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ABSTRACT
As location-based social networks (LBSNs) rapidly grow, it is a
timely topic to study how to recommend users with interesting lo-
cations, known as points-of-interest (POIs). Most existing POI rec-
ommendation techniques only employ the check-in data of users
in LBSNs to learn their preferences on POIs by assuming a us-
er’s check-in frequency to a POI explicitly reflects the level of her
preference on the POI. However, in reality users usually visit POIs
only once, so the users’ check-ins may not be sufficient to derive
their preferences using their check-in frequencies only. Actually,
the preferences of users are exactly implied in their opinions in
text-based tips commenting on POIs. In this paper, we propose
an opinion-based POI recommendation framework called ORec to
take full advantage of the user opinions on POIs expressed as tips.
In ORec, there are two main challenges: (i) detecting the polarities
of tips (positive, neutral or negative), and (ii) integrating them with
check-in data including social links between users and geographi-
cal information of POIs. To address these two challenges, (1) we
develop a supervised aspect-dependent approach to detect the po-
larity of a tip, and (2) we devise a method to fuse tip polarities
with social links and geographical information into a unified POI
recommendation framework. Finally, we conduct a comprehen-
sive performance evaluation for ORec using two large-scale real
data sets collected from Foursquare and Yelp. Experimental results
show that ORec achieves significantly superior polarity detection
and POI recommendation accuracy compared to other state-of-the-
art polarity detection and POI recommendation techniques.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information Filtering
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1. INTRODUCTION
In location-based social networks (LBSNs) as shown in Figure 1,

users establish social links with others, check in some interesting
locations, known as points-of-interest (POIs), e.g., restaurants, s-
tores and museums, and post tips to express their opinions about
various aspects of POIs, e.g., atmosphere, price and service. With
the rapid growth of LBSNs, e.g., Foursquare and Yelp, it is preva-
lent and important to recommend users with their preferred POIs.
POI recommendations not only help users explore new places and
enrich their life but also enable companies to launch advertisements
to potential customers and improve business profits.

Check-ins

Points-of-

Interest

Social Links

Users

Tips: I went here last night. I loved 

the place with good atmosphere. The 

taste is not bad. The food has high 

quality but with a little high price.

Map

Figure 1: A location-based social network (LBSN)

To make POI recommendations, most recent methods [11, 23,
26, 29, 30, 31, 33] only employ users’ historical check-in data
to learn their preferences for POIs, i.e., these methods assume the
check-in frequency of a user to a POI explicitly reflects the user’s
preference level for the POI. However, the check-in data of users
may not be sufficient to indicate their preferences, especially when
a user checks in a POI only once, since the user may like the POI
very much or conversely. For example, by calculating the distribu-
tion of ratings in the five-star scale given by users to POIs from the
Yelp Challenge data set [24] as shown in Figure 2(a), it is observed
that the attitude of users towards POIs is not always positive (i.e.,
about 55% ratings > 3) and it is highly possibly negative (i.e., about
30% ratings < 3). One may argue that it is intuitive to assume that a
user should have positive preference for a POI with more than one
check-in. Unfortunately, in LBSNs users usually check in POIs on-
ly once. For instance, Figure 2(b) depicts the distribution of the
number of check-ins of a user to a POI in a large-scale check-in
data set [3] from Foursquare, in which more than 50% places have
been checked in only once by the same user. As a result, mere-
ly utilizing check-in data as preference models usually introduces
biases to the user preference level.
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Figure 2: (a) Only about 55% ratings are positive (> 3); (b)
Above 50% places have been checked in only once by the same
user.

In fact, users’ preferences are exactly reflected in their tips com-
menting on POIs, in which they express their opinions about var-
ious aspects of POIs. For example, consider a typical tip written
by a user regarding a restaurant: “I went here last night. I loved
the place with good atmosphere. The taste is not bad. The food
has high quality but with a little high price.” In this tip, the user
has expressed different opinions to a variety of aspects of the POI,
like “good atmosphere”, “not bad taste”, “high quality” and “high
price”. Therefore, the user’s actual preference for the POI can be
determined by detecting the tip’s overall sentiment polarity: pos-
itive, neutral or negative, based on the opinions expressed in the
tip. To the best of our knowledge, only the study [22] recommends
POIs to users through utilizing the polarities of tips determined by
a unsupervised aspect-independent method, in which the sentiment
value of an opinion word is obtained by looking it up in sentiment
lexicons (e.g., SentiWordNet) and the polarity of a tip is derived
from the sum of sentiment values of all opinion words in the tip.
Nevertheless, the unsupervised aspect-independent method cannot
accurately detect the polarities of tips because of two main reason-
s. (1) The method uses the absolute sentiment value of an opinion
word independently of its modifying aspect instead of using the sen-
timent orientation of the opinion word depending on the modifying
aspect. As an example, for the two opinion phrases of “high qual-
ity” and “high price” in the aforementioned tip, the opinion word
“high” in the two phrases has the same sentiment value by query-
ing a lexicon, but it has completely different sentiment orientation-
s: “high” modifying the aspect “quality” is positive while “high”
modifying the aspect “price” is negative. (2) The method utilizes
the simple summation function to combine different sentiment val-
ues rather than learning a sophisticated combination function from
data.

In this paper, we propose a supervised aspect-dependent
Opinion-based POI Recommendation framework (ORec) that de-
rives the sentiment orientations of opinion words depending on as-
pects in tips and leverages them to predict the polarities of tips for
enhancing the quality of POI recommendations. In ORec, there are
two main challenges. The first challenge is to accurately detect the
polarities of tips. Naturally, the polarity detection problem can be
considered as the classical classification problem: training classifi-
cation models on tips labeled with polarities and using the classifi-
cation models to predict the polarity of a new tip. A straightforward
solution is to apply the text classification methods that view a text
as a bag of words and transform the text into a high-dimensional
vector, each dimension of which corresponds to a word (e.g., sen-
timent words or frequent words [12, 17]) in a vocabulary. Unfortu-
nately, these methods result in highly sparse word vectors and low
polarity detection accuracy, because the vocabulary is usually very
large compared to the text. To this end, we develop an approach

that only considers the aspects of POIs in their tips rather than raw
words in a large vocabulary as dimensions of vectors to reduce
the number of dimensions for tips. Further, to decrease the dimen-
sion of aspect vectors and reduce the ambiguity between aspects,
the proposed approach groups the aspects into clusters. Finally, a
classification model is trained on the cluster-based vector represen-
tations of tips and exploited to predict the polarity of a new tip.

The other challenge is to combine the tip polarities with tradi-
tional check-in data (including social links and geographical infor-
mation) to improve the POI recommendation quality. In terms of
the current studies [23, 27], the check-in behaviors of users to POIs
are significantly influenced by others with social links and nearby
visited POIs, since users with social links are more likely to share
common interests and physical interactions are required for user-
s to check in POIs. For instance, friends often go to some places
like restaurants together or a user may visit POIs recommended by
friends. Moreover, users tend to visit POIs close to their homes or
offices and also may be interested in exploring the nearby places of
their visited POIs. How can we effectively fuse tip polarities with
social links and geographical information into a unified recommen-
dation framework? This problem is still open. For this purpose,
we design a method to integrate tip polarities of users regarding
POIs with social links among users and geographical information
of POIs into a unified POI recommendation framework.

In general, our contributions can be summarized below.

• To the best of our knowledge, this is the first study to propose
a POI recommendation framework based on users’ opinions to
the aspects of POIs in tips. In this framework, we develop a
supervised aspect-dependent approach to accurately detect the
polarities of tips. (Section 4)

• To improve the quality of POI recommendations, we design a
method to fuse the influences of three different types of infor-
mation in LBSNs including tip polarities, social links and geo-
graphical information. (Section 5)

• We conduct extensive experiments to evaluate the performance
of ORec using two large-scale real data sets from Foursquare and
Yelp. Experimental results show that: (1) ORec outperforms the
classical text classification methods studied in [12, 17] and the
unsupervised aspect-independent method [22] in terms of polari-
ty detection accuracy. (2) ORec achieves better recommendation
accuracy than state-of-the-art POI recommendation techniques.
(Sections 6 and 7)

Organization of this paper: Section 2 highlights related work.
Section 3 defines the research problems and presents an overview
of the ORec framework. We present the proposed supervised
aspect-dependent polarity detection approach in Section 4 and the
developed POI recommendation method in Section 5. In Sections 6
and 7, we describe our experiment settings and analyze the perfor-
mance of ORec, respectively. Section 8 concludes this paper.

2. RELATED WORK
POI recommendations using check-in data only. Most curren-

t studies (e.g., [1, 3, 11, 13, 14, 23, 26, 27, 29, 30, 31, 33]) only
utilize the check-in data to learn the preference of users on POIs.
Specifically, they employ the social links between users to derive
the user similarity as an input of collaborative filtering techniques,
based on the fact that friends are more likely to share common in-
terests. They also exploit the geographical information of POIs to
estimate the distribution of distances between visited POIs, due to
the fact that if a POI is closer to the POIs visited by a user, it is more



likely to be visited by the user. For instance, Liu et al. [14] used the
instance-level and region-level geographical neighborhood charac-
teristics, other researchers in [13, 23] fitted the distance among vis-
ited POIs as a power-law distribution for all users, and the authors
of [27, 28, 29, 32] personalized the distance distribution for each
user. However, these methods assume that the check-in frequencies
of users to POIs directly reflects the preference levels, which may
not be true in reality. For example, when a user checks in a POI
only once, the user may like the POI very much or conversely.

POI recommendations using textual information. There are a
few works that use the textual information of users commenting on
POIs for location recommendations. For example, the work [10]
employs the tags of POIs to provide interpretable representations
for latent topics extracted from check-in data, while the study [35]
represents each POI as a vector of words in its tips and utilizes the
word vector to derive the similarity between POIs as a regularized
term of tensor models over check-in data. More sophisticatedly, the
method in [25] applies the well-known latent Dirichlet allocation
(LDA) over tags of POIs or posts of users to mine the topic pro-
files for users and POIs, in which each topic is a distribution over
words; then the topic profiles and topic distributions are exploited
to determine the preference score of users to POIs. However, these
studies do not take into account the opinion or sentiment of users
on POIs. To the best of our knowledge, only the study [22] extracts
opinion words from tips and employ them to determine the polarity
of the tips based on the unsupervised aspect-independent method.

Polarity detection of texts. Existing polarity detection tech-
niques generally fall into two categories: supervised methods and
unsupervised methods. (1) Supervised methods. This category
learns classification models from labeled texts and uses them to
classify a new text into positive or negative based on supervised
machine learning methods, such as support vector machines [12,
17], decision trees and naive Bayes [17, 21]. Nevertheless, the su-
pervised methods often regard a feature as a word in a large vocab-
ulary which causes highly sparse word vectors in texts and low po-
larity detection accuracy. (2) Unsupervised methods. The unsuper-
vised methods [17, 22] search sentiment values of opinion words
in a text based on sentiment lexicons and aggregate these values to
determine the text’s polarity. In particular, the works [6, 7] make
use of the emoticon sentiment lexicon to increase the accuracy of
polarity classification for social media services such as Twitter and
Facebook. However, these unsupervised polarity detection meth-
ods consider the sentiment values of opinion words independently
of their modifying aspects and apply simple aggregation functions
to combine different sentiment values. As discussed in Section 1,
they cannot accurately detect the polarity of tips, since the actu-
al sentiment orientation of an opinion word strongly relies on its
modifying aspect and a more sophisticated combination function
should be learned from data.

Aspect-based opinion mining based on aspect extraction and
clustering. There are also plenty of studies that mine the opinions
from text at aspects. These studies can be classified into two main
categories: topic models and language rules. (1) Topic models. A
topic model is a generative model for texts: texts are mixtures of
topics and each topic is a probability distribution of words. First,
topic models (e.g., probabilistic latent semantic analysis and LDA)
can be applied to aspect extraction by regarding each topic as an
aspect, in which different words expressing the same aspect can be
automatically grouped together [15, 34]. Further, to associate as-
pects with opinions, the topic models can be extended by adding
a sentiment layer to detect aspect and opinion words simultane-
ously from texts [2, 9, 16]. However, topic models leverage word
co-occurrences among texts rather than word semantic meanings

to identify topics and word distributions; they are only able to find
rough aspects instead of fine-grained aspects. (2) Language rules.
The language-rule-based methods utilize the grammatical relation-
s between aspects and opinion words to induce extraction rules.
Most works [5, 18, 19] employ the modifying relation of opinion
words and aspects to extract aspects and associate them with opin-
ion words. Although the language-rule-based methods can discov-
er fine-grained aspects, they need an additional step to group these
fine-grained aspects into clusters, usually based on the synonym
relation of aspects. In this paper, we utilize not only the synonym
relation, but also the hypernymy and meronymy relations among
aspects to cluster them into groups.

3. PROBLEM AND OVERVIEW
We first define basic concepts for this paper.

• Aspect. An aspect is an attribute or feature of a POI, e.g., “at-
mosphere”, “price” and “quality” for a restaurant.

• Opinion word. An opinion word usually indicates a sentiment
orientation with a sentiment value from lexicons, e.g., “good”,
“bad” and “high”. Note that the sentiment orientation of “high”
is not that intuitive because it depends on the aspect modified by
“high”.

• Opinion phrase. An opinion phrase ⟨a,o⟩ is a pair of as-
pect a and opinion word o, where the opinion word is used
to express the sentiment orientation towards the aspect, e.g.,
⟨atmosphere,good⟩ and ⟨price,high⟩. Note that o is also used
to indicate the sentiment value of an opinion word in terms of
lexicons for simplicity and the specific meaning of o (i.e., “opin-
ion word” or “sentiment value”) can be easily determined based
on its context.

• Tip. A tip is a sequence of words describing a user’s opinions on
various aspects of a POI and consists of a set of opinion phrases,
i.e., tip = {⟨ai,oi⟩}.

• Polarity of tip. The polarity of a user’s tip is the overall atti-
tude of the user towards a POI and usually is classified into three
cases: positive, neutral and negative. The set of polarities are
denoted as P = {positive,neutral,negative}.

Problem definitions. The two problems addressed in this paper
are defined as follows:

• Problem 1: Polarity detection. Given a training set of tips D =
{⟨tip j, p j⟩}, where each tip j is labeled with a class, i.e., polarity
p j ∈ P, the goal is to predict the polarity p ∈ P of a new tip.
(Section 4)

• Problem 2: Opinion-based POI recommendation. Given all
users’ tip polarities and a certain user u’s friends with social
links F(u) and geographical information of check-in POIs Lu =
{l1, l2, . . . , ln}, the goal is to predict the preference score su,l of
user u regarding a new POI l (i.e., l /∈ Lu) and then return the
top-m POIs with the highest score su,l for u. (Section 5)

Overview of ORec. Figure 3 demonstrates the overview of
ORec, including two major parts: polarity detection and POI rec-
ommendations. (1) The polarity detection part generates the po-
larities of tips for the POI recommendations part. This part has
three steps: (a) extracting opinion phrases (pairs of aspects and
opinions) from tips, (b) grouping aspects into clusters and aggre-
gating opinions of a tip into a sentiment vector in the cluster space,
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Figure 3: The overview of ORec

and (c) training a classification model in tips labeled with polar-
ities and predicting the polarity of any new tips (without polarity
labels). (2) The POI recommendations part exploits the tip polar-
ity with social links and geographical information to estimate the
score of a user to a new POI in order to recommend POIs for the
user. This part also has three steps: (a) using collaborative filtering
techniques to combine tip polarities with social links to estimate the
social rating of users to new POIs, (b) modeling geographical influ-
ence by integrating tip polarities and geographical information of
POIs to predict the geographical probability of users visiting new
POIs, and (c) fusing the social rating and geographical probability
into a unified score for POI recommendations.

4. POLARITY DETECTION
In general, our proposed supervised aspect-dependent approach

has three main phases for polarity detection: (1) Aspects are ex-
tracted through nearby opinion words based on sentiment lexicons;
accordingly the aspect vectors store the sentiment values of these
opinion words. (2) The obtained aspects are grouped into adap-
tive K clusters based on the dissimilarities of aspects to decrease
the dimension of aspect vectors and reduce the ambiguity between
aspects for tips; by this end, each tip can be represented as a K-
dimensional vector, each dimension for a cluster. (3) A classifica-
tion model is trained on the cluster-based vector representations of
tips with labeled polarities and employed to predict the polarity of
any new tips.

4.1 Phase 1: Opinion Phrase Extraction
We can acquire opinion phrases consisting of pairs of aspects

and opinion words through two steps.
Step 1: Tip preprocessing. Using the Stanford natural language

parsers [20], a tip is firstly tokenized into words and split into a
set of sentences. Then, each word in a sentence is identified with
the part-of-speech (e.g., “good” is an adjective, “price” is a noun,
“love” is a verb, etc.) and is lemmatized to a base form in order to
reduce its inflectional and derivational forms (e.g., “loves”, “lov-
ing” and “loved” are lemmatized to the same base form “love”).
Finally, the grammatical dependencies between words in a sen-
tence are determined by parsing the grammatical structure of the
sentence. For example, the sentence of “the taste is not bad” con-
tains a number of grammatical dependencies, such as “nsubj(bad,
taste)”, “neg(bad, not)”, and so on, in which “nsubj” and “neg” are
a certain grammatical dependency defined in [20].

Step 2: Opinion phrase extraction. One may consider some
kinds of grammatical dependencies as opinion phrases, e.g., “n-
subj(bad, taste)” denoting an opinion phrase ⟨taste,bad⟩. How-
ever, “nsubj” is unnecessary to represent an opinion phrase. For
instance, the sentence of “I loved the place with good atmosphere”
also contains “nsubj(love, I)” that is not an opinion phrase because
of the lack of an aspect. Thus, it is hard to select a set of gram-

matical dependencies as opinion phrases in advance. To this end,
we design a method to discover opinion phrases from grammatical
dependencies of a sentence based on sentiment lexicons.

It is observed that an opinion phrase always includes an opinion
word with a sentiment value by looking it up in lexicons, e.g., Sen-
tiWordNet. Thus, opinion words can be used as the indicators of
opinion phrases. Further, given a grammatical dependency with an
opinion word, it is regarded as an opinion phrase if the other word
in the grammatical dependency is a noun that is required by an as-
pect. Finally, given an opinion phrase ⟨a,o⟩ in a sentence, if the
negation dependency “neg(o, not)” exists in the same sentence, the
opinion phrase ⟨a,o⟩ will be reversed into opinion phrase ⟨a,not o⟩
in order to truly reflect the opinion of a user to an aspect of a POI.
As an example, considering the sentence of “the taste is not bad”
again, it contains the opinion phrase ⟨taste,bad⟩ with the negation
dependency “neg(bad, not)”; subsequently ⟨taste,bad⟩ is reversed
into ⟨taste,not bad⟩.

In sum, a tip can be represented as a set of opinion phrases con-
sisting of aspect ai and opinion word oi, i.e., tip = {⟨ai,oi⟩}, em-
bedded with the negation information if any. Moreover, according
to sentiment lexicons, we can obtain a sentiment value for each
opinion word oi. Hereafter, oi also indicates its corresponding sen-
timent value for simplicity.

4.2 Phase 2: Aspect Clustering
In tips, users may write different words to represent the same

aspect of POIs, e.g., “ambiance”, “ambience” or “environment” in-
stead of “atmosphere”. Thus, aspects should be grouped into clus-
ters based on their dissimilarities in order to decrease the dimen-
sion of vectors of tips represented in the aspect space and increase
the correlation among tips that is helpful for training classification
models. The grouping process includes three key steps.

Step 1: Aspect distance calculation. To cluster aspects, the
dissimilarities between aspects need to be collected in advance.
The dissimilarity can be any valid distance metric, most common-
ly Euclidean distance, Manhattan distance or Minkowski distance.
However, these distance metrics are defined over the Cartesian co-
ordinates of clustered data but the aspects of POIs, i.e., linguistic
words, do not have the intrinsic Cartesian coordinates. Hence, we
define the aspect dissimilarity or distance based on the semantic re-
lationships of words, including synonymy linking words that have
similar meanings (e.g., “atmosphere” and “environment”), hyper-
nymy referring to a hierarchical relationship between words (e.g.,
“food” is a hypernym of “sandwich”), and meronymy referring to
a part/whole relationship (e.g., “paper” is a meronym of “book”).
Specifically, based on the dictionary WordNet, where words are
linked via semantic relationships to form a semantic network, the
distance between aspects is considered as the length of the shortest
path between corresponding words in the semantic network.

Step 2: Grouping aspects into clusters. Give a set of aspects
from all tips and their distance, here we aim to group the aspects



into clusters, so that aspects within a cluster have small distance
in comparison to one another but are very far from the aspects in
other clusters. To achieve this task, one may employ the popular
clustering techniques, like K-means or K-medoids. Nonetheless,
they are not adaptable to the aspect clustering problem, since the
mean of an aspect cluster is not defined for K-means, and normally
we cannot group aspects into a small number of clusters due to
their large dissimilarities from each other, so K is the same order-
of-magnitude with the total number of aspects, which leads to high
computation cost for K-medoids.

Therefore, we apply the farthest-point clustering algorithm [4]
due to its efficiency and without the requirement of computing
mean values for clusters. The primitive farthest-point clustering
algorithm discovers a predefined number K of clusters. We utilize
this method to find an adaptive number K of clusters, in which K
is determined by a threshold of distance that is the allowed maxi-
mum distance from an aspect to its cluster center. Given a set of as-
pects A= {ai} from all tips in Section 4.1, distance matrix distance
between aspects in Step 1, and maximum distance threshold dmax,
the clustering process is described below:

1. The algorithm initially selects an arbitrary aspect in A as the first
cluster center and adds it to the center set C.

2. In the k-th iteration:

• For each aspect ai ∈ (A−C), the algorithm computes the min-
imum distance from ai to the center set C:

distmin(ai,C) = minc∈C distance(ai,c). (1)

• The farthest-point a∗k is determined by:

a∗k = argmaxai∈(A−C) distmin(ai,C). (2)

• If distmin(a∗k ,C) > dmax, the algorithm considers a∗k as a new
cluster center, adds it into C and continues the iteration pro-
cess; otherwise, it terminates.

3. Aspect ai ∈ A is assigned to its nearest cluster ck ∈C.

Step 3: Opinion aggregation. After the aspects have been
grouped into K clusters, a tip = {⟨ai,oi⟩} (i.e., a set of opinion
phrases consisting of aspect ai and sentiment value oi) can be trans-
formed into a vector tip⟨oc1 ,oc2 , . . . ,ocK ⟩ represented in the clus-
ter space C, in which aggregated sentiment value ock is the av-
erage of oi for all ai that are assigned to cluster center ck ∈ C
(k = 1,2, . . . ,K), i.e.,

ock = averageai assigned to ck
(oi). (3)

Note that: for a tip, if there is no aspect ai assigned to a certain
cluster center ck, the aggregated sentiment value ock is missing.
Actually, this is the most common case, because the number of
aspects described in a short tip is far less than the large number K
of clusters generated from all tips.

Example. Figure 4 depicts an example to illustrate the opin-
ion phrase extraction phase and aspect clustering phase. Fig-
ure 4(a) gives a set of clusters of aspects from all tips, in
which the aspect “atmosphere” has be assigned to cluster c1,
“taste” to c2, “quality” to c3, . . ., and “price” to c100. Given a
new tip shown in Figure 4(b), four opinion phrases are extract-
ed tip = {⟨atmosphere,good⟩, ⟨taste,not bad⟩, ⟨quality,high⟩,
⟨price,high⟩}. Then, tip is aggregated into a cluster-based vector
tip⟨good,not bad,high,?, . . . ,?,high⟩ in Figure 4(c). Note that:
The tip’s sentiment values on clusters oc1 , oc2 , oc3 and oc100 can

c1 c2 c3 · · · c100
atmosphere taste quality · · · price
ambiance savor trait · · · charge
ambience feel particularity · · · cost

environment sense idiosyncrasy · · · fee
(a) Clusters of aspects from all tips

A tip: I went here last night. I loved the place with good atmosphere. The
taste is not bad. The food has high quality but with a little high price.
=⇒
tip = {⟨atmosphere, good⟩,⟨taste, not bad⟩,⟨quality, high⟩,⟨price, high⟩}

(b) Opinion phrases extracted from a tip

tip⟨oc1 ,oc2 ,oc3 , . . . ,oc100 ⟩= ⟨good, not bad, high, ?,. . . , ?, high⟩
(c) Cluster-based vector representation of the tip

Figure 4: Opinion aggregation on clusters

be determined based on opinion words “good”, “bad” and “high”
in a lexicon, but the sentiment values on clusters oc4 , . . . , oc99 are
missing.

Hereafter, we reduce tip⟨oc1 ,oc2 , . . . ,ocK ⟩ to tip⟨o1,o2, . . . ,
oK⟩ for the sake of presentation, where each of the subscripts
(1,2, . . . ,K) indicates its corresponding cluster.

4.3 Phase 3: Supervised Polarity Detection
The goal of the supervised polarity detection approach is to pre-

dict polarity p ∈ P = {positive,neutral,negative} for a new tip,
given a training set of tips D = {⟨tip j, p j⟩}, where each tip j is la-
beled with a class p j ∈ P. By the opinion phrase extraction and
aspect clustering phases described in Sections 4.1 and 4.2, respec-
tively, a tip has been represented as a vector of sentiment values
regarding each cluster, i.e., tip j⟨o j

1,o
j
2, . . . ,o

j
K⟩ in order to facilitate

polarity detection. As aforementioned, tip j⟨o j
1,o

j
2, . . . ,o

j
K⟩ con-

tains a large number of missing values since a tip is often short
with only a few sentences. Thus, it is required to replace the miss-
ing values with the most probable value based on statistics to ap-
ply most classification methods, such as decision trees and support
vector machines. Nevertheless, filling in a large number of val-
ues will result in severely biased classification models. Hence, we
employ another important classification approach, i.e., naive Bayes
(NB) [8] that can intrinsically handle missing values without any
replacement.

The NB classifier is a special form of Bayesian networks and
relies on the class conditional independence assumption that the
predictive attributes (clusters) are conditionally independent given
the class (polarity). Despite the simplifying assumption, experi-
mental results on real-world data have repeatedly shown that the
NB classifier is competitive with much more sophisticated classi-
fication methods in terms of classification accuracy. Further, the
assumption leads to very efficient algorithms for both predicting
and training that are required for processing large-scale Web data.
We will discuss the two main steps for the NB classifier.

Step 1: Predicting of naive Bayesian classifier. Specifically,
the NB classifier predicts that a new tip belongs to the polarity p∗
having the highest posterior probability,

p∗ = argmaxp∈P Pr(p|tip), (4)

where P = {positive,neutral,negative}. And we have

Pr(p|tip) = Pr(p)Pr(tip|p)/Pr(tip), (5)

in which Pr(tip) is constant for all polarity p ∈ P, so only Pr(p)
and Pr(tip|p) need to be computed based on the given training set
of tips D = {⟨tip j, p j⟩}.



Step 2: Training of naive Bayesian classifier. Pr(p) is the class
prior probability and is estimated by

Pr(p) = |{p j|p j = p∧ p j ∈ D}|/|D|, (6)

where the numerator is the number of training tips with polarity
p j = p in D and the denominator is the total number of training
tips in D.

Pr(tip|p) is first factorized based on the class conditional
independence assumption that the values of the attributes in
tip⟨o1,o2, . . . ,oK⟩ are conditionally independent of one another
given the class label p:

Pr(tip|p) = ∏K
k=1 Pr(ok|p). (7)

Pr(ok|p) is the class conditional probability density function for the
k-th cluster and is computed by kernel density estimation with the
most general Gaussian kernels using training set D= {⟨tip j, p j⟩}=
{⟨⟨o j

1,o
j
2, . . . ,o

j
K⟩, p j⟩}:

Pr(ok|p) =
1
N ∑{o j

k|p j=p}
1√

2πσ
e−

(ok−o j
k )

2

2σ2 , (8)

where o j
k ranges over the sentiment values of the k-th cluster in

training tips with polarity p j = p, N is the number of o j
k with p j =

p, i.e., N = |{o j
k|p

j = p}|, and σ = 1/
√

N.

5. OPINION-BASED RECOMMENDA-
TION

After the polarity detection part in Section 4, each tip is asso-
ciated with a polarity, i.e., positive, neutral or negative. In this
section, the polarities of tips are integrated with other important in-
formation sources of LBSNs (i.e., the social links between users
and geographical information of POIs) to make better POI recom-
mendations for users.

5.1 Fusion with Social Links
To use polarities of tips for POI recommendations, they need to

be mapped into values that indicate users’ ratings to visited POIs.
As usual, we adopt a five-star rating scale widely used in online
e-business Web sites, e.g., Amazon and Yelp. Formally, given a tip
with polarity pu,l ∈ P = {positive,neutral,negative} from user u
regarding POI l, the rating ru,l of user u to visited POI l is defined
as follows:

ru,l =

 5, pu,l = positive;
3, pu,l = neutral;
1, pu,l = negative.

(9)

Therefore, we can collect a user-POI rating matrix R = {ru,l} for
all tips of users to POIs. Note that most entries in R are unknown,
since users have only visited a very small proportion of POIs and
accordingly tips only contain a little part of interaction between
users and POIs.

Here the key task is to estimate the social rating of a user to an
unvisited POI via existing ratings in R. To achieve this task, we
apply the collaborative filtering technique on R. Formally, given a
certain entry ru,l = 0 (i.e., user u has not visited POI l), the social
rating r̂u,l of user u to unvisited POI l can be predicted by

r̂u,l =
∑u′ sim(u,u′) · ru′,l

∑u′ sim(u,u′)
, (10)

where ru′,l denotes the known rating mapped from the tip polarity
of user u′ concerning POI l using Equation (9), and sim(u,u′) is

Figure 5: Personal check-in distributions

the similarity measure between users u and u′. As friends often
share more common interests, sim(u,u′) is usually defined by social
links, e.g.,

sim(u,u′) =

{
1, u and u′ have the social link;
0, Otherwise.

(11)

Note that other similarity functions using social links or/and loca-
tion histories can also be applied here.

5.2 Fusion with Geographical Information
The geographical information (geographic coordinates) of spa-

tial POIs included in check-in data plays a significant role in users’
check-in behaviors, since POIs are distinct from other non-spatial
items, such as books, music and movies in conventional recom-
mendation systems and physical interactions are required for users
to visit POIs. For example, users tend to visit POIs close to their
homes or offices and also may be interested in exploring the nearby
places of their visited POIs. To this end, we exploit the geograph-
ical information of POIs to learn a geographical preference model
for each user that can be used to predict the geographical probabil-
ity of the user visiting a new POI.

Concretely, we model the personal check-in distribution for a
user using her historical check-in POIs based on kernel density es-
timation with Gaussian kernels as well, in which however, each
check-in of the user to a POI is weighed with the polarity of the
tip written by the user to the POI. Formally, given user u’s set of
visited POIs Lu = {l1, l2, . . . , ln}, the probability of u visiting a new
POI l is computed by:

Pr(l|Lu) =
∑n

i=1 wu,li · e
−∥l−li∥2

2σ2

2πσ2 ∑n
i=1 wu,li

, (12)

where σ = 1/
√

n, li = (lati, loni) is a two-dimensional vector with
the latitude (lati) and longitude (loni) coordinates, and ∥·∥ denotes
the Euclidean norm. More importantly, wu,li is the normalized
weight of u’s check-in on POI li and is computed in terms of the
tip polarity pu,li of user u to li:

wu,li =

 1, pu,li = positive;
0.5, pu,li = neutral;
0, pu,li = negative;

(13)

in which intuitively the check-in with the positive tip (pu,li =
positive) has the positive influence on the user’s check-in behav-
ior whereas the check-in with the negative tip (pu,li = negative) has
the negative influence on the user’s check-in behavior. Otherwise,
the influence is neutral.

Example. Figure 5 depicts two users’ check-in distributions
over the latitude and longitude coordinates, estimated through E-
quation (12), which model their geographical preferences on POIs:
User 1 usually checks in POIs in two areas while User 2 checks in
POIs in three main areas.



Table 1: Statistics of the Foursquare data set
LA NYC

Number of users 30,208 47,240
Number of POIs 142,798 203,765
Number of tips 244,861 388,594
Number of social links 349,985 810,672
User-POI matrix density 5.68×10−5 4.04×10−5

5.3 Combining Social-Geographical Influ-
ences

Finally, the social rating and geographical probability of user u
to POI l in Equations (10) and (12) are combined into a unified
score su,l based on the robust product rule [27]:

su,l = r̂u,l ·Pr(l|Lu). (14)

The top-m POIs l having the highest score su,l are recommended to
user u.

6. EVALUATION SETTINGS
This section describes our experiment settings for evaluating the

performance of ORec.

6.1 Two Publicly Available Real Data Sets
Yelp Challenge data set [24] for polarity detection. This data

set has 113,993 tips labeled by ratings for 15,585 POIs from various
categories including Food, Nightlife, etc. We split the tips into
different subsets according to their categories and evaluate polarity
detection methods on each subset using cross-validation.

Foursquare data set [1] for POI recommendations. The
Foursquare data set includes two subsets of POIs in Los Angeles
(LA) and New York City (NYC). The statistics of the two data sets
are shown in Table 1. The polarity of a tip is determined based on
the classification model learned from the Yelp Challenge data set,
because the tips in Foursquare and Yelp are essentially the same,
i.e., short texts. We also evaluate POI recommendation methods
using cross-validation.

6.2 Evaluated Techniques
Polarity detection group. This group includes the widely used

polarity detection techniques for tweets and tips: (1) the classi-
cal text classification methods such as support vector machines
(SVM) [12], decision trees (DT) and naive Bayes (NB) [17]; (2) the
unsupervised aspect-independent (UAI) method [22]; and (3) the
supervised aspect-dependent approach (ORec) in Section 4.

POI recommendation group. This group incorporates the state-
of-the-art POI recommendation techniques that are the most related
to our work. Most of them measure the similarity between users by
using social links as the input of the collaborative filtering method.
The difference lies in the way they utilize the geographical in-
formation of POIs or whether they apply textual information.

• IRenMF: This technique exploits two levels of geographical
neighborhood characteristics by integrating the item-based col-
laborative filtering with matrix factorization [14].

• PD: This technique estimates a geographical power-law distri-
bution for all users and integrates it with the social user-based
collaborative filtering method [23].

• iGSLR: This technique estimates a geographical nonparametric
distribution for each user and integrates it with the social user-
based collaborative filtering method [27].

• LCARS: This technique builds a location-content-aware recom-
mender system using the check-in data and textual information
based on the LDA topic model [25].

• UAI: Besides the social links of users and geographical informa-
tion of POIs, this technique uses tip polarities from the unsuper-
vised aspect-independent method [22].

• ORec: The proposed method integrates tip polarities with social
links and geographical information into a unified recommenda-
tion framework, as described in Section 5.

6.3 Performance Metrics
For polarity detection, given a class (positive, neutral or nega-

tive), the precision and recall are defined as follows:

precision =
No. of tips correctly predicted to the class

No. of tips predicted to the class
.

recall =
No. of tips correctly predicted to the class
No. of tips actually belonging to the class

.

The reported precision and recall are averaged on the three classes.
For POI recommendations, a discovered POI is defined as a

POI that is recommended to and visited by a target user. Similarly,
the precision and recall are defined as follows:

precision =
No. of discovered POIs

No. of recommended POIs for the user: m
.

recall =
No. of discovered POIs

No. of POIs actually visited by the user
.

6.4 Parameter Settings
Polarity detection. In the aspect clustering step in Section 4.2,

the aspect distance is normalized into the range of [0, 1], where
0 indicates two aspects are completely identical, e.g., “ambiance”
and “ambience”, while 1 denotes two aspect with the largest differ-
ence. In the clustering algorithm, the allowed maximum distance
from an aspect to its cluster center is set to dmax = 0.2. Note that
the number K of clusters is adaptive to dmax.

POI recommendations. We examine the effect of various num-
bers of recommended POIs for users (top-m from 1 to 10) and num-
bers of visited POIs of users in the training set (n from 1 to 10) on
recommendation accuracy. Note that: m and n are set to a relative
small number, because a large number m may not be helpful for
users and the number n in the training set is small.

7. EXPERIMENTAL RESULTS
This section analyzes the polarity detection accuracy in Sec-

tion 7.1 and POI recommendation accuracy in Section 7.2.

7.1 Polarity Detection Accuracy
General trends and important findings. Figure 6 compares

the polarity detection accuracy of ORec, SVM, DT, NB and UAI
on the Yelp challenge data sets from the top-10 active categories,
e.g., Food, Nightlife, Restaurants, etc.

SVM, DT and NB. As the classical classification techniques for
short texts, e.g., tweets or tips, the three methods still show the low
precision and recall around 40%. The reason is that they consider
a tip as a bag of words and transform the tip into a highly sparse
word vector with a large number of missing values, so the accuracy
of polarity detection is deteriorated.
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Figure 6: Polarity detection accuracy of ORec in comparison to SVM, DT, NB and UAI

UAI. By using sentiment values of opinion words in tips in terms
of sentiment lexicons, UAI usually records better precision and
recall of polarity detection in comparison to SVM, DT and NB,
except for the categories of Arts & Entertainment, Automotive,
Nightlife and Restaurants. However, the improvement is consid-
erably limited due to its intrinsic limitation: it simply sums up all
the sentiment values in a tip as the polarity of the tip. In other
words, UAI implicitly assumes that the sentiment orientation of an
opinion word is independent of its modifying aspect, which is at
variance with objective reality. For example, in opinion phrases of
“high quality” and “high price”, the opinion word “high” has dis-
tinct sentiment orientation: the former “high” modifying the aspect
“quality” is positive whereas the latter “high” modifying the aspect
“price” is negative.

ORec. Our ORec exhibits the best polarity detection accuracy
in terms of precision and recall in all categories and accomplish-
es 20% absolute improvement and 50% relative improvement on
the performance of SVM, DT, NB and UAI. The reason for the
promising results is fourfold: (1) ORec associates each opinion
word with its modifying aspect by extracting opinion phrases from
tips and determining the sentiment orientation of an opinion word
depending on the associated aspect, rather than using the implic-
it independence assumption in UAI. (2) ORec uses the supervised
machine learning method to integrate the sentiment orientations of
opinion words, instead of using the unsupervised summation func-
tion to combine the absolute sentiment values of opinion words in
UAI. (3) To reduce the ambiguity and dimension of word vectors
representing tips in SVM, DT and NB, ORec only takes aspects as
dimensions and groups aspects into clusters according to their dis-
similarity, which significantly decreases the sparsity in the cluster-
based vector representations of tips. (4) ORec avoids replacing the
missing values with default value that will bring severe biases to un-
derlying classification models. Instead, it leverages the important
classification approach, i.e., naive Bayes to naturally deal with the
missing values without any replacement. These promising results
verify the superiority of the proposed supervised aspect-dependent
polarity detection approach over the classical classification tech-
niques SVM, DT and NB and the unsupervised aspect-independent
method UAI.

7.2 POI Recommendation Accuracy
Low accuracy due to pretty low density. It is worth empha-

sizing that, unlike the polarity detection accuracy, the accuracy of
all POI recommendation techniques for LBSNs is usually not high,
because the density of a user-POI interaction matrix is pretty low.
For example, the reported maximum precision is 0.06 over a data
set with 2.72×10−4 density in [23]. Even worse, the two data sets
used in our experiments have a lower density, 5.68× 10−5 in the
LA data set and 4.04×10−5 in the NYC data set (Table 1), so the
relatively low precision and recall values are common and reason-
able in the experiments. Thus, we focus on the relative accuracy of
ORec compared to the state-of-the-art POI recommendation tech-
niques: IRenMF, PD, iGSLR, LCARS and UAI. We expect that
ORec can improve the accuracy as more tips and check-in ac-
tivities are recorded, as shown in Figure 7.

General trends and important findings. Here we compare the
POI recommendation accuracy of ORec, IRenMF, PD, iGSLR, L-
CARS and UAI with various numbers of visited POIs of users in
the training set (Figure 7) and numbers of recommended POIs for
users (Figure 8).

IRenMF, PD, iGSLR. (1) Based on the combination of item-
based collaborative filtering and matrix factorization techniques,
IRenMF intensively models the influence of geographical neigh-
borhood characteristics of POIs on users’ check-in behaviors in or-
der to learn users’ geographical preferences. However, IRenMF
does not consider other information, e.g., social links and textu-
al tips. As a result, it performs the worst in most cases in terms
of precision and recall. (2) PD models the distance between every
pair of POIs visited by the same user as a power-law distribution for
all users, and integrates it with the social links based on the user-
based collaborative filtering method. Accordingly, PD improves
the POI recommendation performance in comparison to IRenMF,
but it still suffers from the limitation of the universal distance dis-
tribution for all users. (3) iGSLR also utilizes the social links based
on the user-based collaborative filtering method, but it personal-
izes the geographical influence through modeling an individual dis-
tance distribution for each user. Consequently, iGSLR further en-
hances the recommendation precision and recall. (4) Nonetheless,
the three methods (IRenMF, PD and iGSLR) only exploit check-
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Figure 7: Effect of numbers of visited POIs of users in the training set on recommendation accuracy
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Figure 8: Effect of numbers of recommended POIs for users on recommendation accuracy (with the same legend as in Figure 7)

in data without tips by supposing that the check-in frequency of a
user to a POI directly reflects the preference of the user to the POI,
which may not be in accordance with the reality. For example, in
most cases that users only check in POIs once, it is hard to deduce
the true preference level of users to POIs. Subsequently, merely uti-
lizing check-in data often generates biased user preference models
that deteriorate POI recommendation accuracy.

LCARS. By using both check-in data and textual information in
tips based on the LDA topic model, LCARS still performs poorly
for the cold-start users, i.e., the users who have checked in only a
few POIs, as depicted in Figure 7, but it can enhance the overal-
l accuracy (averaged on all users) respecting different numbers of
recommended POIs in comparison to IRenMF and PD, as depicted
in Figure 8. Our explanation is that LCARS utilizes topic distribu-
tions of users rather than polarities of tips and the accurate topic
distributions require much more textual information.

UAI. UAI adopts the unsupervised aspect-independent method to
detect the polarity of tips and combines the acquired tip polarities
with check-in data including social links and geographical infor-
mation to make POI recommendations. In general, although UAI
has better performance than IRenMF, it shows worse precision and
recall than PD, especially iGSLR. The reason is that UAI inher-
its the intrinsic limitation of the unsupervised aspect-independent
polarity detection method, as mentioned in Section 7.1.

ORec. ORec exploits the supervised aspect-dependent approach
to predict the polarities of tips and integrates them with social links
and geographical information. Accordingly, ORec exhibits the best
precision and recall. In particular, ORec achieves the significant
improvement compared to the second best technique, i.e., iGSLR.
We attribute the promising results to two reasons: (1) The under-
lying polarity detection method can accurately predict the polarity
of a tip as depicted in Figure 6, which guarantees that ORec is
able to take full advantage of opinions indicated in tips of users for
POI recommendations. (2) ORec seamlessly integrates tip polari-
ties with social links and geographical information. It is worth em-
phasizing two important points: (i) The difference between ORec
and iGSLR lies in whether they apply tips or not. ORec with tips

greatly enhances the recommendation quality against iGSLR with-
out tips, which shows that the textual information is relevant and
useful for POI recommendations. (ii) The only difference between
ORec and UAI is how they utilize the tips. ORec using the sophisti-
cated supervised aspect-dependent method is much better than UAI
using the simple unsupervised aspect-independent method, which
shows the effectiveness and novelty of the proposed method in this
paper.

LA vs. NYC. In general, the precision and recall of ORec on the
LA data set is a little higher than that in the NYC data set, because
the density of the former data set is larger than that of the latter data
set, as shown in Table 1. We believe that our ORec will perform
better as more data including tips and check-ins are collected.

Effect of the number of visited POIs of users in the training
set. Figure 7 depicts the result of the recommendation accuracy as
the number of visited POIs of users increases in the training set. As
expected, the precision and recall incline accordingly, since ORec
can learn users’ preferences on POIs more accurately with more
check-in data and tips, as they visit more POIs. Interestingly, as
for the small number of visited POIs, i.e., less than five, iGSLR is
competitive to ORec. However, when the number of visited POIs
of users is larger than five, ORec significantly outperforms iGSLR,
since the precision and recall of ORec increase dramatically. This
fully shows the superiority of exploiting users’ opinions implied in
tips for POI recommendations.

Effect of the number of recommended POIs for users. Fig-
ure 8 depicts the recommendation accuracy by varying the number
of recommended POIs for users. The recall gradually gets higher
with the raise of the number of recommended POIs, since by re-
turning more POIs for users, it is always able to discover more POIs
that users would like to visit. However, the precision generally be-
comes lower as the number of recommended POIs increases. Our
explanation is that some recommended POIs are less possible to be
liked by users due to their lower preferences; the recommendation
techniques return the top-m POIs based on the estimated visiting
score, for example, the second recommended POI has the lower
visiting score than the first one.



8. CONCLUSION AND FUTURE WORK
This paper proposes an opinion-based POI recommendation

framework ORec to overcome the two challenges: detecting the
polarities of tips and integrating them with social links and geo-
graphical information. First, ORec exploits the supervised aspect-
dependent approach to learn a classification model in the cluster
space of aspects to predict polarities of tips. Further, ORec seam-
lessly fuses tip polarities with social links and geographical infor-
mation. Finally, experimental results on two large-scale Foursquare
and Yelp data sets show that ORec achieves significantly better per-
formance than the state-of-the-art polarity detection and POI rec-
ommendation techniques. In the future, we plan to study two di-
rections to extend ORec: (a) how to derive weights for sentiment
values of opinion words in tips, and (b) how to build regression
models for polarity detection instead of classification models.
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