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The structure of the paper is as follows. In the next section we sketch the concepts ofthe language TROLL light by means of an example. In Sect. 3 we explain the basicideas and results about representing object community states as partial attributedgraphs. In Sect. 4 we show how the amalgamation technique for graph grammar rulescan be extended to our case, and in Sect. 5 we apply this amalgamation technique tothe evolution of TROLL light object communities. Sect. 6 presents some conclusionsand future work to be done.2 A Sketch of TROLL lightTROLL light is a language for describing static and dynamic properties of objects.This is achieved by o�ering language features to specify object structure as well asobject behavior. The main advantage of following the object paradigm is the fact thatall relevant information concerning one object can be found within one single unit andis not distributed over a variety of locations. Object descriptions are called templatesin TROLL light . Because of their pure descriptive nature templates may roughly becompared with the notion of class found in object-oriented programming languages.In the context of databases however, classes are also associated with class extensionsso that we used a di�erent notion. Templates show the following structure.TEMPLATE name of the templateDATA TYPES data types used in current templateTEMPLATES other templates used in current templateSUBOBJECTS slots for sub-objectsATTRIBUTES slots for attributesEVENTS event generatorsCONSTRAINTS restricting conditions on object statesVALUATION e�ect of event occurrences on attributesDERIVATION rules for derived attributesINTERACTION synchronization of events in di�erent objectsBEHAVIOR description of object behavior by a CSP-like processEND TEMPLATERoughly speaking, the DATA TYPES and TEMPLATES sections are the interfaces to othertemplates, the SUBOBJECTS, ATTRIBUTES, and EVENTS sections constitute the templatesignature, and in the remaining sections axioms concerning static (CONSTRAINTS andDERIVATION) and dynamic (VALUATION, INTERACTION, and BEHAVIOR) properties arespeci�ed.We abstract from some peculiarities of TROLL light , and therefore concentrate on veryessential features of object description languages. Let us introduce the main ideas ofthe language by means of an example. We assume that objects of type author are tobe modeled. For every author the name, the date of birth, and the number of bookssold have to be stored (ATTRIBUTES section). These attributes may be changed bygeneral state modifying operations (EVENTS and VALUATION sections). An author maychange her name only once in her life (BEHAVIOR section). An appropriate TROLLlight speci�cation would look as follows:TEMPLATE AuthorDATA TYPES String, Date, Nat; 2



ATTRIBUTES Name:string; DateOfBirth:date; NumOfBooks:nat;EVENTS BIRTH create(Name:string, DateOfBirth:date);changeName(NewName:string);addBook;DEATH destroy;VALUATION [create(N,D)] Name=N, DateOfBirth=D, NumOfBooks=0;[changeName(N)] Name=N;[addBook ] NumOfBooks=NumOfBooks+1;BEHAVIOR PROCESS authorlife1 =( addBook -> authorlife1 |changeName -> authorlife2 |destroy -> POSTMORTEM );PROCESS authorlife2 =( addBook -> authorlife2 |destroy -> POSTMORTEM );( create -> authorlife1 );END TEMPLATE;For templates we employ the following naming convention: Template names are writ-ten capitalized, and each template (Author) induces a corresponding object sort writ-ten exactly as the template but with a starting lower case letter (author). In ananalogous way to authors, we could specify books. The important new concept hereis the use of an object-valued attribute which in this case \points" from the book tothe author of the book.TEMPLATE BookDATA TYPES String;TEMPLATES Author;ATTRIBUTES Author:author; Title:string;EVENTS BIRTH create(Author:author, Title:string);DEATH destroy;VALUATION [create(A,T)] Author=A, Title=T;END TEMPLATE;Up to now we have only described more or less single objects. Now we put thesesingle objects into the bigger context of a library. Therefore we introduce books andauthors as sub-objects of a library (SUBOBJECTS section). Within a library, an au-thor is identi�ed by a natural number (parameter of Authors) and a book by itsauthor and its title (parameters of Books). Library objects may communicate withits sub-objects by calling their events (INTERACTION section). For instance, the spec-i�cation newAuthor(N,S,D) >> Authors(N).create(S,D) means that whenever theevent newAuthor(N,S,D) occurs in a library, then also the event create(S,D) hasto occur in the author object determined by Authors(N). Sets of events which arecomplete w.r.t. this calling mechanism are called closed event sets. They induce thetransitions between object community states. In order to avoid contradictions closedevent sets are restricted to contain only one event per object.TEMPLATE LibraryDATA TYPES String, Date, Nat;TEMPLATES Author, Book; 3



SUBOBJECTS Authors(No:nat):author;Books(Author:author, Title:string):book,ATTRIBUTES NumberOfBooks, NumberOfAuthors:nat;EVENTS BIRTH create;newAuthor(No:nat, Name:string, DateOfBirth:date);changeAuthorName(Author:author, NewName:string);newBook(Author:author, Title:string);removeAuthor(Author:author);VALUATION [create] NumberOfBooks=0, NumberOfAuthors=0;[newAuthor] NumberOfAuthors=NumberOfAuthors+1;[newBook] NumberOfBooks=NumberOfBooks+1;[removeAuthor] NumberOfAuthors=NumberOfAuthors-1;INTERACTION newAuthor(N,S,D) >> Authors(N).create(S,D);changeAuthorName(A,N) >> A.changeName(N);newBook(A,T) >> Books(A,T).create(A,T),A.addBook;removeAuthor(A) >> A.destroy;END TEMPLATE;In the Library template we have, for instance, the event changeAuthorName whichtriggers the changeName event in an author object. This does not a�ect the identityof Author objects since within Library they are identi�ed by a natural number. Thisalso does not a�ect the object-valued attribute Author in template Book.We have concentrated here on the essential features of TROLL light which can befound also in other object description languages. The TROLL light features we havenot mentioned in detail are means to give restricting conditions on object states(CONSTRAINTS) and means to specify derived attributes (DERIVATION). Here, we canonly give a glimpse of the language. More details can be found in [4, 16, 18].3 Transformation of Partial Attributed Graphs by Single PushoutsThe algebraic approach to graph transformation models graphs and graph-like struc-tures as special types of algebras. Rewrite rules and occurrences are described bymorphisms [9, 26]. The transformation concept is based on a double or single pushout,resp. But algebras can also be used as semantic domain of the speci�cation of datatypes [11, 8, 12, 37]. Graphs which come equipped with a data type component arecalled attributed graphs. The reason for introducing them is that well-known datatypes need not arti�cially be coded into graphical structures. In terms of total alge-bras attributed graphs have been modeled as a combination of one algebra for thegraphical part and another algebra for the data type component [27]. Hence a trans-formation step consists of the transformation of the graphical part, the transformationof the data part and a relating step where the attributions are computed.In our approach we switch over to partial algebras. This leads to a unique frameworkfor attributed graphs, where they can be seen as one partial algebra. As the transfor-mation concept we use a single pushout. Hence transformations are performed in onestep. The approach was triggered by the needs of the application. Unde�nedness canbe modeled very naturally and can be required in the left hand side of a rule. Further-more the complex relationships between objects need not arti�cially be coded into a4



couple of simple relationships. This avoids additional consistency conditions. Let usnow introduce the basic notions from universal algebra we need for our approach.De�nition1 Signature, Algebra, Total Morphism. A signature SIG = (S;OP;dom : OP ! S�; cod : OP ! S) consists of a set of sorts S, a set of operationsOP and two functions which assign to each operation its argument sorts and itstarget sort, resp. For short we write op : w ! sn+1 if w = s1:::sn, dom(op) = w andcod(op) = sn+1. A partial SIG-algebra A consists of a S-set3 AS of carrier sets and afamily of partial mappings AOP such that opA : Aw ! As 2 AOP if op : w ! s. If alloperations are de�ned for all elements in the domain, A is a total SIG-algebra.A partial SIG-algebra B is a subalgebra of another partial algebra A w.r.t. the samesignature, written B � A if BS � AS and opB = opAjB.4 This concept implies that foreach partial algebra every subset family of its carrier sets can be uniquely extendedto a subalgebra.A total morphism f : A ! B between two partial SIG-algebras A and B is a S-mapping f : AS ! BS such that opA de�ned for x 2 Aw implies opB de�ned for f(x)and opB(f(x)) = f(opA(x)). The usual morphisms on total algebras are a special caseof this notion. The category of partial algebras and total morphisms is denoted byP � SIG. }De�nition2 Partial Morphism between Partial Algebras. A partial mor-phism f : A ! B between partial SIG-algebras A and B is a total morphismf ! : A(f) ! B from a subalgebra A(f) � A to B. The category of all partial SIG-algebras and partial morphisms between them is denoted by P � SIGP . Compositionof morphisms in P � SIGP is componentwise composition of partial maps, which isassociative. The total identities on the objects in P � SIG are also the identities inP � SIGP . A partial morphism is closed for an operation op : w! s if the de�nednessof opB on f(a) implies that opA(f) is de�ned on a 2 Aw. A partial morphism is closedif it is closed for all operations op 2 OP . }Closed morphisms do not \add de�nedness" for already existing arguments. Due tothe notion of a subalgebra de�nedness can be \forgotten" by a morphism only if theworth objects of the operation are deleted.3.1 Pushouts in Categories of Partial AlgebrasIn the following we investigate categories of the type P � SIGP w.r.t. existence ofpushout constructions which shall provide the basis for a single pushout transforma-tion concept in these categories.Lemma 3 Coproducts in P � SIGP . The coproduct of two partial algebras A andB in P � SIGP is the (componentwise) disjoint union of A and B, i.e., A+B = A]B,together with the total embeddings a : A! A+B and b : B ! A+B mapping A andB identically to their copies in A ]B. }Proof. It is easy to construct a unique morphism u : A + B ! X for each pairx : A! X and y : B ! X of partial morphisms such that u � a = x and u � b = y. }3 The notion of S-sets is short for \S-indexed family of sets".4 Note that the subalgebra notion used here is a relative subalgebra in sense of [2]. The notion opB = opAjBdenotes the domain and codomain restriction of a partial function.5



Note that the coproduct construction of partial algebras coincides with the construc-tion of coproducts in the category SET P of sets and partial mappings if we forgetthe operational structure (compare [31]). The same property holds for coequalizerconstructions in P � SIGP which is demonstrated in the following. Essential for thisresult is the technical lemma below.Lemma 4 Morphism Extension of Single-Valued Partial Mappings.Let SIG = (S;OP ) be the underlying signature of the category P � SIGP , let A 2P � SIGP , let B be an S-indexed family of sets such that Bs = f�g for exactly onesort s 2 S and Bs0 = ; for all s0 6= s, and let f : A ! B be a family of partialmappings from the carriers of A to B, then the carriers of B can be extended to apartial SIG-algebra B� such that f becomes a P � SIGP -morphism. }Proof. De�ne the operational structure on B as follows. For all operators op : s� :::�s! s 2 OP let op(�; :::; �) = � and let all other operators be unde�ned everywhere.Let A(f) be the de�nedness area of f . We have pointed out above that for a partialalgebra A, each subset family of its carrier sets uniquely induces a subalgebra ofA. Hence A(f) can be considered as a subalgebra of A, i.e., A(f) � A. Then, byconstruction of the operator structure on B, the morphism f ! : A(f) ! B is a totalmorphism on partial algebras. }Lemma 5 Coequalizers in P � SIGP . If two morphisms f; g : A ! B inP � SIGP have a coequalizer, it coincides with the coequalizer of the underlying par-tial mappings of f and g, i.e., if U : P � SIGP ! SET P is the functor which forgetsthe operational structure in P � SIGP , h is the coequalizer of f and g in P � SIGPand k is the coequalizer of U(f) and U(g) in SET P , then U(h) �= k. }
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u � h = y. Hence U(h) is de�ned for all elements in k�1(d) leading to a contradictionto x � k = U(h) since x � k is unde�ned for all elements in k�1(d) due to x beingunde�ned for d by assumption. Thus x is total.Now assume that x is not injective, i.e., there exist d1; d2 2 Ds with x(d1) = x(d2). Letk�1(d1) and k�1(d2) be all pre-images of d1 and d2 under k in U(B)s, resp. As we havepointed out above each family of subsets of the carrier sets of an algebra induces aunique subalgebra. Hence let Z� be the subalgebra induced by Zs = k�1(d1)[k�1(d2)and Zs0 = ; for all s0 6= s. A morphism z : B ! Z� can be constructed choosing Z� asthe de�nedness area B(z) and the identity as total morphism z! : Z� ! Z�. Note thatz is injective. From k �U(f) = k �U(g) it follows immediately that z �f = z � g. Withh being coequalizer there is v : C ! Z� such that v � h = z. This means that U(h)must be injective for all elements in Z� leading to a contradiction to x � k = U(h).Thus x is injective. }Proposition 6 Necessary Condition for Pushouts in P � SIGP . If (D; f� :C ! D; g� : B ! D) is the pushout of f : A ! B and g : A ! C in P � SIGP ,the underlying partial mappings of f� and g� are the pushout of the partial mappingsconstituting f and g in SET P , i.e., for the forgetful functor U : P � SIGP ! SET P ,(U(D); U(f�); U(g�)) is the pushout of U(f) and U(g). }Proof. The stated property holds for coproducts and coequalizers (compare Lemmas3 and 5) and P � SIGP has all coproducts. Hence each pushout in P � SIGP can beconstructed in two steps, namely by �rst constructing the coproduct (B +C; b : B !B+C; c : C ! B+C) and then constructing the coequalizer e : B+C ! D for b � fand c � g. }Theorem 7 Pushouts in P � SIGP . The existence of a pushout for two mor-phisms f : A! B and g : A! C in P � SIGP can be characterized by the followingproperty of the pushout (D; f� : U(C)! D; g� : U(B)! D) for the underlying map-pings U(f) and U(g) in SET P : f and g have a pushout if and only if (1) and (2)below de�ne partial mappings on D for each operator op : s1� :::� sn! sn+1 2 SIG:1. If opB(x1; :::; xn) = xn+1 and g� is de�ned for xi with i = 1:::n+ 1de�ne opD(g�(x1); :::; g�(xn)) = g�(xn+1).2. If opC(x1; :::; xn) = xn+1 and f� is de�ned for xi with i = 1:::n+ 1de�ne opD(f�(x1); :::; f�(xn)) = f�(xn+1).The pushout in P � SIGP is then constituted by the partial algebra D, where theoperations are de�ned by (1) and (2) above, and f� and g� are homomorphic by con-struction. }Proof. Suppose (1) and (2) above do not de�ne partial mappings. It implies that thereis no operational structure on D such that f� and g� become homomorphic. Thus,Proposition 6 guarantees that there is no pushout.Obviously f� � f = g� � f due to the same property of the underlying mappings. Nowlet there be a P � SIGP -algebra E and partial morphisms f 0 : C ! E and g0 : B ! Esuch that g0 � f = f 0 � g. Then the same property holds for the underlying mappingsand we obtain a unique mapping u : D ! E such that u � f� = f 0 and u � g� = g0.Hence, it remains to show that u is compatible with the operations de�ned on D:Let op : s1 � :::� sn ! sn+1 2 SIG, opD(x1; :::; xn) = xn+1, and u be de�ned for xiwith i = 1:::n+ 1. De�nedness of opD for (x1; :::; xn) is due to either (1) or (2) from7



above. So let us assume without loss of generality xi = f�(ci) with i = 1:::n+ 1 andopC(c1; :::; cn) = cn+1. Now u�f� = f 0 implies that f 0 is de�ned for ci (i = 1:::n+1) andits morphism property implies opE(f 0(c1); :::; f 0(cn)) = f 0(cn+1). Substituting u � f�for f 0 and xi for f�(ci) in this equation provides u(xn+1) = u(opD(x1; :::; xn)) =opE(u(x1); :::; u(xn)). }Theorem 7 shows how pushouts in P � SIGP can be constructed whenever they exist.In the following this leads to the observation that pushouts do not always exist onone hand and on the other hand it allows us to prove a su�cient condition for theexistence of pushouts. Note that the existence of pushouts in the category GSP ofpartial morphisms between total algebras with unary operations only as it was provenin [26] is also based on the underlying pushout in SET P , i.e., the inclusion functorI : GSP ! P � SIGP preserves colimits.
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Fig. 2. Failure of Pushout Construction in P � SIGPExample1 Non-existence of Pushouts in P � SIGP . Consider a signature SIGwith a single sort S and a single binary operator op on this sort. Figure 2 depictstwo morphisms in P � SIGP : Elements of S are drawn as vertices, the assignments ofop are drawn as solid edges and the morphism assignments are visualized by dashededges. Both morphisms \add" de�nedness to the same object (1) in A. Hence thereis no chance to de�ne a unique operational structure on the pushout object D of theunderlying mappings such that U(f�) and U(g�) become homomorphic. The situationdepicted in Fig. 3 shows that even if both morphisms are closed and one of them isinjective the pushout may not exist. }Non-injectivity of one morphism is enough to destroy the well-de�nedness of the oper-ations of the pushout object D constructed as in Theorem 7. Only if both morphismsare injective, di�erent de�nitions for the operations may not overlap in the pushoutobject. Furthermore because of the example depicted in Fig. 2 at least one morphismhas to be closed. Another possibility is that both morphisms are closed such that theymay not add contradicting de�nedness for operations and one morphism is isomor-phic for the objects. The second requirement is adequate to exclude examples likepresented in Fig. 3 because the closed morphism g can only add de�nedness for newlyadded objects. 8
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Suppose condition (1) is satis�ed for op. We investigate three cases. First we assumethat possible arguments of opD have more than one pre-image under g�. In this case itfollows from pushout property in SET P (see Lemma 8) that they also have pre-imagesunder f in A which are identi�ed by g. Hence opB is unde�ned by condition (1).With an analogous argument we get that opD is well-de�ned even if possible argumentshave more than one pre-image under f�. Let us now assume opD(f�(x1); :::; f�(xn)) =f�(xn+1) and we have opD(g�(x01); :::; g�(x0n)) = g�(x0n+1) with f�(xi) = g�(x0i) fori = i:::n. By Lemma 8 we can choose yi and y0i with f�(xi) = f�(yi) and g�(x0i) = g�(y0i)such that yi and y0i for i = 1:::n have a common pre-image in A. From the �rst twocases considered above it follows that xi = yi and x0i = y0i for i = 1:::n. Becauseg is closed for op, xn+1 has a pre-image under g in A. Because morphisms preservede�nedness it follows that this pre-image must be mapped to x0n+1 by f . Pushoutscommute and therefore it follows f�(xn+1) = g�(x0n+1).Now suppose condition (2) is satis�ed for op. We investigate the same threecases as above. First we assume that opD(g�(x1); :::; g�(xn)) = g�(xn+1) andopD(g�(x01); :::; g�(x0n)) = g�(x0n+1) with g�(xi) = g�(x0i) for i = 1:::n. f is isomor-phic for all argument sorts of op. Hence there are pre-images in A for all xi; x0i withi = 1:::n + 1. By Lemma 8 these pre-images of xi and x0i are identi�ed by g fori = 1:::n. Because pushouts commute, g must be de�ned for the pre-images of xn+1and x0n+1, resp. The property of each morphism then guarantees that g identi�es theirpre-images. Thus by the commutativity of pushouts it follows g�(xn+1) = g�(x0n+1).The second case and the third case are straight forward like the second and the thirdcase for condition (1). }3.2 Interpretations of Partial Algebras as Attributed GraphsAttributed graphs are directed graphs enriched by a data type component and attri-butions which assign data values to graphical objects. In this section we start with thewell-known algebraic view of directed graphs and show how this view can be extendedto the framework of partial algebras. For each single extension we show how it is usedto model the operational behavior of TROLL light speci�cations.Directed graphs can be seen as total algebras w.r.t. the following signature:GRAPH = SORTS V;EOPNS s; t : E ! VThis means that each graph G consists of a set of vertices GV , a set of edges GE, andtwo unary mappings sG; tG : GE ! GV which provide source and target vertices foreach edge.In a partial algebra w.r.t. the GRAPH signature the source or target mapping for eachedge might be unde�ned. We call such edges dangling. But what is the interpretationof a dangling edge? Normally edges are interpreted as connections between objects.In this sense an edge with a missing source or target vertex speci�es that there mightbe a connection but currently it is not established. This leads to the interpretationthat dangling edges \do not exist currently". They only specify the possible existenceof edges. Typing of edges is done in the signature. So the existence or non-existenceof source resp. target vertices does not a�ect the edge type.10



More general graphical structures can be seen as algebras w.r.t. signatures whichcontain unary operator symbols only ([26]). Hence one can model graphs with di�erenttypes of vertices and edges.Example2 Basic Model of TROLL light Object Communities. The generalidea is to model objects as vertices and relationships between objects (i.e., the sub-object relationship or object-valued attributes) as edges. The following graph signa-ture is part of the signature for our example of a TROLL light template collectiondescribed in Sect. 2:GSIG = SORTS Author, Book, Library, ** vertex sorts for objects **Author(Book), ... ** edge sorts **OPNS s: Author(Book)! Bookt: Author(Book)! AuthorFor the three templates we have three sorts of vertices. For the object-valued attributeAuthor of template Book we have an edge sort. }Data types can be speci�ed algebraically [11, 8, 12, 37]. In this context we presupposesuch an algebraic view of the desired data types, i.e., a signature.Example3 Data Types in TROLL light Object Communities. Our examplespeci�cation contains three data types, which we assume to be speci�ed somewhereelse. The data signature is:DSIG = STRING + DATE + NAT }The signature for an attributed graph consists of the signature for the graph, thesignature for the data types and the attributions, which assign data values to graphicalobjects. Attributions can be seen as a special kind of edges.Example4 Extension to Model Data-valued Attributes. We already sawabove that object-valued attributes in TROLL light are modeled by edges. Attri-butions in the sense of attributed graphs are used to model data-valued attributesas for example the attribute Title of template Book. A part of the attributed graphsignature for our template collection in Sect. 2 containing data valued attributes is:ATTRGRA =GSIG + DSIG +SORTS Title(Book)OPNS s: Title(Book)! Bookt: Title(Book)! String }By now we only modeled (1:1)-relationships between objects and objects or betweenobjects and data elements. But within TROLL light speci�cations we also have (1:n)-relationships, where each of the n objects or data elements (being in relationshipwith the same object) is uniquely identi�ed by one or more parameters. If theserelationships shall be modeled using edges we need the notion of a family of outgoingedges of a vertex where each single edge can be uniquely identi�ed, using so-calledindices.If we want to model graph like structures as total algebras it is essential that thesignatures contain unary operator symbols only. But within the framework of partial11



algebras all types of operations are allowed. This is quite useful for the speci�cationof families of edges.All edges within the same family of outgoing edges have the same source vertex. Hencewe use a unary source operation to assign the source vertex to the family. The targetvertices may be di�erent and depend on the indices. Algebraically this is representedby a non-unary target operation mapping the edge family and all indices to the targetvertex.Above we stated that dangling edges are only speci�cations of edges. This certainlyis also true for edge families, i.e., an edge within a family only exists if its source andtarget operation are de�ned.Example5 Extension of Model to Parameterized Sub-object Relationship.To include the sub-object relationship Books of template Library we extend our sig-nature as follows:EXTATTRGRA =ATTRGRA +SORTS Books(Library)OPNS s: Books(Library)! Libraryt: Books(Library), Author, String! Book }Now we summarize the above considerations in the de�nition of an attributed graph.De�nition10 Attributed Graph. An attributed graph signature AGSIG =(GS;DS;OP ) consists of a set of graphical sorts GS, a set of data sorts DS and a setof operations op : w! s which is the disjoint union of the following sets: (1) The setof graphical or edge operations with w 2 GS�; s 2 GS. (2) The set of data or com-putational operations with w 2 DS�; s 2 DS. (3) Attributions map graphical objectsto data objects, i.e., w 2 GS�; s 2 DS. (4) Indexed attributions are operations withw 2 (GS [DS)�; s 2 DS and (5) for indexed edges we have w 2 (GS [DS)�; s 2 GS.An attributed graph is a partial algebra w.r.t. an attributed graph signature. Theindices of an attributed graph G build a family of sets (Is)s2S, where s is a data sortand i 2 Is, if there exists an indexed edge or an indexed attribution op : s1� :::�sn!sn+1 with sj = s for j 2 f1::ng and opG(x1; ::; xn) is de�ned and xj = i holds. }
indexed edges

graphical sorts
attributions

data sorts

edges indexed attributions

data operations

Fig. 4. Schema of Attributed Graph SignaturesNote that attributed graphs contain no operations mapping only data sorts to graph-12



ical ones. Figure 4 visualizes the schema of attributed graph signatures. Indices buildno special sorts. In a given graph it depends on the de�nedness of the operations(indexed attributions and indexed edges) which data elements are used as indices andwhich not.3.3 Graph TransformationsTheorem 9 provides us with two su�cient conditions for the existence of pushouts inP � SIGP . First, a rule would be applicable at any redex if we restrict rules to injectivemorphisms and redices to closed injective morphisms. This might be adequate if onethinks of the graphical part, but for the data part injective redices are unsatisfactory.The data part of a rule certainly contains variables. If they are not be identi�ed bythe redex, this would increase the number of rules in a not acceptable way.Second, a rule would be applicable at any redex if we restrict both rules and redicesto closed morphisms and one of them to an isomorphism. For the graphical part anisomorphism is neither possible as a redex nor as a rule. But for the data part rulesmay be isomorphisms, because the data part is assumed to be speci�ed somewhereelse and only used here without any change. This approach is already used for totalattributed graphs (see [27]).What we do is to combine both conditions. Rules and redices are partial morphismsbetween partial algebras. But if we restrict these morphisms to the data or graphicalpart of the attributed graph, respectively, they satisfy di�erent conditions. Rules forthe graphical part are injective, rules for the data part isomorphisms. Redices aretotal, closed morphisms, which are injective for the graphical part.The indices play a special role. They are used to uniquely identify edges in a familyor attributions. If they are identi�ed by a redex the uniqueness of the identi�cationwould be lost. Hence redices should be injective for indices.De�nition11 Rule, Redex, Derivation. A rewriting rule r : L! R is an injectivepartial morphism in P � SIGP , which is isomorphic for all data sorts. The indices ofthe rule r are de�ned by the union of the indices of L and r�1 applied to the indicesof R. A redex for r in an object G is a total, closed morphism m : L ! G, which isinjective for all graphical sorts and all indices used in r. The direct derivation of G withthe rule r at a redex m is the pushout of m and r in P � SIGP . The correspondingpushout object H is called derived graph. A direct derivation from G to H with a ruler is denoted by r=). }The idea of a rule is to describe as universally as possible the desired behavior ofa transformation. For the data type part of the left and right hand side of the rulethis means that one will choose a syntactical algebra, i.e., the total term algebra withvariables over the subsignature containing only data sorts and data operations. Thevariables are normally used to store the actual value of an attribute during the trans-formation. Note that the injectivity of redices for indices means that there are variablesin the left hand side of the rule which have to be evaluated to di�erent values.Due to the notion of a redex as a closed morphism our framework includes some kindof negative application condition for a rule. If an operation is unde�ned for argumentsin the left hand side of the rule, the rule is not applicable to a graph if it is de�nedthere. This is a very strong requirement which has to be considered in any application.13



We divide between optional relationships (modeled by edges) and inevitable knownrelationships (modeled by operations). Note that this may be problematic if operationsin the data type component are used in the classical way. Variable instantiations bya redex may be not possible due to the existence of additional structure in the graphthe rule shall be applied to.
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NumOfBooksFig. 5. Example for a Valuation RuleExample6 Valuation Rule for Event newBook. The valuation graph grammarrule for event newBook depicted in Fig. 5 removes the old attribution and insertsthe new attribution in accordance with the TROLL light valuation formula. }Proposition 12 Direct Derivation. The direct derivation of a graph G with a ruler : L! R at a redex m : L! G always exists. }Proof. We show that the pushout object D of the underlying partial mappings canbe enriched to a partial SIG-algebra D� (compare Theorem 7) using the su�cientconditions from Theorem 9, i.e., for all operations of the attributed graph signatureone of the stated conditions holds.Redices are closed morphisms and rules are injective. Hence the conditions reduce to(1) m is injective for all pre-images under r of arguments for which opR is de�ned and(2) r is closed for op and isomorphic for all argument sorts of opL.If the operation is a graphical one or an attribution condition, condition (1) holdsbecause rule and redex are injective for all (graphical) argument sorts. For all dataoperations condition, condition (2) is satis�ed because the rule is isomorphic for all(data) argument sorts and closed for all data operations because it is isomorphicfor the value sort (a data sort) too. Indexed edges and indexed attributions ful�llcondition (1) as far as the redex m is injective for all indices. }
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Example7 Interaction Rule for Event newBook. The interaction graph gram-mar rule in Fig. 6 for event newBook inserts a new Book node only if there is noBook node with the connections depicted by dashed lines. }4 Synchronization via AmalgamationThe basic concept of amalgamation allows to synchronize two rules over a commonsub-rule, which describes the e�ects the application of both rules should have. Thee�ect of the synchronized application of both rules is reached by �rst constructing anew rule (the so-called amalgamated rule) and then by applying it. The fundamentalresult in this context is that the necessary synchronization can be minimized, i.e., eachdirect derivation with the amalgamated rule can be simulated by �rst applying thecommon sub-rule and then (locally) remainders of both rules.De�nition13 Sub-rule. A rule r1 : L1! R1 is a sub-rule of a rule r2 : L2! R2 if1. there are total, closed, injective morphisms i : L1 ! L2 and j : R1 ! R2 suchthat r2 � i = j � r1 and2. the universal morphism (r2 � r1) from the pushout object R of r1 and i to R2 isa rule.5 We call (r2 � r1) the remainder in the following. }A rule r1 is called subrule of a rule r2 if r2 subsumes all the e�ects of r1 and addssome more. The properties of the subrule embeddings i and j make sure that thisbecomes true for deletion and gluing. Requirement 2 is needed for the addition of newobjects (adding a new object is no sube�ect of preserving an object).
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Fig. 7. Induced Redex for Sub-ruleThe fact that redices for rules induce redices for their sub-rules is important for theminimization of the synchronization. Instead of the rule �rst its sub-rule should beapplied.Proposition 14 Redex for a Sub-rule. If m : L2 ! G is a redex for a rule r2 :L2! R2 and r1 : L1! R1 is a sub-rule of r2 as depicted in Fig. 7, then m � i is a5 The pushout always exist due to Theorem 9. 15



redex for r1. }Proof. Total closed injective morphisms are closed under composition. It remains toshow that m � i is injective for the indices of r1. With Ind(L1) being the family ofsets of indices of graph L1, i(Ind(L1)) are indices of graph L2 because i is total andclosed. Hence is m is injective for i(Ind(L1)). }De�nition15 Amalgamated Rule. Let r1 : L1 ! R1 and r2 : L2 ! R2 with acommon sub-rule r : L! R be given. The amalgamated rule (r1 +r r2) of r1 and r2is constructed in Fig. 8. L3 is the pushout of i1 and i2, R3 is the pushout of j1 andj2 and (r1 +r r2) is the universal morphism such that (r1 +r r2) � i2� = j2� � r1 and(r1 +r r2) � i1� = j1� � r2. }
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(r1 + r2)Fig. 8. Construction of the Amalgamated RuleProposition 16 Existence of Amalgamated Rule. The amalgamated (r1+r r2)rule of two rules r1 : L1! R1 and r2 : L2! R2 with a common sub-rule r : L! Ralways exists. }Proof. Due to Theorem 9 the pushouts of i1 and i2 and of j1 and j2, respectively,always exist, because i1; i2; j1 and j2 are injective and closed. Hence there is auniversal morphism (r1 +r r2) : L3 ! R3. To show that (r1 +r r2) is a rule we�rst show its injectivity and then its surjectivity for all data sorts. Assume that(r1 +r r2)(x1) = (r1 +r r2)(x2) and x1 6= x2. By pushout property (4) for the under-lying pushout in SET P i1� and i2� are jointly surjective. Because of the injectivity ofj1� � r2 and j2� � r1, x1 and x2 cannot have pre-images under the same morphism. Sowe assume a pre-image for x1 in L1 and for x2 in L2. Because of the property of theuniversal morphism (r1 +r r2), j2� � r1(i2��1(x1)) = j1� � r2(i1��1(x2)) holds. Withpushout property (6) we get a common pre-image for r1(i2��1(x1)) and r2(i1��1(x2))in R. Because of the injectivity of the remainder (r1 � r) and pushout property (6)i2��1(x1)) has a pre-image under i1 in L. r is a sub-rule of r2 and hence the pre-imageof i2��1(x1)) under i1 is also a pre-image of i1��1(x2) under i2. From the commuta-tivity of pushouts it follows that x1 = x2. Hence (r1 +r r2) is injective. The proof ofsurjectivity for the data sorts is straight forward using the surjectivity of r1 and r2for data sorts and the fact that j1� and j2� are jointly surjective by Lemma 8 }Remark Iterated Amalgamation. Due to the commutativity of colimits and the factthat pushouts preserve total, closed, injective morphisms the process of amalgamationcan be iterated and still has a unique result. This will be demonstrated in detail by a16



more involved example in the next section (Fig. 15). }The rest of this section is dedicated to the proof of the decomposition theorem oftransformations with the amalgamated rule. The following technical proposition isnecessary due to the fact that not every decomposition of a rule preserves redices.Proposition 17 Redex Preserving Rule Decomposition. Let r : L ! R be asub-rule of r1 : L1 ! R1 as depicted in Fig. 9 and m : L1 ! G be a redex for r1.Then m is a redex for r� and the morphism m� induced by the direct derivation of Gwith r� at m is a redex for the remainder (r1 � r). }
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Fig. 9. Sub-rule and Remainder DecompositionProof. m� is closed by Lemma 8. m� is total for graphical sorts by pushout property(5) and for data sorts by pushout property (3) for the underlying pushout in SET P .(see Lemma 8). The injectivity for graphical sorts follows from the injectivity of mfor graphical sorts. It remains to show that m� is injective for the indices of theremainder (r1 � r). If m�(x1) = m�(x2) then m must identify r��1(x1), and r��1(x2).Hence r1(r��1(x1)) = (r1 � r)(x1) and r1(r��1(x2)) = (r1 � r)(x2) cannot be indicesof L1 and R1, resp. Assume they are indices of X, i.e., opX (y1; :::; yn) de�ned withyi = x1 and yj = x2 for i; j 2 f1:::ng. By Theorem 7 de�nedness of opX alwayscauses de�nedness of opL1 or opR. The de�nedness of opL1 cannot be the reason forthe de�nedness of opX because r��1(x1) and r��1(x2) cannot be indices of L1. Withan analogous argument for opR making use of (r1 � r) � i� = j and the closedness ofj we get that the de�nedness of opR cannot be the reason for the de�nedness of opXleading to a contradiction. }Lemma 18 Pushout Cube. If the top, bottom, front, back and the left side of a cubelike the one depicted in Fig. 10 are pushouts in P � SIGP , then also the right side isa pushout. }Proof. The corresponding property for the underlying diagram in SET P can be shownusing pushout property (4) of Lemma 8. With Theorem 7 we get that the right sideof the cube is a pushout in P � SIGP . }Theorem 19 Transformation with Amalgamated Rule. As pictured in Fig. 11Every direct derivation with an amalgamated rule (r1+r r2) can be simulated by directderivations with the sub-rule r and the remainders (r1 � r) and (r2 � r). }17



Fig. 10. Pushout Cube
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(r1 + r2)Fig. 11. Decomposition of Transformation with Amalgamated RuleProof. The pushout constructions of the proof are pictured in Figs. 12, 13, and 14, resp.(1) and (2) are pushouts due to the construction of the amalgamated rule (r1 +r r2).(3) and (4) are pushouts by the construction of the remainders (r1� r) and (r2� r).(4) + (5) resp. (3) + (6) is the pushout of r and i2� � i1 = i1� � i2, which can bedecomposed due to the existence of pushouts (5) and (6). By Lemma 18 (7) is apushout.
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of (r1� r) and n1 � k2�, we assume that there exists (X;x1; x2) with x1 � n1 � k2� =x2 � (r1 � r). Because of x1 � n2 � j2 = x1 � n2 � (r2� r) � k2 = x1 � n1 � k1� � k2 =x1 � n1 � k2� � k1 = x2 � (r1 � r) � k1 = x2 � j1 there exists a universal morphismz : R3 ! X for pushout (2) with z � j2� = x2 and z � j1� = x1 � n2. z alsoful�lls z � u = x1, what can be proved by z � u � n2 = z � j1� = x1 � n2 andz � u � n1 � k2� = z � j2� � (r1 � r) = x2 � (r1 � r) = x1 � n1 � k2� (su�cient because(7) + (8) is pushout), and hence serves as the universal morphism for the desiredpushout. Its uniqueness follows from the uniqueness of z.
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TEMPLATE LibraryVALUATION [newBook] NumberOfBooks=NumberOfBooks+1;INTERACTION newBook(A,T) >> Books(A,T).create(A,T),A.addBook;...TEMPLATE BookVALUATION [create(A,T)] Author=A, Title=T;...TEMPLATE AuthorVALUATION [addBook ] NumOfBooks=NumOfBooks+1;...These TROLL light valuation and interaction rules are translated to graph grammarrules. The transition corresponding to the respective closed event set increments twoattributes and inserts a new Book object.
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Fig. 15. Complex Rule Achieved via AmalgamationThe amalgamation process now combines the basic rules for the valuation and inter-action parts into one complex rule as depicted in Fig. 15. In principle the rule whoseleft hand side consists of all non-dashed parts of the graph combines three di�erentlocal rules and the interaction rule:1. We have a valuation rule for template Library which increments the attributeNumberOfBooks (abbreviated by NumOfBooks). This corresponds to upper dottedpart of the above diagram connecting the attribute node NumOfBooks with thetemplate node Library and the data type variable x:nat.2. Then there is another valuation rule this time for template Author analogouslyincrementing the attribute NumOfBooks depicted in the dotted lower part.21



3. The interaction rule consists of the three template nodes Library, Author and the(added) node Book.4. Furthermore we have a third valuation rule for template Book de�ning the contextfor the inserted node. On the left hand side of the rule we have an applicabilitycondition pictured by the dashed part: The rule can be applied only if there isno template node for Book connected to the other nodes in the displayed manner.After application of the rule new nodes appear in the result graph as given on theright hand side of the rule.These four rules are amalgamated using so called \trivial rules" as common subrulesof the interaction rule and the di�erent valuation rules. Trivial rules consist only ofthe template nodes, for instance the interface between interaction rule and valuationrule for the template Library of the Library node. Thus, we employ amalgamationtechniques not only to describe the e�ect of valuation rules but also | and this is acentral concern | for interaction rules.Let us also give an example of a graph derivation employing the above describedproduction for the closed event set induced by the event newBook. On the left handside of the diagram one attributed graph representing a simple state of the objectcommunity induced by template Library is depicted (Fig. 16).
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0Fig. 16. Sample DerivationThe described transition corresponds to the closed event set with the three eventsnewBook(A,T), Books(A,T).create(A,T), and A.addBook. In principle, the transi-tion introduces a new object (Book node), modi�es attributes, and establishes theconnection to existing nodes.Note that the rather complex notion of a redex in the approach introduced in thispaper �ts perfectly the TROLL light model. Injectivity for indices is used to uniquelyidentify subobjects and attributes. Injectivity for graphical objects solves the con
ictof unallowed cyclic interaction due to the stepwise construction of the rule for a closedevent set. Furthermore the closedness of a redex provides a kind of implicite negativeapplication condition which is used, for example, to make sure that an existing objectis not created again.All these facts together should motivate the new approach. A model of TROLL lightwithin the classical one based on total algebras would have to deal with the same22



problems and hence forces a notion of a redex of the same complexity. This shouldbe possible to achieve using explicite negative application conditions (see [17]). Butup to our discussions by now they are incompatible with the theory of amalgamationwhich provides us with the possibility of stepwise rule construction.Due to space limitations we have given only a very speci�c example for a transition.In generally modelling the evolution of a system, the basic rules are never applied inisolation. Only amalgamated rules corresponding to closed event sets are applied andcause the state transitions.6 Conclusions and Future WorkWe have generalized the single pushout approach to graph grammars in order to com-bine it with partial algebras and partial morphisms. Our results provided a uniformframework for the transformation of attributed graphs where graphical and data partswere completely integrated. We were able to obtain attractive amalgamation resultsfor graph derivations as in the traditional case. In particular, the notion of a redex as aclosed morphism led in our framework to some kind of negative application conditionfor a direct derivation. The results obtained were employed for the de�nition of theoperational semantics of the object speci�cation languages TROLL light . Especially,attributed partial graphs were adequate for modeling TROLL light object communitystates because parametrized sub-object relationships were modeled naturally as fam-ilies of edges and necessary negative application conditions of rules could be achievedwithout extending the formalism.Nevertheless, not all features of object speci�cation languages were considered here.For example, we did not treat the BEHAVIOR part of TROLL light templates, but ourapproach is powerful enough to cover this aspect of object speci�cations as well. Acloser look has to be spend on other TROLL light language features like CONSTRAINTSand DERIVED attributes. Apart from treating TROLL light it would be interesting todraw the attention to other similar languages, in particular CMSL [36] seems to be astimulating candidate for such considerations.AcknowledgementsThe critical remarks of the referees have improved the quality of the paper. Thanksalso to H. Ehrig for promoting our approach. Part of this work was done within theKORSO project where partners and collegues have contributed with fruitful discus-sions.References1. M. Broy and M. Wirsing. Partial abstract data types. Acta Informatica, 18(1):47{64, 1982.2. P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras, volume 32 of MathematicalResearch | Mathematische Forschung. Akademie-Verlag, Berlin, 1986.3. I. Cla�en, M. Gro�e{Rhode, and U. Wolter. Categorical concepts for parameterized partial speci�ca-tions. Technical Report 92{42, Technische Universit�at Berlin, 1992.4. S. Conrad, M. Gogolla, and R. Herzig. TROLL light: A core language for specifying objects. TechnicalReport 92-02, Technical University of Braunschweig, 1992.23
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