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Numerical Convolution on the Euclidean Group
with Applications to Workspace Generation
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Abstract—In this work, the concept of a convolution product
of real-valued functions on the Special Euclidean group,SE(D)
(which describes all rigid body motions in D-dimensional Eu-
clidean space), is applied to the determination of workspaces
of discretely actuated manipulators. These manipulators have a
finite number of joint states. If a discretely actuated manipulator
consists ofP actuated modules, each withK states, then it can
reach KP frames in space. Given this exponential growth in
the number of reachable frames, brute force representation of
discretely actuated manipulator workspaces is not feasible in
the highly actuated case. However, by partitioning a discretely
actuated manipulator into P modules, and approximating the
workspace of each module as a density function on a compact
subset of the Special Euclidean group, the whole workspace can
be approximated as anP -fold convolution of these densities. A
numerical approximation of this convolution is presented in this
paper which isO(P ) for fixed taskspace dimension. In the special
case when the manipulator is composed ofP identical actuated
modules, the workspace density for the whole manipulator can
be calculated in O(logP ) computation time. In either case,
the O(KP ) computations required by brute force workspace
generation are avoided.

Index Terms— Convolution, discrete actuation, Euclidean
group, manipulator workspaces, rigid body motion.

I. INTRODUCTION

T HE CONCEPT of a convolution product of real-valued
functions on the Special Euclidean Group (which de-

scribes rigid-body motion in Euclidean space) is used in this
paper. The primary application is the generation of discretely
actuated manipulator workspaces, and determination of the
density of reachable frames in any portion of the workspace.
While a number of works address the problem of determining
workspaces, the concept of density is not usually addressed.
In the context of discrete actuation, the density of frames
(number of frames per unit taskspace volume1) in many ways
replaces dexterity measures as a scalar function of importance
defined over the workspace. This is because density in the
neighborhood of a given point/frame is an indication of how
accurately a discretely actuated manipulator can reach that
point/frame.
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Fig. 1. A discretely actuated manipulator with430 States.

To compute this workspace density function using brute
force is computationally intractable, e.g., it requires
evaluations of the forward kinematic equations for a manipula-
tor with actuated modules each with states. In addition,
an array storing the density of all volume elements in the
workspace must be incremented times if brute force
computation is used.

Fig. 1 shows a schematic of the density of frames reachable
by a discretely actuated variable geometry truss manipulator.
If there are 30 actuated truss elements (ten modules) and each
element has four states (and thus the whole manipulator has
4 10 states) the workspace density cannot simply be
computed using brute force because this would take hundreds
of years using current computer technology. This combina-
torial explosion is a major reason why discrete actuation is
not commonly used, despite the fact that the concept is almost
three decades old (see e.g., [22], [25]). Having a representation
of the density of reachable frames is important for performing
inverse kinematics and design of discretely actuated manip-
ulators. Using the concept of convolution discussed in the
sequel, an approximation of the workspace density can be
achieved in calculations for macroscopically serial
manipulators2 composed of identical modules. This reduces
the computation time to minutes.

The remainder of this paper is organized as follows.
We begin by reviewing relevant literature in Section II. In

2A serial cascade of modules where each module may be a serial or parallel
kinematic structure.
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Section III, terminology from the pure mathematics literature
dealing with Lie groups is reviewed, and the concept of
convolution of functions on groups is explained in detail.
In Section IV, we show why this concept is important for
workspace generation of discretely actuated manipulators. In
Section V, the numerical implementation of convolution is
explained in the planar case, and the spatial case is discussed.
Numerical results are generated in Section VI. Section VII
offers some conclusions and describes future work.

II. L ITERATURE REVIEW

In this section, the robotics literature which addresses swept
volumes and manipulator workspace generation is reviewed.

Sen and Mruthyunjaya [27] use manipulators with only
discrete joint states to model continuous-range-of-motion ma-
nipulators with limited joint resolution. The results are used
to examine the positional accuracy of continuous-range-of-
motion robots. In addition, an algorithm is developed to
use these results to improve positional accuracy and motion
planning for manipulators with only few degrees of freedom.
Kumar and Waldron [13] describe a model that relates the joint
accuracy to the accuracy of the end effector.

Blackmore and Leu [3] examine the volume swept by a
continuous-range-of-motion manipulator changing its configu-
ration. That work also develops the mathematical framework
to analyze the volume swept by a manipulator arm. It can also
be used to generate the work envelope (i.e., the set of all points
that the manipulator can occupy).

The workspaces of manipulators with simple geometric
structure can be derived using classical geometric approaches.
These methods cover a wide range of special manipulator
structures, but they are not applicable for manipulators of
general structure. In particular there exist algorithms for the
generation of manipulators with an arbitrary number of revo-
lute joints (e.g., Korein [12], Kwonet al. [14]).

Another approach solves the problem for manipulators
with any kind of joints using the Monte-Carlo method. This
approach generates a large number of random actuator values
(joint angles), and calculates the corresponding end effector
positions (e.g., Alciatoreet al. [1]). An approximation of
the workspace boundaries is found by tracking the border
of this point set. In principle the Monte Carlo method is
not restricted to manipulators with few degrees of freedom.
However, in practice the results lose reliability with increasing
degrees of freedom. More specifically for discretely actuated
manipulators, areas in the workspaces with very low (but
nonzero) density are not picked up by the Monte-Carlo method
when the variation in density over they workspace is high.

Rastegar and Deravi [23], [24] consider workspace gener-
ation for a manipulator with general structure andjoints.
Those authors use an approach similar to the one presented in
this paper-dividing the manipulator into parts, sub-workspaces
of which are calculated. Other works by those authors include
the effect of joint motion constraints on the workspace.

When one considers discretely actuated/binary manipulators
with low resolution the workspace can be generated using
brute force enumeration of configurations. Furthermore, the

inverse problem of designing a binary manipulator to reach a
set of specified end effector locations can be achieved as in
[4], [5]. However, when one considers situations with a very
fine resolution or large number of binary actuators, both the
forward problem of workspace determination and the inverse
problem of manipulator design cannot be performed in this
way.

In addition to workspace shape, the density of points in
the workspace of a discretely actuated manipulator is a very
important quantity for inverse kinematics and path planning
in the case of a large number of discrete actuator states
[9]. Previously, we presented a method to efficiently generate
workspaces [7] and work envelopes [8] in terms of densities.
Those works are based on concatenation of the densities of
individual modules by sweeping. This paper reformulates the
approach in [7] in the more general context of convolution of
functions on Lie groups.

III. T HE GENERALIZED CONVOLUTION CONCEPT

In this section we discuss convolution of functions on
Lie groups. We start with an introduction to the concept of
convolution of functions on Lie groups in the first sub-section,
and apply this definition of convolution to the Euclidean group
in the remaining two sub-sections.

A. Convolution of Functions on Lie Groups

In this subsection, a generalization of the concept of convo-
lution to functions on Lie groups is considered. It is assumed
that the reader is familiar with the concepts of groups and
topological spaces. Readers unfamiliar with these concepts are
referred to [26], [30].

Recall that the convolution of square-integrable functions
on the real line is defined as the following integral:

(1)

To discuss the generalization of this integral to functions on
Lie groups, an appropriate volume form/integration measure
must be used. We denote a differential volume element at a
group element in a Lie group as The calculation of
this element for the case of the Euclidean group is explained in
the Appendix. The concept of convolution can be generalized
to square-integrable functions on arbitrary Lie groups as (see
[28], [29])

(2)

where the integral is taken over the whole group, and
are arbitrary elements.
To show that this generalized definition is consistent with

the convolution defined in (1) we consider the set of real num-
bers, as a group (with scalar addition as group operation).
For any element of this group the inverse element is
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and the volume element simplifies to
resulting in the desired equation:

(3)

For a real-valued square-integrable function on an arbitrary Lie
group, is called atranslation in
the same sense that is a translation of a function
in In particular, is called aleft translation,
while is called aright translation.3 This does not
indicate a direction of motion, but rather the order in which
the elements appear. In fact, for left and right translations
are the same because the group operation is commutative.

Left and right translations have no effect on the volume
element in That is, for any fixed element

In general, any
Lie group for which a volume element can be found such
that this is true is calledunimodular. If the volume element
is only invariant under left (or right) translations, then it is
called left (or right) invariant.

B. Convolution of Functions on

The Special Euclidean Group4 [denoted here as ] is
the dimensional Lie group which describes rigid
motions (rotation and translation) in dimensional Euclidean
space.

We can represent any element of the Lie group with
a homogeneous transform matrix of the form

where (i.e., is an special orthogonal
matrix: and and the
group operation is matrix multiplication of two homogeneous
transform matrices.

Since is a Lie group, the concept of convolution
reviewed in the previous section can be applied. While convo-
lution of functions on Lie groups has been a familiar concept
in the pure mathematics and theoretical physics literature
for quite some time [28], [29], applications to manipulator
kinematics are certainly new. Hence we dedicate this section
to a more in depth discussion of the particular case when

The explicit computation of volume elements for
and are given in the Appendix. and
are both unimodular, as has been observed by Park and

Brockett [21] and Murray, Li, and Sastry [18]. This means that
the convolution of functions on the Euclidean group of either

3Often a right translation is defined as�(gx � g�) instead of�(gx � g
�1

�
):

4Also called the Euclidean motion group, or simply the Euclidean group.

dimension can be written in either of the forms

(4)

where the change of variables has been
employed, and the fact that for unimodular groups

is observed.
If a function is convolved with itself, we can write

which means that the order of the product of and
does not matter in this special case even if the group is not
commutative.

The fact that is invariant under translations gives the
convolution product some other useful properties. Namely, if

for 1, 2 are nonnegative functions for all
then

This is true because

(5)

The change of variables has been made, and
since the integrals separate.

C. Geometric Interpretation of Convolution
of Functions on SE(D)

Suppose there are three frames in space, and as
shown in Fig. 2. The first frame can be viewed as fixed, the
second frame as moving with respect to the first, and the third
frame as moving with respect to the second. Let the homoge-
neous transform describe the position and orientation of
w.r.t. and describe the position and orientation of
w.r.t. Then the position and orientation of with respect
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Fig. 2. Concatenation of homogeneous transformations.

to is The position and orientation of with
respect to can then be written as

We may divide up into volume elements, or “vox-
els,” of finite but small size. The volume of the voxel centered
at is denoted and as the element size is
chosen smaller and smaller it becomes closer to the differential
volume element

The motion of relative to and the motion of
relative to can both be considered elements of and
no distinction is made between these motions and the trans-
formation matrices and which represent these motions.

Assuming we move and through a finite number of
different positions and orientations, let be a function that
records how often the frames appear in each voxel, divided
by the voxel volume Likewise, let be the function
describing how often the frames appear in each voxel
normalized by voxel volume.

To calculate how often the frames appear in each voxel
in for all possible values of and we may perform
the following steps.

1) Evaluate (frequency of occurrence of
2) Evaluate (frequency of

occurrence of
3) Weight (multiply) the left-shifted density histogram

by the number of frames which are doing
the shifting. This number is for each 5

4) Sum (integrate) over all these contributions

As will be seen in subsequent sections, this approach yields
an approximation to the density of frames which can be
computed very efficiently. The number of frames in each
voxel of can be calculated from this density as simply

IV. USE OFCONVOLUTION FOR WORKSPACEGENERATION

In the previous section, we showed how the concept of
a convolution product of two functions can be extended to

5Note that the product�2(H�1H0)�1(H)��(H) is then an approxima-
tion to the sum of histograms which would result by sweeping�2(H) by the
homogeneous transformsH in the voxel with volume��(H): In the limiting
case when the volume size goes to zero, this approximation becomes exact.

arbitrary Lie groups with an appropriate concept of integration.
In this section we investigate the applications of convolution
in workspace generation for the particular case of real-valued
functions on

A. The General Idea

In this subsection, we show how the concept of the convo-
lution product of functions on can be applied to the
generation of workspaces.

Let us consider a manipulator that consists of two mech-
anisms stacked on top of one another. For example, the two
mechanisms can be in-parallel platform mechanisms or serial
linkages. A frame is attached to the bottom of the first
mechanism and a frame to its top, which also defines
the bottom of the second mechanism. A third frame,
defines the position and orientation of the top of the second
mechanism. This leads back to the situation shown in Fig. 2,
where now describes the homogeneous transformation
corresponding to the lower mechanism, the one for the
upper mechanism, and the one for the whole manipulator.

If the manipulator is actuated discretely, then each mecha-
nism only has a finite number of different states, which can
be described by two finite sets, and which contain
and elements, respectively. The set of all homogeneous
transformations that can be attained by the distal end of the
manipulator when the base is fixed results from all possible
combinations of these two sets

and hence consists of elements.
For a discrete set of frames (elements of that

is very large, it is useful to reduce the amount of data
by approximating its information with a density function.
This is done by dividing a bounded region in into
small volume elements, counting how many reachable frames
occupy each volume element, and dividing this number by
the volume of each element. This density function describes
the distribution of frames in the workspace. Fig. 1 shows the
integral of such a distribution over all orientations reachable
by a manipulator. The result is a function of position in the
plane (gray scale corresponds to density).

If the sets and are approximated with density func-
tions and respectively, then the density function
resulting from the convolution of the two is a density function
for the whole manipulator

Furthermore, this reasoning can be applied to manipulators
consisting of more than two mechanisms (modules) stacked on
top of one another. For instance, if four modules are stacked,
the density of the lower two is and the density of
the upper two is by the reasoning given previously.
Treating the lower two modules as one big module, and the
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upper two as one big module, the density of the collection of
all four modules is

If the reasonable frames of a discrete manipulator consisting
of independent modules are described by sets
in the way described above, then the density of the whole
manipulator is derived by multiple convolution as

B. Computational Benefit of this Approach

Suppose a manipulator consisting of modules is con-
sidered and the number of homogeneous transformations in
each set is The explicit (brute force) calculation of
all combinations of homogeneous transformations is of the
same order as the number of all combinations,
If then this is an calculation.

In our approach, density functions are used to describe the
frame distribution for each module. The frame distribution of
the whole manipulator results by performingconvolutions.
These calculations also depend on the dimension of
for While we treat as a constant because it does
not change with the number of actuator states, it is worth
noting that if a compact subset of is divided into

increments in each dimension, then
voxels result. Treating as constant, the calculation of
requires additions to increment the number of frames
in each voxel. Since the voxels are uniform in size in the

case, there is no need to explicitly divide by voxel
volume (i.e., this normalization can be performed concurrently
with convolution). Thus the calculation of is effectively

Consider the convolution of density functions of any two
adjacent modules. The numerical approximation of the convo-
lution integral evaluated at a single point in the support6 of

becomes a sum over all voxels in the support of
This calculation must be performed for all voxels in the

support of and so the computations required to
perform one convolution are
where and are respectively the number of voxels in
the support of and If the voxel size
is kept constant after convolution, then because
the workspace of any two adjacent modules is bigger than
either one individually. Treating and as constants, the
calculation of convolutions would then be polynomial in
The order of this polynomial would depend on However, if
the voxel size is rescaled after convolution, so that
then each convolution is Hence the total order
of this approach is for this
data storage strategy.

In the special case of a manipulator consisting ofidentical
modules the number of convolutions to be performed can be
further reduced by using a different strategy. In this case,
the frame distribution is calculated from identical

6The support is the subset of the domain of the function on which the
function has nonzero value.

functions as a -fold convolution

Note, that the repeated convolution of a function with itself
generates the following sequence of functions:

etc

i.e., it is possible to generate by one convolution,
by two convolutions, and more generally by convo-
lutions. Thus, for a manipulator with identical modules,
approximately convolutions have to be performed,
which is an calculation if the number of voxels is
held constant after each convolution (i.e., if we allow voxel
size to grow with each convolution).

One can estimate the support of the convolution of two
density functions by first making a gross over estimate and
doing a very crude (low resolution) convolution. Those voxels
which have zero density after convolution can be discarded,
and what is left over is a closer overestimate of the support
of the convolved functions. This region is smaller than the
original estimate, and voxel sizes can be scaled down to get
the best resolution for the allowable memory.

C. Explicit Computation of the Convolution
Product of Functions on SE(2)

In the two-dimensional (2-D) case, the homogeneous trans-
forms and in the convolution integral can be parame-
trized as

and

We define a parametrized density function by iden-
tifying

which leads to an explicit form of the convolution product on

where and
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In general if a subset of for is parametrized
with variables then to within
a constant7

where is the Jacobian matrix of
the parametrization. In the case when the determinant
of the Jacobian matrix is one (see the Appendix for details).

For the following derivation we assume that and are
real-valued functions on that are non-negative and
bounded everywhere, and have compact support. That is, they
vanish outside of a compact (closed and bounded) subset of

which for simplicity is chosen of the form

The convolution product of two such functions on can
be expressed in the form

where is used here to mean that the difference
is taken in the range to 8

V. WORKSPACEGENERATION FORPLANAR MANIPULATORS

In Section III, we showed how the concept of the con-
volution product of functions on Lie groups is defined. In
Section IV, we showed how convolution of functions on

can be applied to workspace generation. This section
describes the details of a numerical implementation which is
based on a representation of density as a piecewise constant
histogram.

We start this section with a summary of the procedure
for generating the workspace of a discretely actuated planar
manipulator.

1) The manipulator is divided into kinematically inde-
pendent modules. The modules are numbered from 1 to

starting at the base with module 1 and increasing
up to the most distal module, module For each
module one frame is attached to the base of the module
and a second one to the top, where the next module
is attached. Modules can have a parallel kinematic
structure internally, but the modules are all cascaded
in a serial way.

2) For each module, the discrete set
of all frames the top of module can

attain relative to the bottom is determined. That is,
the position and orientation of the upper frame with

7For compact groups the constant is set so thats
G
d�(g) = 1; butSE(D)

is not compact and so there is no unique way to scale the volume element.
8This is different than the standard definition which would put the result

in [0; 2�):

respect to the lower frame is described by homogeneous
transformations, while the module
undergoes all possible discrete configurations.

3) A compact subset is chosen that contains
all of the discrete sets The subset is discretized
and a piecewise constant density function/histogram
is calculated for each to represent this information.

4) Finally, the discrete density functions are convolved in
the order

to yield the density function of the workspace.

The implementation of Step 1 and 2 of the workspace gener-
ation procedure depends on the architecture of the manipulator.
Generating these sets is a simple task if the manipulator can
be separated into a sufficiently large number of kinematically
independent modules of simple structure. We assume that the
discrete sets are calculated efficiently either numerically or
in closed form for all modules of the manipulator.

For Steps 3 and 4 we have to define discretized density
functions used to represent each set The discretization of
the parameter space is described in the following subsection
for the case and the subsection after that describes the
resulting discrete form of the convolution.

A. Discretization of Parameter Space

For each set arising in Step 3 of the procedure, the
support of in terms of the parameters is of the form

This set of parameters
is divided into elements/voxels of equal size. Note, that in the
following discussion the superscript “” is dropped, unless we
refer to a particular set We choose the resolution in the
and -directions to be identical, i.e., and explain
below how to choose the resolution in the angular direction
such that the resulting errors from inaccuracy in position and
rotation are of the same order.

We denote by and the number of discretizations
in the -, -, and -directions, respectively, i.e.,

and
choose and such that 9 Each voxel is a
volume element of the form

with center coordinates

To characterize the error resulting from discretization
we consider a homogeneous transform corre-
sponding to some exact parameters:
is then compared to the homogeneous transformation
corresponding to the rounded coordinates:
By definition differs from at most by

If we apply and to any vector and use
and to denote rotation and translation of and

9To get exact equality it is usually necessary to slightly change one of the
workspace boundaries, e.g., to slightly increaseymax:
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respectively, then the error is bounded as

If is a set of vectors, then the maximal difference in
displacement between transformed versions of a vector
after transformation by and is bounded by

(6)

The last equality holds because
In the case of convolution of two workspace densities we

can use (6) to balance the error between the angular and
translational part. We denote continuous regions containing the
sets and as and respectively. To discretize we
first select a maximal acceptable error(which results from
a trade-off between memory and accuracy). The resolution
parameters of are then determined
such that the two parts of the error are of the same order
and add up to i.e.

where is the union of all projections of constant
theta slices of onto the plane.

This results in the choice

(7)

The step sizes for the discretization of are chosen analo-
gously.

B. Numerical Convolution of Histograms on SE(2)

Our goal is to store density functions in the form of piece-
wise constant histograms, i.e. we only want to store average
values for each voxel. This section presents convolution in a
form applicable to histograms on As a first step the
integral from the previous section

is approximated by a Riemann–Stieltjes sum

Although the right hand side of the equation is approximated
by a discrete sum, the function is required to exist for any
arguments because its arguments generally do not coincide
with points on the grid of any discretization. We therefore
approximate the functions for any real-valued arguments
by interpolation using function values at neighboring discrete
points. Since this problem is frequently encountered in many
applications, there exist many different strategies. The simplest
strategy is that the function is approximated by the
value of (i.e., at the closest point on the grid).
Because this can lead to large round-off errors, we instead use
linear interpolation. For each coordinate ( ) we find the
indices in the grid such that

etc., and define the ratios

The value is then interpolated from the values at
eight discrete points (8-point interpolation)

C. Convolution of Functions on

The efficient implementation of convolution of functions on
is a topic of current research [6], [15]. In this subsection

we briefly describe why this case is more difficult than
and provide an example which illustrates how these difficulties
can be avoided in certain cases.

The convolution product for functions on can be
derived explicitly in a very similar way as for functions on

We may parametrize the homogeneous transforms
and as

where and are rotation
matrices parametrized by Euler angles, and

For any function we may use the slightly different
notation Therefore, since
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(a) (b)

Fig. 3. Workspace density for a four-module manipulator (a) calculated by brute force; (b) using convolution. Scale is�x = �y = 0:05 and�� = �=30:

the convolution integral may be written as

(8)

In the above equation the integration over has
been rewritten as integration over position and orientation
separately, and the volume element is rewritten by observing
that it is the product of the volume element for and

That is, to within a constant factor where
and is calculated in the Appendix.

There are two major difficulties that arise in the three
dimensional case.

First of all, the number of parameters/dimensions rises from
three to six, when moving from to This means
that if the density functions are stored as arrays, the amount
of memory needed issquared, as compared to the case of

for the same discretization. This drastically reduces
the allowable resolution.

Secondly, when parametrizing the choice of the
discretization becomes tricky because as a manifold,

which means that each finite but small volume
element in is the Cartesian product of one in
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and Difficulties arise because unlike it is not
possible to finely and uniformly discretize In fact, the
collection of center points of any such discretization would
correspond to the finite subgroups of and it is well
known that these subgroups contain relatively few elements
[16].

The second problem above may be addressed with more so-
phisticated interpolation schemes which interpolate the
part of the convolution as well as the part. If we are
interested only in determining the shape of the workspace,
reduction of the resolution may not be a terrible problem
either. However, if we are interested in high resolution in the
three dimensional case, the workspaces of only very special
manipulator morphologies can be generated using convolution
at the current time due to limitations on computer memory. We
therefore examine one of the scenarios in which convolution
can be used at the current time.

Consider a spatial discretely actuated manipulator which
consists of two modules, a base (proximal) module which only
translates the frame attached to its top relative to its base, and
a distal module which is completely general. In this case, the
density function of the base has a very special form. Since
all the density is concentrated in the translation subgroup of

we may write

where is the Dirac delta function on That is, the
function is a singular distribution centered at the identity
element which has the properties

Using these properties, we may rewrite (8) in the following
way for this special case:

(9)

While this reduces a six-dimensional integration to a three-
dimensional one, it does not solve the problem of memory
allocation. The only way to reduce the memory requirement
is to compress the information from the six dimensions of

to a lower dimensional space, i.e., if we are satisfied
in knowing positional density instead of that of both position
and orientation. This is achieved by the integration

(10)

Now if we are only interested in positional density, it would
be a considerable waste of memory to store in six
dimensions, only to reduce it to three by integration. Therefore,

we may define from the beginning the function

which may be calculated directly as in [7]. Then (9) is written
as

which is the standard convolution of functions in In this
way, only three dimensional arrays need to be stored at any
instance.

VI. NUMERICAL RESULTS FOR

PLANAR WORKSPACE GENERATION

In this section we present numerical results for the genera-
tion of workspaces using the methods presented earlier in this
paper. The algorithm is implemented on a SUN SPARCstation
5, 110 MHz, in the C programming language. Figures were
made using Mathematica version 3.0. The algorithm is applied
to a version of the discretely actuated manipulator shown in
Fig. 1. The manipulator in Fig. 1 consists of ten modules
composed of three legs each, where each leg has two bits
(four states). Hence each module has 64 discrete states.
In our example we consider a manipulator consisting of only
eight identical modules of this kind, resulting in a manipulator
with states. Unless specified otherwise, the
width of each platform is chosen as 0.2 compared to
the minimal and maximal actuator lengths of 0.15 and

0.22.
For this manipulator we calculate the workspace density

corresponding to only the first two modules by brute force
( 4096 states), which we will refer to as W2 in the
following. Since all modules are identical, convolution of this
density with itself leads to the density of the four-module
workspace, W4. Convolving this workspace again with itself
leads to the workspace density of the whole manipulator, W8.

For the workspace of four modules it is possible to calculate
the results using brute force [ 1.7 10 states]. In
the following we first compare the results of this approach to
the results obtained from convolution and quantify the error.
Afterwards we show results for the workspace of the eight-
module manipulator, which cannot simply be calculated by
brute force (2.8 10 states).

Fig. 3(a) is generated by calculating the histogram directly
(brute force) and Fig. 3(b) is generated by convolution of the
density function corresponding to two modules with itself.
In the brute force calculation we use linear (eight-point)
interpolation when incrementing voxels, because this makes
the raw data less sensitive to small shifts in the grid. Eight-
point interpolation is also used when evaluating the discrete
density functions for the discrete convolution.

In each figure, the -axis corresponds to the angle(ori-
entation of end-effector), and the point density per voxel is
represented by a gray scale (black representing very high
density). The base of the manipulator lies at the origin of
the coordinate system. To enhance differences in low density
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Fig. 4. Workspace density for an eight-module manipulator using convolu-
tion. Scale is�x = �y = 0:1 and�� = �=15:

areas, we chose a nonlinear gray scale: Each density value is
normalized to a value between 0 and 1 (divided by the largest
density value in the drawing), and the fourth root of this value
is displayed as gray value for W4 (the eighth root for W8).

Convolving the density array in Fig. 3(a) with itself results
in W8. The result is shown in Fig. 4.

Fig. 5(a) and (b) show the workspace of the same manipu-
lator as in Fig. 4, if the maximal actuator length is decreased
to 0.2 or increased to 0.25, respectively.

Error measures:To quantify the error resulting from con-
volution for W4 (as compared to direct calculation) three
different error measures are used. The first two measures

compare the density resulting from the brute force approach,
with the density from numerical convolution,

The third measure is a function of the shapes of the workspaces
(by shape we mean the set of all voxels with nonzero density),
by counting the number of voxels which belong to one of the
workspaces, but not to the other:

for which or
for which

Tables I and II show error, memory and time, for the approx-
imation of the manipulator of four modules described above,
if different discretizations are chosen for the representation of
the workspace. In particular, the time listed is the net time
to calculate workspace W4 by one numerical convolution of
W2 with itself. The memory listed is the amount of memory
needed to represent either W2 or W4 (whichever has more
voxels). Since voxels are consolidated after convolution, it is
possible for W4 to require fewer voxels than W2.

In all simulations we chose the discretization as follows:

1) choose for workspace W2 and for W4;
2) calculate the angular discretization, of W2 accord-

ing to (7);
3) define the scale factor as and de-

termine such that is also the factor for the
angular discretization, i.e. As a practical
matter, integer scale factors are the easiest to work with.
However it is possible to consolidate voxels using more
general scale factors if interpolation is used.

Results and Analysis:

1) For the case considered, W4 can be calculated from W2
with one convolution in less than 12 min with an error
smaller than 10%. W8 is calculated from W4 with one
convolution within another 9 min. (No error is reported,
since comparison with brute force results is impossible
for W8).

2) The best results in this particular example were obtained
using a factor of i.e. if the resolution is twice
as fine before convolution than after (see Table I). In
general, an appropriate scale factor can be estimated
even if there is no brute force data against which
to compare the results of convolution. This may be
achieved by examining the relative error of sequences
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(a) (b)

Fig. 5. Workspace density for an eight-module manipulator with kinematic parameters (a)q2 = 0.2, (b)q2 = 0.25. Scale is�x = �y = 0.1 and�� = �=15:

TABLE I
RESULTS FOR FIXED DISCRETIZATION (�x4;��4) AND VARYING FACTOR f

of density functions generated using convolution, and
picking the scale factor for which the relative error is
smallest.

3) For a constant factor the error decreases slowly
with higher discretization (see Table II).

4) The result of the discrete convolution is closer to a
brute force calculation if eight-point interpolation is
used to generate the brute force results, as compared to
no interpolation. Table III lists the error between brute
force (BF) and discrete (numerical) convolution (DC) if
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TABLE II
RESULTS FOR FIXED FACTOR f = 2 AND VARYING DISCRETIZATION (�x4;��4 )

TABLE III
RESULTS FORDIFFERENT TYPES OF INTERPOLATION AND DIFFERENT NUMBER OF STATES PER ACTUATOR

different numbers of points are used in the interpolation,
together with the corresponding computation time for
either method. (One-point means no interpolation at all,
two-point means interpolation only in the angle, eight-
point means interpolation in all three coordinate axes of
the grid.)

We expected the error to reduce more or less monotonically
with finer discretization. As can be seen in Table II this is
true for the shape error, For error and the general
tendency is to decrease for higher resolution, but this does not
happen strictly monotonically. One likely reason for this is
sensitivity of density to shifting of the grid by a tiny amount.
This effect only appears if the density is distributed very un-
evenly and differs considerably in neighboring voxels. Hence
we expect this effect also to disappear for manipulators of
higher resolution, i.e. if the actuators have a higher resolution
or a larger number of modules are considered as a single unit.
This expectation is supported by the data in Table III which
indicates a dramatic convergence of results obtained by brute
force and convolution as the number of actuator states in each
leg is doubled.

It is worth noting that for manipulators composed of
modules which each have a very large number of states, the

or calculations required for convolutions
can be a significant savings over However, in the
example presented here, the 64 frames reachable by each
module are relatively sparse. This means that the actual time
required to perform the convolutions would far
exceed the time required to generate the density function for
half of the manipulator (which requires kinematic
calculations) and perform one convolution. Thus in this case,

is better than In either case convolution
plays a critical role in avoiding the calculations which
cannot be performed in a reasonable amount of time.

Finally, we note that the purpose of this implementation is
to show that the concept of numerical convolution on
works and provides usable results. Since this approach is
new, and hence not optimized, it is likely that more accurate
and more efficient implementations will be formulated in the
future.

VII. CONCLUSION

In this work, it was shown that the general concept of
convolution is applicable to the approximation of workspaces
and workspace densities of hybrid serial-parallel manipulators.
The mathematical properties of the convolution product of
scalar functions on the Euclidean motion group were reviewed
and a numerical scheme, based on convolution, was generated.

Further research will address the implementation of con-
volution for continuous functions and the generalization of
the Fourier transform to functions on the Euclidean motion
group as a means of performing convolution quickly. The
concept of convolution is also promising as a tool for formu-
lating the workspace synthesis problem for discretely actuated
manipulators.

APPENDIX:
INTEGRATION

Let

denote the displacement (i.e., homogeneous
matrix) describing an arbitrary rigid motion in dimensional
Euclidean space, where parametrizes
In the discussion that follows since these are the
only cases of interest in this paper.
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In general, for an object whose location in space is given
by a displacement its spatial velocityis computed as

where the “” denotes differentiation with respect to time. Note
that the matrix takes the form:

where is a skew symmetric matrix. We can convert
this to “twist” coordinates via the “ ” operator:

In the case when is defined such that
for any In the case when has the form

and becomes the scalar
The twist vector is written as a Jacobian matrix multiplying

a vector of derivatives of the parameters,as follows:

where

The volume element for may be expressed using this
Jacobian as:

to within a free constant, which can be chosen arbitrarily
provided that

where is the “mass” corresponding to the positive real-
valued density function For instance, if the density
function represents the points reachable by a discrete manip-
ulator with joints each with states, This
does not fix the constant since and
yield the same resulting mass, but once chosen its use must
be consistent.

The fact that this volume form (which is an example of the
more general concept of a Haar measure [19]) is invariant to
right and left translations, i.e,

is well known [21], [18]. The fact that unimodular groups
admit only one Haar measure (upto a one-parameter scaling)
is also well known.

In particular, for the case of 2,
1 and

It is trivial to show that this is left and right invariant by
direct calculation.

For 3, the rotation matrix is parametrized using Z-X-Z
Euler-Angles as follows.

where One then calculates that

and so

which is the product of the volume elements for
and and for

In higher dimensions, the volume element for will
also be the product of the one for and but this is
not of use to us in the current presentation. Readers interested
in different perspectives on the volume element for
should consult [2], [18], [21], [29].

The invariance of this volume element is seen as follows.
Right invariance follows from the fact that for any constant
homogeneous transform

Since and we have that

The left invariance follows from the fact that

where from [17] and [18] e know

where

and is the skew symmetric matrix such that
[17], [18]. Therefore,

But since 1

The left and right invariance of follows directly from
that of
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