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Abstract

The goal of this paper is to explore the benefits of channedrdity in wireless ad hoc networks.
Our model is that of a Poisson point process of transmiteash with a receiver at a given distance.
A packet is divided in blocks which are transmitted over efiféint subbands that are determined by
random frequency hopping. At the receiver, a maximum-liicdd decoder is employed to estimate
the transmitted packet/codeword. We find that/ifis the Hamming distance of the employed error
correction code and is a constraint on the packet error probability, the tragsion capacity of the
network is proportional ta'/*, whene — 0. The proportionality constant depends on the geometry of
the symbol constellation, the packet length and the numbexogive antennas. This result implies that,
at the cost of a moderate decoding complexity, large gainsbeaachieved by a simple interference
randomization scheme during packet transmission.

We also address practical issues such as channel estinaatibpower control. We find that reliable
channel information can be obtained at the receiver witlsignificant rate loss and demonstrate that

channel inversion power control can increase the netwankstnission capacity.

Index Terms

Frequency hopping, interference diversity, bit-inteviethcoded modulation (BICM), Poisson point

process, transmission capacity

I. INTRODUCTION

The study of random wireless networks has recently gathetetof attention in the research
community [1]-[3]. The main theme of this work is the use abltofrom stochastic geometry,
in order to provide analytical performance results and kbgvensights for an ensemble of
networks and different physical, MAC and network layer t&tgées. A central assumption is

that the network consists of a Poisson point process of nrdtess, and each transmitter (TX)
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has a corresponding receiver (RX) at a given distance. A lpopuetric that quantifies the
network performance is the transmission capacity, defiredha maximum spatial density
of transmissions, multiplied by their rate, such that a t@mst on the packet error rate is
satisfied [1].

In the majority of existing papers, interference from cameat transmissions is considered
as noise and an outage probability approach is taken to mualedet successes: given the
TX locations and the channels between the TXs and the refer&X, which are assumed
to be constant during the transmission of a packet, a pasksuccessfully received if the
signal-to-interference-ratio (SIR) is larger than a dertidareshold. In information-theoretical
terms, assuming the interfering TXs are transmitting syisirom a Gaussian alphabet, a packet
reception occurs when the channel mutual information isadtlequal to the desired information
rate [4].

In this paper, as in [5], we take an alternative approach aqibee the impact of channel
randomizatiorwithin the transmission of a packet. Our motivation stems from tek kmown fact
that channel diversity can be exploited through error abiwe coding in order to yield perfor-
mance gains. Specifically, we consider a bit-interleavettdomodulation scheme (BICM) [6],
in conjunction with random frequency hopping (FH), maximatio combining (MRC) and
maximum likelihood (ML) decoding at the RX. Coding combinedh FH exploits frequency
diversity, if the hopping distance is larger than the coheeebandwidth of the channel fading,
and interference diversity, as the set of interfering tnaitters over each dwell is potentially
different. We analyze the performance of this scheme in seoithe codeword/packet error
probability and evaluate the transmission capacity as atifmm of the code diversity order and
the size of the antenna array at the RX. Since an averagingdifferent channel states takes
place within a packet, the information rate of the typical-RX link is upper-bounded by the
ergodic capacity for which we provide tight upper and loweuids. We also address practical
physical layer issues such as channel estimation, powdratdi?C) and channel correlation,

and assess their effect on the performance via simulation.

A. Related work

Several papers have dealt with the performance analysisd#ccFH systems under multiple-

access (MA) interference, as well as partial-band interfee (see, e.g., [7], [8] and ch. 12 of [9]).



A common feature of such systems is that the performance eatrdmatically improved if the
decoder is aware of the interference levels across the ardelf a Reed-Solomon (RS) code
is employed, the decoder declares an erasure when a symbdideam “hit”; in the case of
soft-decoding, the metrics in the Viterbi decoder are wedby the respective SIRs. In [10],
RS coding combined with FSK modulation is considered in as$ field of interferers and
the impact of the code rate on the information efficiency,, itee product (packet success
probability) x (transmission distancey (rate), is explored. More recently, [11] has extended
the work in [10] to accommodate differential unitary spsicee modulation and unknown fast
time-varying channels.

The use of spread-spectrum (SS) communication for ad hogonlet is discussed in [12].
The authors make an argument against interference avgradiich they define as.®. using
direct-sequence (DS) SS or fast Fid proportionally reduce the interference level” and adiec
hopping at the packet level, or interference avoidance, @&)the preferable MA scheme for ad
hoc networks. While the near-far problem of DS-SS in a deeénéd environment - where PC
is absent - is clear, it is not obvious why slow FH might be erable to fast FH, apart from

the fact that the former induces less overhead in terms of e@duisition and synchronization.

B. Contributions

This paper demonstrates that considerable gains in ternmetefork capacity are possible,
by combining FH during packet transmission and error coiwaacoding of modest complexity.
If L is the Hamming distance of the convolutional code employetthe TX, A is the density
of TXs and M is the number of subbands, we show that \dd/ — 0, the codeword error
probability follows the power Iaw;(ﬁ)L, n > 0. This implies that, fort — 0, the transmission
capacity is proportional te'/” wheree is the constraint placed on the codeword error probability.
The proportionality constant depends on the geometry o$ynebol constellation, the codeword
length, as well as the termV*/* where N is the number of RX antennas amd> 2, is the
propagation exponent. We also derive upper and lower boondihe ergodic capacity’ of
the typical TX-RX link; specifically, we show thaf > % log, (uN*4L), wherep > 0 is an

appropriatelly defined constant.

IFast FH refers to hopping on the order of a symbol or a few sysnhehile slow FH, or interference avoidance, refers to

hopping at the packet level.



Practical physical layer issues are discussed such as @hestimation, PC and channel cor-
relation. We demonstrate via simulation that, with an atadap rate loss due to the transmission
of pilot symbols, accurate channel state information (G&k) be obtained for decoding. With
respect to PC, it is shown that channel inversion can agtirprove the performance, since
the error correction code protects the RX from the deep fafié@s nearby interferers. Finally,
the impact of the channel correlation is assessed as thearunhisubbands and/or the number

of dwells is decreased and it is shown that the gains comparstbw FH are still significant.

C. Paper organization and notation

The rest of the paper is organized as follows. Section Ibohices our network and physical
layer models in detail. In Section Ill we derive the statistof the SIR and determine the
performance of the decoder under perfect CSI. The trangmisapacity is defined and evaluated
in Section IV. Section V discusses practical physical la@rsiderations and Section VI presents
our numerical results. Section VII concludes the paper.

A real (circularly symmetric complex) Gaussian random afale » with mean0 and variance
o2 is denoted asx ~ N(0,0?%) (x ~ CN(0,0?)). A central chi-square r.vz with parameter
1/2 andn degrees of freedom is denoted as- x2. I, is then x n identity matrix. (-)T and
()" denote the transpose and conjugate transpose operatispectively.[X], ; denotes the
(n,t) element of matrixX. The symbol " is employed to denote asymptotic equality of two

functions. Finally, a list of symbols commonly used throaghthe paper is provided in Table I.

[I. SYSTEM MODEL
A. General

We consider a network of TXs, each with a RX at a fixed distaR@nd random orientation.
The locations of the TXs are drawn independently according homogeneous Poisson point
processll of density\. The TXs transmit packets to their corresponding RXs caecily and
in a synchronized manner. Typically, the locations of thelesgoare constant for at least the
duration of a packet.

The bandwidth is divided intd/ subbands. The channel between a typical TX-RX pair over
a subband comprises flat Rayleigh fading and path loss &@ogptd the lawr—, whereb > 2

is the propagation exponent. We assume that the coheremciviolth of the fading is equal



to the width of a subband, while the coherence time can bel égufe duration of a packet
slot or the duration of awell, which will be defined shortly. We also consider an intenfee
limited scenario, i.e., additive noise at the RX is assumagligible, such that interference from
concurrent transmissions is the only cause for packetrhoitially, we assume that the power
transmitted from all TXs is the same and normalized to onguds of PC to compensate for
long-term fading, e.g., shadowing, are discussed in Sedfio

Assume that a packet correspondg tdinary information bits),, . . ., bz, . which are the input
to a convolutional encoder of rafe. < 12. The bitscy, ..., cx, . . ., cr,/r. Of the output codeword
are interleaved and Gray-mapped to symbqls .., z, ...,z r.a.) from a complex PSK or
QAM constellationX’ of size |X| = 2M¢, zero mean and unit average power. We assume that
the one-to-one interleaver mappikg«— (k, ji), wherej,, = 1,..., M, is the position ofc; in
the symbolz,, is known at the RX. Next in the TX chain, the symbol sequerscdivided in
D = Ly/(R.M,T,) groups of sizeT, and each group is transmitted in a dwell, over a subband
which is randoml§ selected with probabilityl /. If we denote the data symbols of thi"
dwell, d = 1,..., D, asz) the sequencdz]}? | constitutes a packet. For convenience, we
assume all transmissions are synchronized at the dwell. [€és is a worst-case scenario in
terms of the level of the interference power over a dwell {#iseie of asynchronous transmissions
is discussed in Section V).

Consider a typical TX and its corresponding RX, both spetifig indexO0, i.e., TX, and
RX,. If RX, is equipped with an antenna array of si¥e> 1, the received data matrix in dwell
d is®

Ya0= hd,omgo + RY? Z ed,ir;b/zei‘m hd7im£i, Q)
i€l
whereh,o ~ CN(0,1Iy) is the fading vector between TXand RX); e, is the indicator of

whether TX 4, at distancer; from RX, and denoted as T occupies the same subband as

2\We assume that the encoder is trellis-terminated [13}, it.és forced to start from and end at the zero-state. Thigltgsn

a small rate loss which is not taken into account.

3For convenience, we assume that the quotint§ R.M.) and D = L, /(R.M.T,) are integer.

“In reality, the hopping pattern is determined pseudorarygl@amd is known at the RX. However, the model of random subband
selection is convenient for analytical purposes.

SWe assume that the average received poRef per antenna is known at RX We have taken it into account in the

interference portion of the received signal because it iv@oient in terms of notation in the remainder of the paper.



TX, in dwell d, i.e., e;; = 1 with probability 1/M ande,; = 0 with probability 1 — 1/M;
hy; ~ CN(0,1y) is the fading vector between TXand RX; w;i is the group of data symbols
transmitted by TXin dwell d; and ¢; is a random phase, uniformly distributed|in 27), which
models the phase offset between the,RXd TX.. Note that the subscriptin the fading vectors
indicates that, in general, depending on the coherence threse may vary independently from
dwell to dwell.

Let W, denote the interference term in (1). Since the elementgofare independent
and zero-mean, the same holds for the element8VQf,. Moreover, given{r;}, we assume
that [Wygln: ~ CN(0,240)% n = 1,...,N, t = 1,.... Ty, and zqp = Y, eari’ is the
interference power in dwell seen by RX. RX, can obtain knowledge di,, andz,, with the
help of pilot symbols which are transmitted at the beginrohghe dwell. Presently, we assume
that they are perfectly known; a straightforward channéinedion algorithm is presented in
Section V.

B. Equivalent channel model and decoding
H
The reference RX performs MRC, i.e., it evaluates the prDﬁ&%Yd,O. From (1), we have

hl hl
— Y, =al + W,
Ral2 " 7 T JRaf2 1

where we have omitted the index O in order to simplify the iota As a result, we have the

(2)

following equivalent channel model for data symhql & = (d — 1)T; + 1,...,dTy, which is
transmitted in dwelld

Yp = T + Wy (3)

where,w, ~ CN(0,7,,"), given the equivalent SIR,, = 2. The r.v.qy, is chi-square distributed
with 2V degrees of freedom, i.eq;. ~ x2,. Moreover, due to the fact that the locations of the
inteferers in each dwell are a realization of a Poisson m®a® the plane with density/M,
it is known thatz; is an a-stable random variable with stability exponent= 2/b [14], [15].
Its moment generating function (mgf) is [14]

A6 o

O.(s)=E[e*]=e N, s>0. 4)

®The Gaussian assumption for the interference is exact ielbiments ofr, ; are selected from a PSK constellation and an

approximation if they are selected from a QAM constellation



where
§ & 7l(1 — a)R% (5)

The sequencéyk,%},?ff is the input to the decoder which decides that the codewons

transmitted according to the simplified ML criterion (eq,(B5])

Ly/Re
c= argmcin Z Yk miljfl, {|ykz - :L’|2} (6)

k'=1 Z’EX,;:,

Whereng,’ denotes the set of constellation symbols that have,b#t positionj., wherej;,, =
1,..., M.. The weighting of each distance metric by the respective 18fiects the confidence
of the decoder in that metric.

[1l. ANALYSIS

This section is primarily devoted to the performance anslgsdecoder (6). In order to round
out the analysis, in Section 1ll-D, we also derive upper awder bounds to the ergodic capacity
of channel (3). Since the scheme presented in Section liceglan “averaging” over different
channel states within the packet, the ergodic capacity ispger bound to the information rate
of the typical TX-RX link.

A. Decoder performance

The codeword - or frame - error probability (FEP) of decod®r L., is upper-bounded as [13]
P. <L Z w Py (7)
I=L,L+1,...

where P, is the probability of a lengtt-error event, or pairwise error probability, and is the
number of length-error events. The minimum length of an error evénti.e., the Hamming
distance, as well as the weight distributi¢m,} depend on the particular code employed.

We now assume that, due to random interleaving, the sequericeymbols that corresponds
to a sequence dfcoded bits encounteradependent SIR conditions (this assumption is discussed

in Section V). From [6], [16],”, can be upper-bounded as
l

1 [7™/2 1 |z — 2|2
_ - o, (1) 4
— /0 M, 2Me 2. % < 4sin® 0 ) ’ ®

(z,x")eX

B

IN




where ®.(s) is the mgf of the SIRy, i.e, ®,(s) = E[e™"*], s > 0 (the time indext has been
removed as it is of no consequencg), ') are all possibleM .2 nearest-neighbor pairs in
X which have complementary bits in positignj = 1,..., M. [6], e.g., for 4QAM (QPSK)
constellations with Gray mapping, all such pairs are at t@mum constellation distancé, ;...
Note that, in the limit of largeE[4]’, P, ~ P, [6].
From (7), a further upper bound 18, is
Pe =1Ly Z wlpl- (9)
I=L,L+1,...

The evaluation off;, in (8) is possible by numerical integration, provided thats) is known.

The derivation of®.,(s) is the topic of the following subsection.

B. Statistics of v

The probability density function (pdf) of is given by the following lemma.
Lemma 1. The pdf of the SIRy is given by

e XN |5N| n
() = (N—l 25 ( ) (10)

y

where
BY =S (1" ( " ) (am)y, n=1,...,N (11)

and (am)y = am...(am — N + 1) is the falling sequential product.

Proof: The cumulative distribution function (cdf) of, F,(v), is by definition

+oo
PO =Pz = [ R (12)
where .
Fa(a)zl—e_“Z%zl—% (13)
2l .

is the cdf of the chi-square r.v. and

400
[(¢, ) :/ e 't dt, >0 (14)

“In the context of this paper, this corresponds to the interfpoint process in each dwell being sparse, AgM — 0.



is the incomplete gamma function (p.949, [17]). Substiyit{13) in (12) and taking the deriva-
tive, the pdf ofy is given by
B 1 +oo dF(N, 73> - ,YN—I +oo
_1\N.N—-1 IN
_ (=D dYe. () (15)
(N =1 dyN
where we have used the identity (p.951, [1?%2’—” = —2¢~'e™® and the Laplace transform

property

f(2)2Ne 7 dz

N £ NdN‘I)z(S)
fz(z)z <—>(—1) oy

From the identity for theV'" derivative of a composite function (0.430.1, p.24, [17f}easome

algebra, we obtain

d¥o.(s)  _y 23 ga By "
oy =8 e ; o (MS ) (16)
where3Y is given by (11). From (16) and (15) we have that
1 e S (=D)VEY (N,

In order to derive (10) from (17), we need to show tiatl)V3Y > 0. Once again, using
the identity for theN'" derivative of a composite functios’’ can be written as the following

derivative evaluated at = 1.

dV (1 — zo)"
daN

From (18), the following iterative relation can be proved 6 > 2

N
gy =>" ( N ) AR (19)

mi=1 my

B = (18)

r=1

By successive application of (19), we obtain

N/GN N N-my N—mp_o—-—my

=3 Y Sy =y (™A (20)

mi1=1 mao=1 Mp—1=1
wherem,, = N —m,_; — --- — my. However, (—1)Y3N > 0, since, by (11),(-1)V3) =
(-D)¥a(a—1)...(a—=N+1) anda = 2/b < 1. Therefore,(—1)¥3Y > 0forn=1,..., N.
|

8This identity is also employed in [18], in order to derive ttedf of ~.
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As expected, increasing the spatial diversity ortfeincreasesf, (), as more positive terms are
added to the polynomial in (10).
By the definition of the mgf ofy and (10), we have

N
_ 1 |ﬁ7]LV| Ad "/+OO an—1 —&wa—s'y
- (s) = (N —1)! anl a \m) ), T° a7 (1)

This integral can be evaluated numerically for any 0 using Gauss-Laguerre quadrature.

C. Approximations

The numerical evaluation aP, using (21) provides little insight on how the decoder perfor
mance depends on the system parameters. In this sectiorxkanere the decoder performance
whenA/M — 0, i.e., the interferer point process in each dwell is spafégés implies that the
network is operated in a regime of small FEP, i.e., typica&lly< ¢, with ¢ < 0.1.

Let B(¢1,¢2), (i, ¢ > 0 denote the beta function. Our main result is stated in thieviahg
proposition.

Proposition 1: If A\/M — 0, thenP;, = n(2)' + o ((%)l) where P, is defined in (8) and
is a positive constant. Moreover,

_ dal—l 1 aB(N — a,a) MR?\'
P~ - (al+ al+2)< Z A ) (22)

where

-1
dX ( oM. Z |z — /‘204) ) (23)

Tz’ eX

Proof: Omitting the terme=77" in (21), an upper bound @ (s) for all s > 0 is
A - ) g i (Aﬂé)k/om e
- i 5 i; |5g| (%)ks—akr(ak)
_ —QBF(E\{:Z)’ o) (AM(S) S ! o Z 15 <—) ST (ak).  (24)

(
where we have used the identitiB&( + 1) = (I'(¢) and [17]

D))
F( + ()

B(G1,G2) = (25)
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From (24) and (8), we can see that, fofM — 0, ;= (<) +o0 ((ﬁ)l> with  appropriately
defined.

Note that the bound in (24) is tight as/M — 0. Ignoring the higher order terms, for
A/M — 0, we thus have that

®.,(s) ~ @, (s) ~ TaR*B(N — a, a)s_“%. (26)
Substituting (26) in (8)
3 A l4a w/2
P~ (WQRQB(N - a,a)d;f—) —/ (sin )% d@ (27)
M) 7 J
whered? is defined in (23). Employing the identity (p.412, [17])
w/2
/ (sin )% df = 22" ' B(al +1/2,al +1/2)
0
we obtain (22). [ |

Remarks: Proposition 1 states that, for/A/ — 0, the Hamming distance of the convolutional
code determines thdiversity order, i.e., the slope of the curvE, vs. \/M. Moreover, the spatial
diversity orderN introduces an array awding gain through the factoB(N — «a, «)~. To obtain
further insight on this factor, we examine the trend of th&aldenction for largeN. For large
¢, it holds thatl'(¢) ~ v2r¢¢1/2e=¢ ([17], p.945), therefore

['(N — «) _ a\N-o—3
~N“(1—-— e
T(N) < N) ¢
However, it is easy to verify thatmy_... (1 — %)N_“‘% =e %, so, from (25),B(N — a, a) ~

I'(a)N~2. As a result, for largeV, the coding gain is proportional t&y %<,

A final observation is that, similarly to [6], the parameié} is the harmonic mean of
the minimum squared Euclidean distance between the neaeggtbor pairs defined in Sec-
tion Il1-A, raised to the stability exponent. Assuming unit average energy, for BPSK we have
d% psk = 2%, while for 4QAM and 16QAM with Gray mapping, we hav# ;.\ = 27

and d3, 14qan = %(\/g)‘m + i(Q\@)‘M, respectively.

D. Ergodic capacity

The ergodic capacity of (3) is

+oo

C= i f+(7) logy(1 + 7v)dy. (28)
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A closed form expression appears hard to obtain due to thelomated nature of (10); never-

theless, the integral can be evaluated numerically withsGduaguerre quadrature. In [19], an
approximation to (28) is given foN = 1. The following proposition provides upper and lower
bounds toC for N > 1.

Proposition 2: The ergodic capacity of (3) is upper-bounded as

1/a
C<ézlog2<1+Nr<1+1) (%) ) (29)

and lower bounded as

ngzélogQ( v ) Moy

el'\d In2’
wherel’ = 0.577... is the Euler-Mascheroni constant and

_ {i,ﬁ nz @)
k=1

(30)

0 n=20
is then'™ harmonic number. This bound is tight, i.€!,~ C for A\ — 0. A looser lower bound
is
1 NeM

Proof: The upper bound is derived by noting thialy] = E[¢JE [1] = NE[!], so, for
N =1, E[1] = E[4]. SettingN =1 in (10), we have

17 Ma [T . M\Y* /1
E|-| =22 %= dy = (=) T(=+1]).
[ rere= () (e

By applying Jensen’s inequaltyn (28), we obtain (29).
For the derivation of the lower bound, from (15) and (28), virtam

(=D~ T N1 ()
c = N-Dm2), M (7) Invydy
1 N N-2 o - 17 +00
- (N< 1;'1112 > [0 0) (" ),
k=0
1 ‘oo ) .
- m/{) o (y) (v IIHV)(N Yy, (33)

®Jensen’s inequality was also employed in [20] in order tdvéean upper bound to the ergodic capacity, albeit in a dijght
different context.
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After some algebra, we can show that, foe=1,..., N — 1, N > 1,

_ k ke
(v 11n7)( - (N—=1)... (N —=E)yN " 1Iny
+ NN (N k) (N = L) (34)
(U1, l1)
where the summation is taken over all permutations of theéoveé¢,, ... l,_1), ; = 1,...,k,

j=1,....,k—1. Whenk = N — 1, then
(¥ ) = (V= )iy + Hyo) (35)

where H,, is defined in (31). From (16) and (34), we can show that thetirsh in (33) is zero.

Hence
Ao

Ml1n?2
from which (30) follows by use of (4.331.1) on p.602 of [17].

Since the harmonic number is lower bounded as [21]

Q:

Foo o Hpy_
/ Y e Iny dy + A2
0 In2

Hy>InN+T + m
we have that
HN_leN—i>1nN+F+;—i>logN, N > 2.
N 2(N+1) N
The latter inequality holds because, ft > 2, + — m <1<T, VN >2 Asaresul, a
looser lower bound to the capacity is (32). [ |

Eq. (32) shows tha€ is a linear function oflog, ({%), with slopel/a = b/2 and a constant

termlog, N — g log, e.

IV. NETWORK METRICS

Having evaluated the performance at the link level, we nom tur attention to network-

wide metrics. Similarly to [1], we define the transmissiopaeity'® 7. as the maximum spatial

10n contrast to [1], where the SIR is constant across a pahkes, the probability of packet err@t. is computed by averaging
over different channel realizations. We can thus say thathe average, the probability that a packet is receivedesstally
is1— P..
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density of successful transmissions, multiplied by thate z. )., such that a constraim®, = ¢
is satisfied, i.e.,
Te = A(1 — €) R M., (36)

where )\, is the maximum contention density. A closed-form expres$or A\. may be obtained
by noting that, fore — 0, we can take into account only Hamming distance error evien{8)
and, moreoverP. ~ P.. The constraint that needs to be satisfied is therefore Lyw; P, = e.

From Proposition 1, we find that

€\ /L d3 M
~ — 7
A (K) 16°aB(N — a,a)mR? 37)
where
N Lywy,
K= 5 B(aL+1/2,aL +1/2) (38)
T

is related to the code parameters and the propagation expdiiee maximum contention density
of a coded system is therefore of the orélefL,)'/~. This result is a manifestation of the channel
diversity harnessed through frequency hopping and coditigeaexpense of spectrum. Moreover,
note that), is proportional toB(N — «, a)~! =~ N¢, which is in agreement with the scaling
law in [18].

The transmission capacity is upper-boundedrby \C, whereC' is the link ergodic capacity

given by (28). From Proposition 2, a lower boundrtas

A N*M

Optimizing over), it is straightforward to verify that the optimalis also proportional tave.

V. PHYSICAL-LAYER CONSIDERATIONS

This section discusses various physical-layer issuesredhect to the system model presented
in Section II. The influence of these on the decoder perfoomas assessed via simulation in
Section VI.

A. Channel estimation

In this subsection, we discuss the important issue of howldueder obtains estimates if

andz, in the d"" dwell. Assume that a header 6§ pilot symbols, selected from a complex PSK



15

constellation of zero mean and unit power, and known at theiR¥ansmitted at the beginning

of the dwell. If this header is denoted @3, then, similarly to (1), the received pilot matrix is
Yy =hap; + Wy (40)

whereW, = RY/23". ed,ir;b/Qeiﬁf’ihd,ipdT,i and[W,|,,,n=1,...,N, t =1,...,T, are i.i.d.
with [W],.. ~ CN(0, z4), given zg.

An estimate ofz; can be obtained by
2

! , (41)

1
5 = Ir— — H YT
: N(Tp_l) H(T Tppp )

where, for convenience, we have removed the subséripthis estimate is obtained by finding

jointly the maximum-likelihood (ML) estimators d& and z (p.182, [22]), and multiplying the
latter by the factorl,/(7, — 1) in order to remove the bias. Intuitively, the estimate of the
interference power is obtained by projecting the receivigihad onto the subspace which is
orthogonal to the pilot datg. Assuming that the estimate af is accurate, i.e.; ~ z, the
minimum mean square error (MMSE) estimatehofs ( [22], p.391)

1

h = Yp* 42
z+1T, P (42)

and, defininge — h — h, it holds thath ~ CA’ (o, ZI—PTPIN) e~ CN (o, ﬁIN) and h, e
are independent. We can see that the estimate isfaccurate if7}, > z.
Following the estimation ofh and z, the RX performs maximal ratio combining, i.e., it
~H
evaluates the produ%Y. From (1), we have

B A"
—Y ="+ —— (ex" + W). (43)
1]* it

Lumping the channel estimation error term with the intexfee, we can show that the equivalent

channel model follows (3), with the SIR defined as

1 -1
Yiesi = <1 T Z’“) . (44)
2k Tp

The sequencéyy, vi.i} o is the input to decoder (6).
A consequence of channel estimation is the loss of infoonatate by a factOITd%dTp, due
to the transmission of the pilot symbols in each dwell. Thistér must be taken into account

when evaluating the transmission capacity.
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B. Correlation of the interference

Eq. (8) is based on the assumption that the coded bits erexomatependent SIR conditions
across the span of an error event in the decoder. The assumiptijustified if, (a) there is
a sufficient number of dwelt$ such that, due to interleaving, these bits will be transditt
on different dwells, and (b) the SIRs are independent aadesdls. Given that the coherence
bandwidth of the channel is equal to the width of a subbarel|atier assumption is reasonable
if the number of frequencies is sufficiently large. As showrj23], the temporal correlation of
the interference in a fixed Poisson network of transmitte Rayleigh fading i®/2, wherep
is the random access probability. In this paper, randomsaciseachieved via random frequency

hopping, i.e.,p can be substituted by/M.

C. Synchronization

The assumption of synchronization of different TX-RX pairghe network at the dwell level
results in a worst-case scenario in terms of the interfer@aever level. On the other hand, it also
results in a best-case scenario in terms of the correspoad#rthe estimated interference level
to that encountered in the remainder of the dwell. In thipees asynchronous transmissions
may require the insertion of more pilot symbols throughdwg tdwell and, consequently, the
loss of rate. The mismatch between the actual and estimateddarence power will incur a

performance loss, the study of which is beyond the scopeepthsent paper.

D. Power control

In [2], it was shown that channel inversion PC increases titage probability in a random
ad hoc network with fading. In order to examine the effect 6f iR the context of this paper,
we assume that the typical TX-RX link is subject to lognormslagdowing, i.e., the transmitted
signal is multiplied by a r.vS = 10%¢/1°, where¢ ~ A(0,1) and, typically,o, = 6 — 8 dB.
Note thatS (like the node locations) is assume to be a “long-term” ramd@riable, i.e., it is
constant for at least the duration of a packet slot.

In order to take shadowing into account in the analysis otiGedll, the definition of the

constanté in (5) for the case of channel inversion PC must be modifiedas= #I'(1 —

"This is also related to the length of the codeword.
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a)R?E[(S*S~%], where S models the shadowing between T2nd RX% and S’ models the
shadowing between TXand its corresponding RX. In the absence of PC, we haye =
70 (1—a)R*E[S*]S"~*, whereS’ now denotes the shadowing betweenyTa0d RX,. Therefore,
in the case of no PCP, in (8) is conditioned on the realization 6f and the expectation of the
former with respect to the latter must be taken in order t@iobthe unconditional probability

of codeword/packet error.

VI. NUMERICAL RESULTS

In this section, we present numerical results for a netwatk default parameter®& = 1 m,
M = 100, M. = 2 (4QAM), N = 2 andb = 4. Six rate R. = 1/2 convolutional codes are
considered, with memory, minimum Hamming distances anthulc® spectra listed in Table Il
(see [24] for more details). In all plots, the upper boundhe pairwise error probability’; is
evaluated by (22). We also define the parameéigr = *7;\552, i.e., the expected number of TXs
in the transmission range per subband, as a measure of dréerenhce level in the network.

In the simulations, we generate a new network realizationefery transmitted packet. At
the TX, we employ a block interleaver of vertical dimensiajual to the number of bits per
dwell M_.T,; and horizontal dimension equal 19, such thatV/.T; consecutive codeword bits are
guaranteed to be transmitted on different dwells. The @it time of the fading is taken to
be equal to the duration of a packet. In this manner, we carpaoenthe MA scheme proposed
in this paper with the slow FH (IA) scheme advocated in [12].

In Fig. 1, we plot the FEP vsV_;' for the codes listed in Table Il anfl, = 800. The upper
bound (9) is plotted with a solid line, when error events uplaiogth L + 4 are taken into
account, and with a dotted line, when only the Hamming dista@rror events are taken into
account. As expected, for each code, the two curves conesrger — 0. We also simulate the
performance of the codes by dividing the packefr= 40 dwells of T, = 20 4QAM symbols.
Fig. 1 demonstrates that the dotted curve is quite accusate f< 0.01 and Encl-Enc5, however
it is slightly optimistic in the case of Enc6. This is attribd to the impact of channel correlation
within the packet the effect of which becomes more apparenhe& decoder Hamming distance
(hence the span of the error events) becomes larger.

In Fig. 2, we plot the simulated FEP v&;', for Enc4 and decreasing values of the number

of subbands\/. As M decreases the diversity order decreases, as the propabditthe same
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fading condition and/or the same interferer are encoudtaoss dwells increases (and the
assumption of independent channel conditions thus becolvssiete). The simulatef,. in the
case of slow FH is also shown for comparison; note that eveiffe= 4, the gain of the scheme
considered in this paper compared to slow FH is still corrsiole, as the diversity order of the
latter is only one.

In Fig. 3, we plot the maximum contention density, evaluated by (37), vsL, for the set
of parameters of Fig. 1 and different values of the ratio,. Note that, fore/w; = 0.001,
increasing the diversity order of the code frahto 8, results in a tenfold increase of. The
gain comes at an increase of the decoder memory fram5.

Fig. 4 presents the results of Proposition 2 on the link eigoapacity for two different values
of N. As expected, (29) and (30) become tightdg — oo and N.g — 0, respectively.

In Fig. 5, we employ the channel estimation scheme of Sedti@md examine the effect of
imperfect CSI via simulation, wheh, = 500, D = 25 andT}; = 20. ForT,, = 5 and a rate-loss
factor of 20% there is al dB penalty compared to the perfect-CS| case.7Ass increased the
performance loss is reduced, at the expense of informaéite e.g., at/;, = 10, the rate-loss
factor is2/3.

Finally, in Fig. 6, the simulated FEP is plotted V§,;' for Enc2 and Enc4, for a channel with
lognormal shadowingo(, = 6 dB) and shadowing-inversion PC or no PC. For smél{, PC
introduces a substantial gain, e.g., for Enc4Vat = 10 dB, this gain is an order of magnitude.
The reason for this is that the detrimental effect of shadgwo RX, is canceled and, at the
same time, the interferer process is sparse enough sucthéhedde protects RXin the unlikely
event of a large interfering power from a nearby interfeteFheoretically, we can see this with
the help of Jensen’s inequality; given that all shadowingaides are i.i.d., by the definitions

of dpc anddyp,. in Section V-D, we have thaf. = E[S*|'E[S*]' < E[S¥]E[S]' = 4!

npc*

Hence,

from Proposition 1, PC should perform better in the small FRE§ime, which is verified by
Fig. 6. On the other hand, as the network becomes very demsejiversity in the received
signal is lost and the decoder is overwhelmed by an increiasederence level due to PC. This
is more apparent for Enc2 than Enc4, since Enc2 has a smalientihg distance. On a final

note, in the case of PC, we observe that there is good agrédmeveen (9) and the simulation

2This occurs when deep shadowing afflicts the channel betwresirinterferer and its respective RX.
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results.

VIlI. CONCLUDING REMARKS

In this paper we considered FH during packet transmissiahcanling, as a physical layer
scheme for random wireless networks with uncoordinateastrassions. We demonstrated via
analysis and simulation that the transmission capacitiesaase!/’, wheree is the constraint
placed on the packet error probability aidis the code diversity order. A byproduct of our
analysis was the derivation of a compact expression for tli@pthe SIR in a Rayleigh fading
and a-stable interference channel, when the RX performs MRC.dd@md lower bounds on
the ergodic capacity of this channel were also derived.

Employing a simple channel estimation algorithm based erttéinsmission of pilot symbols
at the beginning of each dwell, we showed that the performalegradation due to imperfect
CSl is reasonable, at a rate loss of the ordee®@h. The effect of channel inversion PC was
also confirmed for a channel with lognormal shadowing and RS shown to be beneficial if
A/M is sufficiently small. In conclusion, we believe that, giviere gains in terms of network
capacity at moderate encoding/decoding complexity, everafsmall number of subbands, this

scheme merits consideration despite the increased ovkdweapared to a slow FH system.
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TABLE I: Commonly used symbols

‘ Symbol H Meaning

R Distance of typical TX-RX link

A Density of TXs

M Number of subbands

N Number of RX antennas

b Path-loss exponent (> 2)

a=2/b Stability exponent

Ly Number of information bits per packet
M. Number of bits per constellation symbol
R. Rate of convolutional code

Ty Number of data symbols per dwell
T, Number of pilot symbols per dwell

D Number of dwells

L Hamming distance of convolutional code
P, Probability of lengtht error event

wy Number of length- error events

P. Probability of packet error

C Ergodic capacity of typical TX-RX link
Te Transmission capacity under constraiit = ¢

TABLE II: Optimum rate 1/2 convolutional codes

‘ EncoderH Memory‘ ‘ WLy ooy W44

L
Encl 1 3 (111111
Enc2 2 4 1 205,013
Enc3 3 5 | 1,0,6,0,16
Enc4 3 6 | 1,3,511,25
Enc5 5 8 | 2,7,10,18,49
Enc6 7 10 | 1,6,13,20,64
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Fig. 1: FEP vs.N;' for the codes in Table Il. The solid (dotted) lines depict \@h error
events up to lengthih + 4 (L) taken into account (4QAML, = 800, D = 40, T; = 20, N = 2,
b = 4, perfect CSI).
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Fig. 2: FEP vs.N; for Enc4 andM = 4,20,100. The simulated performance for slow FH is
also shown for comparison. (4QAM,, = 800, D = 40, T, = 20, N = 2, b = 4, perfect CSI).
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Fig. 5: FEP vs.N' for Encl and different values d&f, (4QAM, L, = 500, D = 25, T, = 20,

N =2,b=4).
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Fig. 6: FEP vs.N ' for Enc2 and Enc4 with/without PC (4QAM,, = 500, D = 25, T, = 20,

N =2, b =4, perfect CSl,o, = 6).



