design a gradient descent
algorithm or a similar iterative method. Even if we did thatgradient search algorithm would be likely to
find a local minimum because of the size of the search space.

First we define a measure over the space of structures whietaweto maximize:

Definition 1: Theinverse error measurfor structureS’ is

1
inv.(S') = —ps'(é(X)Tc) , (8)
2.5 p(EXTZC)
where the summation is over the space of possible strucamess (¢(X) # C) is the probability of error of
the best classifier learned with structuie
We use Metropolis-Hastings sampling [39] to generate sasnfpbm the inverse error measure, without

having to ever compute it for all possible structures. Farstaucting the Metropolis-Hastings sampling, we



define a neighborhood of a structure as the set of directediagyaphs to which we can transit in the next
step. Transition is done using a predefined set of possilallegds to the structure; at each transition a change
consists of a single edge addition, removal or reversal. ¥fmel the acceptance probability of a candidate
structure,S,..,, to replace a previous structuig,as follows:
i (1, (S AT o (t) " 2. 9
e (S?) q(Sme|S?) paes. ) Naew

whereg(S’|S) is the transition probability fron$ to S’ and N; and V,,.,, are the sizes of the neighborhoods

of S; and S,..., respectively; this choice corresponds to equal probglmfitransition to each member in the
neighborhood of a structure. This choice of neighborhoatliteansition probability creates a Markov chain
which is aperiodic and irreducible, thus satisfying the kéarchain Monte Carlo (MCMC) conditions [38].

We summarize the algorithm, which we name stochastic strecearch (SSS), in Figure 3.

Procedure Stochastic structure search (SSS)
« Fix the network structure to some initial structufg,
. Estimate the parameters of the structfgeand compute the probability of errg},..,..
o Sett = 0.
« Repeat, until a maximum number of iterations is reactddd{Iter),
— Sample a new structurg,.,,, from the neighborhood of, uniformly, with probability1/N;.
— Learn the parameters of the new structure using maximuriHd®d estimation. Compute the propa-
bility of error of the new classifiepl<® .
— AcceptS,.,, with probability given in Eq.(9).
— If Sy is accepted, sef;, 1 = Spew andpill = p™ and changd’ according to the temperature
decrease schedule. Otherwigg; = S;.
—-t=t+1.

« return the structuré;, such thatj = arg ming<;<azrter (P

’I"'I‘OT‘) "

Fig. 3. Stochastic structure search algorithm

We addT" as a temperature factor in the acceptance probability. Rgwgpeaking,I” close tol would

allow acceptance of more structures with higher probahdfterror than previous structure. close to0



mostly allows acceptance of structures that improve pritibabf error. A fixed 7" amounts to changing the
distribution being sampled by the MCMC, while a decreadirig a simulated annealing run, aimed at finding
the maximum of the inverse error measures. The rate of deemfahe temperature determines the rate of
convergence. Asymptotically in the number of data, a Idbaric decrease ¢f guarantees convergence to a
global maximum with probability that tends to one [40].

The SSS algorithm, with a logarithmic cooling schedIilecan find a structure that is close to minimum
probability of error. There are two caveats though. Firs, lbgarithmic cooling schedule is very slow. We
use faster cooling schedules and a starting point whichei®#ést out of either the NB classifier or the TAN
classifier. Second, we never have access to the true pritpabgrror for any given structure® . Instead,
we use the empirical error over the training data (denoteif as ).

To avoid the problem of overfitting several approaches assipte. The first is cross-validation; the
labeled training data is split to smaller sets and sevestd e performed using the smaller sets as test sets.
However, this approach can significantly slow down the seaand is suitable only if the labeled training
set is moderately large. Another approach is to penaliferdift structures according to some complexity
measure. We could use the BIC or MDL complexity measure, lmithose to use use the multiplicative
penalty term derived from structural risk minimizationant is directly related to the relationship between

training error and generalization error. We define a mod#iedr term for use in Eq. (8) and (9):

~S
mod __ Perror (10)

S
(pe'r'ror) - L. \/hs(logﬂ_pl)—log('r]/@ 3

hs

n

wherehg is the Vapnik-Chervonenkis (VC) dimension of the classifwh structureS, n is the number of
training recordsy andc are betwee and1.

To approximate the VC dimension, we use « Ng, where N is the number of (free) parameters in
the Markov blanket of the class variable in the network, aseg that all variables are discrete. We point
the reader to [41], in which it was shown that the VC dimenséra Naive Bayes classifier is linearly
proportional to the number of parameters. It is possiblexterel this result to networks where the features
are all descendants of the class variable. For more generabrks, features that are not in the Markov
blanket of the class variable cannot effect its value ingifecstion (assuming there are no missing values for

any feature), justifying the above approximation. In outigéhexperiments, we found that the multiplicative



penalty outperformed the holdout method and MDL and BIC dexify measures.

D. Evaluation using UCI machine learning datasets

To evaluate structure learning methods with labeled anahaied data, we started with an empirical study
involving simulated data. We artificially generated datamtestigate: (1) whether the SSS algorithm finds a
structure that is close to the structure that generateddtee dnd (2) whether the algorithm uses unlabeled
data to improve the classification performance. A typicalteis as follows. We generated data from a
TAN structure with 10 features. The dataset consisted ofl@0éled and 30000 unlabeled records. We first
estimated the Bayes error rate by learning with the corteat&ire and with a very large fully labeled dataset.
We obtained a classification accuracydf49%. We learned one Naive Bayes classifier only with the labeled
records, and another with both labeled and unlabeled rstikdwise, we learned a TAN classifier only with
the labeled records, and another with both labeled and alddlvecords, using the EM-TAN algorithm; and
finally, we learned a Bayesian network classifier with our @&@rithm using both labeled and unlabeled
records. The results are presented in the first row of TabWith the correct structure, adding unlabeled
data improves performance significantly (columns TAN-L &M-TAN). Note that adding unlabeled data
degraded the performance from 16% error to 40% error whereannéd the Naive Bayes classifier. The
structure search algorithm comes close to the performadte alassifier learned with the correct structure.
Figure 4(a) shows the changes in the test and train errongltine search process. The graph shows the
first 600 moves of the search, initialized with the Naive Bag&ucture. The error usually decreases as
new structures are accepted; occasionally we see an ieciealse error allowed by Metropolis-Hastings
sampling.

Next, we performed experiments with some of the UCI dataseisig relatively small labeled sets and
large unlabeled sets (Table I). The results suggest thaitate learning holds the most promise in utilizing
the unlabeled data. There is no clear 'winner’ approachpaljh SSS yields better results in most cases. We
see performance degradation with NB for every dataset. BM-Gan sometimes improve performance over
TAN with just labeled data (Shuttle). With the Chess datadistarding the unlabeled data and using only
TAN seems the best approach. We have compared two likelibased structure learning methods (K2 and

MCMC) on the same datasets as well [20], showing that evem idllow the algorithms to use large labeled



TABLE |
CLASSIFICATION RESULTS(IN %) FORNAIVE BAYES, TAN, EM-CBL1 AND STOCHASTIC STRUCTURE SEARCHXX-L

INDICATES LEARNING ONLY WITH THE AVAILABLE LABELED DATA .

Dataset Train Test NB-L EM- TAN-L EM- EM- SSS
#lab | # unlab NB TAN CBL1

TAN
artificial | 300 | 30000 | 50000| 83.4£0.2 | 59.2+0.2 | 90.9+0.1 | 91.9+0.1 N/A 91.14+0.1

Satimage| 600 | 3835 | 2000 | 81.A40.9| 77.5:£0.9 | 83.5£0.8 | 81.0+0.9 | 83.5:0.8 | 83.4£0.8

Shuttle 100 | 43400 | 14500| 82.4+:0.3 | 76.1+0.4 | 81.2£0.3 | 90.5+0.2 | 91.8+0.2 | 96.3+0.2

Adult 6000 | 24163 | 15060| 83.9+-0.3 | 73.1+0.4 | 84.7+0.3 | 80.0+:0.3 | 82.7+0.3 | 85.0+0.3

Chess 150 | 1980 | 1060 | 79.8+1.2 | 62.1+1.5| 87.0£1.0| 71.2£1.4 | 81.0+1.2 | 76.0+1.3

datasets to learn the structure, the resultant netwotksudfer from performance degradation when learned
with unlabeled data.

lllustrating the iterations of the SSS algorithm, Figur®)4g¢hows the changes in error for the shuttle
datasets. The Bayesian network structure learned with$igeegorithm for the Shuttle database is shown in

Figure 5
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IV. LEARNING BAYESIAN NETWORK CLASSIFIERS FORREAL APPLICATIONS

The experiments in the previous section discussed commesdy machine learning datasets. In this

section and the following, we discuss two real applicatithiag could benefit from the use of unlabeled data.
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Fig. 5. Bayesian network structure learned for the Shuttalghse

We start with facial expression recognition.

A. Facial Expression Recognition using Bayesian NetwodsSifiers

Since the early 1970s, Paul Ekman and his colleagues haf@mped extensive studies of human facial
expressions [42] and found evidence to support univeysilifacial expressions. These “universal facial
expressions” are those representing happiness, sadmges, gear, surprise, and disgust. Ekman’s work
inspired many researchers to analyze facial expressionslans of image and video processing. By tracking
facial features and measuring the amount of facial moventbay attempt to categorize different facial
expressions. Recent work on facial expression analysiseragjnitionhas used these “basic expressions” or
a subset of them. In [43], Pantic and Rothkrantz provide atepth review of many of the research done in
automatic facial expression recognition in recent years.

One of the challenges facing researchers attempting tgmiéstial expression recognition systems is the
relatively small amount of available labeled data. Cortdion and labeling of a good database of images
or videos of facial expressions requires expertise, timd,teaining of subjects. Only a few such databases
are available, such as the Cohn-Kanade database [44]. ldoveelecting, without labeling, data of humans
displaying expressions is not as difficult. Therefore, ibeneficial to use classifiers that can be learned
with a combination of some labeled data and a large amountlabeled data. As such we use (generative)
Bayesian network classifiers.

We have developed a real time facial expression recogrstfstem [45]. The system uses a model based
non-rigid face tracking algorithm [46] to extract motiorafares (seen in Figure 8(a)) that serve as input

to a Bayesian network classifier used for recognizing thiemdiht facial expressions. There are two main



motivations for using Bayesian network classifiers in thisbfem. The first is the ability to learn with
unlabeled data and infer the class label even when some dédlhares are missing (e.g., due to failure in
tracking because of occlusion). The second motivationasiths possible to extend the system to fuse other
modalities, such as audio, in a principled way by simply agdiubnetworks representing the audio features.

A snap shot of the system, with the face tracking and recmgniesult is shown in Figure 6.

 Untitled - newviden ] tion. WES)
Flle video Cperaticns View Hzlz  Traze | -
He

Fig. 6. A snap shot of our realtime facial expression reciigmisystem. On the right side is a wireframe model overlayed
a face being tracked. On the left side the correct expressingry, is detected (the bars show the relative probabiftangry

compared to the other expressions).

A.1 Experimental Design

We use two different databases, a database collected by &tieHuang [47] and the Cohn-Kanade AU
code facial expression database [44]. The first is a datadfaséjects that were instructed to display facial
expressions corresponding to the six types of emotionghaltests of the algorithms are performed on a set
of five people, each one displaying six sequences of eachfahe six emotions, starting and ending at the
Neutral expression. The video sampling rate was 30 Hz, apgieal emotion sequence is about 70 samples
long (~2s). Figure 7(upper row) shows one frame of each subject.

The Cohn-Kanade database [44] consists of expression seggi®f subjects, starting from a Neutral
expression and ending in the peak of the facial expressibareTare 104 subjects in the database. Because
for some of the subjects, not all of the six facial expressmeguences were available to us, we used a subset
of 53 subjects, for which at least four of the sequences weahle. For each subject there is at most one

sequence per expression with an average of 8 frames for &pobssion. Figure 7(lower row) shows some



examples used in the experiments. A summary of both datalimgeesented in Table II. We measure the
accuracy with respect to the classification result of eagin&, where each frame in the video sequence was
manually labeled to one of the expressions (including NgutrThis manual labeling can introduce some
'noise’ in our classification because the boundary betweeuntfdl and the expression of a sequence is not

necessarily optimal, and frames near this boundary miglge@onfusion between the expression and the

Neutral.
TABLE Il
SUMMARY OF THE DATABASES
Overall # of sequences # of sequences per subjeciaverage # of frames
Database # of Subjects per expression per expression per expression
Chen-Huang DB 5 30 6 70
Cohn-Kanade DB 53 53 1 8

Fig. 7. Examples of images from the video sequences usee iexiperiment. Top row shows subjects from the Chen-Huang DB,

bottom row shows subjects from the Cohn-Kanade DB (printild permission from the researchers).

A.2 Experimental results with labeled data

We start with experiments using all our labeled data. Thislmaviewed as an upper bound on the perfor-
mance of the classifiers trained with most of the labels readoiror the labeled only case, we also compare
results with training of an artificial Neural network (ANN) ss to test how Bayesian network classifiers
compare with different kind of classifiers for this probleive perform person independent tests by parti-
tioning the data such that the sequences of some subjeaiseuias the test sequences and the sequences of

the remaining subjects are used as training sequence® Masihows the recognition rate of the test for all



classifiers. The classifier learned with the SSS algorithtpextorms both the NB and TAN classifiers, while

ANN do not perform well compared to all the others.
TABLE Il

RECOGNITION RATE (%) FOR PERSONINDEPENDENT TEST

NB | TAN | SSS | ANN

Chen-Huang Database 71.78| 80.31| 83.62 | 66.44

Cohn-Kandade Database77.70| 80.40| 81.80| 73.81

It is also informative to look at the structures that werered from data. Figure 8 shows two learned
tree structure of the features (our Motion Units) one lednungng the Cohn-Kanade database and the second
from the Chen-Huang database. The arrows are from parealsitoen MUs. In both tree structures we see
that the algorithm produced structures in which the bottaih &f the face is almost disjoint from the top
portion, except for a link between MU9 and MU8 in the first andlesak link between MU4 and MU11 in the

second.

(a) (b) (€)
Fig. 8. (a) Motion units extracted from face tracking, (b#@jo learned TAN structures for the facial features, (b) gdime

Cohn-Kanade database, (c) using the Chen-Huang database.

A.3 Experiments with labeled and unlabeled data

We perform person-independent experiments with labeleduatabeled data. We first partition the data
to a training set and a test set (2/3 training, 1/3 for te3famgl choose by random a portion of the training set
and remove the labels. This procedure ensures that thédistn of the labeled and the unlabeled sets are

the same.



TABLE IV

CLASSIFICATION RESULTS FOR FACIAL EXPRESSION RECOGNITION WH LABELED AND UNLABELED DATA .

Dataset Train Test NB-L EM- TAN-L EM- EM- SSS
#lab | #unlab NB TAN CBL1

Cohn-Kanade 200 2980 | 1000| 72.5£1.4 | 69.1£1.4 | 72.9£1.4 | 69.3t1.4 | 66.2£1.5 | 74.86t1.4

Chen-Huang | 300 | 11982 | 3555| 71.3:0.8 | 58.5£0.8 | 72.5+0.7 | 62.9-0.8 | 65.9+-0.8 | 75.0+0.7

We then train Naive Bayes and TAN classifiers, using just #ieeled part of the training data and the
combination of labeled and unlabeled data. We also use tikea®8 the EM-CBL1 algorithms to train a
classifier using both labeled and unlabeled data (we do rotlsdor the structure with just the labeled part
because it is too small for performing a full structure skarc

Table IV shows the results of the experiments. We see thatMB and TAN, when using 200 and 300
labeled samples, adding the unlabeled data degrades tloenpance of the classifiers, and we would have
been better off not using the unlabeled data. We also seElaEBL1 performs poorly in both cases. Using
the SSS algorithm, we are able to improve the results andautthe unlabeled data to achieve performance
which is higher than using just the labeled data with NB andNTAhe fact that the performance is lower
than in the case when all the training set was labeled (abe#t Gompared to over 80%) implies that the
relative value of labeled data is higher than of unlabelad,des was shown by Castelli [17]. However, had

there been more unlabeled data, the performance would leetdto improve.

B. Applying Bayesian Network Classifiers to Face Detection

We apply Bayesian network classifiers to the problem of faateation, with the purpose of showing that
using our proposed methods, semi-supervised learningeasdx to learn good face detectors. We take an
appearance based approach, using the intensity of imagks i the features for the classifier. For learning
and defining the Bayesian network classifiers, we must lodikatl size windows and learn how a face
appears in such windows, where we assume that the face app@aost of the window’s pixels. The goal of
the classifier would be to determine if the pixels in a fixe@ sizndow are those of a face or non-face.

We note that there have been numerous appearance baseddygsdor face detection, many with con-



siderable success (see Yang et al. [48] for a detailed remiethe state-of the-art in face detection). However,
there has not been any attempt, to our knowledge, to usesgmeivised learning in face detection. While
labeled databases of face images are available, a uniyersalist face detector is still difficult to construct.
The main challenge is that faces appear very different udifi@rent lighting conditions, expressions, with
or without glasses, facial hair, makeup, etc. A classifa@ngd with some labeled images and a large number
of unlabeled images would enable incorporating many marelfaariations without the need to label huge
datasets.

In our experiments we used a training set consisting of 24284 and 10000 non faces obtained from the
MIT CBCL Face database #1 [49]. Each face image is croppedesampled to a 8x8 window, thus we
have a classifier with 64 features. We also randomly rotadeti@mslate the face images to create a training
set of 10000 face images. In addition we have available 10@d6face images. We leave olft00 images
(faces and non-faces) for testing and train the Bayesiamanktclassifier on the remaining 19000. In all the
experiments we learn a Naive Bayes, a TAN, and two generargéwe Bayesian network classifiers, the
latter using the EM-CBL1 and the SSS algorithms.

To compare the results of the classifiers, we use the regedperating characteristic (ROC) curves. The
ROC curves show, under different classification threshoksging from0 to 1, the probability of detecting
a face in a face imageé?, = P(C = facdC = face), against the probability of falsely detecting a face in a
non-face imag&yp = P(C = facdC # face).

We first learn using all the training data being labeled. Fegid(a) shows the resultant ROC curve for this
case. The classifier learned with the SSS algorithm outpag®oth TAN and NB classifiers, and all perform
quite well, achieving abowtt% detection rates with a low rate of false alarm.

Next we remove the labels &% of the training data (leaving only 475 labeled images) aahtthe
classifiers. Figure 9(b) shows the resultant ROC curve figrdase. We see that NB classifier using both
labeled and unlabeled data performs very poorly. The TANGas the 475 labeled images and the TAN
based on the labeled and unlabeled images are close iniparfoe, thus there was no significant degradation
of performance when adding the unlabeled data. The classgfiag all data and the SSS outperforms the

rest with an ROC curve close to the best ROC curve in Figurg 9égure 9(c) shows the ROC curve
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data unlabeled, (c) with7.5% of the data unlabeled.

with only 250 labeled data used. Again, NB with both labelad anlabeled performs poorly, while SSS
outperforms the other classifiers with no great reductiopeformance compared to the two other ROC
curves. The experiment shows that using structure sedrehyrtlabeled data was utilized successfully to

achieve a classifier almost as good as if all the data wasddbel

V. SUMMARY AND DISCUSSION

Using unlabeled data to enhance the performance of classif@ned with few labeled data has many
applications in pattern recognition such as computer misitClII, data mining, text recognition and more.
To fully utilize the potential of unlabeled data, the ali## and limitations of existing methods must be
understood.

The main contributions of this paper can be summarized &sifsi
1. We have derived and studied the asymptotic behavior of-sepervised learning based on maximum
likelihood estimation. We presented a detailed analysipesformance degradation from unlabeled data,
showing that it is directly related to modeling assumptjaregardless of numerical instabilities or finite
sample effects.

2. We discussed the implications of the analysis of semestiged learning on Bayesian network classifiers;
namely the importance of structure when unlabeled datasse in training. We listed the possible shortcom-

ings of likelihood-based structural learning algorithmsenw learning classifiers, especially when unlabeled



data are present.

3. We introduced a classification driven structure seargbrahm based on Metropolis-Hastings sampling,
and showed that it performs well both on fully labeled datsed on labeled and unlabeled training sets.
As a note for practitioners, the SSS algorithm appears t& wetl for relatively large datasets and difficult
classification problems that are represented by complexktsties. Large datasets are those where there are
enough labeled data for reliable estimation of the emgign®r, allowing search for complex structures, and
there are enough unlabeled data to reduce the estimati@mgarof complex structures.

4. We presented our real-time facial expression recogngigtem using a model-based face tracking algo-
rithm and Bayesian network classifiers. We showed expetsnesing both labeled and unlabeled data.

5. We presented the use of Bayesian network classifiersdomiley to detect faces in images. We note that
while finding a good classifier is a major part of any face detasystem, there are many more components
that need to be designed for such a system to work on natuagiem(e.g., ability to detect at multi-scales,
highly varying illumination, large rotations of faces armatipal occlusions). Our goal was to present the first
step in designing such a system and show the feasibility efahproach when training with labeled and
unlabeled data.

Our discussion of semi-supervised learning for Bayesiawaris suggests the following path: when
faced with the option of learning Bayesian networks witrelel and unlabeled data, start with Naive Bayes
and TAN classifiers, learn with only labeled data and testthwdrethe model is correct by learning with the
unlabeled data. If the resultis not satisfactory, then SB8%e used to attempt to further improve performance
with enough computational resources. If none of the methisdyy the unlabeled data improve performance
over the supervised TAN (or Naive Bayes), either discardutiiebeled data or try to label more data, using
active learning for example.

Following our investigation of semi-supervised learnitiggre are several important open theoretical ques-
tions and research directions:

« Is it possible to find necessary and sufficient conditionspenformance degradation to occur? Finding
such conditions are of great practical significance. Kngvilrese conditions can lead to the design of new

useful tests that will indicate when unlabeled can be usedhan they should be discarded, or if a different



model should be chosen.

« An important question is whether other semi-supervisexhleg methods, such as transductive SVM [50]
or co-training [51], will exhibit the phenomenon of perfante degradation? While no extensive studies
have been performed, a few results from the literature stgbat it is a realistic conjecture. Zhang and
Oles [2] demonstrated that transductive SVM can cause dagiom of performance when unlabeled data
are added. Ghani [52] described experiments where the shemeomenon occurred with co-training. If
the causes of performance degradation are similar forrdiftealgorithms, it should be possible to present a
unified theory for semi-supervised learning.

« Are there performance guarantees for semi-superviseaitggwith finite amounts of data, labeled and un-
labeled? In supervised learning such guarantees are gtextiensively. PAC and risk minimization bounds
help in determining the minimum amount of (labeled) dateessary to learn a classifier with good general-
ization performance. However, there are no existing bownde classification performance when training
with labeled and unlabeled data. Finding such bounds caretdeed using principals in estimation theory,
based on asymptotic covariance properties of the estimatber bounds can be derived using PAC theoret-
ical approaches. Existence of such bounds can immediaati/tb new algorithms and approaches, better
utilizing unlabeled data.

« Can we use the fact that unlabeled data indicates modelreatoess to actively learn better models? The
use of active learning seems promising whenever possihieit anight be possible to extend active learning
to learn better models, not just enhancement of the params&tienation.

Additionally, other applications could benefit from the Bsé of this work, such as content based image
retrieval, text understanding, classification in bio-mh@atics and more.

In closing, it is possible to view some of the components isfwork independently of each other. The the-
oretical results of Section Il do not depend on the choicaababilistic classifier and can be used as a guide
to other choices of classifiers. Structure learning of Beyesetworks is not a topic motivated solely by the
use of unlabeled data. Facial expression recognition aradatection could be solved using classifiers other
than Bayesian networks. However, this work should be vieasd combination of all three components;

the theory showing the limitations of unlabeled data is usanotivate the design of an algorithm to search



for better performing structures of Bayesian networks amallfy, the successful application to the real-world

problems we were interested in solving by learning with leabend unlabeled data.
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