Defining Operational Behavior of Object Specifications by
Attributed Graph Transformations *

Annika Wagner! and Martin Gogolla?

! TU Berlin; Fachbereich 13; Franklinstr. 28/29; D-10587 Berlin
2 TU Braunschweig; Informatik, Abt. Datenbanken; Postfach 3329; D-38023 Braunschweig

Abstract. A single pushout approach to the transformation of attributed
partial graphs based on categories of partial algebras and partial mor-
phisms is introduced. A sufficient condition for pushouts in these categories
is presented. As the synchronization mechanism we use amalgamation of
rules and show how synchronization can be minimized. We point out how
the results obtained can be employed in order to define an operational
semantics for object specification languages.

1 Introduction

Graphs and graph grammars usually yield intuitive descriptions of complex phenom-
ena in computer science. Therefore, numerous approaches to graph grammars have
been put forward, among them the logical approach [6], the set theoretic approach [29],
and the algebraic approach [9]. Graph-based techniques have for instance been success-
fully applied in the realm of software engineering development environments [13, 14],
for object-oriented languages based on asynchronous communication [22, 24, 20, 21]
and in logic programming [5, 28]. Within the algebraic (or categorical) school the clas-
sical double pushout approach (c.f. [9], among many others) has been accompanied
by the single pushout approach [31, 25, 26].

We combine the theory [2, 32] and specification [1, 3] of partial algebras with a single
pushout approach to graph grammars [26] and apply the results obtained to the speci-
fication of conceptual objects as they occur in information system design traditionally
employing semantic data models [33, 19, 30].

Our interest in applying the results focusses on the object description language
TROLL light [4, 16, 18]. The very basic idea of TROLL light is the uniform and
coherent specification of both structure and behavior of objects. The underlying se-
mantic model of TROLL light is a transition system or (as we call it) an object
community. In the single states, information about currently existing objects is repre-
sented, and state transitions are caused by occurrence of finite sets of events. The aim
of TROLL light is to model information systems and not systems in generel. There-
fore we do not take into account what is called in the literature true concurrency but
we are satisfied with a simpler semantic domain in favour of ease of concepts. We
concentrate on TROLL light but the results achieved are applicable to other related
object description languages like OBLOG [34], TROLL [23], or CMSL [36] and even
to other languages also following the object paradigm like MONDEL [35], ALBERT
[7], or IT [15].

* Work reported here has been partly supported by by the CEC under Grant No. 6112 (COMPASS) and
Grant No. 7183 (COMPUGRAPH) and by BMFT under Grant No. 01 IS 203 D (KORSO).

1

The structure of the paper is as follows. In the next section we sketch the concepts of
the language TROLL light by means of an example. In Sect. 3 we explain the basic
ideas and results about representing object community states as partial attributed
graphs. In Sect. 4 we show how the amalgamation technique for graph grammar rules
can be extended to our case, and in Sect. 5 we apply this amalgamation technique to
the evolution of TROLL [light object communities. Sect. 6 presents some conclusions
and future work to be done.

2 A Sketch of TROLL light

TROLL light is a language for describing static and dynamic properties of objects.
This is achieved by offering language features to specify object structure as well as
object behavior. The main advantage of following the object paradigm is the fact that
all relevant information concerning one object can be found within one single unit and
is not distributed over a variety of locations. Object descriptions are called templates
in TROLL light. Because of their pure descriptive nature templates may roughly be
compared with the notion of class found in object-oriented programming languages.
In the context of databases however, classes are also associated with class extensions
so that we used a different notion. Templates show the following structure.

TEMPLATE name of the template
DATA TYPES data types used in current template
TEMPLATES other templates used in current template
SUBOBJECTS slots for sub-objects
ATTRIBUTES slots for attributes
EVENTS event generators
CONSTRAINTS restricting conditions on object states
VALUATION effect of event occurrences on attributes
DERIVATION rules for derived attributes
INTERACTION synchronization of events in different objects
BEHAVIOR description of object behavior by a CSP-like process
END TEMPLATE

Roughly speaking, the DATA TYPES and TEMPLATES sections are the interfaces to other
templates, the SUBOBJECTS, ATTRIBUTES, and EVENTS sections constitute the template
signature, and in the remaining sections axioms concerning static (CONSTRAINTS and
DERIVATION) and dynamic (VALUATION, INTERACTION, and BEHAVIOR) properties are
specified.

We abstract from some peculiarities of TROLL light, and therefore concentrate on very
essential features of object description languages. Let us introduce the main ideas of
the language by means of an example. We assume that objects of type author are to
be modeled. For every author the name, the date of birth, and the number of books
sold have to be stored (ATTRIBUTES section). These attributes may be changed by
general state modifying operations (EVENTS and VALUATION sections). An author may
change her name only once in her life (BEHAVIOR section). An appropriate TROLL
light specification would look as follows:

TEMPLATE Author
DATA TYPES String, Date, Nat;

ATTRIBUTES Name:string; DateOfBirth:date; NumOfBooks:nat;

EVENTS BIRTH create(Name:string, DateOfBirth:date);
changeName (NewName: string) ;
addBook;

DEATH destroy;
VALUATION [create(N,D)] Name=N, Date0fBirth=D, NumOfBooks=0;
[changeName(N)] Name=N;
[addBook] NumOfBooks=NumOfBooks+1;
BEHAVIOR PROCESS authorlifel =
(addBook -> authorlifel |
changeName -> authorlife2 |
destroy -> POSTMORTEM);
PROCESS authorlife2 =
(addBook -> authorlife?2 |
destroy -> POSTMORTEM);
(create -> authorlifel);
END TEMPLATE;

For templates we employ the following naming convention: Template names are writ-
ten capitalized, and each template (Author) induces a corresponding object sort writ-
ten exactly as the template but with a starting lower case letter (author). In an
analogous way to authors, we could specify books. The important new concept here
is the use of an object-valued attribute which in this case “points” from the book to
the author of the book.

TEMPLATE Book
DATA TYPES String;
TEMPLATES Author;
ATTRIBUTES Author:author; Title:string;
EVENTS BIRTH create(Author:author, Title:string);
DEATH destroy;
VALUATION [create(A,T)] Author=A, Title=T;
END TEMPLATE;

Up to now we have only described more or less single objects. Now we put these
single objects into the bigger context of a library. Therefore we introduce books and
authors as sub-objects of a library (SUBOBJECTS section). Within a library, an au-
thor is identified by a natural number (parameter of Authors) and a book by its
author and its title (parameters of Books). Library objects may communicate with
its sub-objects by calling their events (INTERACTION section). For instance, the spec-
ification newAuthor(N,S,D) >> Authors(N) .create(S,D) means that whenever the
event newAuthor (N,S,D) occurs in a library, then also the event create(S,D) has
to occur in the author object determined by Authors(N). Sets of events which are
complete w.r.t. this calling mechanism are called closed event sets. They induce the
transitions between object community states. In order to avoid contradictions closed
event sets are restricted to contain only one event per object

TEMPLATE Library
DATA TYPES String, Date, Nat;
TEMPLATES Author, Book;

SUBOBJECTS Authors(No:nat):author;
Books (Author:author, Title:string) :book,
ATTRIBUTES Number0fBooks, NumberOfAuthors:nat;
EVENTS BIRTH create;
newAuthor(No:nat, Name:string, Date0OfBirth:date);
changeAuthorName(Author:author, NewName:string);
newBook (Author:author, Title:string);
removeAuthor (Author:author);
VALUATION [create] NumberOfBooks=0, NumberOfAuthors=0;
[newAuthor] NumberOfAuthors=NumberOfAuthors+1;
[newBook] NumberOfBooks=NumberO0fBooks+1;
[removeAuthor] NumberOfAuthors=NumberOfAuthors-1;
INTERACTION newAuthor(N,S,D) >> Authors(N).create(S,D);
changeAuthorName (A,N) >> A.changeName(N) ;
newBook(A,T) >> Books(A,T).create(A,T),
A .addBook;
removeAuthor(4) >> A.destroy;
END TEMPLATE;

In the Library template we have, for instance, the event changeAuthorName which
triggers the changeName event in an author object. This does not affect the identity
of Author objects since within Library they are identified by a natural number. This
also does not affect the object-valued attribute Author in template Book.

We have concentrated here on the essential features of TROLL light which can be
found also in other object description languages. The TROLL light features we have
not mentioned in detail are means to give restricting conditions on object states
(CONSTRAINTS) and means to specify derived attributes (DERIVATION). Here, we can
only give a glimpse of the language. More details can be found in [4, 16, 18].

3 Transformation of Partial Attributed Graphs by Single Pushouts

The algebraic approach to graph transformation models graphs and graph-like struc-
tures as special types of algebras. Rewrite rules and occurrences are described by
morphisms [9, 26]. The transformation concept is based on a double or single pushout,
resp. But algebras can also be used as semantic domain of the specification of data
types [11, 8, 12, 37]. Graphs which come equipped with a data type component are
called attributed graphs. The reason for introducing them is that well-known data
types need not artificially be coded into graphical structures. In terms of total alge-
bras attributed graphs have been modeled as a combination of one algebra for the
graphical part and another algebra for the data type component [27]. Hence a trans-
formation step consists of the transformation of the graphical part, the transformation
of the data part and a relating step where the attributions are computed.

In our approach we switch over to partial algebras. This leads to a unique framework
for attributed graphs, where they can be seen as one partial algebra. As the transfor-
mation concept we use a single pushout. Hence transformations are performed in one
step. The approach was triggered by the needs of the application. Undefinedness can
be modeled very naturally and can be required in the left hand side of a rule. Further-
more the complex relationships between objects need not artificially be coded into a

4

couple of simple relationships. This avoids additional consistency conditions. Let us
now introduce the basic notions from universal algebra we need for our approach.

Definition 1 Signature, Algebra, Total Morphism. A signature SIG = (S5,0P,
dom : OP — S* cod : OP — S) consists of a set of sorts S, a set of operations
OP and two functions which assign to each operation its argument sorts and its
target sort, resp. For short we write op : w — s,41 if w = s1...8,, dom(op) = w and
cod(op) = Sut1. A partial SIG-algebra A consists of a S-set® Ag of carrier sets and a
family of partial mappings App such that op? : A, — A, € App if op : w — s. If all
operations are defined for all elements in the domain, A is a total SIG-algebra.

A partial SIG-algebra B is a subalgebra of another partial algebra A w.r.t. the same
signature, written B C A if Bs C As and op® = op®|p.* This concept implies that for
each partial algebra every subset family of its carrier sets can be uniquely extended
to a subalgebra.

A total morphism f : A — B between two partial SIG-algebras A and B is a S-
mapping f : As — Bs such that op? defined for x € A,, implies op? defined for f(z)
and op? (f(z)) = f(op*(x)). The usual morphisms on total algebras are a special case

of this notion. The category of partial algebras and total morphisms is denoted by
P —SId. &

Definition 2 Partial Morphism between Partial Algebras. A partial mor-
phism f : A — B between partial SIG-algebras A and B is a total morphism
f!: A(f) — B from a subalgebra A(f) € A to B. The category of all partial SIG-
algebras and partial morphisms between them is denoted by P — SIGF. Composition
of morphisms in P — SIG" is componentwise composition of partial maps, which is
associative. The total identities on the objects in P — SIG are also the identities in
P — SIGFY. A partial morphism is closed for an operation op : w — s if the definedness
of op? on f(a) implies that op*¥) is defined on a € A,,. A partial morphism is closed
if it is closed for all operations op € OP. &

Closed morphisms do not “add definedness” for already existing arguments. Due to
the notion of a subalgebra definedness can be “forgotten” by a morphism only if the
worth objects of the operation are deleted.

3.1 Pushouts in Categories of Partial Algebras

In the following we investigate categories of the type P — SIGY w.r.t. existence of
pushout constructions which shall provide the basis for a single pushout transforma-
tion concept in these categories.

Lemma 38 Coproducts in P — SIG". The coproduct of two partial algebras A and
Bin P — SIGY is the (componentwise) disjoint union of A and B, i.e., A+ B = AYB,
together with the total embeddings a : A — A+ B and b: B — A+ B mapping A and
B identically to their copies in AW B. &

Proof. 1t is easy to construct a unique morphism v : A + B — X for each pair

r:A— X and y : B — X of partial morphisms such that wvoae =2 and uob=y.

® The notion of S-sets is short for “S-indexed family of sets”.
* Note that the subalgebra notion used here is a relative subalgebra in sense of [2]. The notion op® = op?|5
denotes the domain and codomain restriction of a partial function.

5

Note that the coproduct construction of partial algebras coincides with the construc-
tion of coproducts in the category SETT of sets and partial mappings if we forget
the operational structure (compare [31]). The same property holds for coequalizer
constructions in P — SIGY which is demonstrated in the following. Essential for this
result is the technical lemma below.

Lemma 4 Morphism Extension of Single- Valued Partial Mappings.

Let SIG = (5,0P) be the underlying signature of the category P — SIGY, let A €
P — SIGY, let B be an S-indexed family of sets such that B, = {*} for exactly one
sort s € S and By = 0 for all ' # s, and let f : A — B be a family of partial
mappings from the carriers of A to B, then the carriers of B can be extended to a

partial S1G-algebra B* such that f becomes a P — SIGY -morphism. &

Proof. Define the operational structure on B as follows. For all operators op : s x ... X
s — s € OP let op(*,...,x) = x and let all other operators be undefined everywhere.
Let A(f) be the definedness area of f. We have pointed out above that for a partial
algebra A, each subset family of its carrier sets uniquely induces a subalgebra of
A. Hence A(f) can be considered as a subalgebra of A, ie., A(f) € A. Then, by
construction of the operator structure on B, the morphism f!: A(f) — B is a total
morphism on partial algebras. &

Lemma 5 Coequalizers in P — SIGY. If two morphisms f,g : A — B in
P — SIG” have a coequalizer, it coincides with the coequalizer of the underlying par-
tial mappings of f and g, i.e., if U : P — SIGY — SET?T is the functor which forgets
the operational structure in P — SIGY, h is the coequalizer of f and g in P — SIGY

and k is the coequalizer of U(f) and U(g) in SETT, then U(h) = k. &
u(C)
U(h
u(f) V !
U(A) U(B) = X
U(g) x 1
D

Fig. 1. Coequalizers in P — SIGF and SETT

Proof. Consider Fig. 1 in SETT. Since k is the coequalizer of U(f) and U(g) in SETT
and A is the coequalizer of f and g in P — SIGT, we have U(h)o U(f) =U(ho f) =
U(hog) = U(h)oU(g) and a unique partial mapping « : D — U(C) such that
xz ok =U(h). Due to their coequalizer property U(h) and k are epimorphisms which
means in the context of partial mappings and morphisms that they are surjective. We
show that U(C') and D are isomorphic by showing x being (1) total and (2) injective.

Suppose x is not total which means that there is d € D, for which z is undefined.
Let £7*(d) be all pre-images of d under k in U(B);. Define the following family ¥ of
sets: Y; = {x} and Y, = () for all s’ # s. Now we have the following family of partial
mappings y : U(B) — Y y, is defined for all b € k7(d) by ys(b) = * and undefined
otherwise. From ko U(f) = ko U(g) it follows immediately that y o U(f) =y o U(g).
With Lemma 4 Y can be extended to a P — SIG'-algebra Y such that y becomes a
P — SIGP-morphism y : B — Y*. We get yo f = y o g since the same property holds
for the underlying mappings. With A being coequalizer there is u : ' — Y™* such that

6

uo h =y. Hence U(h) is defined for all elements in k~'(d) leading to a contradiction
to x 0o k = U(h) since x o k is undefined for all elements in k~'(d) due to = being
undefined for d by assumption. Thus z is total.

Now assume that x is not injective, i.e., there exist dy, dy € D, with x(dy) = x(d3). Let
k=1(dy) and k='(dy) be all pre-images of d; and dy under k in U(B)s, resp. As we have
pointed out above each family of subsets of the carrier sets of an algebra induces a
unique subalgebra. Hence let Z* be the subalgebra induced by Z; = k! (dy) U k™ (dy)
and Zy =) for all ' # s. A morphism z : B — Z* can be constructed choosing Z* as
the definedness area B(z) and the identity as total morphism z!: Z* — Z*. Note that
z is injective. From ko U(f) = koU(g) it follows immediately that zo f = zog. With
h being coequalizer there is v : €' — Z* such that v o h = z. This means that U(h)
must be injective for all elements in Z* leading to a contradiction to x o k = U(h).
Thus x is injective. &

Proposition 6 Necessary Condition for Pushouts in P — SIGY. If (D, f* :
C — D,g* : B — D) is the pushout of f : A — B and g : A — C in P— SIGT,
the underlying partial mappings of f* and ¢* are the pushout of the partial mappings
constituting f and g in SETT, i.e., for the forgetful functor U : P — SIGY — SET?,
(U(D),U(f*),U(g)) is the pushout of U(f) and U(g). &
Proof. The stated property holds for coproducts and coequalizers (compare Lemmas
3 and 5) and P — SIGY has all coproducts. Hence each pushout in P — SIGY can be
constructed in two steps, namely by first constructing the coproduct (B+C,b: B —
B+C,c: C — B+ () and then constructing the coequalizer e : B4+ C — D for bo f
and co g. &

Theorem 7 Pushouts in P — SIGY. The existence of a pushout for two mor-
phisms f: A — B and g: A — C in P — SIGY can be characterized by the following
property of the pushout (D, f*: U(C) — D,g* : U(B) — D) for the underlying map-
pings U(f) and U(g) in SETY: f and g have a pushout if and only if (1) and (2)
below define partial mappings on D for each operator op : s1 X ... X 8, — S,41 € SIG:
1 IfopP(z1,...,2,) = 2oy and g* is defined for x; withi=1..n+1

define op”(g*(21), ... ¢°(24)) = ¢ (Tnt1).
2. If op®(z1,..c.Tn) = Tpy1 and [* is defined for x; with i =1..n + 1

define opP(f~(1)s . () = F*(ns).
The pushout in P — SIGY is then constituted by the partial algebra D, where the

operations are defined by (1) and (2) above, and f* and g* are homomorphic by con-
struction. &

Proof. Suppose (1) and (2) above do not define partial mappings. It implies that there
is no operational structure on D such that f* and ¢* become homomorphic. Thus,
Proposition 6 guarantees that there is no pushout.

Obviously f*o f = ¢* o f due to the same property of the underlying mappings. Now
let there be a P — SIGT-algebra F and partial morphisms f': ' — Eand g : B — F
such that ¢’ o f = f" 0 g. Then the same property holds for the underlying mappings
and we obtain a unique mapping v : D — FE such that vwo f* = f" and wo ¢* = ¢'.
Hence, it remains to show that u is compatible with the operations defined on D:
Let op : 81 X ... X 8, — 8,01 € SIG, opP(x1,...,7,) = Tpy1, and u be defined for x;
with ¢ = 1...n + 1. Definedness of op” for (1, ...,2,) is due to either (1) or (2) from

7

above. So let us assume without loss of generality x; = f*(¢;) with ¢ = 1..n + 1 and
op®(ci, ...y en) = coy1. Now wo f* = f'implies that f’is defined for ¢; (: = 1...n+1) and
its morphism property implies op”(f'(c1), ..., f'(cs)) = f'(cay1). Substituting u o £~
for f' and z; for f*(c;) in this equation provides u(w,i1) = u(op?(zy,...,7,)) =
op” (u(z1), ...y u(z,)). O
Theorem 7 shows how pushouts in P — SIG* can be constructed whenever they exist.
In the following this leads to the observation that pushouts do not always exist on
one hand and on the other hand it allows us to prove a sufficient condition for the
existence of pushouts. Note that the existence of pushouts in the category G'ST of
partial morphisms between total algebras with unary operations only as it was proven

in [26] is also based on the underlying pushout in SETT, i.e., the inclusion functor
I:GSY — P — SIGP preserves colimits.

u(f) 2

Fig. 2. Failure of Pushout Construction in P — SIGF

Example 1 Non-existence of Pushouts in P — SIGP. Consider a signature SIG
with a single sort S and a single binary operator op on this sort. Figure 2 depicts
two morphisms in P — SIGP: Elements of S are drawn as vertices, the assignments of
op are drawn as solid edges and the morphism assignments are visualized by dashed
edges. Both morphisms “add” definedness to the same object (1) in A. Hence there
is no chance to define a unique operational structure on the pushout object D of the
underlying mappings such that U(f*) and U(g*) become homomorphic. The situation
depicted in Fig. 3 shows that even if both morphisms are closed and one of them is
injective the pushout may not exist. &

Non-injectivity of one morphism is enough to destroy the well-definedness of the oper-
ations of the pushout object D constructed as in Theorem 7. Only if both morphisms
are injective, different definitions for the operations may not overlap in the pushout
object. Furthermore because of the example depicted in Fig. 2 at least one morphism
has to be closed. Another possibility is that both morphisms are closed such that they
may not add contradicting definedness for operations and one morphism is isomor-
phic for the objects. The second requirement is adequate to exclude examples like
presented in Fig. 3 because the closed morphism ¢ can only add definedness for newly

added objects.

A: 1 f B:
: @2
®,

g l U(g)*

C: D: ° 1’2
u(fy* b%
° ‘/ 4
4 @5 ® 5

Fig. 3. Failure of Pushout Construction for Closed Morphisms

For the proof of this sufficient condition for the pushout existence in P — SIGY we
need some properties of the underlying pushout in SETY.

Lemma 8 Properties of Pushouts in SETY. If (D, f*:C — D,g*: B — D) is
the pushout of two partial mappings f : A — B and g : A — C in SETY the following
properties hold:

1. Pushouts preserve injective morphisms, i.e., f*(c1) = f*(c2) = Jar, a9 € A with
glar) = c1,9(az) = co and f(ar) = f(az).

Pushouts preserve closed morphisms.

f,q total = f~,g" total.

= and g* are jointly surjective.

f, g injective and g total = ¢* total.

fle)=g"(b)= 3¢ € C,¥ € Band a € A with f*(¢) = f*(),g"(b) = ¢*(V') and
fla) =V and g(a) = ¢.

SN A T

%

Proof. Straight forward from the construction of pushouts in SETF. &

Theorem 9 Sufficient Condition for Pushouts in P — SIGF.
Two morphisms f : A — B and ¢ : A — C have a pushout in P — SIGY if for

all operations op : $1 X ... X 8, — S,11 one of the following conditions holds:
1. g is closed for op, and
f is injective for all pre-images under ¢ of arqguments for which op® is defined and,
vice versa,
g is injective for all pre-images under f of arqguments for which op® is defined.
2. f and g are closed for op and f is isomorphic for all argument sorts of op™.

%

Proof. We show that the pushout object D of the underlying partial mappings can be
enriched to a partial SIG-algebra D* (compare Theorem T7) if we define the operations
as required there, i.e., we prove the well-definedness of the operations.

9

Suppose condition (1) is satisfied for op. We investigate three cases. First we assume
that possible arguments of op” have more than one pre-image under ¢*. In this case it
follows from pushout property in SETT (see Lemma 8) that they also have pre-images
under f in A which are identified by g. Hence op? is undefined by condition (1).

With an analogous argument we get that op” is well-defined even if possible arguments
have more than one pre-image under f*. Let us now assume op” (f*(x1), ..., f*(z,)) =
f*(@n41) and we have op?(g*(z}),....,¢%(2})) = g*(a}4,) with f*(z;) = ¢*(a}) for
i = ¢..n. By Lemma 8 we can choose y; and y! with f*(a;) = f*(y;) and ¢*(2}) = ¢*(y!)
such that y; and y! for ¢« = 1...n have a common pre-image in A. From the first two
cases considered above it follows that z; = y; and 2! = y! for : = 1...n. Because
g 1s closed for op, z,41 has a pre-image under ¢ in A. Because morphisms preserve
definedness it follows that this pre-image must be mapped to z;_, by f. Pushouts
commute and therefore it follows f*(2,41) = ¢*(2] 44)-

Now suppose condition (2) is satisfied for op. We investigate the same three
cases as above. First we assume that op”(g*(z1),....,9"(zn)) = ¢*(xn41) and
op® (g*(}), ..., g™ (2)) = g*(al4,) with ¢*(z;) = g¢*(¢}) for ¢ = l..n. f is isomor-
phic for all argument sorts of op. Hence there are pre-images in A for all z;, «! with
¢t = l..n 4+ 1. By Lemma 8 these pre-images of z; and 2! are identified by ¢ for
¢ = 1...n. Because pushouts commute, ¢ must be defined for the pre-images of x,14
and] ,, resp. The property of each morphism then guarantees that g identifies their
pre-images. Thus by the commutativity of pushouts it follows ¢*(z,11) = ¢*(2], 1)

The second case and the third case are straight forward like the second and the third
case for condition (1). &

3.2 Interpretations of Partial Algebras as Attributed Graphs

Attributed graphs are directed graphs enriched by a data type component and attri-
butions which assign data values to graphical objects. In this section we start with the
well-known algebraic view of directed graphs and show how this view can be extended
to the framework of partial algebras. For each single extension we show how it is used
to model the operational behavior of TROLL [light specifications.

Directed graphs can be seen as total algebras w.r.t. the following signature:

GRAPH =SORTS V. E
OPNS s,t: E—=V

This means that each graph (G consists of a set of vertices Gy, a set of edges G, and
two unary mappings s“,1% : Gy — Gy which provide source and target vertices for
each edge.

In a partial algebra w.r.t. the GRAPH signature the source or target mapping for each
edge might be undefined. We call such edges dangling. But what is the interpretation
of a dangling edge? Normally edges are interpreted as connections between objects.
In this sense an edge with a missing source or target vertex specifies that there might
be a connection but currently it is not established. This leads to the interpretation
that dangling edges “do not exist currently”. They only specify the possible existence
of edges. Typing of edges is done in the signature. So the existence or non-existence
of source resp. target vertices does not affect the edge type.

10

More general graphical structures can be seen as algebras w.r.t. signatures which
contain unary operator symbols only ([26]). Hence one can model graphs with different
types of vertices and edges.

Example 2 Basic Model of TROLL light Object Communities. The general
idea is to model objects as vertices and relationships between objects (i.e., the sub-
object relationship or object-valued attributes) as edges. The following graph signa-
ture is part of the signature for our example of a TROLL light template collection
described in Sect. 2:

GSIG = SORTS Author, Book, Library, ** vertex sorts for objects **
Author(Book), ... ** edge sorts **
OPNS s: Author(Book) — Book
t: Author(Book) — Author

For the three templates we have three sorts of vertices. For the object-valued attribute
Author of template Book we have an edge sort. &

Data types can be specified algebraically [11, 8, 12, 37]. In this context we presuppose
such an algebraic view of the desired data types, i.e., a signature.

Example3 Data Types in TROLL light Object Communities. Our example
specification contains three data types, which we assume to be specified somewhere
else. The data signature is:

DSIG = STRING + DATE + NAT

%

The signature for an attributed graph consists of the signature for the graph, the
signature for the data types and the attributions, which assign data values to graphical
objects. Attributions can be seen as a special kind of edges.

Example4 Extension to Model Data-valued Attributes. We already saw
above that object-valued attributes in TROLL light are modeled by edges. Attri-
butions in the sense of attributed graphs are used to model data-valued attributes
as for example the attribute Title of template Book. A part of the attributed graph
signature for our template collection in Sect. 2 containing data valued attributes is:

ATTRGRA = GSIG + DSIG +
SORTS Title(Book)
OPNS s: Title(Book) — Book
t: Title(Book) — String

%

By now we only modeled (1:1)-relationships between objects and objects or between
objects and data elements. But within TROLL light specifications we also have (1:n)-
relationships, where each of the n objects or data elements (being in relationship
with the same object) is uniquely identified by one or more parameters. If these
relationships shall be modeled using edges we need the notion of a family of outgoing
edges of a vertex where each single edge can be uniquely identified, using so-called
indices.

It we want to model graph like structures as total algebras it is essential that the
signatures contain unary operator symbols only. But within the framework of partial

11

algebras all types of operations are allowed. This is quite useful for the specification
of families of edges.

All edges within the same family of outgoing edges have the same source vertex. Hence
we use a unary source operation to assign the source vertex to the family. The target
vertices may be different and depend on the indices. Algebraically this is represented
by a non-unary target operation mapping the edge family and all indices to the target
vertex.

Above we stated that dangling edges are only specifications of edges. This certainly
is also true for edge families, i.e., an edge within a family only exists if its source and
target operation are defined.

Example 5 Extension of Model to Parameterized Sub-object Relationship.
To include the sub-object relationship Books of template Library we extend our sig-
nature as follows:

EXTATTRGRA = ATTRGRA +
SORTS Books(Library)
OPNS s: Books(Library) — Library
t: Books(Library), Author, String — Book

%

Now we summarize the above considerations in the definition of an attributed graph.

Definition 10 Attributed Graph. An attributed graph signature AGSIG =
(GS, DS, 0P) consists of a set of graphical sorts GS, a set of data sorts DS and a set
of operations op : w — s which is the disjoint union of the following sets: (1) The set
of graphical or edge operations with w € GS* s € (GS. (2) The set of data or com-
putational operations with w € DS*,s € DS. (3) Attributions map graphical objects
to data objects, i.e., w € GS*, s € DS. (4) Indexed attributions are operations with
w e (GSUDS)*, s € DS and (5) for indexed edges we have w € (GSUDS)*, s € GGS.

An attributed graph is a partial algebra w.r.t. an attributed graph signature. The
indices of an attributed graph G build a family of sets ([;)ses, where s is a data sort
and ¢ € I, if there exists an indexed edge or an indexed attribution op : s X ... X s, —
Spi1 with s; = s for j € {1.n} and 0p“(zy,..,2,) is defined and z; = i holds. &

indexed edges data operations

attributions

data sorts

graphical sorts

edges indexed attributions

Fig. 4. Schema of Attributed Graph Signatures

Note that attributed graphs contain no operations mapping only data sorts to graph-

12

ical ones. Figure 4 visualizes the schema of attributed graph signatures. Indices build
no special sorts. In a given graph it depends on the definedness of the operations
(indexed attributions and indexed edges) which data elements are used as indices and
which not.

3.3 Graph Transformations

Theorem 9 provides us with two sufficient conditions for the existence of pushouts in
P — SIGP. First, a rule would be applicable at any redex if we restrict rules to injective
morphisms and redices to closed injective morphisms. This might be adequate if one
thinks of the graphical part, but for the data part injective redices are unsatisfactory.
The data part of a rule certainly contains variables. If they are not be identified by
the redex, this would increase the number of rules in a not acceptable way.

Second, a rule would be applicable at any redex if we restrict both rules and redices
to closed morphisms and one of them to an isomorphism. For the graphical part an
isomorphism is neither possible as a redex nor as a rule. But for the data part rules
may be isomorphisms, because the data part is assumed to be specified somewhere
else and only used here without any change. This approach is already used for total
attributed graphs (see [27]).

What we do is to combine both conditions. Rules and redices are partial morphisms
between partial algebras. But if we restrict these morphisms to the data or graphical
part of the attributed graph, respectively, they satisty different conditions. Rules for
the graphical part are injective, rules for the data part isomorphisms. Redices are
total, closed morphisms, which are injective for the graphical part.

The indices play a special role. They are used to uniquely identify edges in a family
or attributions. If they are identified by a redex the uniqueness of the identification
would be lost. Hence redices should be injective for indices.

Definition 11 Rule, Redex, Derivation. A rewriting ruler : L — R is an injective
partial morphism in P — SIGY, which is isomorphic for all data sorts. The indices of
the rule r are defined by the union of the indices of L and r~! applied to the indices
of R. A redez for r in an object (G is a total, closed morphism m : L — G, which is
injective for all graphical sorts and all indices used in r. The direct derivation of G with
the rule r at a redex m is the pushout of m and r in P — SIGP. The corresponding
pushout object H is called derived graph. A direct derivation from G to H with a rule
r is denoted by ==. &

The idea of a rule is to describe as universally as possible the desired behavior of
a transformation. For the data type part of the left and right hand side of the rule
this means that one will choose a syntactical algebra, i.e., the total term algebra with
variables over the subsignature containing only data sorts and data operations. The
variables are normally used to store the actual value of an attribute during the trans-
formation. Note that the injectivity of redices for indices means that there are variables
in the left hand side of the rule which have to be evaluated to different values.

Due to the notion of a redex as a closed morphism our framework includes some kind
of negative application condition for a rule. If an operation is undefined for arguments
in the left hand side of the rule, the rule is not applicable to a graph if it is defined
there. This is a very strong requirement which has to be considered in any application.

13

We divide between optional relationships (modeled by edges) and inevitable known
relationships (modeled by operations). Note that this may be problematic if operations
in the data type component are used in the classical way. Variable instantiations by
a redex may be not possible due to the existence of additional structure in the graph
the rule shall be applied to.

Author Author
NumOfBooks) — (NumOfBooks)

(y:nat) (y+L:nat)

Fig.5. Example for a Valuation Rule

Example6 Valuation Rule for Event newBook. The valuation graph grammar
rule for event newBook depicted in Fig. 5 removes the old attribution and inserts
the new attribution in accordance with the TROLL light valuation formula. &

Proposition 12 Direct Derivation. The direct derivation of a graph G with a rule
r: L — R at a redexm : L — G always exists. &

Proof. We show that the pushout object D of the underlying partial mappings can
be enriched to a partial SIG-algebra D* (compare Theorem T7) using the sufficient
conditions from Theorem 9, i.e., for all operations of the attributed graph signature
one of the stated conditions holds.

Redices are closed morphisms and rules are injective. Hence the conditions reduce to
(1) m is injective for all pre-images under r of arguments for which op™ is defined and
(2) r is closed for op and isomorphic for all argument sorts of op”.

If the operation is a graphical one or an attribution condition, condition (1) holds
because rule and redex are injective for all (graphical) argument sorts. For all data
operations condition, condition (2) is satisfied because the rule is isomorphic for all
(data) argument sorts and closed for all data operations because it is isomorphic
for the value sort (a data sort) too. Indexed edges and indexed attributions fulfill
condition (1) as far as the redex m is injective for all indices. &

h N

Book

— e D) Te)

N

(t:string) Author (t:string)

Fig. 6. Example for a Valuation Rule

14

Example7 Interaction Rule for Event newBook. The interaction graph gram-
mar rule in Fig. 6 for event newBook inserts a new Book node only if there is no
Book node with the connections depicted by dashed lines. &

4 Synchronization via Amalgamation

The basic concept of amalgamation allows to synchronize two rules over a common
sub-rule, which describes the effects the application of both rules should have. The
effect of the synchronized application of both rules is reached by first constructing a
new rule (the so-called amalgamated rule) and then by applying it. The fundamental
result in this context is that the necessary synchronization can be minimized, i.e., each
direct derivation with the amalgamated rule can be simulated by first applying the
common sub-rule and then (locally) remainders of both rules.

Definition 13 Sub-rule. A rule rl1 : L1 — R1 is a sub-rule of a rule 2 : L2 — R2 if

1. there are total, closed, injective morphisms ¢ : L1 — L2 and 5 : K1 — R2 such
that r20¢=j07rl and

2. the universal morphism (r2 — r1) from the pushout object R of r1 and ¢ to R2 is
a rule.” We call (r2 — r1) the remainder in the following.

%

A rule r1 is called subrule of a rule r2 if r2 subsumes all the effects of r1 and adds
some more. The properties of the subrule embeddings ¢ and j make sure that this
becomes true for deletion and gluing. Requirement 2 is needed for the addition of new
objects (adding a new object is no subeffect of preserving an object).

L1 rl R1

r2

Fig. 7. Induced Redex for Sub-rule

The fact that redices for rules induce redices for their sub-rules is important for the
minimization of the synchronization. Instead of the rule first its sub-rule should be
applied.

Proposition 14 Redex for a Sub-rule. If m : L2 — G is a redex for a rule r2 :
L2 — R2 and rl1 : L1 — Rl is a sub-rule of 2 as depicted in Fig. 7, then mozi is a

® The pushout always exist due to Theorem 9.

15

redex for rl. &

Proof. Total closed injective morphisms are closed under composition. It remains to
show that m o ¢ is injective for the indices of r1. With Ind(L1) being the family of
sets of indices of graph L1, i(/nd(L1)) are indices of graph L2 because ¢ is total and
closed. Hence is m is injective for ¢(Ind(L1)). O

Definition 15 Amalgamated Rule. Let r1 : L1 — Rl and r2 : L2 — R2 with a
common sub-rule r : L — R be given. The amalgamated rule (r1 +, r2) of r1 and r2
is constructed in Fig. 8. L3 is the pushout of ¢1 and 2, R3 is the pushout of 51 and
J2 and (rl 4, r2) is the universal morphism such that (rl +, r2) 0:2* = j2* o rl and

(rl 4+, r2)oel* = j1*or2. &
. r
i1 j2 11
i2
L1 r1 ¢ R1
L2 / r2 R2 _
i2* 1 12*
J *
i1*
(r1+r2
L3 R3

Fig. 8. Construction of the Amalgamated Rule

Proposition 16 Existence of Amalgamated Rule. The amalgamated (rl+,r2)
rule of two rules vl : L1 — R1 and r2: L2 — R2 with a common sub-rule r : L, — R
always exists. &

Proof. Due to Theorem 9 the pushouts of :1 and 2 and of j1 and 52, respectively,
always exist, because 71,¢2,51 and j2 are injective and closed. Hence there is a
universal morphism (rl 4+, r2) : L3 — R3. To show that (rl 4, r2) is a rule we
first show its injectivity and then its surjectivity for all data sorts. Assume that
(rl 4+, r2)(x1) = (rl 4+, r2)(22) and x1 # 2. By pushout property (4) for the under-
lying pushout in SETY ¢1* and i2* are jointly surjective. Because of the injectivity of
J1*or2 and j2*orl, x; and x5 cannot have pre-images under the same morphism. So
we assume a pre-image for z1 in L1 and for x5 in L2. Because of the property of the
universal morphism (rl +, r2), 72* o r1(¢2*7 (1)) = j1* 0 r2(:1* 7! (x2)) holds. With
pushout property (6) we get a common pre-image for r1(¢2*7(x¢)) and r2(i1*7*(a3))
in R. Because of the injectivity of the remainder (r1 — r) and pushout property (6)
i2*~Y(21)) has a pre-image under 71 in L. r is a sub-rule of 72 and hence the pre-image
of 12*7'(zy)) under il is also a pre-image of i1*~!(z3) under 2. From the commuta-
tivity of pushouts it follows that x; = x9. Hence (r1 +, r2) is injective. The proof of
surjectivity for the data sorts is straight forward using the surjectivity of r1 and r2
for data sorts and the fact that j1* and j2* are jointly surjective by Lemma 8 &

Remark Iterated Amalgamation. Due to the commutativity of colimits and the fact
that pushouts preserve total, closed, injective morphisms the process of amalgamation
can be iterated and still has a unique result. This will be demonstrated in detail by a

16

more involved example in the next section (Fig. 15). &

The rest of this section is dedicated to the proof of the decomposition theorem of
transformations with the amalgamated rule. The following technical proposition is
necessary due to the fact that not every decomposition of a rule preserves redices.

Proposition 17 Redex Preserving Rule Decomposition. Let r : L — R be a
sub-rule of r1 : L1 — R1 as depicted in Fig. 9 and m : L1 — G be a redex for rl.
Then m is a redex for r* and the morphism m* induced by the direct derivation of G

with v at m is a redex for the remainder (r1 —r). O
r
L
! P.O.
*
L1 '
rl
m P.O. m*
G Gl

Fig. 9. Sub-rule and Remainder Decomposition

Proof. m* is closed by Lemma 8. m* is total for graphical sorts by pushout property
(5) and for data sorts by pushout property (3) for the underlying pushout in SETT.
(see Lemma 8). The injectivity for graphical sorts follows from the injectivity of m
for graphical sorts. It remains to show that m* is injective for the indices of the
remainder (rl —r). If m*(z1) = m*(x2) then m must identify r*~!(z), and r*~!(z3).
Hence r1(r*~'(zy)) = (r1 — r)(z1) and r1(r*~*(a3)) = (rl — r)(z2) cannot be indices
of L1 and R1, resp. Assume they are indices of X, i.e., op® (y1,...,y,) defined with
y; = zl and y; = x4 for 7,5 € {l..n}. By Theorem 7 definedness of op* always
causes definedness of op™ or opf. The definedness of op’' cannot be the reason for
the definedness of op™ because r*~!(z;) and r*~!(x3) cannot be indices of L1. With
an analogous argument for opf making use of (r1 —r) 07* = j and the closedness of
j we get that the definedness of op™ cannot be the reason for the definedness of op™
leading to a contradiction. &

Lemma 18 Pushout Cube. If the top, bottom, front, back and the left side of a cube
like the one depicted in Fig. 10 are pushouts in P — SIGY | then also the right side is
a pushout. &

Proof. The corresponding property for the underlying diagram in SETY can be shown
using pushout property (4) of Lemma 8. With Theorem 7 we get that the right side
of the cube is a pushout in P — SIGP. &

Theorem 19 Transformation with Amalgamated Rule. As pictured in Fig. 11
FEvery direct derivation with an amalgamated rule (r1+,1r2) can be simulated by direct
derivations with the sub-rule r and the remainders (rl —r) and (r2 —r). &

17

AN AN
NN

(r1+r2

r \ / G2 ()

Gl~ (r2-r)

Fig. 10. Pushout Cube

Fig. 11. Decomposition of Transformation with Amalgamated Rule

Proof. The pushout constructions of the proof are pictured in Figs. 12, 13, and 14, resp.
(1) and (2) are pushouts due to the construction of the amalgamated rule (r1 +, r2).
(3) and (4) are pushouts by the construction of the remainders (r1 —r) and (r2 —r).
(4) 4+ (5) resp. (3) + (6) is the pushout of r and ¢2* o ¢l = ¢1* 042, which can be
decomposed due to the existence of pushouts (5) and (6). By Lemma 18 (7) is a
pushout.

L r R
. i1
i1 (3)
k2 k1
L1 ri* K1 (r1-n) R1
i2 T
4) 2)
(1) (_ (
- 7) 2
| (6) k2* j2*
o)
e K2 (r2-1) R2
//
r2
i1* © k1* j1*
*
L3 3 K3 R3
(r1+r2

Fig. 12. Decomposition of the Amalgamated Rule I

(8) and (9) are constructed as pushouts of k1™ and (r2 — r) resp. k2* and (rl —r). u
and v are the universal morphisms with wonlor3* = (rl+,r2) and uon2 = j1* resp.
vool or3* = (rl+,r2) and voo2 = j2*. Both vonl and v ool fulfill the property
of the universal morphism from K3 to R3 for pushout (7) and hence must be equal.

From this we can conclude that there is another commutative diagram (10) with
wonlok2* = j2*o(rl—r). To show that (10) is a pushout, i.e., (R3, u, 72*) is pushout

18

of (rl —r) and nl o k2%, we assume that there exists (X, z1,22) with 21 onl 0 k2* =
220 (rl —r). Because of zt1 on20j2=axlon20(r2—r)ok2 =zlonlokl*ok2 =
zlonlok2* okl =220 (rl —r)okl = 220 j1 there exists a universal morphism
z : R3 — X for pushout (2) with z 0 j2* = 22 and z o j1* = 2zl o n2. z also
fulfills z o v = a1, what can be proved by zowuon2 = zo0 j1* = 1 on2 and
zouonlok2*=zo0j520(rl —r)=a20(rl —r)=axlonl o k2* (sufficient because
(7) 4+ (8) is pushout), and hence serves as the universal morphism for the desired
pushout. Its uniqueness follows from the uniqueness of z.

jl
R k1l K1 (r1-n -
k2 7 K © o2
: * j2*
j2 K2 k1 k3— %L .o =
X2
nl —
(r2-r (8) - v
N
% \
R2 —
T RS
x1
X

Fig. 13. Decomposition of the Amalgamated Rule 1T

Now assume that m : L3 — G is a redex for the amalgamated rule (r1 4, r2). Then
by Proposition 14 moi2*0¢l is a redex for the sub-rule r of (r14, r2). By proposition
17 m is a redex for r3*. (11) is the corresponding direct derivation. (3) + (6)+ (11) is
the direct derivation of G with the sub-rule r.

By Proposition 17 m1* is a redex for wonl and hence for nl. (12) is the corresponding
direct derivation. By Proposition 14 m1* o k1* is a redex for (r2 —r). (8) 4 (12) is the
corresponding direct derivation.

By Proposition 17 m2* is a redex for u. (13) is the corresponding direct derivation.
For (10) + (13) being the direct derivation of G2 with (r1 —r) it remains to show that
m2* onl o k2% is a redex. With Proposition 17 this reduces to nl o k2™ being total,
closed and injective. The injectivity follows from the injectivity of nl and k2*.

Assume nlo k2" not being total. Because k2* is total, nl cannot be total for the image
of K1 under £2*. By pushout property (5) (see Lemma 8) for pushout (8), if nl is not
defined for some k € K3, k has a pre-image under k1* for which (r2—r) is not defined.
With pushout property (6) k has a pre-image under k1* o k2 in R. j2 0 (r2 —r) o k2

19

. - K2 Jz
L2 K2 §Rz
i2* (r2-r)
(r1-r R1
i1* ®) K1* 8)
k2 10 j2
L3 1¥ ka® R3
""""" (ri+r2
m (1) m1* (12) m2* (13)
G Gl G2 H

Fig. 14. Decomposition of an Application of the Amalgamated Rule
being total leads to a contradiction. Hence nl o k2 is total.

Assume nl o k2* not being closed, i.e., op™(nl o k2*(zy),...,nl 0 k2*(z,)) = nl o
k2*(241), but op®t(zy,...,z,) undefined. By Theorem 7 nl(z;) i € {1..n + 1} have
pre-images y;, ¢ € {1..n + 1} under n2 for which op”? is defined. Pushout property
(6) for (7) + (8) guarantees that x;, ¢ € {1...n + 1} have pre-images under k1 which
are also the pre-images of y;, ¢ € {l..n+ 1} under (r2 —r)o k2 = j2. 52 is closed and
hence op®™ must be defined for the pre-images of z; under k1 leading to a contradiction

with op™!(z1, ..., x,) being undefined.

Hence the derivation of G with the sub-rule r (pushout (3) 4 (6) + (11)) followed by
the derivation with the remainder (r2—r) (pushout (8)4(12)) and the derivation with
the remainder (r1 —) (pushout (10) 4 (13)) leads to the resulting graph H which
is also the direct derivation of G with the amalgamated rule (rl1 +, r2) (pushout

(11) + (12) + (13)).

5 Applications to TROLL light

We now turn to the application of the above results in order to demonstrate how they
can be employed for defining the evolution of TROLL light object communities. Before
considering the amalgamated rule for one particular example, namely the closed event
set which is induced by the occurrence of the event newBook belonging to template
Library, we repeat the respective parts of the above given templates.

20

TEMPLATE Library
VALUATION [newBook] NumberOfBooks=NumberOfBooks+1;
INTERACTION newBook(A,T) >> Books(A,T).create(4,T),
A.addBook;

TEMPLATE Book
VALUATION [create(A,T)] Author=A, Title=T;

TEMPLATE Author
VALUATION [addBook] NumOfBooks=NumOfBooks+1;

These TROLL light valuation and interaction rules are translated to graph grammar
rules. The transition corresponding to the respective closed event set increments two
attributes and inserts a new Book object.

- i g

(x:nat) 1 v | (x+1:nat)
et | I
! . Book ! ! Book
| | = (awhor) Title)
77777 Author (t:string) Author (t:string)
,,,,,,,,,, PO I
 NumOfBooks' NumOfBooks'
v y
(y:nat) (y+1:nat)

Fig.15. Complex Rule Achieved via Amalgamation

The amalgamation process now combines the basic rules for the valuation and inter-
action parts into one complex rule as depicted in Fig. 15. In principle the rule whose
left hand side consists of all non-dashed parts of the graph combines three different
local rules and the interaction rule:

1. We have a valuation rule for template Library which increments the attribute
Number0fBooks (abbreviated by Num0fBooks). This corresponds to upper dotted
part of the above diagram connecting the attribute node NumOfBooks with the
template node Library and the data type variable x:nat.

2. Then there is another valuation rule this time for template Author analogously
incrementing the attribute NumOfBooks depicted in the dotted lower part.

21

3. The interaction rule consists of the three template nodes Library, Author and the

(added) node Book.

4. Furthermore we have a third valuation rule for template Book defining the context
for the inserted node. On the left hand side of the rule we have an applicability
condition pictured by the dashed part: The rule can be applied only if there is
no template node for Book connected to the other nodes in the displayed manner.
After application of the rule new nodes appear in the result graph as given on the
right hand side of the rule.

These four rules are amalgamated using so called “trivial rules” as common subrules
of the interaction rule and the different valuation rules. Trivial rules consist only of
the template nodes, for instance the interface between interaction rule and valuation
rule for the template Library of the Library node. Thus, we employ amalgamation
techniques not only to describe the effect of valuation rules but also — and this is a
central concern — for interaction rules.

Let us also give an example of a graph derivation employing the above described
production for the closed event set induced by the event newBook. On the left hand
side of the diagram one attributed graph representing a simple state of the object
community induced by template Library is depicted (Fig. 16).

Library —_— Library

/.

<NumOfBook§< Books > < Authors ><NumOfAuts> <NumOfBook9< Books > < Authors ><NumOfAuts)

— 42 42 l

0 Author 1 1 ‘ Book ‘ ‘ Author ‘ 1

< Author > <NumOfBook§< Name >

"GraGra" <NumOfBook§< Name > "GraGra"

0 "Gregorz" 1 "Gregorz"

Fig. 16. Sample Derivation

The described transition corresponds to the closed event set with the three events
newBook(A,T), Books(A,T) .create(A,T), and A.addBook. In principle, the transi-
tion introduces a new object (Book node), modifies attributes, and establishes the
connection to existing nodes.

Note that the rather complex notion of a redex in the approach introduced in this
paper fits perfectly the TROLL light model. Injectivity for indices is used to uniquely
identify subobjects and attributes. Injectivity for graphical objects solves the conflict
of unallowed cyclic interaction due to the stepwise construction of the rule for a closed
event set. Furthermore the closedness of a redex provides a kind of implicite negative
application condition which is used, for example, to make sure that an existing object
is not created again.

All these facts together should motivate the new approach. A model of TROLL light
within the classical one based on total algebras would have to deal with the same

22

problems and hence forces a notion of a redex of the same complexity. This should
be possible to achieve using explicite negative application conditions (see [17]). But
up to our discussions by now they are incompatible with the theory of amalgamation
which provides us with the possibility of stepwise rule construction.

Due to space limitations we have given only a very specific example for a transition.
In generally modelling the evolution of a system, the basic rules are never applied in
isolation. Only amalgamated rules corresponding to closed event sets are applied and
cause the state transitions.

6 Conclusions and Future Work

We have generalized the single pushout approach to graph grammars in order to com-
bine it with partial algebras and partial morphisms. Our results provided a uniform
framework for the transformation of attributed graphs where graphical and data parts
were completely integrated. We were able to obtain attractive amalgamation results
for graph derivations as in the traditional case. In particular, the notion of a redex as a
closed morphism led in our framework to some kind of negative application condition
for a direct derivation. The results obtained were employed for the definition of the
operational semantics of the object specification languages TROLL [light. Especially,
attributed partial graphs were adequate for modeling TROLL light object community
states because parametrized sub-object relationships were modeled naturally as fam-
ilies of edges and necessary negative application conditions of rules could be achieved
without extending the formalism.

Nevertheless, not all features of object specification languages were considered here.
For example, we did not treat the BEHAVIOR part of TROLL light templates, but our
approach is powerful enough to cover this aspect of object specifications as well. A
closer look has to be spend on other TROLL light language features like CONSTRAINTS
and DERIVED attributes. Apart from treating TROLL light it would be interesting to
draw the attention to other similar languages, in particular CMSL [36] seems to be a
stimulating candidate for such considerations.

Acknowledgements

The critical remarks of the referees have improved the quality of the paper. Thanks
also to H. Ehrig for promoting our approach. Part of this work was done within the
KORSO project where partners and collegues have contributed with fruitful discus-
sions.

References

1. M. Broy and M. Wirsing. Partial abstract data types. Acta Informatica, 18(1):47—-64, 1982.

2. P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras, volume 32 of Mathematical
Research — Mathematische Forschung. Akademie-Verlag, Berlin, 1986.

3. 1. Clalen, M. Grofle—Rhode, and U. Wolter. Categorical concepts for parameterized partial specifica-
tions. Technical Report 92-42, Technische Universitat Berlin, 1992.

4. S. Conrad, M. Gogolla, and R. Herzig. TROLL light: A core language for specifying objects. Technical
Report 92-02, Technical University of Braunschweig, 1992.

23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.
26.
27.

28.

. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, and M. Lowe. Graph grammars and logic programming.
In Ehrig et al. [10], pages 221-237. Lecture Notes in Computer Science 532.

. B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. Van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 193—-242. North Holland, Amsterdam, 1990.

E. Dubois, P. Du Bois, and M. Petit. O-O requirements analysis: An agent perspektive. In O.M. Nier-
strasz, editor, Proc. European Conf. on Object-Oriented Programming (ECOOP’93), pages 458-481,
Berlin, 1993. Springer, LNCS 707.

. H. D. Ehrich, M. Gogolla, and U. Lipeck. Algebraische Spezifikation abstrakter Datentypen. Leitfaden
und Monographien der Informatik. B. G. Teubner, Stuttgart, 1989.

. H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus, H. Ehrig, and
G. Rozenberg, editors, 1st Graph Grammar Workshop, Lecture Notes in Computer Science 73, pages
1-69. Springer Verlag, 1979.

H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. 4th International Workshop on Graph Grammars
and Their Application to Computer Science. Springer Verlag, 1991. Lecture Notes in Computer Science
532.

H. Ehrig and B. Mahr. Fundamentals of algebraic specifications 1: Fquations and initial semantics,
volume 6 of FACTS Monographs on Theoretical Computer Science. Springer Verlag, Berlin, 1985.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications and Constraints,
volume 21 of FATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1990.

G. Engels, R. Gall, M. Nagl, and W. Schafer. Software specification using graph grammars. Computing,
31:317-346, 1983.

G. Engels, C. Lewerentz, M. Nagl, W. Schafer, and A. Schir. Building integrated software develop-
ment environments - part I: Tool specification. ACM Trans. on Software Fngeneering and Methodology,
1(2):135-167, 1992.

P. Gabriel. The object-based specification language I7: Concepts, syntax, and semantics. In M. Bidoit
and C. Choppy, editors, Recent Trends in Data Type Specification - Proc. 8th Workshop on Specification
of Abstract Data Types, pages 254 —270, Berlin, 1993. Springer, LNCS 655.

M. Gogolla, S. Conrad, and R. Herzig. Sketching Concepts and Computational Model of TROLL light.
In A. Miola, editor, Proc. 8rd Int. Conf. Design and Implementation of Symbolic Computation Systems
(DISCO’93), pages 17-32. Springer, LNCS 722, 1993.

A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application conditions. in this
volume, 1994.

R. Herzig, S. Conrad, and M. Gogolla. Compositional description of object communities with TROLL
light. In C. Christment, editor, Proc. Basque Int. Workshop on Information Technology (BIWIT’94):
Information Systems Design and Hypermedia, pages 183-194, Toulouse, 1994. Cépadués-Editions.

R. Hull and R. King. Semantic database modelling: Survey, applications, and research issues. ACM
Computing Surveys, 19(3):201-260, 1987.

D. Jansens and G. Rozenberg. Structured transformations and computation graphs for actor grammars.
In Ehrig et al. [10], pages 446-460. Lecture Notes in Computer Science 532.

D. Janssens, M. Lens, and G. Rozenberg. Computation graphs for actor grammars. Journal of Computer
and System Science, 46:60-90, 1993.

D. Janssens and G. Rozenberg. Actor grammars. Mathematical Systems Theory, 22:75-107, 1989.

R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-oriented specification of information
systems: The TROLL language. Technical Report 91-04, TU Braunschweig, 1991.

S.M. Kaplan, J.P. Loyall, and S.K. Goering. Specifying concurrent languages and systems with A-
grammars. In Ehrig et al. [10], pages 475-489. Lecture Notes in Computer Science 532.

R. Kennaway. On “On graph rewriting”. Theoretical Computer Science, 52:37-58, 1987.
M. Lowe. Algebraic approach to single-pushout graph transformation. T'CS, 109:181-224, 1993.

M. Lowe, M. Korff, and A. Wagner. An algebraic framework for the transformation of attributed graphs.
In M.R. Sleep, M.J. Plasmeijer, and M.C. van Eekelen, editors, Term Graph Rewriting: Theory and
Practice, chapter 14, pages 185-199. John Wiley & Sons Ltd, 1993.

U. Montanari and F. Rossi. True concurrency in constraint logic programming. In Proc. Int. Logic

Programming Symposium (ILPS5’92), Cambridge (MA), 1992. MIT Press.

24

29.

30.
31.
32.

33.

34.

35.

36.

37.

M. Nagl. Set-theoretic approaches to graph-grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and
A. Rosenfeld, editors, 3rd Int. Workshop on Graph Grammars and their Application to Computer Sci-
ence, LNCS 291, pages 41-54. Springer Verlag, 1987.

J. Peckam and F. Maryanski. Semantic data models. ACM Computing Surveys, 20(3):153-189, 1988.
J. C. Raoult. On graph rewriting. Theoretical Computer Science, 32:1-24, 1984.

H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University
Press, Oxford, 1987.

M. Schrefl, A. M. Tjoa, and R. R. Wagner. Comparison criteria for semantic data models. In C. V.
Ramamoorthy, editor, Proc. Int. Conf. on Data Engineering, pages 120-125. IEEE, Silver Spring (MD),
1984.

A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-oriented specification of databases: An algebraic
approach. In P. M. Stocker and W. Kent, editors, Proc. 18th Int. Conf. on Very Large Data Bases
(VLDB ’87), pages 107-116, Palo Alto, 1987. Morgan-Kaufmann.

G. v. Bochmann, M. Barbeau, M. Erradi, P. Lecomte, P. Mondain-Monval, and N. Willilams. Mondel:
An object-oriented specification language. Technical Report Publication 748, Départment d’Informatique
et de Recherche Opérationelle, Université de Montréal, 1990.

R. Wieringa. Equational specification of dynamic objects. In R.A. Meersman, W. Kent, and S. Khosla,
editors, Object-Oriented Databases: Analysis, Design & Construction (DS-4), Proc. IFIP WG 2.6 Work-
ing Conference, Windermere (UK) 1990, pages 415-438. North-Holland, 1991.

M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Vol. B, pages 677-788. North-Holland, Amsterdam, 1990.

This article was processed using the IATpX macro package with LLNCS style

25

