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Improved Phase Vocoder Time-Scale Modification
of Audio

Jean Laroche, Mark Dolson

Abstract— The phase vocoder is a well-established tool for
time scaling and pitch shifting speech and audio signals via
modification of their short-time Fourier transforms. In con-
trast to time-domain time-scaling and pitch-shifting tech-
niques, the phase vocoder is generally considered to yield
high quality results, especially for large modification fac-
tors and /or polyphonic signals. However, the phase vocoder
is also known for introducing a characteristic perceptual
artifact, often described as “phasiness,” “reverberation,”
or “loss of presence.” This paper examines the problem
of phasiness in the context of time-scale modification and
provides new insights into its causes. Two extensions to
the standard phase vocoder algorithm are introduced, and
the resulting sound quality is shown to be significantly im-
proved. Moreover, the modified phase vocoder is shown to
provide a factor-of-two decrease in computational cost.

I. INTRODUCTION

IME-SCALE and pitch-scale modification of signals

has long been a subject of interest in the audio and
speech processing community. In recent years, though,
there has been a dramatic increase in commercial appli-
cation of these techniques. Time-scaling and/or pitch-
shifting algorithms are now being used in a widening ar-
ray of devices such as telephone answering systems, mu-
sical effect processors, professional CD players, hard-disk
recorders, PC-based sound editors, and so on. As the com-
putational resources of these devices increase, so too do
expectations for their audio fidelity.

Most commercial implementations of time scaling (or
pitch shifting') use time-domain-based techniques which
rely upon some form of synchronized overlap-add of signal
excerpts. These methods are attractive for their relatively
low computational cost and because they yield good results
in some special cases of interest (e.g., modification factors
close to 1 or monophonic sounds). However, these tech-
niques tend to perform poorly when applied to complex,
polyphonic, or non-pitched signals, or when large modifi-
cation factors must be used (e.g., factors greater than £20
to £30%). In these cases, typical artifacts include warbling
(a type of periodic frequency modulation observed in pro-
cessed polyphonic signals), transient doubling or skipping
(especially troublesome for percussive signals), and tempo
modulation. A full discussion of time-domain time-scaling
techniques and their shortcomings can be found in [1] or
[2].

In contrast, frequency-domain-based time-scaling tech-
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1Since pitch-scale modification can be performed by combining time
scaling and sample-rate conversion, we focus in this paper exclusively
on time scaling.

niques such as the phase vocoder [3] employ a fixed
overlap-add approach; synchronization between overlap-
ping frames is obtained by modifying phases in the sig-
nal’s short-time Fourier transform. Phase vocoder time-
scaling is not limited to near-unity modification factors nor
to monophonic signals, and it is free of many of the typical
time-domain artifacts.? This makes it a potentially at-
tractive approach. However, the computational cost of the
phase vocoder is much higher than that of time-domain
techniques and the algorithm introduces distinctive arti-
facts of its own. Ultimately, it is these artifacts which
pose the major barrier to more widespread use of the phase
vocoder.

The two most prominent phase vocoder time-scaling arti-
facts are “transient smearing” and “phasiness”. Transient
smearing occurs even with modification factors that are
close to 1, and is heard as a slight loss of percussiveness in
the signal; piano attacks, for example, may be perceived as
having less “bite.” Phasiness (or reverberation or “loss of
presence”) also occurs even with near-unity modification
factors, and is heard as a characteristic coloration of the
signal; in particular, time-expanded speech often sounds as
if the speaker is much further from the microphone than in
the original recording.

In general, neither time-domain nor frequency-domain
time-scaling artifacts have received much attention in the
technical literature, probably because assessments of fi-
delity have varied according to local standards (and over
time as well). The problem of transient smearing in
subband-based time-scale modifications is addressed in [4]
and an improved technique based on phase-locking at tran-
sient times is proposed. The phenomenon of phasiness has
been noted by several authors [5], [6], and the root of the
problem is known to lie in the modification of phases in the
short-time Fourier transform. To date, however, no thor-
ough explanation for this phenomenon has yet been given,
and proposed solutions have proven to be either cumber-
some or only marginally effective.

This paper proposes an explanation for the presence of
phasiness in time-scaled signals, and offers new phase calcu-
lation techniques that are shown to significantly reduce the
problem. In addition, these new techniques make it possi-
ble to reduce the computational cost of the phase vocoder
by more than a factor of two.

The remainder of this paper is divided into two sections.
In the first part, the emphasis is on understanding the prob-
lem: the standard phase-vocoder technique for time scal-

2For example, tempo modulation is virtually nonexistent, and war-
bling can be eliminated by an appropriate choice of parameters.
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ing is described, and a detailed investigation of potential
phase errors is presented. In the second part, the focus is
on solutions: two previously-proposed solutions are briefly
reviewed, and two new phase-modification techniques are
introduced and evaluated.

II. THE BASIC PHASE VOCODER TIME-SCALING
ALGORITHM

The essence of time scaling is the modification of a sig-
nal’s temporal evolution while its local spectral characteris-
tics are kept unchanged. Phase-vocoder-based time-scaling
techniques accomplish this via an explicit sequence of anal-
ysis, modification, and resynthesis.

A. Phase vocoder analysis/synthesis

During the analysis stage, analysis time-instants ¢t for
successive values of integer u are set along the original sig-
nal, possibly uniformly: ¢t = uR, where R, is the so-called
analysis hop factor. At each of these analysis time-instants,
a Fourier transform is calculated over a windowed portion
of the original signal, centered around t¥. The result is
the non-heterodyned short-time Fourier transform (STFT)
representation of the signal, denoted X (¥, Q):

Zh

n=—oo

X (", 0) = z(t" + n)e I (1)

where z is the original signal, h(n) is the analysis win-
dow, Q. = M is the center frequency of the k-th vocoder
“channel” and N is the size of the discrete Fourier trans-
form. In practice, h(n) has a limited time span (typically N
samples) and the sum above has a finite number of terms.
X (t%, ) is both a function of time (via variable u) and
frequency (via Q).

The resynthesis stage involves setting synthesis time-
instants ¥, usually uniformly, so that t¥ = Rsu, where R,
is the synthesis hop factor. At each of these synthesis time-
instants, a short-time signal y,(n) is obtained by inverse-
Fourier-transforming the synthesis STFT Y (%, Q). Each
short-time signal is then multiplied by an optional synthe-
sis window w(n), and the windowed short-time signals are
all summed together, yielding the output signal y(n):

y(n) = Z w(n —t)yu(n —ty)  with
| Nl
pin) = 3 V(L Q) @
k=0

In the absence of modifications (i.e., R, = Ry and
Y (4, Q) = X(t%,€Qy)), this output signal is identical to
the original signal =, under mild conditions on the analysis
and synthesis windows [7]. In general, however, a mod-
ified Y (t%, ) is not the STFT of any actual signal. In
particular, the output signal y(n) obtained via the above
reconstruction formula does not necessarily have Y (%, Q)
as its short-time Fourier transform. The sequence of STFT

frames for a given signal must satisfy strong consistency

conditions because the Fourier transforms correspond to
overlapping short-time signals. The formula above merely
yields a signal whose STFT is close to Y (t%, ) in a sense
that depends on the choice of the synthesis window w(n).
Further elaboration of this point can be found in [7], [1].

B. Time-scale modifications

In phase-vocoder-based time scaling, the STFT is modi-
fied in two ways: (1) the analysis hop factor R, is different
from the synthesis hop factor R, and (2) the phase values
of the synthesis STFT Y (¢¥,Qy) are calculated explicitly
according to a formula given below. These modifications
are based on an underlying sinusoidal signal model, but no
explicit parametric sinusoidal estimation is performed.

According to the underlying model, the input signal is
the sum of a number I(¢) of sinusoids with time-varying
amplitudes A;(t) and instantaneous frequencies w;(#):

ZA

$i(0) + /Ot wi(r)dr
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x(t)

with (3)

¢i(t)

in which ¢;(t) and w;(t) are called the instantaneous phase
and frequency of the i-th sinusoid.
Based on equation (3), for a constant modification factor

a such that t¥ = «at?, the ideal synthesis phase ¢;(t¥) of
the time-scaled sinusoid ¢ would be
£
6u(t2) = 6.0 + [ wilr/a)ar
0
ta
= ¢5(0) + @ / wi(T)dr
Jo
= ¢5(0) + a[gi(ty) — ¢i(0)] (4)

where ¢,(0) is an arbitrary initial synthesis phase.

Phase-vocoder-based time scaling modifies the STFT of
the sinusoidal input signal components so as to produce
the above time-scaled sinusoids. The time-evolution of
the sine-wave amplitudes is modified simply by setting
Y (%, Q)| = | X (¢%, Q)| where t = R,u. However, mod-
ification of the sine-wave phases is more challenging.

To calculate the phase of Y (t%,€);), the standard phase-
vocoder technique requires phase unwrapping, a process
whereby the phase increment between two consecutive
frames is used to estimate the instantaneous frequency of
a nearby sinusoid in each channel. The instantaneous fre-
quency @ (t%) is estimated by first calculating the hetero-
dyned phase increment

NG = LX(#,0) — LX (127, Q) — RO
then taking its principal determination (between %) de-
noted A,®} and deriving the instantaneous frequency
Wi (t%) of the closest sinusoid using:

1
Ap®j; (5)

Qk+R_a

wi(ty) =
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This procedure is called phase unwrapping, because the ac-
tual (non-wrapped) value of the phase increment is calcu-
lated from its principal (wrapped) determination. The het-
erodyned phase increment A®} is simply the small phase
shift resulting from wy (t¥) being close but not necessarily
equal to €.

Once the instantaneous frequency at time ¢} is esti-
mated, the phase of the time-scaled STFT at time t¥ is
set according to the following phase-propagation formula

Y(t, Q) = LY (157, Q) + Rolon (t;) (6)

Equation (6) guarantees what can be called “horizontal
phase coherence”: for a constant-frequency sinusoid, suc-
cessive short-time signals will overlap coherently. Another
way of saying this is that there is coherence within each
frequency channel over time (i.e., along the horizontal di-
mension of a standard sonagram).

For constant-frequency sinusoids, the phase unwrapping
equation (5) yields a good estimate of the instantaneous
frequency if channel k is influenced by only one sinusoid,
and if the analysis window’s cutoff frequency wy, is such
that R,wp, < w. In practice, for standard analysis win-
dows (such as Hanning or Hamming windows), this con-
strains the analysis windows to overlap by at least 75%.
The phase unwrapping equation involves the calculation of
a four-quadrant arc tangent, and the phase propagation
equation (6) requires the use of trigonometric functions in
order to calculate the real and imaginary part of Y (¢, Q).
An important point is that equation (6) does not indicate
how the short-time Fourier phases should be set at the first
synthesis time-instant t2. As will be shown later, the choice
of initial phases can significantly influence the quality of the
output signal.

The technique outlined above is the standard frequency-
domain time-scaling method based on the phase vocoder.
Variants of this approach have also been proposed. Port-
noff in [8] describes a technique applicable to speech signals,
where the phases of the underlying sinusoidal components
are decomposed into a system phase (resulting from the
vocal tract filtering) and a source phase corresponding to
glottal pulses. Interested readers can also refer to [6] for an
alternative phase-updating method which does not involve
phase unwrapping nor any trigonometric calculation, but
instead uses an additional analysis Fourier transform.

C. Phase problems in phase-vocoder time-scaling
C.1 Phase coherence

Because phase propagation errors are at the heart of
many of the sound quality issues in the phase vocoder,
it is important to understand how sinusoidal phases are
altered by vocoder-based time-scale modifications. The
phase-vocoder time-scaling algorithm ensures phase consis-
tency within each frequency channel over time, but it is also
important to have phase consistency across the channels in
a given synthesis frame. We call this latter requirement
“vertical phase coherence.”

Both horizontal and vertical phase coherence must be
preserved upon resynthesis for the STFT to be a “valid”
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one. If phase coherence is not preserved in the synthesis
STFT Y (t¥,Qy), the synthesis equation (2) will yield a
signal whose short-time Fourier transform is not close to
Y (1%, Q). This new signal will likely exhibit beating in its
individual harmonics, and this will be heard as phasiness
or reverberation.

How can we recognize vertical phase coherence in a
STFT? For a constant-amplitude, constant-frequency si-
nusoid, there is a simple phase relation between adjacent
channels located around the sinusoidal frequency. If a sinu-
soid with a constant frequency w; falls in channel &, and if
the analysis window h(n) is symmetric around 0, it is easy
to show that the channels around channel k& which are in-
fluenced by this sinusoid (channels such that |Qf —w;| < wp
where wy, is the cutoff frequency of the analysis window)
have an analysis phase equal to that of channel k. In prac-
tice, the analysis window h(n) is more usually non-zero for
0 < n < L and is symmetric around its middle point, but
this changes things only slightly: If the size of the discrete
Fourier transform is equal to the analysis window length
L, then adjacent channels exhibit phase differences of +.

For more complicated signals, unfortunately, no compa-
rably simple phase relationship exists. For a sinusoid with a
slowly varying frequency, the phases in channels around the
instantaneous frequency are still nearly equal, but an ana-
lytical formula is difficult to develop. Consequently, there
is no simple way to check for vertical phase coherence.

An a-posteriori way to check the consistency of a STFT
cousists of reconstructing the synthesis signals y(n), and
checking that the STFT of y(n) is indeed very close to
Y (t“, Q) in both amplitude and phase. We propose a mea-
sure D) of counsistency derived from that proposed in [7]:

U-—P—-1N-1
Z Z 7ty Q)| — [V (2, )]
DM — u=P k:() (7)

Ly

where Z(t¥,Qy) is obtained by performing a short-time
Fourier transform on the modified signal y(n). U is the
total number of short-time frames, and the summation
excludes the P first and P last few frames to avoid tak-
ing into account errors due to missing overlapped seg-
ments in the resynthesis formula. The smaller D, the
better the consistency. If total consistency is achieved,
Z(t%, Q) = Y (%, Q) for all times t% and all channels
and Djy; = 0. Vertical and horizontal phase coherence will
play an important role in the following sections, and we will
use the measure above to estimate the degree of consistency
of our algorithms.

C.2 Output phase vs input phase

In this section, we seek to relate the phase of the modified
short-time Fourier transform in channel k& to the phase of
the corresponding analysis short-time Fourier transform in
the same channel. Assuming a constant modification factor

a = gﬁ and given an initial synthesis Fourier transform
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phase ¢4(0,k), we can use the phase propagation equa-
tion (6) to express the phase of the output STFT at any
given synthesis time-instant y¥. By iterating equation (6)
for successive values of u, starting at u = 0, we obtain

LY (82, Q) = LY (t2, Q) + > Ry (th)

i=1

= (Zss(oz k) + Z Rsajk (tzz)

i=1

where @i (t!) is the estimated instantaneous frequency at
time ¢! in channel k. Now, using equation (5), we get

u Rs ]
AY(t;‘, Q) = ¢5(0,k) + Z {Rsﬂk + R—qu)d
i=1 @

and using the definition of A,®% we get
LY (t), Q) = ¢5(0, k) +

az [2X(th, Q) — £X (", Q) + 2mi 7]

i=1

where m} is the unwrapping factor at the analysis time-
instant ¢i: 2mir = A,®i — A®i. This yields

AY(tg Qk) = (Zss(oz k) +

a[LX (8, Q) = LX(0,%)] +a ) 2mir (8)

i=1

Equation (8) gives the expression of the phase of the syn-
thesis STET at time t¥ as a function of the synthesis initial
phase ¢4(0, k), the phase of the analysis short-time Fourier
transform at time ¢¥, the initial analysis phase, the modifi-
cation factor «, and the series of phase-unwrapping integers
mi.

Several conclusions can be drawn from this equation.
« Equation (8) indicates that the synthesized phase de-
pends on the analysis phases only at the current analysis
time-instant and at the origin. This means that if an analy-
sis phase is estimated incorrectly at any given time-instant,
this error will not generate phase drift in subsequent frames,
provided that the phase-unwrapping factor mfc remains cor-
rect.
e On the other hand, the series of phase-unwrapping fac-
tors mi do have a cumulative effect: if an erroneous phase-
unwrapping factor is calculated at a given frame, all sub-
sequent frames will show a phase bias.
« Potential phase-unwrapping errors manifest themselves
by multiples of 2an being added to the synthesis phase. If a
is an integer, then phase-unwrapping errors are transparent
since they always are multiples of 27. As a result, integer-
factor time-scaling operations can be performed without
phase unwrapping by use of equation (8) where the factor
Z;;l 2m27r is dropped. Skipping the phase-unwrapping
stage significantly reduces the computation cost of such
modifications.

Equation (8) also provides a solid analytical foundation
for understanding the lack of vertical phase coherence in
standard phase vocoder implementations. This issue is ex-
amined in detail in the next two sections.

C.3 Loss of vertical phase coherence

According to equation (8), vertical phase coherence de-
pends upon two factors: (1) initial phase values, and (2)
accumulated phase-unwrapping errors. To see this, sup-
pose at first that the modification factor a is a constant
integer, so phase-unwrapping errors do not influence the
modified signal. Now, consider a sinusoid whose instanta-
neous frequency varies across time so that it will migrate
from channel to channel. Rearranging the terms in equa-
tion (8) we can express the synthesis phase of the peak
channel at time ¥ as

Y (t%, Q) alX(ty, M) + 6, with
0’6 = (]53(0]{}) - aAX(OQk) (9)

where the sum of unwrapping factors has been dropped,
being a multiple of 27. This expression differs from the
ideal synthesis phase equation (4) in that 6 is not nec-
essarily a constant, but varies with the channel index k.
The fact that 6; may not be constant has two adverse and
related consequences:
1. The synthesis phases in adjacent channels may be very
different, if the values of 8 vary significantly from channel
to channel. As mentioned in II-C.1 this shouldn’t be the
case.
2. When the sinusoid’s instantaneous frequency migrates
from channel k, at time ¢¥ to channel k, + 1 at time #2*1,
the synthesis phase undergoes a jump equal to 6,41 — 6k,
which is also very undesirable.
As shown by equation (9) the values of 6, for successive
channels depend only on the analysis and the synthesis
phases at time 0. If for example an area of the spec-
trum was dominated by noise at that time, the values of
/X (0,94) and consequently of 6, for the corresponding
channels will be random, and are likely to exhibit large
variations from channel to channel, unless we set the ini-
tial synthesis phase ¢5(0, k) such that

9k = (;53(0, k}) — OéZX(O,Qk) =C (10)
where C' is a channel-independent constant. If the above
equation is satisfied, then none of the two problems men-
tioned above occur, and the synthesis phase becomes iden-
tical to the ideal synthesis phase in equation (4).

Now, consider the more general case in which the modi-
fication factor « is not an integer, and again suppose that
there is a sinusoidal component in the vicinity of channel
k,. Equation (8) indicates that, even if equation (10) is
satisfied, phase coherence is guaranteed only if the sums
of the unwrapping factors Z;‘Zl 2m27r are equal (modulo
27) in nearby channels. There is no danger of phase-
unwrapping errors in channels near the sinusoid’s instan-
taneous frequency so long as the analysis hop factor R,
is small enough. The deeper problem, though, is that no
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single sinusoidal component of an audio signal is likely to
persist without interruption across the entire duration of
the signal. Thus, there will inevitably be times during
which channel &, and its neighbors are influenced by unre-
lated sinusoids or even noise. It is during these times that
phase-unwrapping differences will necessarily accumulate,
making the terms ) ;" , 2m}n different in adjacent chan-
nels; as a result, vertical phase coherence will quickly be
lost forever.

Considering the universality of the above scenario, it
seems truly amazing that the phase vocoder should work
at all! For non-integer modification factors, vertical phase
coherence is almost guaranteed to be lacking unless each
sinusoidal component remains in the same phase vocoder
channel for all time. Clearly, this assumption is violated
by most signals of interest, including speech and music.

C.4 Examples

In this section, we present a few time-scale modification
examples which demonstrate the problems described above.
We begin by noting that constant-frequency, constant-
amplitude sinusoids pose no problem at all to the phase
vocoder; the results are usually excellent, with consistency
measures Dy < —60dB, provided the initial synthesis
phases are all set according to equation (10). Variable-
amplitude sinusoids pose some problems, but the most dra-
matic illustrations are obtained with chirp signals.

The first example is a factor-of-two (a = 2) time-
expansion of a sinusoid of constant amplitude whose fre-
quency sweeps linearly from the center frequency of channel
30 (Q30 = 2Z22) to the center frequency of channel 40 in 80
analysis STFT frames. This signal was analyzed with the
standard phase-vocoder technique described above. The
Fast Fourier Transform size was set to 1024, the analysis
hop size was 128, the synthesis hop size was 256, and both
analysis and synthesis used Hanning windows of size 1024.
Instead of conforming to equation (10), however, the ini-
tial synthesis phases were set equal to the initial analysis
phases:

¢s (07 k) = Z)((0 Qk)

This is a standard initialization choice because it makes it
possible to switch from a non-modified signal (o = 1) to a
modified signal without introducing any phase discontinu-
ity.

Fig. 1 shows the amplitude envelope of the resulting sig-
nal in the time-domain (obtained by plotting the max-
imum and minimum values of the sinusoid for each pe-
riod). The clearly visible amplitude modulation is due to
equation (10) not being satisfied. Fig. 2 shows the analy-
sis and synthesis phases for successive short-time Fourier
transform frames. The figure was obtained by measuring
the phases at the maximum of the analysis X (t¥, ) or
synthesis Y (t%, Q) Fourier transforms in each frame, then
unwrapping them along successive frames. The analysis
phase shows the characteristic parabolic shape due to the
linearly varying frequency. The synthesis phase roughly
follows this parabolic shape, but exhibits “discontinuities”

at frames 38, 53, and (to a lesser extent) 22. These phase
jumps result from 6, not being a constant in equation (10);
it can be easily verified that they occur when the instan-
taneous frequency of the chirp jumps from one channel to
the next. The consistency measure for this resynthesis was
Dy = —10dB.
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in numbers of 27, showing phase jumps at frames 22, 38 and 53.

If the initial synthesis phases ¢,(0, k) are set to
0s(0,k) = as/X(0,Q) VEk (11)

with a = 2, then the time-scaling operation yields the sig-
nal shown in Fig. 3. The resulting sinusoid shows only
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Fig. 3. Factor-2 time-scaling of a constant amplitude chirp, ”correct”
initial phases. Time-domain amplitude-envelope of the modified
signal.

marginal amplitude modulation, and the synthesis phase is
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free of jumps. This confirms the fact that setting 6, = C
for integer modification factors provides a significant im-
provement in phase coherence. The consistency in this
case was measured to be Dy = —25dB, far better than
the preceding result.

When the modification factor is no longer an integer, the
resulting signal exhibits phase coherence problems even if
the initial phases are set according to equation (11). This
can be seen in Fig. 4. The same chirp signal as above is
time-scaled by a factor a = 1.4, with the phase initializa-
tion of equation (11). The resulting signal is severely mod-
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Fig. 4. Factor-1.4 time-scaling of a constant amplitude chirp, initial
phases set according to equation (11). Time-domain amplitude-
envelope of the modified signal.

ulated in amplitude, a result of phase-unwrapping errors in
channels distant from channel 30. These errors caused er-
roneous unwrapping factors to be added to the synthesis
phase when the sinusoid’s instantaneous frequency reached
those channels. The consistency here was measured as
Dy = —6.5dB.

Taken together, these very simple test signals demon-
strate that, for integer modification factors, initial phases
should be set according to equation (11) to avoid phase
jumps. Moreover (and regardless of how the synthesis
phases are initialized), time-scale operations with non-
integer modification factors are likely to introduce phase
discontinuities, leading to significant phase incoherence in
the synthesis STFT.

Informal listening tests on speech and music signals con-
firm these findings. For factor-of-two modifications, high-
quality results are obtained when the synthesis phases are
initialized according to equation (11), while phasiness oc-
curs for any other type of initialization. Non-integer mod-
ifications always sound phasy, no matter what phase ini-
tialization is used.

In addition, time-scaling operations with integer mod-
ification factors greater than or equal to three exhibit an
increasing level of phasiness even with proper phase initial-
ization. The explanation for this seems to lie in the fact
that, for such large modification factors, satisfying equa-
tion (10) still does not guarantee consistency for the syn-
thesis short-time Fourier transform as a whole. Equation
(10) ensures vertical phase coherence, but the modified se-
quence of short-time Fourier-transform magnitudes may be
inconsistent.

III. OLD AND NEW STRATEGIES FOR REDUCING
PHASINESS

A. Magnitude-only reconstruction

The phase vocoder is not the only frequency-domain
technique that can be applied to the problem of time scal-
ing. Phase unwrapping issues can be avoided entirely by:
(1) reconstructing purely from the STFT magnitude, or (2)
fitting the STFT to an explicit sum-of-sinusoids model.

Algorithms for STFT magnitude-only reconstruction
were presented in [7] and [9]. Unfortunately, these algo-
rithms require numerous iterations of the STFT analysis-
synthesis cycle in order to arrive at an internally consistent
STFT. This makes them far too computationally demand-
ing for contemporary real-time applications. In addition,
while convergence has been proven for some of these meth-
ods, there is no guarantee that a global minimum will be
reached. More recently, various authors have noted that
the iterative process can be greatly accelerated by calcu-
lating good sets of initial STFT phase values [10]. How-
ever, this procedure is still considerably more computation-
intensive than the phase vocoder.

The other frequency-domain alternative to the phase
vocoder is so-called sinusoidal modeling. This approach
is also more computationally demanding than the phase
vocoder, and it introduces its own perceptual artifacts
which are beyond the scope of this paper.

B. Loose phase locking

A suboptimal but less computation-intensive solution to
the phase vocoder’s phase-unwrapping errors is simply to
apply a-posteriori constraints to the synthesis phases. An
efficient mechanism for accomplishing this was introduced
by Puckette [6]. Recognizing that a constant-amplitude,
constant-frequency sinusoid in channel k should have iden-
tical analysis phases in all nearby channels, Puckette pro-
posed a simple way to loosely constrain synthesis phases
to obey the same rule. For each channel in the synthesis
STFT, the synthesis phase is calculated by use of the stan-
dard phase-propagation formula, equation (6). However,
the final synthesis phase attributed to channel £ is that of
the complex number

Yt Q) + YV (85, Q1) + Y (25, Qiyr)

As a result, if channel k is the maximum of the Fourier
transform magnitude, its phase is basically unchanged, be-
cause Y (t%, Q1) and Y (%, Qx4+1) are of much lower am-
plitude. But if channel k is left of the maximum, its phase
will be roughly that of Y (t¥,Q4+1) whose magnitude is
larger than Y'(t¥,): the channels around a peak in the
Fourier transform are “phase locked” to the peak.

This technique is attractive, especially because it re-
quires only a few additional multiplications per channel.
It produces a visible improvement in the phase vocoder
output for simple test signals and a measurable improve-
ment in STFT consistency. However, informal listening
tests show that the reduction in phasiness is very signal-
dependent and, unfortunately, never dramatic.
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C. Rigid phase locking

The fundamental limitation (and also the attraction) of
the loose phase locking scheme is that it avoids any explicit
determination of the signal structure: the same calculation
is performed in every channel, independently of its content.
The result is that synthesis phases in the channels around
a given sinusoid only gradually and approximately develop
vertical phase coherence. If we really want to restore ver-
tical phase coherence to the synthesis STFT, we need to
take a step closer to an actual sum-of-sinusoids model. We
now present two versions of a new phase-locking technique,
inspired by the loose phase locking above, but based on the
explicit identification of peaks (and thus, presumably, si-
nusoids) in the spectrum.

The new phase-updating technique begins with a coarse
peak-picking stage where vocoder channels are searched for
local maxima. In the simplest implementation, a chan-
nel whose amplitude is larger than its four nearest neigh-
bors is said to be a peak; this criterion is both simple and
cost-effective (although admittedly primitive). The series
of peaks subdivides the frequency axis into “regions of in-
fluence” located around each peak. The basic idea is to up-
date the phases for the peak channels only according to the
standard phase-propagation equation (6); the phases of the
remaining channels within each region are then “locked” in
some way to the phase of the peak channel. In our experi-
ments, the upper limit of the region around peak (1, was
set to the middle frequency between that peak and the next
one (2, + Q,,,)/2. Another reasonable choice would be
the channel of lowest amplitude between the two peaks.

C.1 Identity phase locking

Rather than imposing a strong phase-equality constraint
(based on the assumption that the peak is the trace of a
constant-amplitude, constant-frequency sinusoid), one can
constrain the synthesis phases around the peak to be re-
lated in the same way as the analysis phases: the phase
differences between successive channels around a peak are
made identical in the synthesis STFT to the corresponding
phase differences in the analysis Fourier transform. If €,
is the center frequency of the dominant peak, we set:

AY(thk) = AY(thkz) +

LX (tq, Q) — LX (g, Q) (12)

for all channel k in the peak’s region of influence, as defined
above.

Note that the idea of preserving the phase-relations be-

tween nearby bins has been independently proposed in [11]
in the context of integer-factor time-scale modifications,
and previously in [4] as a means to reduce transient smear-
ing.
This phase-locking mechanism significantly improves the
consistency of the resulting series of STFT and greatly re-
duces the phasiness of the modified signal. Applying this
technique to the chirp signal of our previous example (again
with a time-scale factor of 1.4) produces the signal shown
in Fig. 5.

The resulting signal shows no sign of amplitude modu-

1k

0.8

0.6

0.4r

AMPLITUDE

-0.81
-1k
L L L L L
5

L L L
0 5 10 15 20 25 30 40 45
SYNTHESIS FRAME NUMBER

Fig. 5. Factor-1.4 time-scaling of a constant amplitude chirp, iden-
tity peak-phase-locking. Time-domain amplitude-envelope of the
modified signal.

lation, and the consistency distance was measured to be
Dy = —37dB, a very large improvement over the mere
—6.5dB of the non phase-locked modification.

Identity phase locking has two major computational ad-
vantages. First, since phase unwrapping is performed only
on peak channels, the instantaneous frequency of the un-
derlying sinusoid is sure to be near the center frequency
of the channel in question. This means that the phase-
unwrapping constraint R,wp, < w can be relaxed, and
larger values of R, can be used. In practice, an in-
put overlap of 50% is possible without generating phase-
unwrapping errors. Since the usual requirement for phase-
vocoder-based time-scale modification is a minimum of 75%
overlap (for standard analysis windows, such as Hanning or
Hamming), identity phase locking essentially cuts the com-
putational cost in half!

Second, this new technique requires trigonometric calcu-
lations only for peak channels: once the synthesis phase of
the peak channel has been determined, one can calculate
the angle 6 required to rotate X (t¥,Qy,) into Y (t%, Qy, ),

0= LY (t5, Q) — LX (27, Q) (13)
then calculate the phasor Z = e/’ and obtain the neigh-
boring channels by use of simple complex algebra:

Y(”?:”k) = ZX(tZ=Qk) (14)
which can be easily shown to satisfy the phase-locking
equation (12): neighboring channels only require one com-
plex multiply!

The identity phase-locking scheme can be summarized in
the following steps:
1. For the new STFT frame, locate prominent peaks.
2. For each peak, calculate the instantaneous frequency
using horizontal phase unwrapping, and calculate the up-
dated synthesis phase, according to equation (6).
3. Calculate rotation angle 6 according to equation (13)
and phasor Z = ef?.
4. Apply rotation to all channels around and including
peak channel; according to equation (14).
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5. Repeat the above steps for the next peak, until all peaks
have been processed.
6. Proceed to the next synthesis frame.

C.2 Scaled phase locking

An improvement over the preceding technique comes
from recognizing that if a peak switches from channel kq at
frame u — 1 to channel k; at frame u the unwrapping equa-
tion (5) should be based on /X (t%, Q,)— /X (%1, Qy, ) in-
stead of £ X (%, Q) — L Xt ", Qy, ). Likewise, the phase-
propagation equation (6) should be

ZY(tg7Qk1) = ZYv("’lsL717Qlﬂo) +Rsajk1 (tg) (15)
where the phase increment Rsop, (t¥) is accumulated to
LY (471, Qp,) rather than /Y (t“"' Q). Tt is easy to
show that in that case, the synthesis phase at the peak
channel corresponding to sinusoid ¢ at time ¢} is indeed
C + a@;(t*), which is not necessarily the case in the pre-
ceding technique.

The problem is then to determine what peak in frame
u — 1 corresponds to the peak , in frame u. A very sim-
ple way of doing this is to pick the peak of the region to
which channel j, belonged in frame v — 1. Accordingly,
to calculate the synthesis phase of channel k; at frame u,
one can simply look up the dominant peak in the region
channel k; belonged to in frame w — 1, and use its analysis
and synthesis phases, when applying equations (5) and (6).
This being done, the neighboring channels can be synchro-
nized to the peak, and the identity phase-locking equation
can be generalized as:

AY(thk) = AY(thkz) +

ﬁ[AX(tg7Qk) - Z)(("’ZLL7QIGI)]) (16)
where (3 is a phase scaling factor. Identity phase locking
is simply 8 = 1. Exactly how the phases should be modi-
fied upon synthesis to ensure proper vertical phase coher-
ence is not easy to assess, as explained in section II-C.1.
However, it appears that identity phase locking can be fur-
ther improved by setting 8 to a value between 1 and «.
There is little theoretical ground to justify such a choice,
since the phases in the modified signal should probably
not be related to those in the original signal in a linear
way. However, when integer modification factors a are used
in the standard implementation of the phase-vocoder, and
when the initialization of equation (11) is used, it is easy
to verify that phase-differences are also scaled by g = a.
Moreover, informal listening tests have shown that setting
B = 2/3+a/3 helps further reduce phasiness. Note that the
phases /X (t¥, Q) must be unwrapped across channels k
around the peak channel before applying equation (16), in
order to avoid 287 channel jumps in the synthesis phases.

In contrast to identity phase locking, scaled phase lock-
ing does not permit the STFT values in neighboring chan-
nels to be calculated simply via a complex multiplication;
therefore its implementation requires somewhat more com-
putation. On the other hand, the quality of the time-scaled

signals has been found to be consistently higher with scaled
phase-locking than with identity phase locking.

The scaled-phase-locking scheme can be summarized in
the following steps:
1. For the new STFT frame, locate prominent peaks.
2. For each peak channel k;, locate corresponding peak in
preceding frame, calculate instantaneous frequency using
horizontal phase unwrapping, and calculate updated syn-
thesis phase according to equation (15).
3. Unwrap analysis phases across all channels in the region
of influence.
4. For each channel around the peak channel, calculate
analysis phase difference between peak and current chan-
nel, and calculate current synthesis phase using equa-
tion (16)
5. Repeat the above steps for the next peak, until all peaks
have been processed.
6. Proceed to the next synthesis frame.

D. Comparison of phase-locking techniques
D.1 Consistency measure

Although the consistency measure of equation (7) is not
a very accurate measure of phasiness, it still gives an indi-
cation of how well various synchronizing schemes perform.
Two signals were used to compare the synchronizing tech-
niques: a chirp sinusoid identical to that used in section II-
C.4, and a segment of speech signal. The speech signal
was a male speaker uttering the word ”before”, sampled at
16kH z.

Four synchronization techniques were compared, along
with the standard, non-synchronized phase-vocoder tech-
nique. The synchronization techniques used were Puck-
ette’s loose phase locking [6], iterative magnitude-only re-
construction [7] (measured after 5 and 50 iterations), iden-
tity phase locking, and scaled phase locking with g = 1.4.
The modification factor was a = 2.2, and the initial
synthesis phases were set to the initial analysis phases
¢s(0,k) = £X(0,Q). The FFT size was 1024, with an
output hop factor of 256.

Synchronization type Dy

None +1.5dB
Loose phase locking -13dB
Iterative reconstruction, 5 iterations -16 dB
Iterative reconstruction, 50 iterations | -19 dB
Identity phase locking -30 dB
Scaled phase locking -30 dB

TABLE T
Consistency measure for various synchronization techniques, chirp

signal

Table I presents the consistency measure for the chirp
signal. The results indicate that some type of synchro-
nization is required to insure some degree of consistency.
As expected, loose phase locking is significantly less ef-
fective than either identity or scaled phase-locking. Iter-
ative magnitude-only reconstruction, even after 50 itera-
tions, still does not match our synchronization techniques
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as the iterative procedure seems to be caught in a local min-
imum. Most of the consistency improvement is achieved
within the first few iterations.

Synchronization type Dy

None 0dB
Loose phase locking -11 dB
Iterative reconstruction, 5 iterations -14 dB
Tterative reconstruction, 50 iterations | -18 dB
Identity phase locking -15 dB
Scaled phase locking -14 dB
PSOLA -9 dB

TABLE 11
Consistency measure for various synchronization techniques, speech

signal

Table II presents the consistency measure for the speech
signal. Again, our phase-synchronization techniques out-
perform loose phase locking, but some marginal improve-
ment in consistency can be obtained by the iterative proce-
dure, with a large number of iterations. Also included is the
consistency measure for PSOLA (Pitch-Synchronous Over-
Lap Add), a high-quality time-domain technique based on
overlap-adding small segments of waveform [1].

D.2 Informal listening tests

Listening tests on speech and polyphonic musical signals
partially confirm the results of the consistency measure.
The standard, non-synchronized phase-vocoder technique
has the poorest consistency measure, and it always sounds
worse than the other techniques.

However, the consistency measure does not always accu-
rately reflect the perceived phasiness of the modified sig-
nal. For example, identity phase locking and scaled phase
locking have similar consistency scores, but the latter con-
sistently sounds better than the former. Conversely, the
higher consistency measure obtained by the iterative re-
construction does not, correspond to any perceptible quality
improvement. In fact, the modified signal is plagued with
an undesirable roughness that other techniques do not ex-
hibit (an artifact mentioned in the original paper [7]). Nev-
ertheless, it appears that low values of the consistency mea-
sure (above -5dB) always indicate the presence of phasiness
in the signal.

The influence of the parameter 3 in scaled phase lock-
ing is more dramatic when 75% overlap is used. In that
case, and for larger modification factors (a > 2), identity
phase locking can still be somewhat phasy. Using f = a in
equation (16) significantly reduces phasiness. When 50%
overlap is used, however, # must be kept closer to 1 to avoid
undesirable roughness in the output signal. On speech sig-
nals, the modified voice has more presence, and non-voiced
segments sound slightly more natural with scaled phase
locking than with identity phase locking.

For integer modification factors, the standard algorithm
without phase unwrapping but with proper initial condi-
tions (such that 6, = C VEk) yields high-quality results
which only scaled phase locking can match for non-integer

modification factors. Some residual phasiness can still be
heard in the modified signals, especially for larger modifi-
cation factors (a > 3).

Finally, when speech signals are processed, all the above
phase-locked techniques still exhibit more reverberation or
phasiness than time-domain techniques such as the Pitch
Synchronous Overlap-Add technique [1]. Surprisingly, the
consistency measure for the speech signal modified via the
PSOLA technique is worse than with other techniques; this
confirms that the consistency measure is not a clear indi-
cator of phasiness.

E. Conclusion

We have presented a detailed explanation for the pres-
ence of phasiness or reverberation in signals that have
been time scaled by phase-vocoder techniques. We have
shown that sinusoidal components crossing channels gener-
ate both phase incoherence between adjacent channels and
phase ”discontinuities” between successive frames. For in-
teger modification factors, a suitable choice of initial anal-
ysis and synthesis phases eliminates this problem entirely,
yielding high-quality results. For non-integer modification
factors, phase incoherence can be avoided by using one of
the two phase-locking techniques presented above. These
techniques dramatically reduce the phasiness of the out-
put signal and also enable the use of 50% overlap between
frames; this decreases the computational cost by at least a
factor of two.

Although the quality of the modified signals obtained
via phase locking is far better than that obtained using
the standard phase-vocoder technique, it nevertheless re-
mains inferior to the quality attainable via time-domain
techniques for monophonic, pitched signals such as speech.
One reason for this is that, ideally, not only phases but
also amplitudes should be modified when performing time-
scale modification. In the frequency domain, a chirp si-
nusoid has a wider center lobe than a constant-frequency
sinusoid. Time-stretching it by a large factor should turn
it into a near-constant frequency with a narrower center
lobe. This fact is not taken into account in the phase-
vocoder techniques presented in this paper. Incorporating
such refinements could increase the quality of the modifi-
cation, but the resulting complication might rival that of
sinusoidal-modeling methods [12]. Refer to [11] for the de-
scription of a technique which attempts to modify both
short-time Fourier Transform phases and amplitudes.
Another reason might be linked to the lack of phase-
synchronization between harmonics of the same fundamen-
tal, or lack of “shape-invariance” as it has been called in the
literature. Achieving shape-invariance would require syn-
chronizing peak-phases with one another, an issue which
is not addressed by the techniques presented here. Also,
note that the concept of shape-invariance is only valid for
sounds made up of quasi-harmonic signals. Refer to [13],
[14], [5] for the description of techniques which attempt to

achieve shape-invariance.
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