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Numerical Convolution on the Euclidean Group
with Applications to Workspace Generation

Gregory S. Chirikjian,Member, IEEE,and Imme Ebert-Uphoff

Abstract—In this work, the concept of a convolution product
of real-valued functions on the Special Euclidean groupSE(D)
(which describes all rigid body motions in D-dimensional Eu-
clidean space), is applied to the determination of workspaces
of discretely actuated manipulators. These manipulators have a
finite number of joint states. If a discretely actuated manipulator
consists of P actuated modules, each with/ states, then it can
reach K'” frames in space. Given this exponential growth in
the number of reachable frames, brute force representation of
discretely actuated manipulator workspaces is not feasible in
the highly actuated case. However, by partitioning a discretely
actuated manipulator into P modules, and approximating the
workspace of each module as a density function on a compact
subset of the Special Euclidean group, the whole workspace can
be approximated as anP-fold convolution of these densities. A
numerical approximation of this convolution is presented in this
paper which is O(P) for fixed taskspace dimension. In the special
case when the manipulator is composed aP identical actuated
modules, the workspace density for the whole manipulator can
be calculated in O(log P) computation time. In either case,
the O(K7T) computations required by brute force workspace Fig. 1. A discretely actuated manipulator with® States.
generation are avoided.

Index Terms— Convolution, discrete actuation, Euclidean

group. manipulator workspaces, rigid body motion. To compute this workspace density function using brute

force is computationally intractable, e.g., it requi@sK )
evaluations of the forward kinematic equations for a manipula-
|. INTRODUCTION tor with P actuated modules each wifll states. In addition,

HE CONCEPT of a convolution product of real-valued@n array storing the_ density of aIIonI}Jme glements in the
functions on the Special Euclidean Group (which davorkspace must be incrementéy K ) times if brute force

scribes rigid-body motion in Euclidean space) is used in tHf@mputation is used. ,
paper. The primary application is the generation of discretely F19- 1 shows a schematic of the density of frames reachable
actuated manipulator workspaces, and determination of iy a discretely actuated variable geometry truss manipulator.

density of reachable frames in any portion of the workspadé.there are 30 actuated truss elements (ten modules) and each

While a number of works address the problem of determinirgement has four states (and thus the whole manipulator has

0 ~ 8 . -
workspaces, the concept of density is not usually addressad, ~ 10'° states) the workspace density cannot simply be
In the context of discrete actuation, the density of fram&@MPuted using brute force because this would take hundreds
(number of frames per unit taskspace voldjria many ways of years using current computer technology. This combina-

replaces dexterity measures as a scalar function of importaffdd! explosion is a major reason why discrete actuation is

defined over the workspace. This is because density in &t commonly used, despite the fact that the concept is almost

neighborhood of a given point/frame is an indication of hoW'rée decades old (see e.g., [22], [25]). Having a representation

accurately a discretely actuated manipulator can reach tRhfl€ density of reachable frames is important for performing
point/frame. inverse kinematics and design of discretely actuated manip-

ulators. Using the concept of convolution discussed in the
sequel, an approximation of the workspace density can be
Manuscript received Dec. 8, 1995; revised November 15, 1996. This wog¢chieved inO(log P) calculations for macroscopically serial
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Section lll, terminology from the pure mathematics literaturmverse problem of designing a binary manipulator to reach a
dealing with Lie groups is reviewed, and the concept afet of specified end effector locations can be achieved as in
convolution of functions on groups is explained in detail4], [5]. However, when one considers situations with a very
In Section IV, we show why this concept is important fofine resolution or large number of binary actuators, both the
workspace generation of discretely actuated manipulators.ftmward problem of workspace determination and the inverse
Section V, the numerical implementation of convolution iproblem of manipulator design cannot be performed in this
explained in the planar case, and the spatial case is discusse.
Numerical results are generated in Section VI. Section VII In addition to workspace shape, the density of points in
offers some conclusions and describes future work. the workspace of a discretely actuated manipulator is a very
important quantity for inverse kinematics and path planning
in the case of a large number of discrete actuator states
Il. LITERATURE REVIEW [9]. Previously, we presented a method to efficiently generate
In this section, the robotics literature which addresses swépgrkspaces [7] and work envelopes [8] in terms of densities.
volumes and manipu]ator Workspace generation is reviewea__hose works are based on concatenation of the densities of
Sen and Mruthyunjaya [27] use manipu|at0rs with 0n|§ndividual modules by sweeping. This paper reformulates the
discrete joint states to model continuous-range-of-motion m@Pproach in [7] in the more general context of convolution of
nipulators with limited joint resolution. The results are useféinctions on Lie groups.
to examine the positional accuracy of continuous-range-of-
motion robots. In addition, an algorithm is developed to
use these results to improve positional accuracy and motion
planning for manipulators with only few degrees of freedom. In this section we discuss convolution of functions on
Kumar and Waldron [13] describe a model that relates the joikie groups. We start with an introduction to the concept of
accuracy to the accuracy of the end effector. convolution of functions on Lie groups in the first sub-section,
Blackmore and Leu [3] examine the volume swept by and apply this definition of convolution to the Euclidean group
continuous-range-of-motion manipulator changing its configin the remaining two sub-sections.
ration. That work also develops the mathematical framework
to analyze the volume swept by a manipulator arm. It can alg0 Convolution of Functions on Lie Groups

be used to generate the work envelope (i.e., the set of all point?n this subsection, a generalization of the concept of convo-

that the manipulator can occupy). : . . : . !
P py) Igtlon to functions on Lie groups is considered. It is assumed

The workspaces of manipulators with simple geometrl . I :
: : . : at the reader is familiar with the concepts of groups and
structure can be derived using classical geometric approacilgs
0

These methods cover a wide range of special manipula Eologlcal spaces. Readers unfamiliar with these concepts are

. . referred to [26], [30].
structures, but they are not applicable for manipulators o Recall that the convolution of square-integrable functions

general structure. In particular there exist algorithms for the L . - i
generation of manipulators with an arbitrary number of reve:! the real line is defined as the following integral:
lute joints (e.g., Korein [12], Kworet al. [14]).

Another approach solves the problem for manipulators (o B)(x) :/
with any kind of joints using the Monte-Carlo method. This

approach generates a large number of random actuator values

(joint angles), and calculates the corresponding end effectorry giscyss the generalization of this integral to functions on
positions (e.g., Alciatoreet al [1]). An approximation of | s grouns, an appropriate volume form/integration measure
the workspace boundaries is found by tracking the bordgy,qt pe ysed. We denote a differential volume element at a
of this pomt set. In Ipr|nC|pIe tr_le Monte Carlo method '@roup elemeny in a Lie groupG asdyu(g). The calculation of
not restricted to manipulators with few degrees of freedorig element for the case of the Euclidean group is explained in
However, in practice the results lose reliability with increasing, Appendix. The concept of convolution can be generalized

degrees of freedom. More specifically for discretely actuatgd o are-integrable functions on arbitrary Lie groups as (see
manipulators, areas in the workspaces with very low (b 8], [29])

nonzero) density are not picked up by the Monte-Carlo method

when the variation in density over they workspace is high.
_Rastegar and_Deravi [2_3], [24] consider Workspacg gener- (% B)(gs) :/ a(gf)ﬁ(gg—l o gz) du(ge) )

ation for a manipulator with general structure amdoints. G

Those authors use an approach similar to the one presented in

this paper-dividing the manipulator into parts, sub-workspacesere the integral is taken over the whole group, andj: €

of which are calculated. Other works by those authors includé are arbitrary elements.

the effect of joint motion constraints on the workspace. To show that this generalized definition is consistent with
When one considers discretely actuated/binary manipulatting convolution defined in (1) we consider the set of real num-

with low resolution the workspace can be generated usibgrs,R, as a group (with scalar addition as group operation).

brute force enumeration of configurations. Furthermore, ti®r any elemeny, = z of this group the inverse element is

Ill. THE GENERALIZED CONVOLUTION CONCEPT

oo

a(§)p(x — §) de. 1)

— o0



CHIRIKJIAN AND EBERT-UPHOFF: NUMERICAL CONVOLUTION ON THE EUCLIDEAN GROUP 125

g, = —z and the volume element simplifiesdp(g¢) = d¢, dimension can be written in either of the forms

resulting in the desired equation:
(a*B)(gz) = /Goc(ga)ﬁ(g{l ° gz) dyi(ge)
(490 = [ olo)0l0E" @ 0.)dnlag = [ alor 0 G5B e @)
= [ atop-e+a)ie

where the change of variableg — g, o ggl has been

+o0 employed, and the fact that for unimodular groups
— [ aopa- o ©)
- /Gf(gg)du(ga) = /Gf(ggl)du(ga)
For a real-valued square-integrable function on an arbitrary Lie '
group, 3(g..) € LQ(G),/J(ggl o g,) is called atranslationin = /G f(ge © g¢) dp(ge)
the same sense tha{z — ¢) is a translation of a function :
in R. In particular, 3(g;* o g.) is called aleft translation = /G f(ge © g)dp(ge)

while A(g,, o ggl) is called aright translation® This does not
indicate a direction of motion, but rather the order in whici$ observed. o .
the elements appear. In fact, fRrleft and right translations  If a function is convolved with itself, we can write

are the same because the group operation is commutative. .

Left and right translations have no effect on the volume (pxp)gz) = /Gp(gg)p(gg © ga) dji(ge)
element inR. That is, for any fixed elemeny, = = €
R, du(g- © g¢) = du(ge © g=) = du(ge). In general, any = /G p(gx © g¢ )p(ge) dp(ge)

Lie group for which a volume elemewj: can be found such

that this is true is calledinimodular If the volume element which means that the order of the product &f and g{l
is only invariant under left (or right) translations, then it igloes not matter in this special case even if the group is not

called left (or right) invariant. commutative.
The fact thatdy(g) is invariant under translations gives the
B. Convolution of Functions 0§ E(D) convolution product some other useful properties. Namely, if

The Special Euclidean Grofifdenoted here asE(D)]is  Pi(9) € £2(@) for i = 1, 2 are nonnegative functions for all
the D(D +1)/2 dimensional Lie group which describes rigid/ € G then

motions (rotation and translation) i? dimensional Euclidean
space. (o p2)9) i)
We can represent any element of the Lie gréup( D) with
a(D+1)x (D+1) homogeneous transform matrix of the form = </G p1(9) du(g)> </G p2(9) du(g)>-
R This is true because
/G (p1 % p2)(9z) di(g)
where R € SO(D) (i.e., R is anD x D special orthogonal 1
matrix: RRT = 1 anddet(R) = +1),b € RP, and the :/G/Gpl(gf)m(gf © gz) dpi(ge) dp(9)
group operation is matrix multiplication of two homogeneous
transform matrices. = / / p1(9e)p2(g-) dpge) dp(ge © g-)
Since SE(D) is a Lie group, the concept of convolution GG
reviewed in the previous section can be applied. While convo- = </ p1(g¢) du(gg)) </ p2(9:) du(gz)>. (5)
lution of functions on Lie groups has been a familiar concept G G

in the pure mathematics and theoretical physics literatufge change of variableg., = 95—1 o g, has been made, and
for quite some time [28], [29], applications to manipulatogincedu(g;3 o g.) = du(g.), the integrals separate.
kinematics are certainly new. Hence we dedicate this section

to a more in depth discussion of the particular case Wh@"_l Geometric Interpretation of Convolution
G = SED). _ of Functions on SE(D)

The explicit computation of volume elements f6¥ = ]
SE(2) and SE(3) are given in the AppendixSE(2) and ~ Suppose there are three frames in sp@ge/?, and 3, as
SE(3) are both unimodular, as has been observed by Park &tpwn in Fig. 2. The first frame can be viewed as fixed, the
Brockett [21] and Murray, Li, and Sastry [18]. This means th&econd frame as moving with respect to the first, and the third

the convolution of functions on the Euclidean group of eithdfame as moving with respect to the second. Let the homoge-
neous transformi{ describe the position and orientation Bf

30ften a right translation is defined 8. o ¢¢ ) instead of3(¢. 0 gz ). w.r.t. Fi, and H describe the position and orientation B§
“4Also called the Euclidean motion group, or simply the Euclidean groupw.r.t. 5. Then the position and orientation 6% with respect
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arbitrary Lie groups with an appropriate concept of integration.
In this section we investigate the applications of convolution
in workspace generation for the particular case of real-valued
functions onSE(D).

A. The General Idea

In this subsection, we show how the concept of the convo-
lution product of functions ort £(D) can be applied to the
! generation of workspaces.

Let us consider a manipulator that consists of two mech-
anisms stacked on top of one another. For example, the two
mechanisms can be in-parallel platform mechanisms or serial
to Iy is H' = HH. The position and orientation df3 with  |inkages. A frameF; is attached to the bottom of the first
respect tof; can then be written as mechanism and a framé, to its top, which also defines

H—H'H. the bottom of the second mechanism. A third frandé,
defines the position and orientation of the top of the second

We may divide upSE(D) into volume elements, or “vox- mechanism. This leads back to the situation shown in Fig. 2,
els,” of finite but small size. The volume of the voxel centeredthere now H describes the homogeneous transformation
at H € SE(D) is denotedAn(H), and as the element size iscorresponding to the lower mechanisif, the one for the
chosen smaller and smaller it becomes closer to the differentigiper mechanism, anH’ the one for the whole manipulator.
volume elementdu.(H). If the manipulator is actuated discretely, then each mecha-

The motion of £, relative to #; and the motion off3  nism only has a finite number of different states, which can
relative toF, can both be considered elementsS&(D), and be described by two finite sets; andS,, which containm;
no distinction is made between these motions and the traasd m, elements, respectively. The set of all homogeneous
formation matrices{ and H which represent these motions. transformations that can be attained by the distal end of the

Assuming we move and H through a finite number of manipulator when the base is fixed results from all possible
different positions and orientations, let be a function that combinations of these two sets
records how often thé{ frames appear in each voxel, divided
by the voxel volumeAu(H). Likewise, letp, be the function
describing how often thed frames appear in each voxel
normalized by voxel volume.

To calculate how often thél’ frames appear in each voxeland hence consists of; - m» elements.
in SE(D) for all possible values of{ and H, we may perform  For a discrete set of frames (elements $E(D)) that
the following steps. is very large, it is useful to reduce the amount of data

1) Evaluatep; = p1(H) (frequency of occurrence ¢f), by approximating its information with a density function.

2) Evaluatep, = p2(H) = p2(H1H') (frequency of This is done by dividing a bounded region HiE(D) into

occurrence off = H™1H'). small volume elements, counting how many reachable frames

3) Weight (multiply) the left-shifted density histogramoccupy each volume element, and dividing this number by

p2(H~1H’) by the number of frames which are doinghe volume of each element. This density function describes
the shifting. This number ig; (H)Au(H) for each.®> the distribution of frames in the workspace. Fig. 1 shows the

F

Fig. 2. Concatenation of homogeneous transformations.

S'={H =HH: He S,,HES,)}

4) Sum (integrate) over all these contributions integral of such a distribution over all orientations reachable
by a manipulator. The result is a function of position in the
(p1*p2)(H') = / p1(H)p2(H™ H") dp(H). plane (gray scale corresponds to density).
SE(D) If the setsS; andS, are approximated with density func-

As will be seen in subsequent sections, this approach yielitns p; () and p»(-), respectively, then the density function
an approximation to the density df’ frames which can be resulting from the convolution of the two is a density function
computed very efficiently. The number & frames in each for the whole manipulator
voxel of SE(D) can be calculated from this density as simply

(p1 * p2)(H')Ap(H'). p(H') = (p1* p2)(H').

IV. USE OF CONVOLUTION FOR WORKSPACE GENERATION
. . Furthermore, this reasoning can be applied to manipulators
In the previous section, we showed how the concept of 9 pp P

a convolution product of two functions can be extended oonS|st|ng of more than t.WO mecha_msms (modules) stacked on
op of one another. For instance, if four modules are stacked,

_°Note that the produgpz (H~! H')pi (H)Ap(H) is then an approxima- the density of the lower two ig; * p, and the density of
tion to the sum of histograms which would result by sweepingH ) by the h . by th . . . |
homogeneous transforrfig in the voxel with volumeA p(7). In the limiting the u.pper two Isp3 * p4 Dy the reasoning _g“/en previously.
case when the volume size goes to zero, this approximation becomes exakreating the lower two modules as one big module, and the
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upper two as one big module, the density of the collection @inctions as aP-fold convolution
all four modules i(p1 * p2) * (p3 * pa) = p1 * P2 * P3 * p4. )

If the reasonable frames of a discrete manipulator consisting P=p1 = pL¥prE-cckpL.
of P independent modules are described by $gts--, Sp
in the way described above, then the density of the wh
manipulator is derived by multiple convolution as

dipte, that the repeated convolution of a function with itself
generates the following sequence of functions:

o =prxp, p® = pP «xp?
p(H") = (p1* p2* -+ % pp)(H). P(S) IP(4) * p(4)7 etc

i.e., it is possible to generatg? by one convolutionp(¥

B. Computational Benefit of this Approach by two convolutions, and more generay?*") by n convo-

Suppose a manipulator consisting 8 modules is con- Iutions.' Thus, for a manipulato'r witl® identical modules,
sidered and the number of homogeneous transformationspproximatelyO(log F) convolutions have to be performed,
each setS; is m;. The explicit (brute force) calculation of Which is anO(log P) calculation if the number of voxels is
all combinations of homogeneous transformations is of tfgld constant after each convolution (i.e., if we allow voxel
same order as the number of all combinatio@®J17, m,). SiZ€ t0 grow with each convolution). .
If my = =mp = K, then this is ar®(K ") calculation. On'e can e;nmate Fhe support of the convolutpn of two

In our approach, density functions are used to describe #ignsity functions by first making a gross over estimate and
frame distribution for each module. The frame distribution ¢f0ing a very crude (low resolution) convolution. Those voxels
the whole manipulator results by performidconvolutions. Which have zero density after convolution can be discarded,
These calculations also depend on the dimensios B{D) and what is left over is a closgr overestlmate of the support
for D = 2,3. While we treatD as a constant because it doe8f the convolved functions. This region is smaller than the
not change with the number of actuator states, it is worfHiginal estimate, and voxel sizes can be scaled down to get
noting that if a compact subset &fE(D) is divided into the best resolution for the allowable memory.
N; increments in each dimension, then= I12(PT9/2 A7, N _ _
voxels result. Treating) as constant, the calculation pf(-) C- Explicit Computation of the Convolution
requiresO(m;) additions to increment the number of frame&roduct of Functions on SE(2)
in each voxel. Since the voxels are uniform in size in the |n the two-dimensional (2-D) case, the homogeneous trans-
SE(2) case, there is no need to explicitly divide by voxeforms H’ and A in the convolution integral can be parame-
volume (i.e., this normalization can be performed concurrentljized as
with convolution). Thus the calculation gf(.) is effectively

O(my). / cos 0 —sinf =
Consider the convolution of density functions of any two H'(z,y,0) = [ sinf  cosb y

adjacent modules. The numerical approximation of the convo- 0 0 1

lution integral evaluated at a single point in the suppoft nd

(pi*pit1)(-), becomes a sum over all voxels in the support (%

pi(+). This calculation must be performed for all voxels in the cosa —sina &

support of(p; * p;+1)(+), and so the computations required to H(, n,a) = | sina cosa 7

perform one convolution ar®(convolution) = O(Q; - QF), 0 0 1

where @; and Q7 are respectively the number of voxels in ) . ) . )

the support ofp;(-) and (p; * pip1)(-). If the voxel size We define a parametrized density functiofx, y,6) by iden-

is kept constant after convolution, theR! > @Q;, because tifying

the workspace of any two adjacent modules is bigger than 0 = o(H' P

either one individually. Treating); and D as constants, the pla,y,0) = p(H'(2,y,0))

calculation OfP. convolut|olns would then be polynomial iﬁ which leads to an explicit form of the convolution product on

The order of this polynomial would depend &h However, if SE(2)

the voxel size is rescaled after convolution, so Wt~ ),

then_each convoll_Jtion i©(Q?) = O(1). Hence the total orQer (p1 * p2)(z, 5, 6)

of this approach iO(X/, m;) + P - O(1) = O(P) for this = (py * po)(H)

data storage strategy. T\
In the special case of a manipu!ator consisting’aflentical = / pL(H)p2(H™TH') du(H)

modules the number of convolutions to be performed can be SE(2)

further reduced by using a different strategy. In this case, [ [~ [T

the frame distributionp(H’) is calculated fromP identical I A A P& m @)p2((w = Eea + (y = n)sa

—(z = sa+(y—n)ea,0 — ) dE dn do

6The support is the subset of the domain of the function on which the

function has nonzero value. whereca = cosa and s = sin a.
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In general if a subset #E(D) for D = 2,3 is parametrized respect to the lower frame is described by homogeneous
with D(D +1)/2 variablesg, - - -, qp(p+1)/2, then to within transformationsH;, € S, C SE(2), while the module
a constartt undergoes all possible discrete configurations.
_ 3) A compact subsef,, C SE(2) is chosen that contains
du(H(q)) = det (J)dar -~ dap(p11)/2 all of the discrete sets,,. The subset’, is discretized
where.J is the D(D +1)/2 x D(D +1)/2 Jacobian matrix of and a piecewise constant density function/histogggm

is calculated for eacls,, to represent this information.
Finally, the discrete density functions are convolved in
the order

the parametrization. In the case whén= 2 the determinant
of the Jacobian matrix is one (see the Appendix for details). 4)
For the following derivation we assume that and p, are
real-valued functions o6 E(D) that are non-negative and
bounded everywhere, and have compact support. That is, they PW = pLE P2k X pp
vanish outside of a compact (closed and bounded) subset of
SE(2), which for simplicity is chosen of the form to yield the density function of the workspace.
W G) RN L _The implementation of Step 1 and 2 of the workspace_gener-

[ Trax] X [Wimin: Yawiax] X [-7,7] for j=1,2. ation procedure depends on the architecture of the manipulator.
Generating these sets is a simple task if the manipulator can
be separated into a sufficiently large number of kinematically
independent modules of simple structure. We assume that the

The convolution product of two such functions 8#/(2) can
be expressed in the form

(f1* fo)(x1,22,0) discrete setss, are calculated efficiently either numerically or
o C Ny O e in closed form for all modules of the manipulator.
=/ / p1(&,m, @) For Steps 3 and 4 we have to define discretized density
min Vi o functions used to represent each &gt The discretization of
cp2((x — &) cosa+ (y — n)sina, the parameter space is described in the following subsection

—(z =& cosa+ (y—n)sina, ( — ) mod 2r) for the caseSE£(2), and the subsection after that describes the
dé dn do ’ resulting discrete form of the convolution.

wheremod 27 is used here to mean that the differerfce « A, Discretization of Parameter Space

. : 8
is taken in the range- to . For each setS, arising in Step 3 of the procedure, the

support ofp > in terms of the paramete(s, y, 6) is of the form
V. WORKSPACE GENERATION FOR PLANAR MANIPULATORS [z fﬁl)naﬂfr(ggx] x [yl(fl)myl(&)m] x [=m,7]. This set of parameters

In Section Ill, we showed how the concept of the conis divided into elements/voxels of equal size. Note, that in the
volution product of functions on Lie groups is defined. Ifollowing discussion the superscript™is dropped, unless we
Section IV, we showed how convolution of functions omefer to a particular sef,. We choose the resolution in the
SE(D) can be applied to workspace generation. This sectiand y-directions to be identical, i.eAx = Ay, and explain
describes the details of a numerical implementation which ielow how to choose the resolution in the angular direction
based on a representation of density as a piecewise consgamh that the resulting errors from inaccuracy in position and
histogram. rotation are of the same order.

We start this section with a summary of the procedure We denote byV;, N,, and M the number of discretizations
for generating the workspace of a discretely actuated plariathez-, y-, andé-directions, respectively, i.eAz = (Zax—
manipulator. -Tmin)/Nla Ay = (ymax - yn1in)/N27 Al = (27T - 0)/M7 and

1) The manipulator is divided intd> kinematically inde- chooseN: and N, such thatAz = Ay.? Each voxel is a

pendent modules. The modules are numbered from 1\@lume element of the forrfi i, + Az, Ty + (i + 1) Ax] X

P, starting at the base with module 1 and increasin@min + JAY, Ymin + (J + 1)Ay] X [-7 + kAl —7 + (k +

up to the most distal module, modulB. For each 1)Af] with center coordinategz;,y;,0r) = (Zmin + (i +
module one frame is attached to the base of the mod®&) AT, Ymin + (j + 0.5)Ay, =7 + (k + 0.5)Af).

and a second one to the top, where the next moduleTo characterize the error resulting from discretization
is attached. Modules can have a parallel kinematite consider a homogeneous transfofin € SE(2) corre-
structure internally, but the modules are all cascadé®onding to some exact parametef$: = H(x,y,0). H

in a serial way. is then compared to the homogeneous transformattbn

2) For each module(p = 1,.--,P) the discrete set corresponding to the rounded coordlnaté§. H(z, 9, 9).

S, = {H;,} of all frames the top of modulg can By definition (z,y,8) differs from (z,4,6) at most by
attain relative to the bottom is determined. That ifAz/2, Ay/2, A0/2).
the position and orientation of the upper frame with If we apply £ and A to any vectory € R? and use(R, b)

For compact groups the constant is set so fhatlu(¢) = 1, but SE(D) and( ) to denote rotation and translation ¢f and A

is not compact and so there is no unique way to scale the volume element.

8This is different than the standard definition which would put the result °To get exact equality it is usually necessary to slightly change one of the
in [0, 2m). workspace boundaries, e.g., to slightly incregse..
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respectively, then the err¢fHv — Hv|| is bounded as is approximated by a Riemann-Stielties sum
1Ho = Holl =||(Ro+1) = (Ro = )] (f1 % fo)(@.,0)
=||(Bo = Ro) + (b= b)]] M N
< [Re = Bl + [ ©3 303 ) Al wn
—_— N—— =0 m=0n=0
rot. part transl. part

12 + (Y = m) sin i, —(7 = &§) sinavn + (Y = 7im)
< || I+ <<Aa:> n <Ay>2> - COS (y, (0 — ) mod 27) A& An Aar.
2 2 Although the right hand side of the equation is approximated
If V is a set of vectors, then the maximal difference ihy a discrete sum, the functiofy is required to exist for any
displacement between transformed versions of a vactol/  arguments because its arguments generally do not coincide
after transformation byd and H is bounded by with points on the grid of any discretization. We therefore
- approximate the functiong, for any real-valued arguments
max || Hv — Hu]| by interpolation using function values at neighboring discrete
9 9\ 1/2 points. Since this problem is frequently encountered in many
— Ad max |v|| + <ﬂ) + <%) applications, there exist many different strategies. The simplest
2 wev 2 2 strategy is that the functiofi,(x:, y, 8) is approximated by the
A6 Az value of fo(x;,y;,6x) (i.e., at the closest point on the grid).
=5 max ol + Nk (6)  Because this can lead to large round-off errors, we instead use
. linear interpolation. For each coordinate, {, #) we find the
The last equality holds becauger = Ay. indicess, j, k in the grid such that;; < = < zi41,y; Ly <
In the case of convolution of two workspace densities we
1, etc., and define the ratios
can use (6) to balance the error between the angular d
translational part. We denote continuous regions containing the _r—xy Y=Y 00
setsS; andS, asC; andCs, respectively. To discretizé; we b=y ' %= Ay © T T Ad
first select a maximal acceptable errofwhich results from
a trade-off between memory and accuracy). The resolutidhie value fo(x,y,6) is then interpolated from the values at
parametersAz(1), Ay A9 of ¢, are then determined eight discrete points (8-point interpolation)
such that the two parts of the error are of the same order .,

and add up to, i.e. falz,y,0) =(1 = t)(1 — w)(1 —v) fa(ws,y;, 0k)
AL Az oy e + ()1 = u)(1 — v) fawig1, y5, Ok)
5o l==5=35 + (1= (W)L = o) falwi, g1, 00) +

whereT(C) C R? is the union of all projections of constant + O W)(0) f2(Tit1, Yjt1: Ort)

theta slices ofC onto the plane.

This results in the choice C. Convolution of Functions oA E(3)

1 e e The efficient implementation of convolution of functions on
Az = Ay = — A =~ . . . :
V2’ max - SE(3) is atopic of current research [6], [15]. In this subsection
2 veren | 1Vll

7) we briefly describe why this case is more difficult th&'(2)
and provide an example which illustrates how these difficulties
The step sizes for the discretization @f are chosen analo- can be avoided in certain cases.

gously. The convolution product for functions o6E(3) can be
derived explicitly in a very similar way as for functions on

B. Numerical Convolution of Histograms on SE(2) SE(2). We may parametrize the homogeneous transfaffhs
and ‘H as

Our goal is to store density functions in the form of piece=
wise constant histograms, i.e. we only want to store average , R T R £
values for each voxel. This section presents convolution in a H = <6T 1) H= <6T 1)
form applicable to histograms ofiF(2). As a first step the

integral from the previous section whereRl = R(¢1, ¢2,$3) andR = R(t/1,12,3) are rotation
. matrices parametrized by Euler angles, and ¢ R>.
falw,y,6) = (1 T;fQ)(x(g’ % For any functionp(H’) we may use the slightly different
B /“’* Ymax [T FulErm ) notation p(R, ). Therefore, since
= W ’ (1) . 184S, 7, RT RTE R 3
. _— _ T
“f2((x = &) cosa+ (y — ) sina, HTH = <()T 1 )<6T 1)

—(z =& sina+ (y —n)cosa, :<RTR RT(E_Q)

(0 — ) mod 27) d€ dn dex o’ 1
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Fig. 3. Workspace density for a four-module manipulator (a) calculated by brute force; (b) using convolution. Scale ifny = 0.05 and A8 = = /30.

the convolution integral may be written as There are two major difficulties that arise in the three
(o1 % p2)(R, T) dimgnsional case. _ _ _
First of all, the number of parameters/dimensions rises from
= / / p1(R,E)p2(RTR,RY (T — €))dEAR.  three to six, when moving frol§ E(2) to SE(3). This means
S0(3) /R that if the density functions are stored as arrays, the amount
(8) of memory needed isquared as compared to the case of

In the above equation the integration ov8&(3) has SE(2) for the same discretization. This drastically reduces
been rewritten as integration over position and orientatidhe allowable resolution.
separately, and the volume element is rewritten by observingSecondly, when parametrizing £(3) the choice of the
that it is the product of the volume element f610(3) and discretization becomes tricky because as a manifeld3) =
R3. That is, to within a constant factel:(H) = d¢ dR where R?® x SO(3), which means that each finite but small volume
dé = d¢, dé, dé; anddR is calculated in the Appendix. element in SE(3) is the Cartesian product of one iR®
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and SO(3). Difficulties arise because unlik€O(2), it is not we may define from the beginning the function

possible to finely and uniformly discretizé0(3). In fact, the

collection of center points of any such discretization would p2(T) :/ p2(R,T)dR

correspond to the finite subgroups 60(3), and it is well 50(3)

I[(f(%""n that these subgroups contain relatively few elemenfgic, may be calculated directly as in [7]. Then (9) is written
: as

The second problem above may be addressed with more so-

phisticated interpolation schemes which interpolate$t¥3) p3(z) = / pL(E)p2(T — €) dE

part of the convolution as well as th@® part. If we are R?

interested only in determining the shape of the workspace

reduction of the resolution may not be a terrible problerWhlch is the standard convolution of functions®3. In this

either. However, if we are interested in high resolution in thady: only three dimensional arrays need to be stored at any
. . |n§tance.
three dimensional case, the workspaces of only very specia

manipulator morphologies can be generated using convolution

at the current time due to limitations on computer memory. We VI. NUMERICAL RESULTS FOR
therefore examine one of the scenarios in which convolution PLANAR WORKSPACE GENERATION
can be used at the current time. In this section we present numerical results for the genera-

Consider a spatial discretely actuated manipulator whigidn of workspaces using the methods presented earlier in this
consists of two modules, a base (proximal) module which onbaper. The algorithm is implemented on a SUN SPARCstation
translates the frame attached to its top relative to its base, @)d110 MHz, in the C programming language. Figures were
a distal module which is completely general. In this case, thgade using Mathematica version 3.0. The algorithm is applied
density function of the base has a very special form. Singg a version of the discretely actuated manipulator shown in
all the density is concentrated in the translation subgroup fy. 1. The manipulator in Fig. 1 consists of ten modules

SE(3), we may write composed of three legs each, where each leg has two bits
_ o (four states). Hence each module Hds= 64 discrete states.
LR, &) = p1(E)8(R) In our example we consider a manipulator consisting of only

wheres(R) is the Dirac delta function oO(3). That is, the eight identical modules of this kind, resulting in a manipulator

; 8 L1014 i ;
function§(R) is a singular distribution centered at the identitwth (64)° ~ 2.8 10 states. Unless specified otherwise, the

/ . idth of each platform is chosen as = 0.2 compared to
element which has the properties

the minimal and maximal actuator lengths @f = 0.15 and

G2 = 0.22.
/50(3) §(R)dR =1 For this manipulator we calculate the workspace density
corresponding to only the first two modules by brute force
/ f(R)S(RTR) dR = f(R) (64> = 4096 states), which we will refer to as W2 in the
S0(3) following. Since all modules are identical, convolution of this
§(RTR) =6(RTR). density with itself leads to the density of the four-module

_ ' . ) ~ workspace, W4. Convolving this workspace again with itself
Using these properties, we may rewrite (8) in the followingads to the workspace density of the whole manipulator, W8.

way for this special case: For the workspace of four modules it is possible to calculate
B o the results using brute forcétf)* ~ 1.7 - 107 states]. In
(p1* p2)(R,T) = / p1(&)p2(R, T — &) dE. (9) the following we first compare the results of this approach to
RS

the results obtained from convolution and quantify the error.
While this reduces a six-dimensional integration to a thre@fterwards we show results for the workspace of the eight-

dimensional one, it does not solve the problem of memopRpodule manipulator, which cannot simply be calculated by

allocation. The only way to reduce the memory requiremeftute force (2.8- 10'* states).

is to compress the information from the six dimensions of Fig. 3(a) is generated by calculating the histogram directly

SE(3) to a lower dimensional space, i.e., if we are satisfig@rute force) and Fig. 3(b) is generated by convolution of the

in knowing positional density instead of that of both positiofiensity function corresponding to two modules with itself.

and orientation. This is achieved by the integration In the brute force calculation we use linear (eight-point)
interpolation when incrementing voxels, because this makes

p3(T) = / (p1 % p2)(R, %) dR theT raw data Ie;s §ensmve to small shifts in Fhe grid. .E|ght-

50(3) point interpolation is also used when evaluating the discrete

= I density functions for the discrete convolution.
= /R3 pi(8) s0(3) p2(R,7 = §)dEdR.  (10) In each figure, the:-axis corresponds to the angfe(ori-
entation of end-effector), and the point density per voxel is
Now if we are only interested in positional density, it wouldepresented by a gray scale (black representing very high
be a considerable waste of memory to stps€R,Z) in six density). The base of the manipulator lies at the origin of
dimensions, only to reduce it to three by integration. Thereforde coordinate system. To enhance differences in low density
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Fig. 4. Workspace density for an eight-module manipulator using convolu-

tion. Scale isAx = Ay = 0.1 andAf = 7 /15.
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compare the density resulting from the brute force approach,
p, with the density from numerical convolutiop,

B, = ik
> lp(ai, s, 00)]
@5,k
Z|p($17 Y ek) - ﬁ(wlv Y 9k)|2
By = 1k

> oty 0x)2

4.5,k

The third measure is a function of the shapes of the workspaces
(by shape we mean the set of all voxels with nonzero density),
by counting the number of voxels which belong to one of the
workspaces, but not to the other:

0)&(p>0))

_ #for which ((p > 0)&(p = 0)) or ((p

Es #for which (p > 0).

Tables | and Il show error, memory and time, for the approx-
imation of the manipulator of four modules described above,
if different discretizations are chosen for the representation of
the workspace. In particular, the time listed is the net time
to calculate workspace W4 by one numerical convolution of
W2 with itself. The memory listed is the amount of memory
needed to represent either W2 or W4 (whichever has more
voxels). Since voxels are consolidated after convolution, it is
possible for W4 to require fewer voxels than W2.
In all simulations we chose the discretization as follows:

1) chooseAz, for workspace W2 and\zx, for W4;

2) calculate the angular discretizatiahg,, of W2 accord-

ing to (7);

define the scale factof as f = Azs/Ax,, and de-
termine A6, such thatf is also the factor for the
angular discretization, i.eA8, = f-A#,. As a practical
matter, integer scale factors are the easiest to work with.
However it is possible to consolidate voxels using more
general scale factors if interpolation is used.

Results and Analysis:

1) For the case considered, W4 can be calculated from W2

3)

areas, we chose a nonlinear gray scale: Each density value is ijth one convolution in less than 12 min with an error

normalized to a value between 0 and 1 (divided by the largest
density value in the drawing), and the fourth root of this value
is displayed as gray value for W4 (the eighth root for W8).

Convolving the density array in Fig. 3(a) with itself results
in W8. The result is shown in Fig. 4.

Fig. 5(a) and (b) show the workspace of the same manipu-
lator as in Fig. 4, if the maximal actuator length is decreased
to ¢ = 0.2 or increased tg; = 0.25, respectively.

Error measures: To quantify the error resulting from con-
volution for W4 (as compared to direct calculation) three
different error measures are used. The first two measures

2)

smaller than 10%. W8 is calculated from W4 with one
convolution within another 9 min. (No error is reported,
since comparison with brute force results is impossible
for W8).

The best results in this particular example were obtained
using a factor off = 2, i.e. if the resolution is twice

as fine before convolution than after (see Table I). In
general, an appropriate scale factor can be estimated
even if there is no brute force data against which
to compare the results of convolution. This may be
achieved by examining the relative error of sequences
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Fig. 5. Workspace density for an eight-module manipulator with kinematic parametgss£a).2, (b)go = 0.25. Scale is\e = Ay = 0.1 andA# = «/15.
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TABLE |
RESULTS FORFIXED DISCRETIZATION (A4, Afs) AND VARYING FACTOR f
factor f | (Azy |, Afy) | (Axs , A8) E, E, E3 | max. memory | Time
(0.0500, 0.101) | (0.050, 0.101) || 18.95% | 17.08% | 96.42% 48 KB 2.4 min
(0.0250, 0.051) | (0.050, 0.101) 8.27% 9.64% 9.42% 442 KB | 11.5 min
(0.0125, 0.025) | (0.050, 0.101) || 21.82% | 27.05% | 30.18% 3546 KB | 70.8 min

of density functions generated using convolution, and 4) The result of the discrete convolution is closer to a

picking the scale factor for which the relative error is

smallest.

3) For a constant factof = 2 the error decreases slowly
with higher discretization (see Table ).

brute force calculation if eight-point interpolation is
used to generate the brute force results, as compared to
no interpolation. Table Il lists the error between brute
force (BF) and discrete (numerical) convolution (DC) if
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TABLE I
REsuLTs FORFIXED FACTOR f = 2 AND VARYING DISCRETIZATION (Ax4, Af4 )

factor f [ (Azg , Afy) | (Azs , Afy) ] E | E; | E3 | max. memory | Time

2 (0.0500, 0.101) | (0.1000, 0.203) || 13.77% | 15.37% | 13.65% 54 KB 23 sec

2 (0.0375, 0.077) | {0.0750, 0.153) 7.48% 7.91% | 13.58% 131 KB 91 sec

2 (0.0250, 0.051) | {0.0500, 0.101) 8.27% 9.64% 9.42% 442 KB 11.5 min

2 (0.0188, 0.038) | (0.0375, 0.076) 7.46% 9.05% 7.68% 1056 KB 47.1 min

2 (0.0125, 0.025) | (0.0250, 0.050) 5.20% 6.18% 6.47% 3546 KB | 7hrs 11min

TABLE Il
RESuULTS FORDIFFERENT TYPES OF INTERPOLATION AND DIFFERENT NUMBER OF STATES PER ACTUATOR
Four states per actuator:
(Azy , Af9) ] (Azg , Aby) [ brute force | disc. conv. || Ey Es | Fs | Tsr | Tpe
(0.0200, 0.041) | (0.040, 0.082) | 1-point 2-point 10.56% | 13.26% | 13.58% | 4.8 min | 12.7 min
(0.0200, 0.041) | (0.040, 0.082) | 1-point 8-point 10.90% | 14.56% | 9.83% | 4.8 min | 20.8 min
(0.0200, 0.041) | (0.040, 0.082) | 8-point 8-point 7.72% | 9.58% | 8.27% | 12.1 min | 33.9 min
(0.0250, 0.051) | (0.050, 0.101) | 1-point 2-point 11.91% | 15.24% | 16.74% | 4.8 min | 4.3 min
(0.0250, 0.051) | (0.050, 0.101) | 1-point 8-point 9.78% | 12.58% 9.60% 4.8 min 7.2 min
(0.0250, 0.051) | (0.050, 0.101) | &-point 8-point 8.27% 9.64% 9.42% | 16.8 min | 11.5 min
Two states per actuator:

(Azy , A6y) [ (Azs, A84) | brute force | disc. conv. || E | E; | E; | Tgr | Toc
(0.0250, 0.051) | (0.050, 0.101) | 1-point 2-point 151.22% | 235.52% | 75.43% | 0.1 sec 3.4 min
(0.0250, 0.051) | (0.050, 0.101) | 1-point 8-point 121.50% | 158.80% | 62.51% | 0.3 sec | 12.5 min
(0.0250, 0.051) | {0.050, 0.101) | 8-point 8-point 37.70% 21.64% | 21.64% | 0.7 sec | 20.3 min

different numbers of points are used in the interpolation, Finally, we note that the purpose of this implementation is
together with the corresponding computation time fdo show that the concept of humerical convolution®B(D)
either method. (One-point means no interpolation at alljorks and provides usable results. Since this approach is
two-point means interpolation only in the angle, eightaew, and hence not optimized, it is likely that more accurate
point means interpolation in all three coordinate axes ahd more efficient implementations will be formulated in the
the grid.) future.

We expected the error to reduce more or less monotonically
with finer discretization. As can be seen in Table Il this is

true for the shape errofs. For error £, and E» the general In this work, it was shown that the general concept of

thendency IS t? decrease for ITlghgr rels_Ellljtlon, but trf"S dﬁ_es_%hvolution is applicable to the approximation of workspaces
appen strictly m(_)notonlc_a_y. ne likely reason for this 154 workspace densities of hybrid serial-parallel manipulators.
sensmwty of density to shlftmg of th_e g_”d by a tiny amountrye mathematical properties of the convolution product of
This effect only appears if the d.ensn_y IS d|§tr|buted VErY Ulkealar functions on the Euclidean motion group were reviewed
evenly and dlffers considerably n neighboring "°>fe'3- Hencehd a numerical scheme, based on convolution, was generated.
we expect th|_s ef_fect. also to disappear for man'pUIators,OfFurther research will address the implementation of con-
hlghtler resolutlog, |.e;c if thde ialctuators ha_\(/je a(;ngher r_esc;lun%lution for continuous functions and the generalization of
or afarger number of modules are considered as a single U b Fourier transform to functions on the Euclidean motion
Th'.s expectation is supported by the data in Taple Il whic roup as a means of performing convolution quickly. The
indicates a dramatic convergence of results obtained by br Eg-\cept of convolution is also promising as a tool for formu-

forcg and convolution as the number of actuator states in €35 ng the workspace synthesis problem for discretely actuated
leg is doubled. manipulators.

It is worth noting that for manipulators composed Bf
modules which each have a very large number of states, the
O(P) or O(log P) calculations required fo? convolutions
can be a significant savings oveé}(K?). However, in the
example presented here, the 64 frames reachable by eacdhet
module are relatively sparse. This means that the actual time
required to perform théog, (8) = 3 convolutions would far
exceed the time required to generate the density function for
half of the manipulator (which require&4)%/? kinematic denote the displacement (i.e., homogenedds-1) x (D +1)
calculations) and perform one convolution. Thus in this casmatrix) describing an arbitrary rigid motion i dimensional
O(KT/?) is better thanO(log P). In either case convolution Euclidean space, wheree RP(P+1)/2 parametrizess E(D).
plays a critical role in avoiding th& (K ") calculations which In the discussion that follow$) = 2,3 since these are the
cannot be performed in a reasonable amount of time. only cases of interest in this paper.

VIl. CONCLUSION

APPENDIX
INTEGRATION

s@=F 7] eszw
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In general, for an object whose location in space is givenFor D = 3, the rotation matrix is parametrized using Z-X-Z
by a displacemeny(t), its spatial velocityis computed as  Euler-Angles as follows.

hg~ 1 R(p,0,v) T
9 g(-Tl,.’IZ'Q,.’L'g,(f),e,T/)): < ((%T z/) 1)
where the ™ denotes differentiation with respect to time. Note
that the matrixgg—! takes the form: wherez = [x1, 2, z3]*. One then calculates that
RR" T-RR'z|_[q4 7 det (J) = sin#,
0 1 0 0
] ) ) and so
wherew is a D x D skew symmetric matrix. We can convert
thistoD(D+1)/2x1 “twist” coordinates via the V" operator: dp(g(q)) = sin b de db dvy dy dzxo dxs,
v _@T o]’ which is the product of the volume elements ¢ (dz =
w| |00 0 dx1 dzo dxs, and and forSO(3) (dR = sin 6 d¢ db dip).

In higher dimensions, the volume element E(D) will
also be the product of the one f§IO(D) andRP?, but this is
not of use to us in the current presentation. Readers interested
in different perspectives on the volume element (D)
Should consult [2], [18], [21], [29].

The invariance of this volume element is seen as follows.
T - Right invariance follows from the fact that for any constant
{ } =Jq homogeneous transform

In the case wherD = 3,% is defined such thatc = @ x ¢
for any ¢ € R3. In the case wherD = 2,& has the form
0 _‘“] andw becomes the scalas.
The twist vector is written as a Jacobian matrix multiplyin
a vector of derivatives of the parametefsas follows:

where e <§% 510>7
== Kg_ig_l) <ﬁg_l> ] J(gH) = l(aa_imgm‘l)v”'

The volume element fo6 E(D) may be expressed using this v
Jacobian as: _ <LH(9H)_1) ]
_ aQD(D+1)/2
du(g(q)) = | det (J)|dq1 - "d(]D(D-l—l)/Q

to within a free constant, which can be chosen arbitrarigl
provided that

ince(¢gH)™* = H 'g~', and HH~! = 1, we have that
(gH) = J(g).

The left invariance follows from the fact that
d =M 9 v
[y, P00 i) — l( a2g)

where M is the “mass” corresponding to the positive real- v
valued density functionp(H). For instance, if the density . <HL9—1H—1> ]
function represents the points reachable by a discrete manip- d9p(D+1)/2

ulator with P joints each withK states,M = K. This
does not fix the constant singg¢ = p/c and dp’ = cdp
. ; . v v
yield the same resulting mass, but once chosen its use must <H@g_1H_1) _ AdH< dyg g_1>

where from [17] and [18] e know

be consistent. g
The fact that this volume form (which is an example of the
more general concept of a Haar measure [19]) is invariant Where

right and left translations, i.e, Ad <Ro §:0R0>
H =
Ap(9(@) = dulh o 9(@) = du(9(@) © h) o

is well known [21], [18]. The fact that unimodular group
admit only one Haar measure (upto a one-parameter scali

dq

and z, is the skew symmetric matrix such thégc = 7o x ¢
193], [18]. Therefore,

is also well known. J(Hg) = AdyJ(g).
In particular, for the case oD = 2, §:[X1,X2,9],T
det (J)= 1 and But sincedet (Ady) = 1
dp(9(q)) = dzy dao db. det (J(Hg)) = det (J(g)).

It is trivial to show that this is left and right invariant by The left and right invariance of: follows directly from
direct calculation. that of det (.J).
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