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Channel diversity in random wireless networks

Kostas Stamatiou, John G. Proakis and James R. Zeidler

Abstract

The goal of this paper is to explore the benefits of channel diversity in wireless ad hoc networks.

Our model is that of a Poisson point process of transmitters,each with a receiver at a given distance.

A packet is divided in blocks which are transmitted over different subbands that are determined by

random frequency hopping. At the receiver, a maximum-likelihood decoder is employed to estimate

the transmitted packet/codeword. We find that, ifL is the Hamming distance of the employed error

correction code andǫ is a constraint on the packet error probability, the transmission capacity of the

network is proportional toǫ1/L, whenǫ→ 0. The proportionality constant depends on the geometry of

the symbol constellation, the packet length and the number of receive antennas. This result implies that,

at the cost of a moderate decoding complexity, large gains can be achieved by a simple interference

randomization scheme during packet transmission.

We also address practical issues such as channel estimationand power control. We find that reliable

channel information can be obtained at the receiver withoutsignificant rate loss and demonstrate that

channel inversion power control can increase the network transmission capacity.

Index Terms

Frequency hopping, interference diversity, bit-interleaved coded modulation (BICM), Poisson point

process, transmission capacity

I. INTRODUCTION

The study of random wireless networks has recently gathereda lot of attention in the research

community [1]–[3]. The main theme of this work is the use of tools from stochastic geometry,

in order to provide analytical performance results and develop insights for an ensemble of

networks and different physical, MAC and network layer strategies. A central assumption is

that the network consists of a Poisson point process of transmitters, and each transmitter (TX)
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has a corresponding receiver (RX) at a given distance. A popular metric that quantifies the

network performance is the transmission capacity, defined as the maximum spatial density

of transmissions, multiplied by their rate, such that a constraint on the packet error rate is

satisfied [1].

In the majority of existing papers, interference from concurrent transmissions is considered

as noise and an outage probability approach is taken to modelpacket successes: given the

TX locations and the channels between the TXs and the reference RX, which are assumed

to be constant during the transmission of a packet, a packet is successfully received if the

signal-to-interference-ratio (SIR) is larger than a certain threshold. In information-theoretical

terms, assuming the interfering TXs are transmitting symbols from a Gaussian alphabet, a packet

reception occurs when the channel mutual information is at least equal to the desired information

rate [4].

In this paper, as in [5], we take an alternative approach and explore the impact of channel

randomizationwithin the transmission of a packet. Our motivation stems from the well known fact

that channel diversity can be exploited through error correction coding in order to yield perfor-

mance gains. Specifically, we consider a bit-interleaved coded modulation scheme (BICM) [6],

in conjunction with random frequency hopping (FH), maximalratio combining (MRC) and

maximum likelihood (ML) decoding at the RX. Coding combinedwith FH exploits frequency

diversity, if the hopping distance is larger than the coherence bandwidth of the channel fading,

and interference diversity, as the set of interfering transmitters over each dwell is potentially

different. We analyze the performance of this scheme in terms of the codeword/packet error

probability and evaluate the transmission capacity as a function of the code diversity order and

the size of the antenna array at the RX. Since an averaging over different channel states takes

place within a packet, the information rate of the typical TX-RX link is upper-bounded by the

ergodic capacity for which we provide tight upper and lower bounds. We also address practical

physical layer issues such as channel estimation, power control (PC) and channel correlation,

and assess their effect on the performance via simulation.

A. Related work

Several papers have dealt with the performance analysis of coded FH systems under multiple-

access (MA) interference, as well as partial-band interference (see, e.g., [7], [8] and ch. 12 of [9]).
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A common feature of such systems is that the performance can be dramatically improved if the

decoder is aware of the interference levels across the codeword. If a Reed-Solomon (RS) code

is employed, the decoder declares an erasure when a symbol has been “hit”; in the case of

soft-decoding, the metrics in the Viterbi decoder are weighted by the respective SIRs. In [10],

RS coding combined with FSK modulation is considered in a Poisson field of interferers and

the impact of the code rate on the information efficiency, i.e., the product (packet success

probability)× (transmission distance)× (rate), is explored. More recently, [11] has extended

the work in [10] to accommodate differential unitary space-time modulation and unknown fast

time-varying channels.

The use of spread-spectrum (SS) communication for ad hoc networks is discussed in [12].

The authors make an argument against interference averaging which they define as “. . . using

direct-sequence (DS) SS or fast FH1 to proportionally reduce the interference level” and advocate

hopping at the packet level, or interference avoidance (IA), as the preferable MA scheme for ad

hoc networks. While the near-far problem of DS-SS in a decentralized environment - where PC

is absent - is clear, it is not obvious why slow FH might be preferable to fast FH, apart from

the fact that the former induces less overhead in terms of code acquisition and synchronization.

B. Contributions

This paper demonstrates that considerable gains in terms ofnetwork capacity are possible,

by combining FH during packet transmission and error correction coding of modest complexity.

If L is the Hamming distance of the convolutional code employed at the TX, λ is the density

of TXs andM is the number of subbands, we show that, asλ/M → 0, the codeword error

probability follows the power lawη( λ
M

)L, η > 0. This implies that, forǫ→ 0, the transmission

capacity is proportional toǫ1/L whereǫ is the constraint placed on the codeword error probability.

The proportionality constant depends on the geometry of thesymbol constellation, the codeword

length, as well as the termN2/b where N is the number of RX antennas andb > 2, is the

propagation exponent. We also derive upper and lower boundson the ergodic capacityC of

the typical TX-RX link; specifically, we show thatC > 1
α

log2

(

µNα M
λ

)

, whereµ > 0 is an

appropriatelly defined constant.

1Fast FH refers to hopping on the order of a symbol or a few symbols, while slow FH, or interference avoidance, refers to

hopping at the packet level.
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Practical physical layer issues are discussed such as channel estimation, PC and channel cor-

relation. We demonstrate via simulation that, with an acceptable rate loss due to the transmission

of pilot symbols, accurate channel state information (CSI)can be obtained for decoding. With

respect to PC, it is shown that channel inversion can actually improve the performance, since

the error correction code protects the RX from the deep fadesof its nearby interferers. Finally,

the impact of the channel correlation is assessed as the number of subbands and/or the number

of dwells is decreased and it is shown that the gains comparedto slow FH are still significant.

C. Paper organization and notation

The rest of the paper is organized as follows. Section II introduces our network and physical

layer models in detail. In Section III we derive the statistics of the SIR and determine the

performance of the decoder under perfect CSI. The transmission capacity is defined and evaluated

in Section IV. Section V discusses practical physical layerconsiderations and Section VI presents

our numerical results. Section VII concludes the paper.

A real (circularly symmetric complex) Gaussian random variablex with mean0 and variance

σ2 is denoted asx ∼ N (0, σ2) (x ∼ CN (0, σ2)). A central chi-square r.v.x with parameter

1/2 andn degrees of freedom is denoted asx ∼ χ2
n. In is then × n identity matrix.(·)T and

(·)H denote the transpose and conjugate transpose operations, respectively.[X]n,t denotes the

(n, t) element of matrixX. The symbol “≃” is employed to denote asymptotic equality of two

functions. Finally, a list of symbols commonly used throughout the paper is provided in Table I.

II. SYSTEM MODEL

A. General

We consider a network of TXs, each with a RX at a fixed distanceR and random orientation.

The locations of the TXs are drawn independently according to a homogeneous Poisson point

processΠ of densityλ. The TXs transmit packets to their corresponding RXs concurrently and

in a synchronized manner. Typically, the locations of the nodes are constant for at least the

duration of a packet.

The bandwidth is divided intoM subbands. The channel between a typical TX-RX pair over

a subband comprises flat Rayleigh fading and path loss according to the lawr−b, whereb > 2

is the propagation exponent. We assume that the coherence bandwidth of the fading is equal
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to the width of a subband, while the coherence time can be equal to the duration of a packet

slot or the duration of adwell, which will be defined shortly. We also consider an interference-

limited scenario, i.e., additive noise at the RX is assumed negligible, such that interference from

concurrent transmissions is the only cause for packet errors. Initially, we assume that the power

transmitted from all TXs is the same and normalized to one. Issues of PC to compensate for

long-term fading, e.g., shadowing, are discussed in Section V.

Assume that a packet corresponds toLb binary information bits,b1, . . . , bLb
. which are the input

to a convolutional encoder of rateRc < 12. The bitsc1, . . . , ck′, . . . , cLb/Rc
of the output codeword

are interleaved and Gray-mapped to symbolsx1, . . . , xk, . . . , xLb/(RcMc) from a complex PSK or

QAM constellationX of size |X | = 2Mc, zero mean and unit average power. We assume that

the one-to-one interleaver mappingk′ ↔ (k, jk′), wherejk′ = 1, . . . , Mc is the position ofck′ in

the symbolxk, is known at the RX. Next in the TX chain, the symbol sequence is divided in

D = Lb/(RcMcTd) groups3 of sizeTd and each group is transmitted in a dwell, over a subband

which is randomly4 selected with probability1/M . If we denote the data symbols of thedth

dwell, d = 1, . . . , D, as xT
d the sequence{xT

d }Dd=1 constitutes a packet. For convenience, we

assume all transmissions are synchronized at the dwell level. This is a worst-case scenario in

terms of the level of the interference power over a dwell (theissue of asynchronous transmissions

is discussed in Section V).

Consider a typical TX and its corresponding RX, both specified by index0, i.e., TX0 and

RX0. If RX0 is equipped with an antenna array of sizeN ≥ 1, the received data matrix in dwell

d is5

Yd,0 = hd,0x
T
d,0 + Rb/2

∑

i∈Π

ed,ir
−b/2
i eiφihd,ix

T
d,i, (1)

wherehd,0 ∼ CN (0, IN) is the fading vector between TX0 and RX0; ed,i is the indicator of

whether TX i, at distanceri from RX0 and denoted as TXi, occupies the same subband as

2We assume that the encoder is trellis-terminated [13], i.e., it is forced to start from and end at the zero-state. This results in

a small rate loss which is not taken into account.

3For convenience, we assume that the quotientsLb/(RcMc) andD = Lb/(RcMcTd) are integer.

4In reality, the hopping pattern is determined pseudorandomly and is known at the RX. However, the model of random subband

selection is convenient for analytical purposes.

5We assume that the average received powerR−b per antenna is known at RX0. We have taken it into account in the

interference portion of the received signal because it is convenient in terms of notation in the remainder of the paper.
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TX0 in dwell d, i.e., ed,i = 1 with probability 1/M and ed,i = 0 with probability 1 − 1/M ;

hd,i ∼ CN (0, IN) is the fading vector between TXi and RX0; xT
d,i is the group of data symbols

transmitted by TXi in dwell d; andφi is a random phase, uniformly distributed in[0, 2π), which

models the phase offset between the RX0 and TXi. Note that the subscriptd in the fading vectors

indicates that, in general, depending on the coherence time, these may vary independently from

dwell to dwell.

Let Wd,0 denote the interference term in (1). Since the elements ofxd,i are independent

and zero-mean, the same holds for the elements ofWd,0. Moreover, given{ri}, we assume

that [Wd,0]n,t ∼ CN (0, zd,0)
6, n = 1, . . . , N , t = 1, . . . , Td, and zd,0 ,

∑

i∈Π ed,ir
−b
i is the

interference power in dwelld seen by RX0. RX0 can obtain knowledge ofhd,0 andzd,0 with the

help of pilot symbols which are transmitted at the beginningof the dwell. Presently, we assume

that they are perfectly known; a straightforward channel estimation algorithm is presented in

Section V.

B. Equivalent channel model and decoding

The reference RX performs MRC, i.e., it evaluates the product
h

H
d,0

‖hd,0‖2Yd,0. From (1), we have

hH
d

‖hd‖2
Yd = xT

d +
hH

d

‖hd‖2
Wd, (2)

where we have omitted the index 0 in order to simplify the notation. As a result, we have the

following equivalent channel model for data symbolxk, k = (d − 1)Td + 1, . . . , dTd, which is

transmitted in dwelld

yk = xk + wk (3)

where,wk ∼ CN (0, γ−1
k′ ), given the equivalent SIRγk = ak

zk
. The r.v.ak is chi-square distributed

with 2N degrees of freedom, i.e.,ak ∼ χ2
2N . Moreover, due to the fact that the locations of the

inteferers in each dwell are a realization of a Poisson process on the plane with densityλ/M ,

it is known thatzk is an α-stable random variable with stability exponentα = 2/b [14], [15].

Its moment generating function (mgf) is [14]

Φz(s) = E[e−zs] = e−
λδ
M

sα

, s > 0. (4)

6The Gaussian assumption for the interference is exact if theelements ofxd,i are selected from a PSK constellation and an

approximation if they are selected from a QAM constellation.
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where

δ , πΓ(1− α)R2. (5)

The sequence{yk, γk}DTd

k=1 is the input to the decoder which decides that the codewordĉ was

transmitted according to the simplified ML criterion (eq.(9), [6])

ĉ = arg min
c

Lb/Rc
∑

k′=1

γk min
x∈X

j
k′

c
k′

{

|yk − x|2
}

(6)

whereX jk′

ck′
denotes the set of constellation symbols that have bitck′ at positionjk′, wherejk′ =

1, . . . , Mc. The weighting of each distance metric by the respective SIRreflects the confidence

of the decoder in that metric.

III. A NALYSIS

This section is primarily devoted to the performance analysis of decoder (6). In order to round

out the analysis, in Section III-D, we also derive upper and lower bounds to the ergodic capacity

of channel (3). Since the scheme presented in Section II induces an “averaging” over different

channel states within the packet, the ergodic capacity is anupper bound to the information rate

of the typical TX-RX link.

A. Decoder performance

The codeword - or frame - error probability (FEP) of decoder (6), Pe, is upper-bounded as [13]

Pe ≤ Lb

∑

l=L,L+1,...

wlPl (7)

wherePl is the probability of a length-l error event, or pairwise error probability, andwl is the

number of length-l error events. The minimum length of an error eventL, i.e., the Hamming

distance, as well as the weight distribution{wl} depend on the particular code employed.

We now assume that, due to random interleaving, the sequenceof l symbols that corresponds

to a sequence ofl coded bits encountersindependent SIR conditions (this assumption is discussed

in Section V). From [6], [16],Pl can be upper-bounded as

Pl ≤ P̄l =
1

π

∫ π/2

0





1

Mc2Mc

∑

(x,x′)∈X

Φγ

( |x− x′|2
4 sin2 θ

)





l

dθ (8)
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whereΦγ(s) is the mgf of the SIRγ, i.e, Φγ(s) = E[e−γs], s > 0 (the time indexk has been

removed as it is of no consequence).(x, x′) are all possibleMc2
Mc nearest-neighbor pairs in

X which have complementary bits in positionj, j = 1, . . . , Mc [6], e.g., for 4QAM (QPSK)

constellations with Gray mapping, all such pairs are at the minimum constellation distancedmin.

Note that, in the limit of largeE[γ]7, P̄l ≃ Pl [6].

From (7), a further upper bound toPe is

P̄e = Lb

∑

l=L,L+1,...

wlP̄l. (9)

The evaluation ofP̄l in (8) is possible by numerical integration, provided thatΦγ(s) is known.

The derivation ofΦγ(s) is the topic of the following subsection.

B. Statistics of γ

The probability density function (pdf) ofγ is given by the following lemma.

Lemma 1: The pdf of the SIRγ is given by

fγ(γ) =
1

(N − 1)!

e−
λδ
M

γα

γ

N
∑

n=1

|βN
n |

n!

(

λδ

M
γα

)n

(10)

where

βN
n =

n
∑

m=1

(−1)m





n

m



 (αm)N , n = 1, . . . , N (11)

and (αm)N , αm . . . (αm−N + 1) is the falling sequential product.

Proof: The cumulative distribution function (cdf) ofγ, Fγ(γ), is by definition

Fγ(γ) = P(a ≤ γz) =

∫ +∞

0

Fa(γz)fz(z)dz (12)

where

Fa(a) = 1− e−a
N−1
∑

n=0

an

n!
= 1− Γ(N, a)

(N − 1)!
(13)

is the cdf of the chi-square r.v.a and

Γ(ζ, x) =

∫ +∞

x

e−ttζ−1dt, x ≥ 0 (14)

7In the context of this paper, this corresponds to the interferer point process in each dwell being sparse, i.e.,λ/M → 0.
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is the incomplete gamma function (p.949, [17]). Substituting (13) in (12) and taking the deriva-

tive, the pdf ofγ is given by

fγ(γ) = − 1

(N − 1)!

∫ +∞

0

dΓ(N, γz)

dγ
fz(z)dz =

γN−1

(N − 1)!

∫ +∞

0

fz(z)zNe−γzdz

=
(−1)NγN−1

(N − 1)!

dNΦz(γ)

dγN
(15)

where we have used the identity (p.951, [17])dΓ(ζ,x)
dx

= −xζ−1e−x and the Laplace transform

property8

fz(z)zN L←→ (−1)N dNΦz(s)

dsN
.

From the identity for theN th derivative of a composite function (0.430.1, p.24, [17]), after some

algebra, we obtain
dNΦz(s)

dsN
= s−Ne−

λδ
M

sα

N
∑

n=1

βN
n

n!

(

λδ

M
sα

)n

(16)

whereβN
n is given by (11). From (16) and (15) we have that

fγ(γ) =
1

(N − 1)!

e−
λδ
M

γα

γ

N
∑

n=1

(−1)NβN
n

n!

(

λδ

M
γα

)n

. (17)

In order to derive (10) from (17), we need to show that(−1)NβN
n ≥ 0. Once again, using

the identity for theN th derivative of a composite function,βN
n can be written as the following

derivative evaluated atx = 1.

βN
n =

dN (1− xα)n

dxN

∣

∣

∣

∣

x=1

. (18)

From (18), the following iterative relation can be proved for N ≥ 2

βN
n =

N
∑

m1=1





N

m1



βm1

1 βN−m1

n−1 . (19)

By successive application of (19), we obtain

(−1)NβN
n

N !
=

N
∑

m1=1

N−m1
∑

m2=1

· · ·
N−mn−2−···−m1

∑

mn−1=1

(−1)m1βm1

1 (−1)m2βm2

1 . . . (−1)mnβmn

1 (20)

where mn = N − mn−1 − · · · − m1. However,(−1)NβN
1 ≥ 0, since, by (11),(−1)NβN

1 =

(−1)N+1α(α−1) . . . (α−N +1) andα = 2/b < 1. Therefore,(−1)NβN
n ≥ 0 for n = 1, . . . , N .

8This identity is also employed in [18], in order to derive theccdf of γ.



10

As expected, increasing the spatial diversity orderN increasesfγ(γ), as more positive terms are

added to the polynomial in (10).

By the definition of the mgf ofγ and (10), we have

Φγ(s) =
1

(N − 1)!

N
∑

n=1

|βN
n |

n!

(

λδ

M

)n ∫ +∞

0

γαn−1e−
λδ
M

γα−sγdγ. (21)

This integral can be evaluated numerically for anys > 0 using Gauss-Laguerre quadrature.

C. Approximations

The numerical evaluation of̄Pl using (21) provides little insight on how the decoder perfor-

mance depends on the system parameters. In this section, we examine the decoder performance

whenλ/M → 0, i.e., the interferer point process in each dwell is sparse.This implies that the

network is operated in a regime of small FEP, i.e., typicallyP̄e ≤ ǫ, with ǫ ≤ 0.1.

Let B(ζ1, ζ2), ζ1, ζ2 > 0 denote the beta function. Our main result is stated in the following

proposition.

Proposition 1: If λ/M → 0, then P̄l = η( λ
M

)l + o
(

(

λ
M

)l
)

, whereP̄l is defined in (8) andη

is a positive constant. Moreover,

P̄l ≃
24αl−1

π
B

(

αl +
1

2
, αl +

1

2

)(

αB(N − α, α)

d2
X

λπR2

M

)l

(22)

where

d2
X =

(

1

Mc2Mc

∑

x,x′∈X

1

|x− x′|2α

)−1

. (23)

Proof: Omitting the terme−
λδ
M

γα

in (21), an upper bound toΦγ(s) for all s > 0 is

Φγ(s) =
1

(N − 1)!

N
∑

k=1

|βN
k |
k!

(

λδ

M

)k ∫ +∞

0

γαk−1e−γsdγ

=
1

(N − 1)!

N
∑

k=1

|βN
k |
k!

(

λδ

M

)k

s−αkΓ(αk)

=
αB(N − α, α)

Γ(1− α)

(

λδ

M

)

s−α +
1

(N − 1)!

N
∑

k=2

|βN
k |
k!

(

λδ

M

)k

s−αkΓ(αk). (24)

where we have used the identitiesΓ(ζ + 1) = ζΓ(ζ) and [17]

B(ζ1, ζ2) =
Γ(ζ1)Γ(ζ2)

Γ(ζ1 + ζ2)
. (25)
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From (24) and (8), we can see that, forλ/M → 0, P̄l = η( λ
M

)l +o
(

(

λ
M

)l
)

, with η appropriately

defined.

Note that the bound in (24) is tight asλ/M → 0. Ignoring the higher order terms, for

λ/M → 0, we thus have that

Φγ(s) ≃ Φγ(s) ≃ παR2B(N − α, α)s−α λ

M
. (26)

Substituting (26) in (8)

P̄l ≃
(

παR2B(N − α, α)d−2
X

λ

M

)l
4α

π

∫ π/2

0

(sin θ)2αl dθ (27)

whered2
X is defined in (23). Employing the identity (p.412, [17])

∫ π/2

0

(sin θ)2αl dθ = 22αl−1B(αl + 1/2, αl + 1/2)

we obtain (22).

Remarks: Proposition 1 states that, forλ/M → 0, the Hamming distance of the convolutional

code determines thediversity order, i.e., the slope of the curvēPe vs.λ/M . Moreover, the spatial

diversity orderN introduces an array orcoding gain through the factorB(N−α, α)L. To obtain

further insight on this factor, we examine the trend of the beta function for largeN . For large

ζ , it holds thatΓ(ζ) ∼
√

2πζζ−1/2e−ζ ( [17], p.945), therefore

Γ(N − α)

Γ(N)
≃ N−α

(

1− α

N

)N−α− 1

2

eα.

However, it is easy to verify thatlimN→∞

(

1− α
N

)N−α− 1

2 = e−α, so, from (25),B(N −α, α) ≃
Γ(α)N−α. As a result, for largeN , the coding gain is proportional toN−Lα.

A final observation is that, similarly to [6], the parameterd2
X is the harmonic mean of

the minimum squared Euclidean distance between the nearestneighbor pairs defined in Sec-

tion III-A, raised to the stability exponentα. Assuming unit average energy, for BPSK we have

d2
X ,BPSK = 2−2α, while for 4QAM and 16QAM with Gray mapping, we haved2

X ,4QAM = 2−α

andd2
X ,16QAM = 3

4
(
√

2
5
)−2α + 1

4
(2
√

2
5
)−2α, respectively.

D. Ergodic capacity

The ergodic capacity of (3) is

C =

∫ +∞

0

fγ(γ) log2(1 + γ)dγ. (28)
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A closed form expression appears hard to obtain due to the complicated nature of (10); never-

theless, the integral can be evaluated numerically with Gauss-Laguerre quadrature. In [19], an

approximation to (28) is given forN = 1. The following proposition provides upper and lower

bounds toC for N ≥ 1.

Proposition 2: The ergodic capacity of (3) is upper-bounded as

C < C̄ = log2

(

1 + NΓ

(

1

α
+ 1

)(

M

λδ

)1/α
)

(29)

and lower bounded as

C ≥ C =
1

α
log2

(

M

eΓλδ

)

+
HN−1

ln 2
, (30)

whereΓ = 0.577 . . . is the Euler-Mascheroni constant and

Hn =







n
∑

k=1

1

k
n ≥ 1 (31)

0 n = 0

is thenth harmonic number. This bound is tight, i.e.,C ≃ C for λ→ 0. A looser lower bound

is

C =
1

α
log2

(

NαM

eΓλδ

)

. (32)

Proof: The upper bound is derived by noting thatE[γ] = E[a]E
[

1
z

]

= NE
[

1
z

]

, so, for

N = 1, E
[

1
z

]

= E[γ]. SettingN = 1 in (10), we have

E

[

1

z

]

=
λδα

M

∫ +∞

0

γαe−cγα

dγ =

(

M

λδ

)1/α

Γ

(

1

α
+ 1

)

.

By applying Jensen’s inequality9 on (28), we obtain (29).

For the derivation of the lower bound, from (15) and (28), we obtain

C =
(−1)N

(N − 1)! ln 2

∫ +∞

0

γN−1Φ(N)
z (γ) ln γdγ

=
(−1)N

(N − 1)! ln 2

N−2
∑

k=0

(−1)k
[

Φ(N−k−1)
z (γ)

(

γN−1 ln γ
)(k)
]+∞

0

− 1

(N − 1)! ln 2

∫ +∞

0

Φ′
z(γ)

(

γN−1 ln γ
)(N−1)

dγ. (33)

9Jensen’s inequality was also employed in [20] in order to derive an upper bound to the ergodic capacity, albeit in a slightly

different context.



13

After some algebra, we can show that, fork = 1, . . . , N − 1, N > 1,

(

γN−1 ln γ
)(k)

= (N − 1) . . . (N − k)γN−k−1 ln γ

+ γN−k−1
∑

(l1,...,lk−1)

(N − l1) . . . (N − lk−1) (34)

where the summation is taken over all permutations of the vector (l1, . . . , lk−1), lj = 1, . . . , k,

j = 1, . . . , k − 1. Whenk = N − 1, then

(

γN−1 ln γ
)(N−1)

= (N − 1)!(ln γ + HN−1) (35)

whereHn is defined in (31). From (16) and (34), we can show that the firstterm in (33) is zero.

Hence

C =
λδα

M ln 2

∫ +∞

0

γα−1e−
λδ
M

γα

ln γ dγ +
HN−1

ln 2

from which (30) follows by use of (4.331.1) on p.602 of [17].

Since the harmonic number is lower bounded as [21]

HN > ln N + Γ +
1

2(N + 1)

we have that

HN−1 = HN −
1

N
> ln N + Γ +

1

2(N + 1)
− 1

N
> log N, N ≥ 2.

The latter inequality holds because, forN ≥ 2, 1
N
− 1

2(N+1)
< 1

2
< Γ, ∀N ≥ 2. As a result, a

looser lower bound to the capacity is (32).

Eq. (32) shows thatC is a linear function oflog2

(

M
λδ

)

, with slope1/α = b/2 and a constant

term log2 N − Γ
α

log2 e.

IV. NETWORK METRICS

Having evaluated the performance at the link level, we now turn our attention to network-

wide metrics. Similarly to [1], we define the transmission capacity10 τǫ as the maximum spatial

10In contrast to [1], where the SIR is constant across a packet,here the probability of packet errorPe is computed by averaging

over different channel realizations. We can thus say that, on the average, the probability that a packet is received successfully

is 1 − Pe.
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density of successful transmissions, multiplied by their rateRcMc, such that a constraintPe = ǫ

is satisfied, i.e.,

τǫ = λǫ(1− ǫ)RcMc, (36)

whereλǫ is the maximum contention density. A closed-form expression for λǫ may be obtained

by noting that, forǫ→ 0, we can take into account only Hamming distance error eventsin (9)

and, moreover,Pe ≃ P̄e. The constraint that needs to be satisfied is thereforeP̄e ≈ LbwLP̄L = ǫ.

From Proposition 1, we find that

λǫ ≈
( ǫ

K

)1/L d2
XM

16ααB(N − α, α)πR2
(37)

where

K ,
LbwL

2π
B(αL + 1/2, αL + 1/2) (38)

is related to the code parameters and the propagation exponent. The maximum contention density

of a coded system is therefore of the order(ǫ/Lb)
1/L. This result is a manifestation of the channel

diversity harnessed through frequency hopping and coding at the expense of spectrum. Moreover,

note thatλǫ is proportional toB(N − α, α)−1 ≈ Nα, which is in agreement with the scaling

law in [18].

The transmission capacity is upper-bounded byτ = λC, whereC is the link ergodic capacity

given by (28). From Proposition 2, a lower bound toτ is

τ =
λ

α
log2

(

NαM

eΓλδ

)

. (39)

Optimizing overλ, it is straightforward to verify that the optimalτ is also proportional toNα.

V. PHYSICAL-LAYER CONSIDERATIONS

This section discusses various physical-layer issues withrespect to the system model presented

in Section II. The influence of these on the decoder performance is assessed via simulation in

Section VI.

A. Channel estimation

In this subsection, we discuss the important issue of how thedecoder obtains estimates ofhd

andzd in thedth dwell. Assume that a header ofTp pilot symbols, selected from a complex PSK
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constellation of zero mean and unit power, and known at the RX, is transmitted at the beginning

of the dwell. If this header is denoted aspT
d , then, similarly to (1), the received pilot matrix is

Yd = hdp
T
d + Wd (40)

whereWd = Rb/2
∑

i∈Π ed,ir
−b/2
i eiφihd,ip

T
d,i and [Wd]n,t, n = 1, . . . , N, t = 1, . . . , Tp are i.i.d.

with [Wd]n,t ∼ CN (0, zd), given zd.

An estimate ofzd can be obtained by

ẑ =
1

N(Tp − 1)

∥

∥

∥

∥

(

IT −
1

Tp
ppH

)

Y
T

∥

∥

∥

∥

2

, (41)

where, for convenience, we have removed the subscriptd . This estimate is obtained by finding

jointly the maximum-likelihood (ML) estimators ofh and z (p.182, [22]), and multiplying the

latter by the factorTp/(Tp − 1) in order to remove the bias. Intuitively, the estimate of the

interference power is obtained by projecting the received signal onto the subspace which is

orthogonal to the pilot datap. Assuming that the estimate ofz is accurate, i.e.,̂z ≈ z, the

minimum mean square error (MMSE) estimate ofh is ( [22], p.391)

ĥ =
1

z + Tp
Yp∗ (42)

and, definingǫ = h − ĥ, it holds thatĥ ∼ CN
(

0, Tp

z+Tp
IN

)

, ǫ ∼ CN
(

0, z
z+Tp

IN

)

and ĥ, ǫ

are independent. We can see that the estimate ofh is accurate ifTp ≫ z.

Following the estimation ofh and z, the RX performs maximal ratio combining, i.e., it

evaluates the productĥ
H

‖ĥ‖2
Y. From (1), we have

ĥ
H

‖ĥ‖2
Y = xT +

ĥ
H

‖ĥ‖2
(

ǫxT + W
)

. (43)

Lumping the channel estimation error term with the interference, we can show that the equivalent

channel model follows (3), with the SIR defined as

γk,csi =
ak

zk

(

1 +
1 + zk

Tp

)−1

. (44)

The sequence{yk, γk,csi}DTd

k=1 is the input to decoder (6).

A consequence of channel estimation is the loss of information rate by a factor Td

Td+Tp
, due

to the transmission of the pilot symbols in each dwell. This factor must be taken into account

when evaluating the transmission capacity.
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B. Correlation of the interference

Eq. (8) is based on the assumption that the coded bits encounter independent SIR conditions

across the span of an error event in the decoder. The assumption is justified if, (a) there is

a sufficient number of dwells11 such that, due to interleaving, these bits will be transmitted

on different dwells, and (b) the SIRs are independent acrossdwells. Given that the coherence

bandwidth of the channel is equal to the width of a subband, the latter assumption is reasonable

if the number of frequencies is sufficiently large. As shown in [23], the temporal correlation of

the interference in a fixed Poisson network of transmitters and Rayleigh fading isp/2, wherep

is the random access probability. In this paper, random access is achieved via random frequency

hopping, i.e.,p can be substituted by1/M .

C. Synchronization

The assumption of synchronization of different TX-RX pairsin the network at the dwell level

results in a worst-case scenario in terms of the interference power level. On the other hand, it also

results in a best-case scenario in terms of the correspondence of the estimated interference level

to that encountered in the remainder of the dwell. In this respect, asynchronous transmissions

may require the insertion of more pilot symbols throughout the dwell and, consequently, the

loss of rate. The mismatch between the actual and estimated interference power will incur a

performance loss, the study of which is beyond the scope of the present paper.

D. Power control

In [2], it was shown that channel inversion PC increases the outage probability in a random

ad hoc network with fading. In order to examine the effect of PC in the context of this paper,

we assume that the typical TX-RX link is subject to lognormalshadowing, i.e., the transmitted

signal is multiplied by a r.v.S = 10σsξ/10, whereξ ∼ N (0, 1) and, typically,σs = 6 − 8 dB.

Note thatS (like the node locations) is assume to be a “long-term” random variable, i.e., it is

constant for at least the duration of a packet slot.

In order to take shadowing into account in the analysis of Section III, the definition of the

constantδ in (5) for the case of channel inversion PC must be modified asδpc = πΓ(1 −

11This is also related to the length of the codeword.
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α)R2E[(SαS ′−α], whereS models the shadowing between TXi and RX0 and S ′ models the

shadowing between TXi and its corresponding RX. In the absence of PC, we haveδnpc =

πΓ(1−α)R2E[Sα]S ′−α, whereS ′ now denotes the shadowing between TX0 and RX0. Therefore,

in the case of no PC,Pl in (8) is conditioned on the realization ofS ′ and the expectation of the

former with respect to the latter must be taken in order to obtain the unconditional probability

of codeword/packet error.

VI. NUMERICAL RESULTS

In this section, we present numerical results for a network with default parametersR = 1 m,

M = 100, Mc = 2 (4QAM), N = 2 and b = 4. Six rateRc = 1/2 convolutional codes are

considered, with memory, minimum Hamming distances and distance spectra listed in Table II

(see [24] for more details). In all plots, the upper bound to the pairwise error probabilitȳPl is

evaluated by (22). We also define the parameterNeff = λπR2

M
, i.e., the expected number of TXs

in the transmission range per subband, as a measure of the interference level in the network.

In the simulations, we generate a new network realization for every transmitted packet. At

the TX, we employ a block interleaver of vertical dimension equal to the number of bits per

dwell McTd and horizontal dimension equal toD, such thatMcTd consecutive codeword bits are

guaranteed to be transmitted on different dwells. The coherence time of the fading is taken to

be equal to the duration of a packet. In this manner, we can compare the MA scheme proposed

in this paper with the slow FH (IA) scheme advocated in [12].

In Fig. 1, we plot the FEP vs.N−1
eff for the codes listed in Table II andLb = 800. The upper

bound (9) is plotted with a solid line, when error events up tolength L + 4 are taken into

account, and with a dotted line, when only the Hamming distance error events are taken into

account. As expected, for each code, the two curves convergeasNeff → 0. We also simulate the

performance of the codes by dividing the packet inD = 40 dwells ofTd = 20 4QAM symbols.

Fig. 1 demonstrates that the dotted curve is quite accurate for Pe < 0.01 and Enc1-Enc5, however

it is slightly optimistic in the case of Enc6. This is attributed to the impact of channel correlation

within the packet the effect of which becomes more apparent as the decoder Hamming distance

(hence the span of the error events) becomes larger.

In Fig. 2, we plot the simulated FEP vs.N−1
eff , for Enc4 and decreasing values of the number

of subbandsM . As M decreases the diversity order decreases, as the probability that the same
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fading condition and/or the same interferer are encountered across dwells increases (and the

assumption of independent channel conditions thus becomesobsolete). The simulatedPe in the

case of slow FH is also shown for comparison; note that even for M = 4, the gain of the scheme

considered in this paper compared to slow FH is still considerable, as the diversity order of the

latter is only one.

In Fig. 3, we plot the maximum contention densityλǫ, evaluated by (37), vs.L, for the set

of parameters of Fig. 1 and different values of the ratioǫ/wL. Note that, forǫ/wL = 0.001,

increasing the diversity order of the code from3 to 8, results in a tenfold increase ofλǫ. The

gain comes at an increase of the decoder memory from1 to 5.

Fig. 4 presents the results of Proposition 2 on the link ergodic capacity for two different values

of N . As expected, (29) and (30) become tight asNeff →∞ andNeff → 0, respectively.

In Fig. 5, we employ the channel estimation scheme of SectionV and examine the effect of

imperfect CSI via simulation, whenLb = 500, D = 25 andTd = 20. For Tp = 5 and a rate-loss

factor of 20% there is a1 dB penalty compared to the perfect-CSI case. AsTp is increased the

performance loss is reduced, at the expense of information rate, e.g., atTp = 10, the rate-loss

factor is2/3.

Finally, in Fig. 6, the simulated FEP is plotted vs.N−1
eff for Enc2 and Enc4, for a channel with

lognormal shadowing (σs = 6 dB) and shadowing-inversion PC or no PC. For smallNeff , PC

introduces a substantial gain, e.g., for Enc4 atNeff = 10 dB, this gain is an order of magnitude.

The reason for this is that the detrimental effect of shadowing to RX0 is canceled and, at the

same time, the interferer process is sparse enough such thatthe code protects RX0 in the unlikely

event of a large interfering power from a nearby interferer12. Theoretically, we can see this with

the help of Jensen’s inequality; given that all shadowing variables are i.i.d., by the definitions

of δpc andδnpc in Section V-D, we have thatδl
pc = E[Sα]lE[Sα]l < E[Sαl]E[Sα]l = δl

npc. Hence,

from Proposition 1, PC should perform better in the small FEPregime, which is verified by

Fig. 6. On the other hand, as the network becomes very dense, the diversity in the received

signal is lost and the decoder is overwhelmed by an increasedinterference level due to PC. This

is more apparent for Enc2 than Enc4, since Enc2 has a smaller Hamming distance. On a final

note, in the case of PC, we observe that there is good agreement between (9) and the simulation

12This occurs when deep shadowing afflicts the channel betweenthat interferer and its respective RX.
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results.

VII. CONCLUDING REMARKS

In this paper we considered FH during packet transmission and coding, as a physical layer

scheme for random wireless networks with uncoordinated transmissions. We demonstrated via

analysis and simulation that the transmission capacity scales asǫ1/L, whereǫ is the constraint

placed on the packet error probability andL is the code diversity order. A byproduct of our

analysis was the derivation of a compact expression for the pdf of the SIR in a Rayleigh fading

and α-stable interference channel, when the RX performs MRC. Upper and lower bounds on

the ergodic capacity of this channel were also derived.

Employing a simple channel estimation algorithm based on the transmission of pilot symbols

at the beginning of each dwell, we showed that the performance degradation due to imperfect

CSI is reasonable, at a rate loss of the order of20%. The effect of channel inversion PC was

also confirmed for a channel with lognormal shadowing and PC was shown to be beneficial if

λ/M is sufficiently small. In conclusion, we believe that, giventhe gains in terms of network

capacity at moderate encoding/decoding complexity, even for a small number of subbands, this

scheme merits consideration despite the increased overhead compared to a slow FH system.
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TABLE I: Commonly used symbols

Symbol Meaning

R Distance of typical TX-RX link

λ Density of TXs

M Number of subbands

N Number of RX antennas

b Path-loss exponent (b > 2)

α = 2/b Stability exponent

Lb Number of information bits per packet

Mc Number of bits per constellation symbol

Rc Rate of convolutional code

Td Number of data symbols per dwell

Tp Number of pilot symbols per dwell

D Number of dwells

L Hamming distance of convolutional code

Pl Probability of length-l error event

wl Number of length-l error events

Pe Probability of packet error

C Ergodic capacity of typical TX-RX link

τǫ Transmission capacity under constraintPe = ǫ

TABLE II: Optimum rate 1/2 convolutional codes

Encoder Memory L wL, . . . , wL+4

Enc1 1 3 1,1,1,1,1

Enc2 2 4 2,0,5,0,13

Enc3 3 5 1,0,6,0,16

Enc4 3 6 1,3,5,11,25

Enc5 5 8 2,7,10,18,49

Enc6 7 10 1,6,13,20,64
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Fig. 1: FEP vs.N−1
eff for the codes in Table II. The solid (dotted) lines depict (9)with error

events up to lengthL + 4 (L) taken into account (4QAM,Lb = 800, D = 40, Td = 20, N = 2,

b = 4, perfect CSI).
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Fig. 2: FEP vs.N−1
eff for Enc4 andM = 4, 20, 100. The simulated performance for slow FH is

also shown for comparison. (4QAM,Lb = 800, D = 40, Td = 20, N = 2, b = 4, perfect CSI).



23

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 3  4  5  6  7  8  9  10

L

λ
ǫ
(L

)
(T

X
s/

m
2
)

ǫ/wL = 0.001
ǫ/wL = 0.01
ǫ/wL = 0.1

Fig. 3: Maximum contention density vs.L for different values ofǫ/wL (R = 1 m, 4QAM,

Lb = 800, N = 2, b = 4, perfect CSI).

 0

 2

 4

 6

 8

 10

 12

 14

-10 -5  0  5  10  15  20

N=2N=10

 0

 2

 4

 6

 8

 10

 12

 14

-10 -5  0  5  10  15  20

N=2N=10

N−1

eff
(dB)N−1

eff
(dB)

E
rg

od
ic

ca
p.

(b
its

/s
ym

bo
l)

E
rg

od
ic

ca
p.

(b
its

/s
ym

bo
l)

Upper bound, (29)
Lower bound 1, (30)
Lower bound 2, (32)
Exact, (28)

Fig. 4: Link ergodic capacity vs.N−1
eff . The two groups of curves correspond toN = 2, 10

(b = 4).



24

10-5

10-4

10-3

10-2

10-1

100

 4  5  6  7  8  9  10  11  12

Perf. CSI, Theory (9)
Tp = 2, Sim
Tp = 3, Sim
Tp = 4, Sim
Tp = 5, Sim

Tp = 10, Sim

N−1

eff
(dB)

F
E

P

Fig. 5: FEP vs.N−1
eff for Enc1 and different values ofTp (4QAM, Lb = 500, D = 25, Td = 20,
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Fig. 6: FEP vs.N−1
eff for Enc2 and Enc4 with/without PC (4QAM,Lb = 500, D = 25, Td = 20,

N = 2, b = 4, perfect CSI,σs = 6).


