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A Survey on Face Detection in the wild: past, present and future

Stefanos Zafeiriou, Cha Zhang and Zhengyou Zhang

Abstract

Face detection is one of the most studied topics in computer vision literature, not only because of the challenging nature of face
as an object, but also due to the countless applications that require the application of face detection as a first step. During the past
15 years, tremendous progress has been made due to the availability of data in unconstrained capture conditions (so-called ’in-the-
wild’) through the Internet, the effort made by the community to develop publicly available benchmarks, as well as the progress in
the development of robust computer vision algorithms. In this paper, we survey the recent advances in real-world face detection
techniques, beginning with the seminal Viola-Jones face detector methodology. These techniques are roughly categorized into
two general schemes: rigid templates, learned mainly via boosting based methods or by the application of deep neural networks,
and deformable models that describe the face by its parts. Representative methods will be described in detail, along with a few
additional successful methods that we briefly go through at the end. Finally, we survey the main databases used for the evaluation
of face detection algorithms and recent benchmarking efforts, and discuss the future of face detection.

(© 2014 Published by Elsevier Ltd.
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1. Introduction

Automatic face detection is the cornerstone of all applications revolving around automatic facial image analysis
including, but not limited to, face recognition and verification [1], face tracking for surveillance [2], facial behaviour
analysis [3], facial attribute recognition [4] (i.e., gender/age recognition [5] and assessment of beauty [6]), face relight-
ing and-morphing [7], facial shape reconstruction [8], image and video retrieval, as well as organization and presen-
tation of digital photo-albums [9]. Face detection is also the initial step to all modern vision-based human-computer
and human-robot interaction systems (e.g., the recent commercial robots such as Nao come with an embedded face
detection module [10]). Furthermore, the majority of the commercial digital cameras have an embedded face detector
that is used to help auto-focusing. Finally, many social networks, such as FaceBook, use face detection mechanisms
for the purpose of image/person tagging.

Automatic face and facial feature detection was one of the first computer vision applications with early works
dating back 45-50 years [11, 12, 13, 14]. During the middle of 1990’s until the beginning of 2000’s, the field
witnessed an explosion [15, 16]. Unfortunately, the majority of these early works were not able to provide good
performance in unconstrained conditions (so called “in-the-wild”, please see Fig. 1 for some examples of “in-the-
wild” faces), and thus were not appropriate to be directly applied in real-world settings. This was achieved by the
seminal work of Viola and Jones [17] on boosting based face detection, which was the first algorithm that made
face detection practically feasible in real-world applications and until today is widely applied in digital cameras and
photo organization software. Since then, research in face detection has made significant progress in the direction of
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providing algorithms that are able to detect faces "in-the-wild’. Except of the rapid growth in processing power and
storage capacity of the modern computers, modern face detection algorithms have also benefited from:

e The introduction of robust feature extraction methodologies, such as Scale Invariant Feature Transform (SIFT)
features [18], Histograms of oriented Gradients (HoGs) [19], Local Binary Patterns (LBPs) and their variations
[20, 21, 22], their fast counterparts such as Speeded Up Robust Features (SURF) [23] and DAISY [24], as
well as transformations that combine the above features with integral images, such as Integral Channel Features
(ICF) [25, 26]. These features are densely or sparsely sampled and are used to describe face appearance.

o The efforts of the research community to develop databases and benchmarks for “’in-the-wild”” object detection,
such as PASCAL [27, 28], LFW [29], FDDB [30] etc. The development of these large collections was facilitated
by the abundance of visual data spread via the major breakthrough of the Internet (mostly through data sharing
services and search engines).

o The development of many powerful, mainly discriminative methodologies such as Boosting [31], Support Vec-
tor machines [32] and their recent structural extension [33] and (deep) neural network architectures [34] which
can harness the amount of information provided by the above mentioned modern large scale datasets and facil-
itate training of complex deformable object and facial models [35].

o The development of repositories of high quality publicly available code. Notable examples include the OpenCV
series of releases [36], the series of deformable parts-based models releases [37], as well as the recent efforts to
make a high quality repository of convolutional neural network architectures [38].

The last comprehensive survey of face detection algorithms in [15] grouped the various methods into four cate-
gories: knowledge-based methods, feature invariant approaches, template matching methods, and appearance-based
methods. Knowledge-based methods use pre-defined rules based on human knowledge in order to detect a face, fea-
ture invariant approaches aim to find face structure features robust to pose and lighting variations, template matching
methods use pre-stored face templates to determine where a human face is depicted in an image, while appearance-
based methods learn face models from a set of representative training face images which are used for face detection.
The above categorization, however, hardly applies on recent methodologies developed since [17]. Thus in this survey
we attempt to organize algorithms in the following two major categories:

e The family of algorithms that are based on rigid-templates that include:

— variations of boosting; the main representative of this family of algorithms include the Viola-Jones face
detection algorithm and its variations [17, 39].

— algorithms that are based on Convolutional Neural Networks (CNNs) and Deep CNNs (DCNNs) [34, 40];
recently, a DCNN showed exceptional performance in multi-object class detection [41], thus currently its
learning architectures have been investigated for face detection [42].

— methods such as [43, 44] which apply strategies inspired by image-retrieval and Generalized Hough Trans-
form [45, 46].

e The family of algorithms that learn and apply a Deformable Parts-based Model (DPM) [35, 47, 14] to model
a potential deformation between facial parts. These methods can also combine face detection and facial part
localization [48]. This family of algorithms mainly revolves around extensions and variations of the general
object detection methodology [35, 47]. Other notable parts-based methods include [49, 50, 51].

Hence, the aims of the paper are

o thoroughly describe variations and extensions of face detection algorithms based on rigid templates (i.e., cas-
cades of weak classifiers using boosting, DCNNSs etc.), as well as deformable templates

e describe the current benchmarks and metrics used for evaluation, as well as compare the performance of the
state-of-the-art
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e perform a critical comparison between the two families of algorithms, i.e. based on rigid and non-rigid tem-
plates, as well as discuss future challenges and research directions in face detection.

The remaining of the manuscript is outlined as follows. Section 2 surveys the approaches based on learning
rigid-templates, including (a) boosting-based algorithms, (b) DCNNs and (c) notable approaches that explot rigid-
templates. In Section 3, we survey pictorial structures, DPMs and other part-based methods which evolved to be
some of the state-of-the-art methodologies for face detection. In Section 4, we survey the current benchmarks for
“in-the-wild’ face detection. Finally, Section 5 concludes the survey and discusses future challenges.

2. Face Detection Algorithms with Rigid Templates

In this Section we survey face detection algorithms that are based on learning a set of rigid-templates. The main
line of research in this direction is based on learning rigid templates using boosted cascades of classifiers. Hence, we
start by providing an overview of the Viola-Jones face detector, which also motivates many of the recent advances
in face detection. Then, solutions to two key issues for boosting-based face detection: what features to extract, and
which learning algorithm to apply, are surveyed in Section 2.2 and Section 2.3 learning algorithms, respectively. These
Sections of the paper are largely based on the technical report [52].

Another line of research on rigid-templates, which currently gainss-momentum, is based on Deep Convolutional
Neural Networks (DCNNs). DCNNs-based approaches are surveyed in Section 2.4. Finally, in Section 2.5, we survey
other approaches that do not strictly fall to the above categories.

2.1. The Viola-Jones Face Detector

If one were asked to name the face detection algorithm that had the most impact in the 2000’s, it will most likely
be the seminal work by Viola and Jones [17]. The Viola-Jones face detector contains three main ideas that make
it possible to build and run in real time: the integral image, classifier learning with AdaBoost, and the attentional
cascade structure.

2.1.1. The Integral Image

The integral image, also known as a summed area table, is an algorithm for quickly and efficiently computing the
sum of values in a rectangle subset of a grid. It was first introduced to the computer graphics field in [53] to be used in
mipmaps. Viola-Jones face detector applied the integral image for rapid computation of Haar-like features, as detailed
below.

An integral image is constructed as follows:

ii(x,y) = Z ix',y), ()

X' <x,y <y

where ii(x, y) is the integral image at pixel location (x, y) and i(x’, y") is the original image. Using the integral image to
compute the sum of any rectangular area is extremely efficient, as shown in Fig. 2. The sum of pixels in the rectangle
region ABCD can be calculated as:

Z i(x,y) = ii(D) + ii(A) — ii(B) — ii(C), 2)

(x,y)€ABCD

which only requires four array references.

The integral image can be used to compute simple Haar-like rectangular features, as shown in Fig. 2 (a-f). The
features are defined as the (weighted) intensity difference between two to four rectangles. For instance, in Fig. 2 (a),
the feature value is the average difference of pixel values in the gray and white rectangles. Since the rectangles share
corners, the computation of two rectangle features (a and b) requires six array references, the three rectangle features
(c and d) require eight array references, and the four rectangle features (e and f) require nine array references.



Stefanos Zafeiriou, Cha Zhang and Zhengyou Zhang / CVIU 00 (2015) 1-33 4

2.1.2. AdaBoost Learning

Boosting is a method of finding a highly accurate hypothesis by combining many “weak’ hypotheses, each with
moderate accuracy. For an introduction on boosting, we refer the readers to [54] and [55].

The AdaBoost (Adaptive Boosting) algorithm is generally considered as the first step towards more practical
boosting algorithms [56, 57]. In this section, following [58] and [55], we briefly present a generalized version of
AdaBoost algorithm, usually referred to as RealBoost. It has been advocated in various works [59, 60, 61; 62] that
RealBoost yields better performance than the original AdaBoost algorithm.

Consider a set of training examples as S = {(x;,z;),i = 1,--- , N}, where x; belongs to a domain or instance space
X, and z; belongs to a finite label space Z. In binary classification problems, Z = {1, -1}, where z; = 1 for positive
examples and z; = —1 for negative examples. AdaBoost produces an additive model F7 (x) = Z,T=1 fi(x) to predict the
label of an input example x, where F7(x) is a real valued function in the form FT : X = R. The predicted label is
%, = sign(F7 (x;)), where sign(-) is the sign function. From the statistical view of boosting [55], AdaBoost algorithm
fits an additive logistic regression model by using adaptive Newton updates for minimizing the expected exponential

criterion:
N

L' =" expl-zF" (x)}. 3)
i=1
The AdaBoost learning algorithm tries to find the best additive base function f;,;(x) once F'(x) is given. For this
purpose, we assume the base function pool { f(x)} is in the form of confidence rated decision stumps. That is, a certain
form of real feature value h(x) is first extracted from x, & : X — R. For instance, in the Viola-Jones face detector, /(x)
are the Haar-like features computed with integral image, as was shown in Fig. 2 (a-f). A decision threshold H divides
the output of A(x) into two subregions, v; and v,, v; U v, = R. The base function f(x) is thus:

f) =cjifh(x)yev;,j=1,2, (@)

which is often referred to as the stump classifier. ¢; is called the confidence. The optimal values of the confidence
values can be derived as follows. For j =.1,2 andk = 1, -1, let

Wij= >, expl-kF'(x). )
i:zi=k, f(x;)€v;
The target criterion can thus be written as:

2
= Z [Warje™ + W_yjel]. ©)

=1

Using standard calculus, we see L'*! is minimized when
1 Wi
¢; = Eln(;l]'). 7)
Plugging into (6), we have:
2
L = ZZ W, Wo . (8)
=1

(8) is referred to as the Z score in [58]. In practice, at iteration ¢ + 1, for every Haar-like feature h(x), we find the
optimal threshold H and confidence score c; and ¢ in order to minimize the Z score L'*!. A simple pseudo code of
the AdaBoost algorithm is shown in Fig. 3.

2.1.3. The Attentional Cascade Structure
The attentional cascade is a critical component in the Viola-Jones detector. The key insight is that smaller, and
thus more efficient, boosted classifiers can be built which reject most of the negative sub-windows while keeping

4
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almost all the positive examples. Consequently, majority of the sub-windows will be rejected in early stages of the
detector, making the detection process extremely efficient.

The overall process of classifying a sub-window thus forming a degenerate decision tree, which is called a “cas-
cade” was presented in [17]. As shown in Fig. 4, the input sub-windows pass a series of nodes during detection. Each
node will make a binary decision according to which the window will be kept for the next round or rejected immedi-
ately. The number of weak classifiers usually increases as the number of nodes a sub-window passes. For instance, in
[17], the first five nodes contain 1, 10, 25, 25, 50 weak classifiers, respectively. This is intuitive, since each node is
trying to reject a certain amount of negative windows while keeping all the positive examples, and the task becomes
harder at late stages. Having fewer weak classifiers at early stages also improves the speed of the detector.

The cascade structure also has an impact on the training process. Face detection is a rare event detection task.
Consequently, there are usually billions of negative examples needed in order to train a high performance face detector.
To handle the huge amount of negative training examples, the Viola-Jones face detector [17] used a bootstrap process.
That is, at each node, a threshold was manually chosen, and the partial classifier was used to scan the negative
example set to find more unrejected negative examples for the training of the next node. Furthermore, each node is
trained independently, as if the previous nodes does not exist. One argument behind such a process is to force the
addition of some nonlinearity in the training process, which could improve the overall performance. However, recent
works showed that it is actually beneficial not to completely separate the training process of different nodes, as will
be discussed in Section 2.3.

In [17], the attentional cascade is constructed manually. That is, the number of weak classifiers and the decision
threshold for early rejection at each node are both manually specified. This is a non-trivial task. If the decision
thresholds were set too aggressively, the final detector will.be very fast, but the overall detection rate may be affected.
On the other hand, if the decision thresholds are set very conservatively, most sub-windows will need to pass through
many nodes, making the detector very slow. Combined with the limited computational resources available in the early
2000’s, it is no wonder that training a good face detector can take months of fine-tuning.

2.2. Feature Extraction

As mentioned earlier, thanks to the rapid expansion in storage and computation resources, appearance based
methods have dominated the recent advances in face detection. The general practice is to collect a large set of face
and non-face examples, and adopt certain machine learning algorithms to learn a face model to perform classification.
There are two key issues in this process: what features to extract, and which learning algorithm to apply. In this
section, we first review the recent advances in feature extraction.

The Haar-like rectangular features as in Fig. 2 (a-f) are very efficient to compute due to the integral image tech-
nique, and provide good performance for building frontal face detectors. In a number of follow-up works, researchers
extended the straightforward features with more variations in the ways rectangle features are combined.

For instance,-as shown in Fig. 5, the feature set of [17] was generalized in [63] by introducing 45 degree rotated
rectangular features (a-d), and center-surround features (e-f). In order to compute the 45 degree rotated rectangular
features, a new rotated summed area table was introduced as:

riiey) = Y i), ©)

X <X y—y |<x—x

As seen in Fig. 5, rii(A) is essentially the sum of pixel intensities in the shaded area. The rotated summed area table
can be calculated with two passes over all pixels.

A number of researchers noted the limitation of the original Haar-like feature set in [17] for multi-view face
detection, and proposed to extend the feature set by allowing a more flexible combination of rectangular regions.
For instance, in [59], three types of features were defined in the detection sub-window, as shown in Fig. 6 (a). The
rectangles are of flexible sizes x X y and at certain distances of (dx, dy) apart. It was argued that these features can be
non-symmetrical to cater to non-symmetrical characteristics of non-frontal faces. Viola and Jones [64] also proposed
a similar feature called diagonal filters, as shown in Fig. 6 (b). These diagonal filters can be computed with 16 array
references to the integral image.
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In [65] the Haar-like feature set was further extended to work on motion filtered images for video-based pedestrian
detection. Let the previous and current video frames be i;_; and i;. Five motion filters are defined as:

A= i =il

U = li—i-1 T
L = |ii—imy < |
R = l|ii—i1—|
D = l|i—i-1]]|

where {T, <, —, |} are image shift operators. i; T is i, shifted up by one pixel. In addition to the regular rectangular
features (Fig. 2) on these additional motion filtered images, the method in [65] proposed to add single box rectangular
sum features, and new features across two images. For instance:

fi = ri(d) = ri(S), (10)

where S € {U, L, R, D} and r,(-) is a single box rectangular sum within the detection window.

It should be noted here that the construction of the motion filtered images {U, L, R, D} is not scale invariant. That
is, when detecting pedestrians at different scales, these filtered images need to be recomputed. This can be done by
first constructing a pyramid of images for i, at different scales and computing the filtered images at each level of the
pyramid, as was done in [65].

In [62] joint Haar-like features were proposed, which are based on the co-occurrence of multiple Haar-like fea-
tures. It was claimed that feature co-occurrence can better capture the characteristics of human faces, making it
possible to construct a more powerful classifier. As shown in Fig. 7, the joint Haar-like feature uses a similar feature
computation and thresholding scheme, however, only the binary outputs of the Haar-like features are concatenated
into an index for 2F possible combinations, where F is the number of combined features. To find distinctive feature
co-occurrences with limited computational complexity, the suboptimal sequential forward selection scheme was used
in [62]. The number F was also heuristically limited to avoid statistical unreliability.

To some degree, the above joint‘Haar-like features resemble a CART tree, which was explored in [66]. It was
shown that CART tree based weak classifiers improved results across various boosting algorithms with a small loss in
speed. Another variation was presented in [61] for improving the weak classifier, where the use of a single Haar-like
feature and equally binning of the feature values into a histogram to be used in a RealBoost learning algorithm was
proposed. Similar to the number F in the joint Haar-like features, the number of bins for the histogram is vital to
the performance of the final detector. [61] proposed to use 64 bins. In the subsequent work [67], it was specifically
pointed out that too fine granularity of the histogram may cause over-fitting. To deal with that it was suggested to
use fine granularity in the first few layers of the cascade, and coarse granularity in latter layers. Another interesting
recent method was proposed in [68], where a new weak classifier called Bayesian stump was introduced. Bayesian
stump is also a histogram based weak classifier, however, the split thresholds of the Bayesian stump are derived from
iterative split and merge operations instead of being at equal distances and fixed. Experimental results showed that
such a flexible multi-split thresholding scheme is effective in improving the detector’s performance.

Another limitation of the original Haar-like feature set is its lack of robustness in handling faces under extreme
lighting conditions, despite the fact that Haar features are usually normalized by the test windows’ intensity covariance
[17]. In [69] a modified census transform was adopted to generate illumination-insensitive features for face detection.
On each pixel’s 3 x 3 neighborhood, the method applied a modified census transform that compares the neighborhood
pixels with their intensity mean. The results are concatenated into an index number representing the pixel’s local
structure. During boosting, the weak classifiers are constructed by examining the distributions of the index numbers
for the pixels. Another well-known feature set robust to illumination variations is the local binary patterns (LBP)
[20], which have been very effective for face recognition tasks [21, 70]. In [71, 72], LBP were applied for face
detection tasks under a Bayesian and a boosting framework, respectively. More recently, inspired by LBP, in [73]
locally assembled binary feature was proposed, which showed great performance on standard face detection data sets.

In order to explore possibilities for further improving the performance, more and more complex features were
proposed in the literature. For instance, in [74] generic linear features were introduced, which are defined by a

6
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mapping function ¢() : RY — R!, where d is the size of the test patch. For linear features, ¢(x) = ¢ x, ¢ € R?. The
classification function is in the following form:

T
FT(x) = signl )| (] )], (1)

where 4,() are R — R discriminating functions, such as the conventional stump classifiers in AdaBoost. F” (x) shall be
1 for positive examples and —1 for negative examples. Note the Haar-like feature set is a subset of linear features. An-
other example is the anisotropic Gaussian filters in [75]. In [76], the linear features were constructed by pre-learning
them using local non-negative matrix factorization (LNMF), which is still sub-optimal. Instead, Liu and Shum [74]
proposed to search for the linear features by examining the Kullback-Leibler (KL) divergence of the positive and
negative histograms projected on the feature during boosting (hence the name Kullback-Leibler boosting). In [77],
the authors proposed to apply Fisher discriminant analysis and more generally recursive nonparametric discriminant
analysis (RNDA) to find the linear projections ¢,. Linear projection features are very powerful features. The selected
features shown in [74] and [77] were like face templates. They may significantly improve the convergence speed of
the boosting classifier at early stages. However, caution must be taken to-avoid overfitting if these features are to be
used at the later stages of learning. In addition, the computational load of linear features is generally much higher
than the traditional Haar-like features. On the contrary, in [78] the use of simple pixel pairs as features, and in [79]
the use of the relative values of a set of control points as features, was proposed. Such pixel-based features can be
computed even faster than the Haar-like features, however, their discrimination power is generally insufficient to build
high performance detectors.

Another popular complex feature for face/object detection is based on regional statistics such as histograms. In
[80] local edge orientation histograms was proposed, which compute the histogram of edge orientations in subregions
of the test windows. These features are then selected by an AdaBoost algorithm to build the detector. The orientation
histogram is largely invariant to global illumination changes, and it is capable of capturing geometric properties of
faces that are difficult to capture with linear edge filters such as Haar-like features. However, similar to motion filters,
edge based histogram features are not scale invariant, hence one must first scale the test images to form a pyramid
to make the local edge orientation histograms features reliable. Later, in [19] a similar scheme called histogram
of oriented gradients (HoG) was proposed, which became a very popular feature for human/pedestrian detection
[81, 82, 83, 84, 85] (we will discuss about the use of HoG features in face detection in the next subsection). In [86],
the authors proposed spectral histogram features, which adopts a broader set of filters before collecting the histogram
features, including gradient, Laplacian of Gaussian and Gabor filters. Compared with [80], the histogram features in
[86] were based on the whole testing window rather than local regions, and Support Vector Machines (SVMs) were
used for classification. In [87] another histogram-based feature, called spatial histograms, was proposed. The spatial
histograms are based on local statistics of LBP. HoG and LBP were also combined in [88], which achieved excellent
performance in human detection with partial occlusion handling. Region covariance is another statistics based feature,
proposed in [89] for generic object detection and texture classification tasks. To extract these features the covariance
matrices among the color channels and gradient images are computed instead of the histograms. Regional covariance
features can also be efficiently computed using integral images.

In [90] a sparse feature set was proposed in order to strengthen the features’ discrimination power without incurring
too much additional computational cost. Each sparse feature can be represented as:

fx) = Zaipi(x; u,v,s),qa; € {-1,+1} (12)

where x is an image patch, and p; is a granule of the sparse feature. A granule is specified by 3 parameters: horizontal
offset u, vertical offset v and scale s. For instance, as shown in Fig. 8, p;(x;5,3,2) is a granule with top-left corner
(5,3), and scale 22 = 4, and pi(x;9,13,3) is a granule with top-left corner (9,13), and scale 23 = 8. Granules can
be computed efficiently using pre-constructed image pyramids, or through the integer image. In [90], the maximum
number of granules in a single sparse feature is 8. Since the total number of granules is large, the search space is
very large and exhaustive search is infeasible. The method employed a heuristic search scheme, where granules are
added to a sparse feature one-by-one, with an expansion operator that removes, refines and adds granules to a partially
selected sparse feature. To reduce the computation, the authors further conducted multi-scaled search, which uses
7
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a small set of training examples to first evaluate all features and then reject those that are unlikely to be good. The
performance of the multi-view face detector trained in [90] using sparse features was very good.

As new features are composed in seeking the best discrimination power, the feature pool becomes larger and
larger, thus creating new challenges in the feature selection process. A number of recent works have attempted to
address this issue. For instance, [91] proposed to discover compositional features using the classic frequent item-
set mining scheme in data mining. Instead of using the raw feature values, they assumed a collection of induced
binary features (e.g., decision stumps with known thresholds) that are already available. By partitioning the feature
space into sub-regions through these binary features, the training examples can be indexed by the sub-regions they
are located. The algorithm then searches for a small subset of compositional features that are both frequent to have
statistical significance and accurate to be useful for label prediction. The final classifier is then learned based on the
selected subset of compositional features through AdaBoost. In [92], the authors first established an analogue between
compositional feature selection and generative image segmentation, and applied the Swendsen-Wang Cut algorithm to
generate n-partitions for the individual feature set, where each subset of the partition corresponds to a compositional
feature. This algorithm re-runs for every weak classifier selected by the AdaBoost learning framework. On a person
detection task tested, the composite features showed significant improvement, especially when the individual features
were very weak (e.g., Haar-like features).

In some applications such as object tracking, even if the number of possible features is not extensive, an exhaustive
feature selection is still impractical due to computational constraints. In [93], the authors proposed a gradient based
feature selection scheme for online boosting with primary applications in person detection and tracking. Their work
iteratively updates each feature using a gradient descent algorithm, by minimizing the weighted least square error
between the estimated feature response and the true label. This is particularly attractive for tracking and updating
schemes such as [82], where at any time instance, the object’s appearance is already represented by a boosted classifier
learned from previous frames. Assuming there is no dramatic change in the appearance, the gradient descent based
algorithm can refine the features in a very efficient manner.

There have also been many features that attempted to model the shape of the objects. For instance, in [94] multi-
ple boundary fragments to weak classifiers were composed and formed a strong “boundary-fragment-model” detector
using boosting. They ensured the feasibility of the feature selection process by limiting the number of boundary
fragments to 2-3 for each weak classifier. In [95] the object detectors were learned with a boosting algorithm and
the feature set consisted of a randomly chosen dictionary of contour fragments. A very similar edgelet feature was
proposed in [96], and was used to learn human body part detectors in order to handle multiple, partially occluded hu-
mans. In [97], shapelet features focusing on local regions of the image were built from low-level gradient information
using AdaBoost for pedestrian detection. An interesting side benefit of having contour/edgelet features is that object
detection and object segmentation can be performed jointly, such as the work in [98] and [99].

2.2.1. Robust Descriptors meet Boosting

The field of pedestrian detection has been dominated by the now classic HoG plus SVM approach proposed in
[19]. This pivotal paper started an era where robust descriptors such as HoGs, SIFT and their fast counterparts such as
SUREF features, densely or sparsely measured all over the image have been concatenated and fed to a classifier. These
very simple schemes achieve competitive pedestrian and face detection performance [100, 26, 101]. The application
of these robust features with cascades of weak classifiers and boosting methodologies has recently started to receive
attention.

One of the first such approaches was recently introduced combining a cascade of weak-classifiers with SURF
features [102, 103]. In particular, in [103] the detection region was represented by patches and each patch was
described by a multi-dimensional SURF descriptor. The number of SURF patches contained only few hundreds of
features. Logistic regression was adopted as the weak classifier on each local SURF patch and Area Under ROC curve
(AUC) was used as the criterion for convergence. In [103] it was shown that the SURF cascade is able to converge
very fast (within even an hour on a standard desktop).

Variations of LBP and HoG features were proposed in [22] and applied for face detection. In particular, the Local
Gradient Patterns (LGP) and Binary Histograms of Oriented Gradients (BHOG) were proposed. The LGP feature
construction methodology compares the gradient values, which are computed as the absolute value of the intensity
difference between the given pixel and its neighbouring pixels, in predefined neighbourhood structures. The LGP
feature is then created by assigning 1 if the gradient value of a neighbouring pixel is greater than the threshold value,
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and O otherwise. When compared to LBPs the LGP provides robustness to local gradient variations caused by make-
up, glasses and possible background variations. The other descriptor proposed in [22], the so-called BHOG, computes
features as follows: The square of the gradient magnitude and the orientation of all pixels within a predefined block
is computed, then an orientation histogram is computed in a similar manner as in HoGs, finally by thresholding the
histogram bins (i.e., assigning 1 if the histogram bin has a value higher than the threshold otherwise assigning 0) the
orientation histogram is encoded into an 8 bit vector. The threshold value was set to be the average value of the total
histogram bins. The advantage of BHOG features is that they can be efficiently computed using the integral histogram
methods [104] and could also be efficiently combined with boosting methods (such as Adaboost).. The paper also
proposed to fuse LBP, LGP and BHOG for face detection [22].

Very recently an approach that uses various robust features with boosting achieved state-of-the-art performance
in face detection in the wild [26]'. The method used the so-called Integral Channel Features (ICF) proposed in [25].
The IGF method applies the idea of integral images, which used only with the gray scale channel of pixel intensities
in the Viola-Jones algorithm, on top of other features (channels) to efficiently pool statistics with different regions
of support. In the original IGF paper [25] the channels used were gradient histograms, color (including grayscale,
RGB, HSV and LUV), and gradient magnitude. The adaptation of the IGM method for face detection used HoG
and LUV color channels combined with global feature normalization [26]. Furthermore, it learned 22 different face
detection templates (11 for each of the two scales, 5 for near frontal faces and 6 for rotated faces). For each template
the cascade was trained using the maximum amount of pooling features; i.e. all possible rectangles for the baseline
and all possible squares for the largest templates. This detector, coined Headhunter, along with a DPM face detector,
described in the next section, are among the current state-of-the-art in face detection in the wild.

Finally, a state-of-the-art approach similar to HeadHunter was independently proposed in [105]. In particular, in
[105] it was proposed to use sub-sampled channel features, such gray-scale, RGB, HSV and LUV, gradient magnitude,
and gradient histograms, to learn a cascade of weak classifiers. Features are extracted directly from the down-sampled
channels without computing rectangular sums (i.e., using integral images). This could lead to a faster feature compu-
tation and smaller feature pool size for boosting learning. For weak classifier a depth-2 decision tree was used and to
build the cascade the soft-cascade strategy [106] was adopted.

We summarize the features presented in this Section in Table 1.

2.3. Variations of the Boosting Learning Algorithm

In addition to exploring better features, another venue to improve the detector’s performance is through improving
the boosting learning algorithm, particularly under the cascade decision structure. In the original face detection
paper by Viola and Jones [17], the standard AdaBoost algorithm [56] was adopted. In a number of follow-up works
[59, 60, 61, 62], researchers advocated the use of RealBoost, which was explained in detail in Section 2.1.2. In [107]
and [66] comparisons between three boosting algorithms: AdaBoost, RealBoost and GentleBoost were performed.
The papers reached different conclusions. In particular, in [107] it is recommended to use GentleBoost while the [66]
showed that RealBoost works slightly better when combined with CART-based weak classifiers. In the following, we
describe a number of recent works on boosting learning for face/object detection, with emphasis on adapting to the
cascade structure, the training speed, multi-view face detection, etc.

In [59], the FloatBoost algorithm was proposed, which attempted to overcome the monotonicity problem of the se-
quential AdaBoost Learning. Specifically, AdaBoost is a sequential forward search procedure using a greedy selection
strategy, which may be suboptimal. FloatBoost incorporates the idea of floating search [108] into AdaBoost, which
not only adds features during training, but also backtracks and examines the already selected features to remove those
that are least significant. The authors claimed that FloatBoost usually needs fewer weak classifiers than AdaBoost
to achieve a given objective. In [109] the use of evolutionary algorithms was proposed to minimize the number of
classifiers without degrading the detection accuracy. They showed that such an algorithm can reduce the total number
of weak classifiers by over 40%. Note that in practice only the first few nodes are critical to the detection speed, since
most testing windows are rejected by the first few weak classifiers in a cascade architecture.

As mentioned in Section 2.1.3, Viola and Jones [17] trained each node independently. A number of follow-up
works showed that there is indeed information in the results from the previous nodes, and it is best to reuse them

!The method was inspired by the previous work by the same authors for pedestrians detection [101]
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Table 1. Features for face/object detection.

Feature Type

Representative Works

Haar-like
features and
its variations

Haar-like features [17]

Rotated Haar-like features [63]

Rectangular features with structure [59,
64]

Haar-like features on motion filtered
image [65]

Pixel-based

Pixel pairs [78]

features Control point set [79]
Binarized Modified census transform [69]
features LBP features [71,72]

Locally assembled binary feature [73]

Generic linear
features

Anisotropic Gaussian filters [75]

LNMEF [76]

Generic linear features with KL boost-
ing [74]

RNDA [77]

Statistics-based
features

Edge orientation histograms [80, 19]
etc.

Spectral histogram [86]

Spatial histogram (LBP-based) [87]

HoG and LBP [88]

Region covariance [89]

SURF [102, 103]

Composite
features

Joint Haar-like features [62]

Sparse feature set [90]

LGB, BHOG [22]

Integral Channel Features on HoG and
LUV (Headhunter) [26]

HoG, HSV, RGB, LUV, Grayscale, Gra-
dient Magnitude [105]

Shape features

Boundary/contour fragments [94, 95]

Edgelet [96]

Shapelet [97]
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instead of starting from scratch at each new node. For instance, in [110], the use of a “chain” structure was proposed
to integrate historical knowledge into successive boosting learning. At each node, the existing partial classifier is
used as a prefix classifier for further training. Boosting chain learning can thus be regarded as a variant of AdaBoost
learning with similar generalization performance and error bound. In [61], the so-called nesting-structured cascade
was proposed. Instead of taking the existing partial classifier as a prefix, the method took the confidence output of the
partial classifier and used it as a feature to build the first weak classifier. Both papers demonstrated better detection
performance than the original Viola-Jones face detector.

One critical challenge in training a cascade face detector is how to set the thresholds for the intermediate nodes.
This issue has inspired a lot of works in the literature. First, in [111] it was observed that the goal of the early stages
of the cascade is mostly to retain a very high detection rate, while accepting modest false positive rates if necessary.
The method proposed a new scheme called asymmetric AdaBoost, which artificially increases the weights on positive
examples in each round of AdaBoost such that the error criterion biases towards having low false negative rates. In
[112], the above work was extended by proposing to balance the skewness of labels presented to each weak classifiers,
so that they are trained more equally. In [113] a more rigorous form of asymmetric boosting based on the statistical
interpretation of boosting [55] with an extension of the boosting loss, was proposed. Namely, the exponential cost

criterion in (3) is rewritten as:
N

L' =" expl-ciziF " (), (13)
i=1
where ¢; = C; for positive examples and ¢; = Cj for negative examples. The method in [113] minimized the
above criterion following the AnyBoost framework in [114]. The method wes able to build a detector with very high
detection rate [115], though the performance of the detector deteriorates very quickly when the required false positive
rate is low.

In [116] it was proposed to decouple the problems of feature selection and ensemble classifier design in order to
introduce asymmetry. They first applied the forward feature selection algorithm to select a set of features, and then
formed the ensemble classifier by voting among the selected features through a linear asymmetric classifier (LAC).
The LAC is supposed to be the optimal linear classifier for the node learning goal under the assumption that the linear
projection of the features for positive examples follows a Gaussian distribution, and that for negative examples is
symmetric. Mathematically, LAC has a similar form as the well-known Fisher discriminant analysis (FDA) [117],
except that only the covariance matrix of the positive feature projections are considered in LAC. In practice, their
performances are also similar. Applying LAC or FDA on a set of features pre-selected by AdaBoost is equivalent
to readjusting the confidence values of the AdaBoost learning (7). Since at each node of the cascade, the AdaBoost
learning usually has not converged before moving to the next node, readjusting these confidence values could provide
better performance for that node. However, when the full cascade classifier is considered, the performance improve-
ment over AdaBoost is diminished. In [116] the phenomenon was attributed to the booststrapping step and the post
processing step, which also have significant effects on the cascade’s performance.

With or without asymmetric boosting/learning, at the end of each cascade node, a threshold still has to be set in
order to allow the early rejection of negative examples. These node thresholds reflect a trade-off between detection
quality and speed. If they are set too aggressively, the final detector will be fast, but the detection rate may drop. On
the other hand, if the thresholds are set conservatively, many negative examples will pass the early nodes, making
the detector slow. In early works, the rejection thresholds were often set in very ad hoc manners. For instance, the
learning procedure in [17] attempted to reject zero positive examples until this became impossible and then reluctantly
gave up on one positive example at a time. Huge amount of manual tuning is thus required to find a classifier with
good balance between quality and speed, which is very inefficient. The method proposed in [107] instead built the
cascade targeting each node to have 0.1% false negative rate and 50% rejection rate for the negative examples. Such
a scheme is simple to implement, though no speed guarantee can be made about the final detector.

In [118], the use of a ratio test to determine the rejection thresholds, was proposed. Specifically, the authors
viewed the cascade detector as a sequential decision-making problem. A sequential decision-making theory had
been developed in [119], which proved that the solution to minimizing the expected evaluation time for a sequential
decision-making problem is the sequential probability ratio test. In [118] the notion of nodes was abandoned, and
set the rejection threshold after each weak classifier. The method then approximated the joint likelihood ratio of all
the weak classifiers between negative and positive examples with the likelihood ratio of the partial scores, in which
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case the algorithm simplified to be rejecting a test example if the likelihood ratio at its partial score value is greater
than é, where « is the false negative rate of the entire cascade. In [66] another fully automatic algorithm for setting
the intermediate thresholds during training, was proposed. Given the target detection and false positive rates, their
algorithm used the empirical results on validation data to estimate the probability that the cascade will meet the goal
criteria. Since a reasonable goal make not be known a priori, the algorithm adjusts its cost function depending on
the attainability of the goal based on cost prediction. In [68], a dynamic cascade was proposed, which-assumes that
the false negative rate of the nodes changes exponentially in each stage, following the idea in [106]. The approach is
simple and ad hoc, though it appears to work reasonably well.

Setting intermediate thresholds during training is a specific scheme to handle huge amount of negative examples
during boosting training. Such a step is unnecessary in AdaBoost, at least according to _its theoretical derivation.
Recent development of boosting based face detector training have shifted toward approaches where these intermediate
thresholds are not set during training, but rather done until the whole classifier has been learnt. For instance, in [120]
it was assumed that a cascade of classifiers is already designed, and proposed an optimization algorithm to adjust the
intermediate thresholds. It represents each individual node with a uniform abstraction - model with parameters (e.g.,
the rejection threshold) controlling the tradeoff between detection rate and false alarm rate. It then uses a greedy
search strategy to adjust the parameters such that the slope of the logarithm scale ROC curves of all the nodes are
equal. One issue in such a scheme is that the ROC curves of the nodes are dependent to changes in thresholds of
any earlier nodes, hence the greedy search scheme can at best be an approximation. In [106] a heuristic approach to
use a parameterized exponential curve to set the intermediate nodes’ detection targets, called a “rejection distribution
vector”’, was proposed instead. By adjusting the parameters of the exponential curve, different tradeoffs can be made
between speed and quality. Perhaps a particular family of curves is more palatable, but it is still arbitrary and non-
optimal. In [121] a more principled data-driven scheme for setting intermediate thresholds named multiple instance
pruning, was proposed. They explored the fact that nearby a ground truth face there are many rectangles that can
be considered as good detection. Therefore, only one of them needs to be retained while setting the intermediate
thresholds. Multiple instance pruning does nothave the flexibility as [106] to be very aggressive in pruning, but it can
guarantee identical detection rate as the raw classifier on the training data set.

The remaining issue is how to train‘a cascade detector with billions of examples without explicitly setting the
intermediate thresholds. In [106], a scheme was proposed that starts with a small set of training examples, and adds to
it new samples at each stage that the current classifier misclassifies. The number of new non-faces to be added at each
training cycle affects the focus of AdaBoost during training. If the number is too large, AdaBoost may not be able to
catch up and the false positive rate will be high. If the number is too small, the cascade may contain too many weak
classifiers in order to reach a reasonable false positive rate. In addition, later stages of the training will be slow due to
the increasing number of negative examples, since none of them will be removed during the process. In [68] and [121],
the use of importance sampling in order to address the large data set issue, was proposed. The training positive or
negative data set were periodically re-sampled to ensure feasible computation. Both works reported excellent results
with such a scheme.

Training a face detector is a very time-consuming task. In early works, due to the limited computing resources,
it could easily take months and lots of manual tuning to train a high quality face detector. The main bottleneck is
at the feature selection stage, where hundreds of thousands of Haar features will need to be tested at each iteration.
A number of papers has been published to speed up the feature selection process. For instance, in [122] a discrete
downhill search scheme to limit the number of features compared during feature selection, was proposed. Such a
greedy search strategy offered a 300—400 fold speed up in training time, though the false positive rate of the resultant
detector increased by almost a factor of 2. In [66] various filter schemes to reduce the size of the feature pool were
studied. It was shown that randomly selecting a subset of features at each iteration for feature selection appears to
work reasonably well. In [123] a cascade learning algorithm based on forward feature selection [124] was proposed.
The learning procedure was shown to be two orders of magnitude faster than the traditional approaches. The idea is
to first train a set of weak classifiers that satisfy the maximum false positive rate requirement of the entire detector.
During feature selection, these weak classifiers are added one by one, each making the largest improvement to the
ensemble performance. Weighting of the weak classifiers can be conducted after the feature selection step. In [125]
another fast method to train and select Haar features was presented. The method treated the training examples as high
dimensional random vectors, and kept the first and second order statistics to build classifiers from features. The time
complexity of the method is linear to the total number of examples and the total number of Haar features. Both [123]
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and [125] reported experimental results demonstrating better ROC curve performance than the traditional AdaBoost
approach, though it appears unlikely that they can also outperform the state-of-the-art detectors such as [61, 106].

Various efforts have also been made to improve the detector’s test speed. For instance, in the sparse feature set
in [90], the method limited the granules to be in square shape, which is very efficient to compute in both software
and hardware through building pyramids for the test image. For HoG and similar gradient histogram based features,
the integral histogram approach [126] was often adopted for faster detection. Schneiderman [127] designed a feature-
centric cascade to speed up the detection. The idea is to pre-compute a set of feature values over a regular grid in
the image, so that all the test windows can use their corresponding feature values for the first stage of the detection
cascade. Since many feature values are shared by multiple windows, significant gains in speed can be achieved. A
similar approach was deployed in [73] to speed up their locally assembled binary feature based detector. In [128], the
authors proposed a scheme to improve the detection speed on quasi-repetitive inputs, such as the video input during
video-conferencing. The idea is to cache a set of image exemplars, each inducing its' own discriminant subspace.
Given a new video frame, the algorithm quickly searches through the exemplar- database indexed with an on-line
version of tree-structured vector quantization, S-tree [129]. If a similar exemplar is found, the face detector will be
skipped and the previously detected object states will be reused. This results in about 5-fold improvement in detection
speed. Similar amount of speed-up can also be achieved through selective attention, such as those based on motion,
skin color, background modelling and subtraction, etc.

As shown in Fig. 1, in real-world images, faces have significant variations in orientation, pose, facial expression,
lighting conditions, etc. A single cascade with Haar features has proven to work very well with frontal or near-frontal
face detection tasks. However, extending the algorithm to multi-pose/multi-view face detection is not straightforward.
If faces with all pose/orientation variations are trained in-a single classifier, the results are usually sub-optimal. To
this end, researchers have proposed numerous schemes to combat the issue, most of them following the “divide and
conquer’’ strategy.

Fig. 9 showed a number of detector structures for multiview face detection. Among these structures, the most
straightforward one is Fig. 9(a), the parallel cascade in [61]. An individual classifier is learned for each view. Given
a test window, it is passed to all the classifiers. After a few nodes, one cascade with the highest score will finish the
classification and make the decision. This simple structure could achieve rather good performance, though its running
speed is generally slow, and the correlation between faces of different views could have been better exploited. In
[59] a pyramid structure to handle the task, as shown in Fig. 9 (b), was used. The detector pyramid consists of 3
levels. The first level of the pyramid works on faces at all poses; the second level detects faces between —90° and
—30° (left profile), between —30° and 30° (frontal), and between 30° and 90° (right profile), respectively; the third
level detects faces at 7 finer angles. Once a test window passes one level of the detector, it will be passed to all the
children nodes for further decision. This design is more efficient than the parallel cascade structure, but still has room
for improvement.

Fig. 9(c) and (d) showed two decision tree structures for multiview face detection. In [64], the authors proposed
to first use a pose estimator to predict the face pose of a test window. Given the predicted pose, a cascade for that
pose will be invoked to make the final decision. A decision tree was adopted for pose estimation, which resulted in
the detector structure in Fig. 9(c). With this structure, a test window will only run through a single cascade once its
pose has been estimated, thus the detector is very efficient. In [130] a similar tree structure (Fig. 9(d)) was used for
frontal face detection at different orientations, except that their early nodes were able to perform rejection to further
improve speed. However, pose/orientation estimation is a non-trivial task, and can have many errors. If a profile face is
misclassified as frontal, it may never be detected by the frontal face cascade. The works [67] and [131] independently
proposed very similar solutions to this issue, which were named vector boosting and multiclass Bhattacharyya boost
(MBHBoost), respectively. The idea is to have a vector valued output for each weak classifier, which allows an
example to be passed into multiple subcategory classifiers during testing (Fig. 9(d)), and the final results to be fused
from the vector output. Such a soft branching scheme can greatly reduce the risk of misclassification during testing.
Another interesting idea in [67, 131] was to force all the subcategory classifiers to share the same features. Namely,
at each iteration, only one feature is chosen to construct a weak classifier with vector output, effectively sharing the
feature among all the subcategories. Sharing features among multiple classifiers had been shown as a successful idea
to reduce the computational and sample complexity when multiple classifiers are jointly trained [132].

Vector boosting and MBHBoost solved the issue of misclassification in pose estimation during testing. During
training, they still used faces manually labelled with pose information to learn the multiview detector. However, for
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certain object classes such as pedestrians or cars, an agreeable manual pose labelling scheme is often unavailable. In
[133] the implicit shape model in [134] was extended to explicitly handle and estimate viewpoints and articulations
of an object category. The training examples were first clustered, with each cluster representing one articulation
and viewpoint. Separate models were then trained for each cluster for classification. In [135] an exemplar-based
categorization scheme for multi-view object detection was proposed. At each round of boosting learning, the algorithm
not only selects a feature to construct a weak classifier, but also selects a set of exemplars to guide the learning to
focus on different views of the object. In [136] a probabilistic boosting tree, which embedded clustering in the learning
phase was proposed. At each tree node, a strong AdaBoost based classifier was built. The output of the AdaBoost
classifier was used to compute the posterior probabilities of the examples, which were used to split the data into two
clusters. In some sense, the traditional boosting cascade can be viewed as a special case of the boosting tree, where all
the positive examples are pushed into one of the child nodes. The performance of boosting tree on multi-view object
detection is uncertain due to the limited experimental results provided in the paper. In [137]; a similar boosted tree
algorithm was proposed. Instead of performing clustering before boosting learning or-using posterior probabilities,
they showed that by using the previously selected features for clustering, the learning algorithm converges faster and
achieves better results.

Some recent works went one step further and did not maintain a fixed subcategory label for the training examples.
For instance, in [138] an algorithm called multiple classifier boosting was proposed. The algorithm is a straightfor-
ward extension of the multiple instance boosting approach in [139]..In this approach, the training examples no longer
have a fixed subcategory label. A set of likelihood values were maintained for each example, which describe the
probability of it belonging to the subcategories during training. These likelihood values are combined to compute
the probability of the example being a positive example. -The learning algorithm then maximizes the overall prob-
ability of all examples in the training data set. In [140] a very similar scheme, so-called multi-pose learning, was
independently developed. The method was further combined with multiple instance learning in a unified framework.
One limitation of the above approaches is that the formulation requires a line search at each weak classifier to find
the optimal weights, which makes it slow to train and hard to deploy feature sharing [132]. In [141] an algorithm
called winner-take-all multiple category boosting (WTA-McBoost) was proposed. The algorithm is more suitable for
learning multiview detectors with huge amount of training data. Instead of using AnyBoost [114], WTA-McBoost
is derived from confidence rated AdaBoost [58], which is much more efficient to train, and easy to support feature
sharing.

Table 2 summarizes this Section listing all the challenges in boosting learning and the approaches to address them.

2.4. Rigid-Template Face Detection using Neural Networks

Neural networks (NN) have always been a popular approach for face detection in the literature. Early representa-
tive methods included the detectors in [142, 143]. In [144] an approach based on a neural network model, the so-called
constrained generative model (CGM), was proposed. CGM is an auto-associative, fully connected multilayer percep-
tron (MLP) with three large layers of weights, trained to perform nonlinear dimensionality reduction in order to build
a generative model for faces. Multi-view face detection was achieved by measuring the reconstruction errors of mul-
tiple CGMs, combined via a conditional mixture and an MLP gate network. In [145], the authors proposed a face
detection scheme based on a convolutional neural architecture. Compared with traditional feature-based approaches,
convolutional neural network derives problem-specific feature extractors from the training examples automatically,
without making any assumptions about the features to extract or the areas of the face patterns to analyse.

In [146] another convolutional neural network (CNN) based approach, which is pictorially described in Fig. 10
and similar to LeNet5 [40], was proposed. The input is image patches at 32 x 32 pixels resolution, and the network
contains four convolution layers and one fully connected layer. The network performs two tasks: (a) rejecting the non-
face hypotheses and (b) estimating the facial pose of the correct face hypothesis (which is performed by regressing to
a set of facial pose parameters such as yaw, pitch angles etc.). Assuming that w is the set of parameters of the DCCN
architecture, the cost function to be minimized in order to estimate w is

1 1 ~
E(w) = A Z IG(qi, W) - f@I* + A Z kexp(=lIG(q;, w) — f(Z)ID) (14)
ieN; JEN
where G(q;, w) is the network output given input q;, N; and N, are the numbers of positive and negative examples
for training, f(z) is a face manifold parameterized by the facial pose, Z; = arg min,; [|G(q;, W) — f(Z;)|| is the closest
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Table 2. Face/object detection schemes to address challenges in boosting learning.

Challenges Representative Works
General AdaBoost [17]

boosting RealBoost [59, 60, 61, 62]
schemes GentleBoost [107, 66]

FloatBoost [59]

Reuse previous
nodes’ results

Boosting chain [110]

Nested cascade [61]

Introduce Asymmetric Boosting [111, 112, 113]
asymmetry Linear asymmetric classifier [116]
Set intermediate | Fixed node performance [107]
thresholds WaldBoost [118]

during Based on validation data [66]

training Exponential curve [68]

Set intermediate
thresholds after

Greedy search [120]

Soft cascade [106]

training Multiple instance pruning [121]
Speed up Greedy search in feature space [122]
training Random feature subset [66]
Forward feature selection [123]
Use feature statistics [125]
Speed up testing | Reduce number of weak classifiers [59,

109]

Feature centric evaluation [127, 73]

Caching/selective attention [128] etc.

Multiview face
detection

Parallel cascade [61]

Pyramid structure [59]

Decision tree [64, 130]

Vector valued boosting [67, 131]

Learn without
subcategory
labels

Cluster and then train [133]

Exemplar-based learning [135]

Probabilistic boosting tree [136]

Cluster with selected features [137]

Multiple classifier/category boosting
[138, 140, 141]
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point on the manifold to the negative example, and k is a positive constant. A stochastic version of the Levenberg-
Marquardt algorithm with diagonal approximation of the Hessian was used to find the optimal set of parameters [40].
For detection the proposed CNN is applied to all 32x32 sub-windows of the image, stepped every 4 pixels horizontally
and vertically. Also a multiscale approach is used for finding faces in many scales (using factors of V2).

In [147], it was shown that a simpler network can also achieve good performance in face detection. The method
applies a neural network on features obtained from Haar transformations followed by two layers that sequentially
apply image row summation, convolution with 1-D filters and 2x2 sub-sampling. Finally, a fully connected step makes
a decision whether the input pattern is a face or not. The network has an exceptional small number of parameters (total
of 457 parameters in contrast to the 63,493 parameters in [146]). These parameters are learned through a gradient-
based learning algorithm. In order to expedite the procedure a small set of cascade rules plays the rule of a coarse face
detector, while the output of the NN is the fine face detector.

Recently, deep convolutional neural networks (DCNN) showed remarkable performance for object categorization
[34] and then a similar network was applied for multi-object detection [41]. Compared with previous neural networks
that are often considered shallow, DCNN features many convolution/fully-connected layers that were once considered
impossible to train. The performance break-through in object categorization and detection can be attributed to many
reasons: (a) the availability of huge amount of labeled data, (b) the use of GPUs for fast parallel computation, and (c)
the new tricks and regularization techniques such as rectified linear unit (ReLU) and dropout [34], which appear to be
the key to avoid overfitting.

In [42], the authors proposed to train a multi-task DCNN for multiview face detection. It adopts the key techniques
such as ReLU and dropout from [34], and achieved state-of-the-art results on the publicly available FDDB data
set [148]. Inspired by the recent work in DPMs, they trained the DCNN with multiple tasks including face pose
estimation and landmark localization. The idea is to allow the DCNN to obtain better lower level features by adding
the other tasks. Slight improvement in face detection performance is achieved, although the experiments were not
conclusive.

DCNN and boosting based approaches using HoG/SIFT type features (such as the state-of-the-art method in [26])
have common characteristics. In particular; it has been empirically verified that the first layer of DCNN resembles
SIFT type features [149]. Currently, there is little theoretical or strong empirical evidence what type of features all the
remaining layers of DCNNs are learning, except some preliminary scheme for feature visualization [41]. Intuitively,
following the rational of invariant scattering networks [149], we can postulate that all the layers contribute to the
development of features invariant to face deformations. Similarly, ICF on HoG features contribute to the development
of another layer of invariant features, and the boosting algorithms choose the best features for face detection. In
comparison, DPM-based methods have orthogonal strategies when compared to DCNN and boosting. Instead of
finding deformation invariants, they try to explicitly model and learn the deformations. As has been empirically
shown in [26], DPM-based methods often require less data to train from.

2.5. Other learning schemes for Rigid-Face Detection

Except the seminal work by Viola and Jones [17], there are also a few other research attempts that approach the
problem of face detection using a series of rigid-templates providing very competitive performance. Again, we will
only focus on works not covered in [15].

In [150] the so-called Antifaces methods proposed. Antifaces is a multi-template scheme for detecting arbitrary
objects including faces in images. The core idea is very similar to the cascade structure in [17], which uses a set of
sequential classifiers to detect faces and rejects non-faces fast. Each classifier, referred as a “detector” in [150], is a
template image obtained through constrained optimization, where the inner product of the template with the example
images are minimized, and the later templates are independent to the previous ones. Interestingly, in this approach,
negative images were modelled by a Boltzmann distribution and assumed to be smooth, thus none is needed during
template construction.

In [151] a Bayesian discriminating features method for frontal face detection was proposed. The face class was
modelled as a multivariate normal distribution. A subset of the non-faces that lie closest to the face class was then
selected based on the face class model and also modelled with a multivariate normal distribution. The final face/non-
face decision was made by a Bayesian classifier. Since only the non-faces closest to the face class were modelled, the
majority of the non-faces were ignored during the classification. This was inspired by the concept of support vector
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machines (SVMs) [152], where only a subset of the training examples (the support vectors) are used to define the
classification boundary.

SVMs are known as maximum margin classifiers, as they simultaneously minimize the empirical classification
error and maximize the geometric margin. Due to their superior performance in general machine learning problems,
they have also become a very popular approach for face detection [153, 154]. However, the detection speed of SVM
based face detectors was generally slow. Thus, various schemes have been proposed to speed up the process. For
instance, in [155] a method that computes a reduced set of vectors from the original support vectors was proposed.
These reduced set vectors are then tested against the test example sequentially, making early rejections possible. In
[156], detection speed was further improved by approximating the reduced set vectors with rectangle groups, gaining
another 6-fold speedup. A hierarchy of SVM classifiers with different resolutions in order to speed up the overall
system was applied [157]. The early classifiers were at low resolution, say, 3 X 3 and'5 X 5 pixels, which can be
computed very efficiently to prune negative examples.

Multiview face detection has also been explored with SVM based classifiers. In [158] a multiview face detector
similar to the approach in [159, 64] was proposed. In this work a face pose estimator using support vector regression
(SVR) is first constructed and subsequently separate SVM face detectors one for each face pose are trained. In contrast,
the method in [160] applies multiple SVMs first, and then an SVR to fuse the results and generate the face pose. This
method is slower, but it has lower risk of assigning a face to the wrong pose SVM and cause misclassification. In
[161] it was argued that in real world settings the face poses may vary greatly thus many different SVMs are required.
In the same work an approach to combine cascade and bagging for multiview face detection was proposed. Namely, a
cascade of SVMs were first trained through bootstrapping. The remaining positive and negative examples were then
randomly partitioned to train a set of SVMs, whose outputs were then combined through majority voting. In [162]
a single SVM for multiview face detection was used, and relied on the combination of local and global kernels for
better performance. No experimental results were given in [161, 162] to compare the proposed methods with existing
schemes on standard data sets, hence it is unclear whether these latest SVM based face detectors can outperform those
learned through boosting.

Recently, interesting methodologies have been proposed inspired from principles applied in image retrieval [44,
43]. In particular, in the first such work an exemplar-based approach was applied for face detection. In a straightfor-
ward exemplar-based approach a test sample is directly matched against a collection of facial images. A face can be
then detected as long as enough similar exemplars are included in the exemplar set. Hence, the exemplar set should
be large enough to cover the large appearance variations in faces. As a result, direct matching against a large data
collection is highly inefficient; especially if combined with sliding window approaches. The method proposed in [44]
capitalizes on bag-of-word image retrieval methods to extract features from each exemplar. That is, the bag-of-words
representation produces a voting map over the test image (similar to the generalized Hough transform used in [45]).
The voting map of each exemplar can be considered as a weak classifier. Face detection in an image region is per-
formed by combining the voting maps of the exemplars. The methodology was theoretically justified by showing that
if each exemplar is-considered independent, then the voting scheme is operating as a Naive Bayes classifier. This
methodology was further developed in [43] where a boosting-based strategy was proposed for selecting the exemplars
to use as weak classifiers.

Table 3 summarizes the approaches presented in this section.

3. Deformable Parts-Model for Face Detection

DPMs or pictorial structures modelling is one of the de-facto choices for developing generic object detectors.
DPM methods have been recently applied for face detection achieving state-of-the-art results. In this Section, we
start by describing the simple generative pictorial structure model developed in [47]. Then, we show how it can
be reformulated using a discriminative framework capitalizing on weak (i.e., facial bounding boxes) [35] or strong
annotations consisting of locations of facial landmarks [48]. Subsequently, we describe combinations of facial DPMs
with human body models to exploit the co-occurrence of face and body [163, 164].

One of the drawbacks of DPM models is that they have relative high computational complexity. We will describe
several approaches for reducing the complexity without significant performance degradation [165, 166, 167, 168, 169].
Finally, we discuss about a DPM model that produces state-of-the-art results in recent benchmarks.
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Table 3. Other schemes for face/object detection (since [15]).

General Ap- | Representative Works

proach

Template Antiface [150]

matching

Bayesian Bayesian discriminating features [74]
SVM - speed | Reduced set vectors and approximation
up [155, 156]

Resolution based SVM cascade [157]
SVM — multi- SVR based pose estimator [158]

view face SVR fusion of multiple SVMs [160]
detection Cascade and bagging [161]

Local and global kernels [162]
Retrieval-based | Exemplar-based method [44]
Methods Boosted Exemplar-based method [43]

3.1. Facial Pictorial structures

Pictorial Structures (PS) have been first introduced in [14] and became quite popular after the influential study
in [47]. In this study it was shown that, for tree-based pictorial structures, very efficient dynamic programming
algorithms can be applied for finding the global optimum of the cost function using Generalized Distance Transforms
(GDT).

The pictorial structure architecture is a general framework for describing the appearance of parts as well as the
connections between them. The framework is general for many object-types, but in this work we confine ourselves to
faces. One way to describe the pictorial structure is via an undirected graph G = {V, &}, where V = {v,,...,v,}isa
set of vertices that correspond to n-facial parts, and & is a set of edges (v;,v;) with (v;,v;) € & if and only if there is
a connection between facial part v; and v;. An instance of a face is given by a configuration L = (Iy,...,1,) of parts,
where I; corresponds to the location of part v;. Some examples of facial graphs used for facial pictorial structures can
be found in Fig. 11 (a) and (b). The red points correspond to vertices (i.e., parts) and the blue lines to edges (i.e., part
connections). Note that in this case parts correspond to semantically meaningful facial landmarks (i.e., mouth, nose
etc.). However, such correspondence is not necessary, since the parts can be automatically learned through training
examples.

Let 8 = (6,,8,6,) be the general set of parameters of a pictorial structure with 6, = {6,,,...,#6,,} being the set
of parameters that correspond to the appearance of the parts, and 6, = {69 (vi, v ;) € &} being the parameters that
correspond to the part connections. Furthermore, we define local generative models p(/|l;, 6,,) and p(l;,1 j|9§ ), which
describe the appearance of parts and deformation, respectively, where I is the observed image. In [47], the local
appearance term p(I|l;, 6,,) was modeled as a normal distribution N (f(I;)lm;, X;), where f(I;) are the extracted features
at location I; and 6,, = (m;, X;) is the set of local part parameters comprising of the mean and the covariance matrix
for the features of part v;. Similarly, the distribution of the relative location of part v; with respect to the location of
part v; was selected as p(l;, 1 J-IG'e’ ) = N(I; = 1jls;;, £;). In order to formulate the problem using GDT, part locations
were linearly transformed, such that the covariance X;; is diagonal.

Given an image and the set of parameters 6, we measure the probability of a certain configuration of parts L,
p(L|L, 6) as:

pin o)y o [ [pao,) [ pai16d) (15)
i=1 [(ADSS

or equivalently, by taking the negative logarithm, we get the form

CILO) = Y miy+ > dyll 1)) (16)
i=1 i,v))e&
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where m;(l;) = —log p(I|l;, 6,,) and d;;(1;,1;) = —log p(l;,1 jIGéj ) are both quadratic functions, since the local distribu-
tions are Gaussians. Minimizing C(L|I, 6) for a number of training instances with regards to parameters 6 gives as a
maximum likelihood (ML) solution for parameter 6. Similarly, the ML solution for finding the optimum tree-based
structure & is to perform in a similar way, leading to the so-called Chow-Liu algorithm [170].

The problem of face detection is to find the best match(es) of a pictorial facial model L to an image / by minimizing
C(L|L,6) as

n
L=arg mLinZ mi(ly) + Z di(1;,1). (17)

i=1 viv))es
The above optimization problem has a functional form that is quite general and appears in various computer vision
problems (e.g., estimation in Markov Random Fields in image restoration and stereo, optimization of active contour
models etc.). It was shown in [47] that for tree-based graph structures and for d;;(l;,1;) that have a Mahalonobis
distance form, the optimization problem (17) can be solved using the GDT in linear time with regards to the number
of images n and image resolution. For more details regarding this algorithm, ‘the interested reader may refer to
[171, 47].

The simple pictorial structure described above has numerous drawbacks: (1) it does not make use of the object-
class annotations (i.e., face vs non-face class annotations) in a discriminative manner, (2) it uses a single model for
each object, while faces could have drastic changes between views, and (3) it uses only one scale. In order to remedy
these drawbacks and train a part-based model using only weak object-class annotations (i.e., a bounding box per
object), a multi-scale, discriminatively trained mixture of DPMs was proposed in [35] (publicly available code can be
found in [37]).

The pictorial structure defined in [35] used a coarse root representing the whole face/object, and a number of
smaller parts of the object at higher resolution. The parts are connected to the root using a star tree model. In a face
detection task, the root can capture coarse resolution characteristics such as face boundaries, while parts capture facial
details such as eyes, nose and mouth. Fig. 12 describes the above procedure pictorially. It is important to note that in
a weakly-supervised setting it is not necessary the parts to correspond to semantically meaningful facial landmarks.

Let us assume that we have a mixture of N different tree models. In order to facilitate a discriminative training
procedure such as SVM, the cost function (16) for the m-th component of the mixture is reformulated as

C(L|II,m) = A(L|l,m)+ S(L|I,m)+ad"
AL, m) =3 wiTEQ)D) (18)
SLL,m) = 3jjes, al’.’}.dx2 + b;.’]’.dx + c;’}dyz + dlf’}dy

where

e o is a scalar bias (which can be also considered as a prior) associated with the component m of the mixture

and A(L|, m) is the appearance cost for placing template w}" (also called filter) of part v; at location I; and f(l;|1)
is the image feature vector (usually a HoG descriptor) extracted from pixel location that corresponds to pixel
location I; of image 1.

o S(L|, m) is the cost of the spatial arrangement of parts L where dx = x;—x; and dy = y;—y; are the displacements
of the i-th part relative to the j-th. The interpretation of the deformation model depends on the setting. That is,
in a strongly supervised setting where the facial parts correspond to semantically meaningful landmarks, such
as eyebrows, eyes, lips nose, etc. [48], the deformation cost models the deformations in the mouth, eyes etc. A
DPM that corresponds to a frontal face component can be found in Fig. 11 (c).

In a weakly supervised setting, where the facial parts have been automatically selected as in [35], there may
be no explicit interpretations of the deformation cost. Nevertheless, both models have been successfully used
for face detection and in both cases the shape can be interpreted as a spring model where (a;']'., bl'.’J’., c;.’;, d;’]’.) are
considered the parameters associated to the rest location and spring rigidity.

In order to have a better understanding of the deformation model we will study the fully supervised setting. In
this case it is convenient to write the shape cost function as:

S(LII,m) = —(1 - m,)” A1 — m,,) + const (19)
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where 1 is a vector containing the concatenation of all part locations 1;. In this case A,, is a block sparse
precision matrix which contains non-zero entries only for pairs of connected parts. This is in contrast to other
facial shape models used in the literature, e.g., Constrained Local Models (CLMs) [172] and Active Appearance
Models (AAMs)[173], where a full precision matrix is used for modelling the facial shape. The above shape
parametrization allows the development of efficient dynamic programming algorithms which are able to find
globally optimal solutions. On the other hand, tree-based models unavoidably allow the facial shape to deform
more freely and thus produce some unnatural facial deformations.

In order to fit the model in various scales, the root or part filters are placed in different scales, and the cost functions
have to be appropriately modified (the interested reader may refer to [35]) 2.
Formulation (18) leads to a convenient dot product form of the cost function as:

C(LIT,m) = W,y (20)
where the vector w,, concatenates the parameter values for appearance and deformation as:

_ 1 n m gm _m gm m
w,,,—[wm,...,wm,...,aij,bij,cij,dij,...,a ].

Finally, face detection is performed by minimizing C(L|I, m) over L and m as

C*(1) = min C(LT,m). 1)

The minimum is computed by enumerating all components of the mixture model, and for each component we find
the best configuration over parts L. Since we assume tree facial structures, the application of GDTs renders the
complexity of problem (21) linear with regards to the number of components, parts and image resolution. In order to
detect multiple faces and eliminate repeated detections, non-maximum suppression methodologies are applied [35].
Recently, it was shown that the choice of the non-maximum suppression threshold plays a crucial role in performance
[26].

3.1.1. Weakly Supervised Setting

The two main annotation settings for estimating the parameters of DPMs are weakly and strongly supervised. In
the weakly supervised setting, only the bounding boxes of the positive examples (i.e., faces) and a set of negative
examples are available. In this case the mixtures and the part locations in the training set are considered as hidden
(i.e., latent) information revealed during training [35]. Of course the number of mixtures and the number of parts have
to be selected a priori.

Let us introduce a latent variable vector z = [m,1;,...,1, ]. Our goal is to learn a general vector of parameters
w = [w; ... w,]. Since only one of the mixture components (tree models) can be activated, we define a general sparse
feature vector y(z) = [0,...,y(%),...,0], which is the score for the hypothesis Z = [1;,...,1,,]. The classifier that
scores an example q using the space of possible latent values for this example Z(q) has the form:

Sw(@) = max w'y(q,2). (22)
2€Z(q)

In order to find the parameters w given a set of training examples D = ((q1,y1),--.,(qn,yn)) and y; € {—1, 1}, which
are images with a bounding box annotation, we minimize the SVM objective function using the standard hinge loss:

1 N
Co(b) = SIWIP + C ) max(0,1 = y;fu(@). (23)

J=1

which can be reformulated as:

%

w* = argminy 3[wl* + C Z;.Vzl max(0, 1 — y,wly(q,z"))

24
.tz = maXgezq W y(q, 2). (24)

2The modifications are straightforward and we do not apply it in order not to clatter the text with notations.
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The minimization of the above cost function with regards to the latent variables and the model parameters w is
highly non-convex, but it becomes convex once the latent information is specified for the positive training examples
(i.e., facial samples). In [35] an alternating optimization procedure was proposed: by fixing w, the highest scoring
latent value for each positive example is determined; and then by fixing the latent values for the positive set of exam-
ples, w is updated by minimizing the SVM cost in (23). For the latter task a stochastic gradient descent was applied.
The above methodology, called latent-SVM, is similar to the multi-instance SVMs proposed in [174]. Furthermore, it
can be viewed as a discriminative clustering approach which alternates between assigning cluster (mixture) labels for
each positive example, estimating cluster means (root filters) and parts.

3.1.2. Strongly Supervised Setting

In a strongly supervised setting, we assume that (a) the mixture components have been labelled in the training
database and (b) the training database contains annotated facial images with facial landmarks. In this case there are
no hidden latent variables z; to be estimated for each training sample q; during training. Hence only the model
parameters w should be learned from the optimization problem

W =argmingg sw'w+ C XY &

st. VqjeCt, wiyq),z)>1-¢;
v q; € c, WTy(qj,Z) <-1 +§j
Vke XK, wy <0

(25)

where %K is the set of indices of w that correspond to the quadratic terms of the shape cost 4 and ci. The above
constraints state that the score for the positive examples should be larger than 1 (minus the small slack variable value),
while the score of the negative examples, for all configurations of part positions and components should be less than
-1 (adding the small slack variable value). The last set of constraints guarantee that the shape cost is a proper metric.

The above optimization problem is a quadratic program, and can be efficiently solved in theory. However, in
practice, since there are exponentially many constraints, direct solving of (25) is infeasible. In the SVM literature, the
family of optimization problems such as (25) is known as structural SVM. Many efficient methods have been proposed
to reduce the number of active constraints including cutting plane algorithms (e.g., SVMStruct [33, 175]). Other
efficient methods are based on dual coordinate-descent solvers [176]. In [48] for face detection, a modified coordinate
descent method was applied, which allows the incorporation of the last set of negativity constraints. In simple terms
the coordinate descent solver of [48] iterates between finding w in the dual and mining violated constraints according
to current estimate of w and adding them in the constraint pool, until convergence is met.

An important aspect of the complexity of the solution is how many components/views will be chosen and whether
there will be part sharing between components/views. For example, there is an order of magnitude difference in
complexity between a fully shared model and an independent model which does not share any part templates across
any mixtures. In [48], it was shown that for face detection the performance drop when using a shared-parts model is
insignificant when compared with an independent model.

3.2. Weakly Supervised vs Strongly Supervised Model DPMs for Face Detection

The weakly supervised model requires much less annotation effort, since it requires only facial bounding box
annotations (thousands of annotations can be produced within hours). On the other hand, annotation of semantically
meaningful landmarks is a tedious and labour intensive procedure which requires hundreds of hours of annotation
for a few thousand facial images. Naturally two questions come into mind: (a) Do we need a weakly or a strongly
supervised DPMs for face detection? and (b) Should face and facial landmark be considered as different problems
that require the development of different methodologies? Interestingly, recent works seem to suggest contradictory
conclusions regarding these two questions.

To answer the first question, we will discuss the empirical findings of the recent papers [48] and [168, 26]. The
study [48] introduced the strongly supervised DPMs and showed that they largely outperform facial DPMs that are
trained with weak annotations in face detection. On the contrary, the recent study in [26] showed that a weakly
supervised DPM having only the components fixed a-priori (a total of 6 components covering frontal faces and side
views) can outperform all current state-of-the-art face detection methodologies including the strongly supervised
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DPM in [48] 3. The main performance improvement was due to the change of the threshold in the non-maximum
suppression step from 0.5 to 0.3. It is unclear whether this change in threshold would also increase the performance
of the strongly supervised DPM in [48].

Facial landmark localization is very important for many applications such as face and facial expression recognition,
and has recently attracted considerable attention. It is advantageous to develop a methodology that could perform
both face and facial landmark detection at once. However, empirical evidence shows that even though the strongly
supervised DPMs are able to produce state-of-the-art face detection results, they are not as accurate in‘facial landmark
localization. The main problem is the flexibility of the texture and shape models. For example, current state-of-the-art
landmark localization algorithms are usually based on variations of Active Appearance Models that use robust features
such as IGOs, HoGs etc. [177, 178] or cascade regression schemes based on SIFT or HoG features [179]. In all cases
holistic texture models are used by assembling feature vectors that concatenate all facial texture features (i.e., they do
not treat each part separately). Furthermore, in the AAM variations [177, 178], the shape is‘modelled using a fully
connected precision matrix. In contrast, DPMs use part-based texture models and a flexible tree-based model, which
may lead to unnatural face deformations. As discussed above, the problem with fully connected shape models is that
they are not easy to solve for the global optima. Certainly, the detection results produced by a tree-based DPM can be
used as good initializations for Gauss-Newton [177, 178] or regression methods [179].

Variations of DPMs have been proposed recently for improving face detection. For example, the recent work
in [164] proposed some modifications of the strongly supervised facial DPM in [48]. In particular, a global root
template was introduced for the description of the face at low-resolution. The parts were placed at higher resolution
(twice the size of the lower level). Furthermore, in addition to the connections between facial landmarks at the higher
level, spatial constraints were introduced between the locations of the root and the parts. Finally, a part subtype was
introduced to account for appearance variations of the facial parts. A total of K = 4 subtypes were used (found through
cross-validation), and the cluster annotations were produced by K-means clustering. In the same paper, a human body
DPM was trained to assist face detection, and a learning methodology that combines face and body activations scores
was also proposed [164].

3.3. Making DPMs faster

One of the main drawbacks for<the mixtures of DPMs model is computational cost. For example, the fully
independent model in [48], which contains 1050 different part filters and does not share any templates across any
mixtures, needs around 40 seconds per image to detect faces at the minimum scale of 80 x 80 pixels. Even the
fully shared model needs many seconds per image, making it difficult to apply DPMs for real-time applications.
Recently, efforts have been made to develop DPMs with decreased computational complexity achieving near real-
time performance [165, 166, 167, 168, 169]. The main steps of DPMs that allow optimization include (a) feature
extraction using HoGs; (b) filter design, (c) computation of filter responses (correlations) and (d) score computation
(mainly using cascade methods).

An approach for accelerating DPM fitting was proposed in [167]. It designs a framework that exploits the Fourier
transform to compute the filter correlations. The framework also carefully controls the memory usage required to store
the transforms of the filters by building patch-works combining multiple image scales. In [166], a different scheme for
accelerating star-shaped DPMs was proposed. It was designed based on a Branch-and-Bound framework, adopting a
Dual Trees data structure [180].

Another general approach for accelerating DPMs is to build a cascade of classifiers from DPMs [165]. By using
a sequence of learned thresholds, the methodology prunes the computation based on partial hypothesis. Even though
cascade methods are not exact, they are empirically verified to cause little performance degradation, and at least an
order of magnitude increase in speed. Recently, in [168], a fast neighbourhood-aware cascade strategy was proposed
by applying a scheme inspired by the crosstalk method [181] used in boosting classifiers. In particular, motivated
by the fact that if a hypothesis has a low score, then it is quite possible that its neighbours also have low scores, the
method aggressively prunes hypothesis by applying a first order approximation of scores from its neighbourhoods,
instead of explicit computation.

3To the best of our knowledge, the face detector in [48] was trained using only the MultiPIE database, which has been recorded in controlled
conditions
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Another computation intensive module in the DPM pipeline is the computation of HoG features at various scales
[35]. Even well-implemented HoG pyramids may require up to 0.5 seconds to compute the features on CPU [37].
In a recent paper [168], a Look-Up-Table (LUT) approach was proposed for more efficient feature extraction, and it
achieves 6 times faster implementation than the standard one used in DPMs [37].

Finally, another step that requires optimization is feature filter design. In the major DPM approaches, the root
scores are computed densely by applying 2D correlations between the learned root filter and the HoG features of
the test image. In addition to using FFTs to reduce the computational cost, one can further decompose the root
filter into a linear combination of rank-1 filters and apply efficient one dimensional correlations: In [168], instead
of decomposing the learned filter, the authors proposed to learn from the beginning a low-rank discriminant filter by
incorporating the nuclear norm of the filter in the cost function of the SVM learning problem. The nuclear-norm
regularized optimization problem can be solved by applying a proximal gradient algorithm. Overall, by using a LUT
for computing HoGs, a reduced rank filter for the root, and a cascade for score computation, the work in [168] reported
almost 40 times increase in speed over the original DPM in [35] and 5 times speed increase over the cascade DPM in
[165].

3.4. Other Part-Based Methods for Face Detection

Here we survey some part-based methods, such as [49] and [50], that do not fall in the above described DPM
architecture and have attracted a lot of attention.

In [49] an object detector based on detecting localized parts of the object was proposed. Each part is a group
of pixels or transform variables that are statistically dependent, and between parts it is assumed to be statistically
independent. AdaBoost was used to compute each part’s likelihood of belonging to the detected object. The final de-
cision was made by multiplying the likelihood ratios of all the parts together and testing the result against a predefined
threshold. In a later work [182] the cases where the statistical dependency cannot be easily decomposed into sepa-
rate parts was further examined. The method learns the dependency structure of a Bayesian network based classifier.
Although the problem is known to be NP complete, [182] presented a scheme that selects a structure by seeking to
optimize a sequence of two cost functions: the local modelling error using the likelihood ratio test as before, and the
global empirical classification error computed on a cross-validation set of images. The very successful commercial
PittPatt face detection software, now-acquired by Google, that combines the above approach with the feature-centric
cascade detection scheme in [127] showed state-of-the-art performance on public evaluation tests [183].

In [49] wavelet variables to represent parts of the faces, which do not necessarily correspond to semantic compo-
nents were proposed. In the literature, there had been many component-based object detectors that relied on semanti-
cally meaningful component detectors [15, 184, 185].

In [186], 100 textured 3D head models to train 14 component detectors were used. These components were
initialized by a set-of reference points manually annotated for the head models, and their rectangles were adaptively
expanded during training to ensure good performance. The final decision was made by a linear SVM that combines
all the output from the component detectors.

Another closely related approach is to detect faces’/humans by integrating a set of individual detectors that may
have overlaps with each other. For instance, in [50] 7 detectors to find body parts including frontal and profile faces,
frontal and profile heads, frontal and profile upper body, and legs, were applied. A joint likelihood body model was
then adopted to build a body structure by starting with one part and adding the confidence provided by other body part
detectors.

A summary of the approaches discussed in this section can be found in Table 4.

4. Databases and Benchmarks

For the past twenty years the face analysis community had made great efforts in collecting databases [187, 188,
148, 189, 190, 191]. One of the most well-known databases is FERET face database. It was collected mainly
for testing face recognition algorithms, and has been occasionally used for assessing the performance of early face
detection algorithms. For a recent survey on face recognition databases, the interested reader may refer to [192].

It was evident that the databases collected in controlled conditions such as FERET [188], XM2VTS [190], PIE
[191] and FRGC [187] did not include the facial appearance variations suitable either to train or to test face detection
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Table 4. Deformable and Part-based Face Detection Algorithms.

General Ap- | Representative Works
proach
Deformable Strongly Supervised [48, 164]
parts-based Weakly Supervised [26, 168]
methods
(DPMs)
Other Part- | Wavelet localized parts [49, 182]
based Methods
approaches SVM component detectors adaptively
trained [186]
Overlapping part detectors [50]

algorithms. Some of the first efforts to collect facial samples in arbitrary recording conditions were made in [193,
194, 195, 196]. For example the authors of [193] scanned images from newspapers to collect face samples. The main
testbeds for ’in-the-wild’ face detection were the databases developed in [193, 194, 195, 196], but contained a small
number of faces in total.

During the past 10 years, with the huge development of the Internet, many efforts were made to collect and an-
notate considerable amount of images in unconstrained conditions. Arguably the pivotal efforts were the PASCAL
Visual Object Classes (VOC) benchmarks and challenges [27, 28], and the collection of faces ’in-the-wild’ for face
verification and detection purposes [148, 189]. Recently, another benchmark was developed for assessing the perfor-
mance of face detection and facial landmark localization algorithms [48], called Annotated Faces in-the-Wild (AFW)
testset.

PASCAL VOC challenges included multi-object detection ’in-the-wild’ images, and one of the objects used was
the human face. Furthermore, the current PASCAL VOC challenges includes a person layout detection challenge
[27, 28]. The set of these images (851 images with bounding boxes), called PASCAL faces has been recently used
for training and testing face detection algorithms [164, 26]. An effort to develop a comprehensive benchmark for face
detection was made in [148], introducing the FDDB database and benchmark. The FDDB database contains 2845
images with a total of 5171 faces ’in-the-wild’. The images have been rigorously annotated using ellipses (instead of
the standard rectangular bounding boxes).

The AFW databases contains 205 images of 468 faces annotated with regards to a bounding box. Furthermore,
the faces have been annotated with regards to 6 facial landmarks (the center of eyes, tip of nose, the two corners and
center of mouth) and labelled discretized viewpoints (—90° to 90° every 15°) along pitch and yaw directions and (left,
center, right) viewpoints along the roll direction. This database was recently expanded to 68 landmarks [197]. Another
database that was used for training ’in-the-wild’ face detection algorithms is the AFLW database [198] which has been
annotated with 21 landmarks. These landmarks were used to drive the annotation process of the AFLW database with
regards to facial bounding boxes [26]. Finally, other databases that can be used for training face detection algorithms
are the LFPW [199], HELEN [200] and iBUG databases [197], since facial landmark annotations are provided by the
database creators.

The standard measure to assess the quality of face detection is to compute the match using the ratio of intersected
areas to joined areas. Assume d is the detected face and a is the annotation, then:

A(d) N A(a)

Sd,a) = Ad) UA@ (26)
where A() is the area operator. As in other object detection challenges, precision vs. recall curves are plotted by
requiring the above degree of match to be greater that 0.5, i.e. S(d,a) > 0.5 (in other words 50% overlap between
the annotated and the detected regions) [48]. The FDDB database comes with its own evaluation protocol [148].
Furthermore, it calls for sharing the ROC curves but not the actual detected bounding boxes. More precisely, the
FDDB evaluation protocol recommends providing two ROC curves that both plot the false positives over the true
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Table 5. Performance comparison of the state-of-the-art in face detection. For each method the true positive rate is shown for (a) almost no false
positives (around 10), (b) around 100 false positives and (c) 1000 false positives.

Method # of False Positives ~ 10 | § of False Positives ~ 100 | # of False Positives ~ 1000

K. Mikolajczyk et. al. [50] 10% 33% 54.8%
P. Viola and Jones, OpenCV version [39] 10% 33% 59.7%
V. Jain and E. Learned-Miller [202] 15.7% 51% 67.7%
X. Zhu and D. Ramanan [48] 63.8% 73.3% 76.6%
X. Shen et. al. [44] 8% 67.5% 78.6%
J. Li and Y. Zhang [103] 69.4% 80.6% 83.7%
H. Liet. al. [203] 10% 73.3% 80.9%
H. Liet. al. [43] 69.2% 80.8% 84.8%
J. Yan et. al. [168] 75.9% 81.3% 85.2%
D. Chen et. al. [51] 78.8% 83.9% 86.2%
M. Mathias et. al. [26] 72.5% 83.4% 87%
B. Yang [105] 75.4% 81.6% 85.2%
J. Yan et. al. [164] - ~80% 84.6%

B. Jun et. al. [22] ~67% ~77% ~ 80.6%

positives by using a discrete or continuous version of the match degree. For the discrete case the threshold is similarly
set to 0.5, while in the continuous setting, the overlapping ratio is used as a weight for every detection window.

Figures 13 (a) and (b) and 14 (a) and (b) plot the Receiver Operating Characteristic (ROC) curves for both con-
tinoous and discrete degree of match of state-of-the-art techniques, published in the recent top venues of the field *,
as well as some ten years old popular representative techniques, such as the OpenCV version of Viola-Jones [36, 39]
and the method in [50]. Finally, a summary of the results is presented in Table 5. In this Table, we show particular
operating points of the ROC curve for the discrete degree of match that correspond to approximate no false positives
(i.e., false positives around 10), false positives around 100 and false positives around 1000.

By inspecting the above results we can conclude that

e in the last 10 years there has been a dramatic increase in performance (i.e., true positive rate). In particular,
when limiting the number of false positives to be around zero (i..e, not more than 10 false positives in all tested
images) has increased more than 65% in absolute terms;

o the performance increase is attributed, mainly, to combining ideas from Viola-Jones boosting and robust features
[26];

o there is still a gapin performance of around 15-20%. That is, even when allowing a relative large number of
false positives (around 1,000), there are still around 15-20% of faces that are not detected. It is speculated that
this gap is due to out-of-focus faces (i.e., blurred faces) [26], nevertheless a detailed analysis of errors is missing
from the literature;

o in this benchmark the performance of the best boosting-based technqiue and the best DPM technique is approx-
imately equal [26] . Also, the best performing technique is a hybrid one that combines ideas from boosting, as
well as deformable parts-based models [51] .

5. Discussion, Future Work and Conclusions

In the early years the families of algorithms that were applied for face detection were quite diverse [15, 16].
Now that face detection approaches an age of maturity the main lines of research revolve around three large families:
(a) boosting-based methods, (b) application of Deep Convolutional Neural Networks (DCNNs) and (¢) Deformable
Parts-based Models (DPM) methods.

In previous surveys face detection algorithms were separated to various categories based on whether they were
robust to illumination changes, facial expressions, facial pose etc. Such, categorization hardly applies any more,

4The ROC curves have been found from the publicly available repository of results in the FDDB database [201], as well as contacting some of
authors of the paper.
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since the inability of some methods to explicitelity account for a number of variations is alleviated by the presence
of large ammount of publicly available facial data. For example, algorithms that learn rigid templates using boosting,
as well as detectors based on DCNNs, have difficulties to handle unseen views, something that is alleviated by (a)
using the large amount of available data under different views, (b) enriching the data by creating novel views (e.g.,
by performing various image transformations) and using many rigid templates for both frontal and rotated faces (e.g.,
in [26] in each scale 5 templates for frontal and 6 templates for rotated faces were used). On the other hand, face
detection methodologies based on DPMs, show better generalization performance to novel views, as‘they explicitely
model deformations. A direct concequence is that DPM methodologies can be effectively trained using a smaller
ammount of data.

Another example is that all state-of-the-art methods based on boosting or DPMs account for illumination variations
using both robust features, such as HoGs etc., as well as using many different faces under different illuminations.
Furthermore, DCNNss find features which are robust to illumination changes by exploiting their non-linear multi-layer
architecture, as well as the large ammount of available training data.

In Table 6 we try to relatively quantify some of the operational aspects of its family of algorithms using four
different characteristics:

e Annotation Effort: This measures how expensive the annotation that needs to provided for each family of
algorithms is. Rigid template-based algorithms such as boosting and DCNN based require a consistent good
quality bounding box annotation of the facial region of interest, which is a task of medium effort. Similarly,
weakly supervised DPM methods [35] can be trained using only bounding box -style annotations. On the
contrary, strongly supervised DPMs [48] require the presence of annotations with regards to facial parts or
landmarks, hence for these kind of methods the annotation effort is large.

e Training Data: This measures the amount of training data required to achieve state-of-the-art performance.
Rigid template-based algorithms, since they do not explicitly model facial deformations and facial pose, require
a large number of data in order to be robustly trained. Both, boosting-based and DCNNs-based algorithms take
deformations and facial pose implicitly into account by selecting (boosting) or learning (DCNN) a number of
features invariant to deformation and/or pose. Since, DPMs explicitly model deformations and facial pose (by
using mixtures), they require significantly less data to train.

e Training Time: This measures how computationally intensive is the training procedure for each of the families.
Applying the Viola-Jones methodology to the hundredths of thousands of channel of features may require
weeks to train [25].- This was one of the biggest drawback of the first boosting-based methods. Recently,
with the application of ’soft-cascade’ strategies it is feasible to train a rigid template in hours [25]. Hence,
for boosting-based methods the amount of training time largely varies a lot depending both (a) the boosting
strategy and'(b) how the cascade of weak-classifiers is constructed. Even though significant progress has been
made towards parallel and distributed training of deep neural architectures [34],[204], training of DCNNs with
many layers is still very computationally demanding. Finally, training of DPMs depends on the training strategy
used: In particular, generative DPMs, as in [47], can be trained very fast (even real time). The state-of-the-art
discriminatively trained DPMs require to solve (a) an optimization problem like (24) which alternates between
the model parameters and part locations (weakly supervised) or (b) an optimization problem like (25) where only
the optimal model parameters need to be recovered, since the part locations are provided (strongly supervised).
The computational complexity of these optimization problems depends on the number of training samples but
generally it is feasible to train a model with thousands of training samples in few hours.

o Testing time: The huge advantage of boosting-based methods is that they offer real time face detection in test
images (or near real-time when many channel features are used such as HoG etc.). DCNNs-based methodolo-
gies for detection can offer near real-time performance when combined with methodologies that return region-
proposals [205]°. Finally, computational complexity of DPM-based methods varies on the number of mixtures
and parts used. Nevertheless, it is possible to build state-of-the-art DPMs with near real-time performance
[168].

SMethods that provide proposals usually scan the image and return a number of regions that could potentially contain any kind of object by
measuring a kind of generic objectness measure [206].
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Table 6. Comparison of the three main families of face detection algorithms with regards to (a) the effort required for annotation, (b) the number
of training data required, (c) the training time required and (d) the test time.

Family of Annotation Training data | Training Time | Test Time

Methods Effort

Boosting-based | Simple Haar- | Medium Large Medium- Real-Time
like features Large
Channel Fea- | Medium Large Medium- (near)  Real-
tures Large Time

DPMs Weakly Super- | Medium Medium Medium (near) Real-
vised Time
Strongly Super- | Large Medium Medium (near) Real-
vised Time

DCNNSs Medium Large Large (near) Real-

Time

Finally, we would like to highlight that the best performing algorithm for both families achieved very similar perfor-
mance in the FDDB benchmark [26]. Finally, the best performing approach [51] combines ideas from both families.

Even though it was recently demonstrated that machines have started to become more efficient than humans
in face recognition in unconstrained conditions [207, 208], humans still largely surpass machines in face detection
[209]. Nevertheless, it is exciting to see face detection techniques be increasingly used in real-world applications and
products. For instance, most digital cameras today have built-in face detectors, which can help the camera to do better
auto-focusing and auto-exposure. Digital photo - management pieces of software such as Apple’s iPhoto, Google’s
Picasa and Microsoft’s Windows Live Photo Gallery all have excellent face detectors to help tagging and organizing
people’s photo collections. On the other hand, face detection in completely unconstrained settings remains a very
challenging task, particularly due to the significant variations in appearance [26], as well as out-of-focus images and
blurring. The current state-of-the-art resultin the standard benchmark, i.e., FDDB, is around 80% recall with almost
no false positives [51, 26]. An interesting topic for further research is to perform a meticulous diagnostic analysis of
the errors of the state-of-the-art detectors [210].

Technologically, the current success is indisputably attributed to the development of robust features such as HoGs
[19], as well as the combination of these features with (a) ideas from the original Viola-Jones paper (i.e., ICF and
boosting [26]) and (b) discriminatively trained parts-based models [35]. Furthermore, with the current development
of the field of deep network architectures [211] it is expected to see state-of-the-art face detectors adopting ideas
from this field [42]. Another interesting line of further research in object detection, in general, and face detection
in particular, is how to combine the part-based methods with boosting based methods. An interesting method in
this line is the recent method in [51] which combines cascade face alignment with cascade face detection, based on
the observation that aligned facial shapes may provide better features for face detection. An effective approach is
proposed by jointly learning face alignment and detection in the same cascade framework. Another interesting recent
method along these lines is the combination of features produced by off-the-self pre-trained DCNN architectures with
DPMs [212, 213].

Another interesting idea to improve face detection performance is to consider the contextual information. Human
faces are most likely linked with other body parts, and these other body parts can provide a strong cue of faces. There
has been some recent work on context based object categorization [214] and visual tracking [215]. One scheme that
uses local context to improve face detection was also presented in [216], and we think that this is also a very promising
research direction to pursue.

The modern face detectors are mostly appearance-based methods, which means that they need data to train clas-
sifiers. Collecting a large amount of ground truth data remains a very expensive task, which certainly demands more
research. Schemes such as multiple instance learning boosting and multiple category boosting are helpful in reducing
the accuracy needed for the labeled data, though ideally one would like to leverage unlabeled data to facilitate learn-
ing. Unsupervised or semi-supervised learning schemes would also be ideal to reduce the amount of work needed
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for data collection. In this line of research, another question is how to transfer knowledge from the current face de-
tection methods trained with images captured from standard cameras to face detectors for special cameras, such as
omnidirectional cameras [217].

Another interesting line of research is two create simulated data for training using available 3D facial databases.
Recently it was demonstrated that it is possible to train a state-of-the-art face detection system using an adaptation of
Viola-Jones algorithm using only artificially generated data from a facial 3D Morphable Model (3DMM) [218]. In
particular, adaptive training samples are generated from a 3DMM trying to simulate the variability of actual ’in-the-
wild’ facial images including variations based on age and body weight. Moreover, it was shown -how the procedure
can automatically adapt to environmental constraints, such as illumination or viewing angle of recorded video footage
from surveillance cameras.

It remains an open question whether a face detector can detect faces in arbitrary collections. For example, how do
current face detectors trained on standard databases perform in digitized images of the 19th century or in a collection
of out-of-focus images from surveillance cameras for a particular environment? JInstead of retraining the detectors
from scratch when a new collection is available, an interesting topic of further research is to develop techniques which
can adapt to a new image dataset without having access to the original training data [202]. That way camera and
environment specific face detectors with very high performance could be routinely developed. Unlike other domains
such as speech recognition and handwriting recognition, where adaptation has been indispensable, adaptation for
visual object detection has received relatively little attention. Some early work has been conducted in this area [219,
220, 202, 203] and we strongly believe that this is a great direction for future work.
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Figure 1. Examples of face images. Note the huge variations in pose, facial expression, lighting conditions, etc.
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35

Figure 2. Illustration of the integral image and Haar-like rectangle features (a-f).
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Input

e Training examples S = {(x;,z;),i = 1,--- , N}.
e T is the total number of weak classifiers to be
trained.

Initialize

e Initialize example score F°(x;) = %ln(%) where
N, and N_ are the number of positive and negative
examples in the training data set.

Adaboost Learning
Fort=1,---,T:

1.-For each Haar-like feature /(x) in the pool, find the
optimal threshold H and confidence score ¢; and c¢;
to minimize the Z score L' (8).

2. Select the best feature with the minimum L'.

3. Update F'(x;) = F"'(x;) + fi(x;),i=1,--- ,N,

4, Update W+1j, W_lj,j =1,2.

Output Final classifier F7 (x).

Figure 3. Adaboost learning pseudo code.
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sub-windows

T Further
processing

Rejected sub-windows

Figure 4. The attentional cascade.
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Figure 5. The rotated integral image/summed area table.
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Figure 6. (a) Rectangular features with flexible sizes and distances introduced in [59]. (b) Diagonal filters in [64].
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j=(011),=3

Figure 7. The joint Haar-like feature introduced in [62].
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Figure 8. The sparse feature set in granular space introduced in [90].
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Figure 9. Various detector structures for multiview face detection. Each circle represents a strong classifier. The solid arrows are pass route, and
the dashed arrows are reject route. (a) Parallel cascade [61]. (b) Detector-pyramid [59]. (c) Decision tree I [64]. (d) Decision tree II [130, 67, 131].

Note in (d) the early nodes are all able to perform rejection in order to speed up the detection. In addition, in [67, 131] the selection of the pass
route for a branching node is non-exclusive.
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Subsampling ‘
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Subsampling
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Output: 9

\
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Convolutions

Figure 10. The deep CNN network forf@int face detection and pose estimation.
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(@) (b)

©

Figure 11. Pictorial structures for faces. (a) Pictorial structure using a Minimum Spanning Tree (MST) approach, (b) Star-based Pictorial Structure
and (c) filters per part for an MST tree component of a mixture.
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Pyramid Model

Figure 12. In the upper level of the pyramid we learn a rigid filter representing the whole face. In the second level filters are learned per part.
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Figure 13. ROC curve, (true positive rate vs number of false positives) using the discrete degree of match for (a) allowing up to 2000 false positives
and (b) close up in the region of small number of false positives.
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Figure 14. ROC curve, (true positives rate vs number of false positives) using the continuous degree of match for (a) allowing up to 2000 false
positives and (b) close up in the region of small number of false positives.
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Highlights

- We present a comprehensive and survey for face detection ‘in-the-wild.

- We critically describe the advances in the three main families of
algorithms.

- We comment on the performance of the state-of-the-art in the current
benchmarks.

- We outline future research avenues on the topic and beyond.



