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Abstract

Continued advances in mobile networks and positioning technologies have created a strong market push for

location-based applications. Examples include location-aware emergency response, location-based adver-

tisement, and location-based entertainment. An important challenge in wide deployment of location-based

services (LBSs) is the privacy-aware management of location information, providing safeguards for location

privacy of mobile clients against vulnerabilities for abuse. This paper describes a scalable architecture for

protecting location privacy from various privacy threats resulting from uncontrolled usage of LBSs. This ar-

chitecture includes the development of a personalized location anonymization model and a suite of location

perturbation algorithms. A unique characteristic of our location privacy architecture is the use of a flexible

privacy personalization framework to support location k-anonymity for a wide range of mobile clients with

context-sensitive privacy requirements. This framework enables each mobile client to specify the minimum

level of anonymity it desires and the maximum temporal and spatial tolerances it is willing to accept when

requesting for k-anonymity preserving LBSs. We devise an efficient message perturbation engine to im-

plement the proposed location privacy framework. The prototype we develop is designed to be run by the

anonymity server on a trusted platform and performs location anonymization on LBS request messages of

mobile clients, such as identity removal and spatio-temporal cloaking of location information. We study

the effectiveness of our location cloaking algorithms under various conditions using realistic location data

that is synthetically generated from real road maps and traffic volume data. Our experiments show that the

personalized location k-anonymity model together with our location perturbation engine can achieve high

resilience to location privacy threats without introducing any significant performance penalty.
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1 Introduction

In his famous novel 1984 [1], George Orwell envisioned a world in which everyone is being watched, prac-

tically at all times and places. Although, as of now, the state of affairs has not come to such a totalitarian

control, projects like DARPA’s recently dropped LifeLog [2], which has stimulated serious privacy con-

cerns, attest that continuously tracking where individuals go and what they do is not only in the range of

today’s technological advances but also raises major personal privacy issues regardless of many beneficial

applications it can provide.

According to the report by the Computer Science and Telecommunications Board on IT Roadmap to a

Geospatial Future [3], location-based services (LBSs) are expected to form an important part of the future

computing environments that will seamlessly and ubiquitously integrate into our life. Such services are

already being developed and deployed in commercial and research worlds. For instance, the NextBus [4]

service provides location-based transportation data, the CyberGuide [5] project investigates context-aware

location-based electronic guide assistants, and the FCC’s Phase II E911 requires wireless carriers to provide

precise location information within 125 meters in most cases for emergency purposes [6].

1.1 Location Privacy Risks

Advances in global positioning and wireless communication technologies create new opportunities for

location-based mobile applications, but they also create significant privacy risks. Although with LBSs mo-

bile clients can obtain a wide variety of location-based information services, and businesses can extend their

competitive edges in mobile commerce and ubiquitous service provisions, extensive deployment of LBSs

can open doors for adversaries to endanger the location privacy of mobile clients and to expose LBSs to

significant vulnerabilities for abuse [7].

A major privacy threat specific to LBS usage is the location privacy breaches represented by space or

time correlated inference attacks. Such breaches take place when a party that is not trusted gets access to

information which reveals the locations visited by the individual as well as the times during which these

visits took place. An adversary can utilize such location information to infer details about the private life of

an individual, such as political affiliations, alternative lifestyles, or medical problems of an individual [8],

or the private businesses of an organization, such as new business initiatives and partnerships.

Consider a mobile client which receives real-time traffic and roadside information service from an LBS

provider. If a user submits her service request messages with raw position information, the privacy of the

user can be compromised in several ways, assuming that the LBS providers are not trusted but semi-honest.

For instance, if the LBS provider has access to information that associates location with identity such as
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person A lives in location L, and if it observes that all request messages within location L are from a single

user, then it can infer that the identity of the user requesting the roadside information service is A. Once

the identity of the user is revealed, further tracking of future positions can be performed by using a simple

connect-the-dots approach. In literature, this type of attack is called Restricted Space Identification [8]. An-

other possible attack is to reveal identity by relating some external observation on location-identity binding

to a message. For instance, if person A was reported to visit location L during time interval τ , and if the

LBS provider observed that all request messages during the time interval τ came from a single user within

location L, then it can infer that the identity of the user in question is A. The second type of attack is called

Observation Identification [8] in the literature.

In order to protect location information from third parties that are semi-honest but not completely trusted,

we define a security perimeter around the mobile client. In this paper, the security perimeter includes the

mobile client of the user, the trusted anonymity server, and a secure channel where the communication

between the two is secured through encryption (see Figure 1). By semi-honest, we mean that the third party

LBS providers are honest and can correctly process and respond to messages, but curious such that they

may attempt to determine the identity of a user based on what they “see”, which includes information in the

physical world that can lead to location-identity binding or association. We do not consider the case where

LBS providers are malicious. Thus we do not consider the attack scenarios in which the LBSs can inject a

large number of colluding dummy users into the system.

1.2 Architecture Overview

Mobile Users

trusted anonymity server
performs spatio-temporal cloaking

encrypted 
communication 

LBS 1 LBS 2 LBS 3

LBS requests
contain user locations

Semi-honest LBSs

Figure 1: System Architecture

We show the system architecture in Figure 1. Mobile clients

communicate with third party LBS providers through the

anonymity server. The anonymity server is a secure gateway

to the semi-honest LBS providers for the mobile clients. It

runs a message perturbation engine, which performs loca-

tion perturbation on the messages received from the mobile

clients before forwarding them to the LBS provider. Each

message sent to an LBS provider contains location informa-

tion of the mobile client, a timestamp, in addition to service

specific information. Upon receiving a message from a mobile client, the anonymity server removes any

identifiers, such as IP addresses, and perturbs the location information through spatio-temporal cloaking,

and then forwards the anonymized message to the LBS provider. Spatial cloaking refers to replacing a two
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dimensional point location by a spatial range, where the original point location lies anywhere within the

range. Temporal cloaking refers to replacing a time point associated with the location point with a time in-

terval that includes the original time point. These terms were introduced by Gruteser and Grunwald [8]. In

our work, the term location perturbation refers to the combination of spatial cloaking and temporal cloaking.

1.3 k-anonymity and Location k-anonymity

There are two popular approaches to protect location privacy in the context of LBS usage: policy-based [9]

and anonymity-based approaches [8]. In policy-based approaches mobile clients specify their location pri-

vacy preferences as policies and completely trust that the third party LBS providers adhere to these poli-

cies. In anonymity-based approaches, LBS providers are assumed to be semi-honest instead of completely

trusted. We advocate k-anonymity preserving management of location information by developing efficient

and scalable system-level facilities for protecting location privacy through ensuring location k-anonymity.

We assume that anonymous location-based applications do not require user identities for providing service.

A discussion on pseudonymous and non-anonymous LBSs is provided in Section 7.

The concept of k-anonymity was originally introduced in the context of relational data privacy [10, 11]. It

addresses the question of “How can a data holder release its private data with guarantees that the individual

subjects of the data cannot be identified while the data remain practically useful” [12]. For instance, a

medical institution may want to release a table of medical records with the names of the individuals replaced

with dummy identifiers. However, some set of attributes can still lead to identity breaches. These attributes

are referred to as the quasi-identifier. For instance, the combination of birth date, zip code and the gender

attributes in the disclosed table can uniquely determine an individual. By joining such a medical record

table with some publicly available information source, like a voters list table, the medical information can

be easily linked to individuals. k-anonymity prevents such privacy breach by ensuring that each individual

record can only be released if there are at least k − 1 distinct individuals whose associated records are

indistinguishable from the former in terms of their quasi-identifier values.

In the context of LBSs and mobile clients, location k-anonymity refers to k-anonymous usage of location

information. A subject is considered location k-anonymous if and only if the location information sent from

a mobile client to an LBS is indistinguishable from the location information of at least k − 1 other mobile

clients [8]. This paper argues that location perturbation is an effective technique for supporting location k-

anonymity and dealing with location privacy breaches exemplified by the location inference attack scenarios

discussed in Section 1.1. If the location information sent by each mobile client is perturbed by replacing

the position of the mobile client with a coarser grained spatial range, such that there are k − 1 other mobile
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clients within that range (k > 1), then the adversary will have uncertainty in matching the mobile client to a

known location-identity association or an external observation of location-identity binding. This uncertainty

increases with the increasing value of k, providing higher degree of privacy for mobile clients. Referring

back to the roadside information service example of Section 1.1, now even though the LBS provider knows

that person A was reported to visit location L, it cannot match a message to this user with certainty. This

is because there are at least k different mobile clients within the same location L. As a result, it can not

perform further tracking without ambiguity.

1.4 Contributions and Scope of the Paper

This paper describes a personalized k-anonymity model for protecting location privacy . Our design and

development are motivated by an important observation: Location Privacy Demands Personalization. In

other words, location privacy is a personalized requirement and is context sensitive. An individual may

have different privacy requirements in different contexts and different individuals may require different

levels of privacy in the same context. Unfortunately, existing anonymization solutions to location privacy

threats in accessing LBSs, such as the earlier work on location k-anonymity [8], are essentially “one size

fits all” − users do not have the ability to tailor the personalization capability to meet their individual

privacy preferences. Most of the LBSs today promise ubiquitous access in an increasingly connected world.

However, they do not take into account the possibility that a user’s willingness to share location data may

depend on a range of factors, such as various contextual information about the user, e.g., environmental

context, task context, social context, etc. One way to support personalized location k-anonymity is to allow

users to specify different k at different times.

There is a close synergy between location privacy and location k-anonymity. Larger k in location

anonymity implies higher guarantees for location privacy. However, larger k values make it necessary

to perform additional spatial and temporal cloaking for successful message anonymization, resulting in low

spatial and temporal resolution for the anonymized messages. This in turn, may lead to degradation in the

quality of service (QoS) of LBS applications, such as taking a longer time to serve the user’s request or

sending more than required information back to the mobile client as a result of the inaccuracy associated

with the user’s location after applying location cloaking.

These observations illustrate that there is a trade-off between the desired level of location privacy and

the resulting loss of QoS from LBSs. The “one size fits all” approach to location privacy negatively impacts

the quality of service for mobile clients with lower privacy requirements. This calls for a framework that

can handle users with different location privacy requirements, and allows users to specify their preferred

5



balance between the degree of privacy and the quality of service (QoS).

Our location privacy model exhibits two distinct features. The first characteristic of our model is its

ability to enable each mobile client to specify the minimum level of anonymity it desires and the maximum

temporal and spatial tolerances it is willing to accept when requesting for k-anonymity preserving LBSs.

Concretely, instead of imposing a uniform k for all mobile clients, we provide efficient algorithms and

system-level facilities to support personalized k at per-user level. Each user can specify a different k-

anonymity level based on her specific privacy requirement, and can change this specification at per-message

granularity. Furthermore, each user can specify her preferred spatial and temporal tolerances that should be

respected by the location perturbation engine while maintaining the desired level of location k-anonymity.

We call such tolerance specification and preference of the k value the anonymization constraint of the

message. The preference of the k value defines the desired level of privacy protection that a mobile client

wishes to have, whereas the temporal and spatial tolerance specifications define the acceptable level of loss

in QoS from the LBS applications.

The second distinctive characteristic of our location privacy model is the development of an efficient

message perturbation engine, which is run by the trusted anonymization server, and performs location

anonymization on mobile clients’ LBS request messages, such as identity removal and spatio-temporal

cloaking of location information. We develop a suite of scalable and efficient spatio-temporal location

cloaking algorithms, taking into account the tradeoff between location privacy and quality of service. Our

location perturbation engine can continuously process a stream of messages for location k-anonymity, and

can work with different cloaking algorithms to perturb the location information contained in the messages

sent from mobile clients, before forwarding any request messages to the LBS provider(s).

We conduct a series of experimental evaluations. Our results show that the proposed personalized loca-

tion k-anonymity model, together with our message perturbation engine and location cloaking algorithms,

can achieve high guarantees of k-anonymity and high resilience to location privacy threats without intro-

ducing significant performance penalties. To the best of our knowledge, previous work on location privacy

has not addressed these issues. An earlier version of this paper appeared in a conference [13], which fo-

cuses on the basic concept of personalized location k-anonymity and the design ideas of our base algorithm

for performing personalized location cloaking. In contrast, this paper presents the complete framework for

supporting personalized location privacy, which includes the formal definition of personalized location k-

anonymity, the theoretical framework for the proposed base algorithm with respect to its compliance with

personalized location k-anonymity, the optimized algorithms that enhance the base algorithm, and an exten-

sive experimental study illustrating the effectiveness of the newly proposed algorithms.
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2 Personalized Location k-anonymity: Terminology and Definitions

2.1 Message Anonymization Basics

In order to capture varying location privacy requirements and ensure different levels of service quality, each

mobile client specifies its anonymity level (k value), spatial tolerance, and temporal tolerance. The main

task of a location anonymity server is to transform each message received from mobile clients into a new

message that can be safely (k-anonymously) forwarded to the LBS provider. The key idea that underlies

the location k-anonymity model is two-fold. First, a given degree of location anonymity can be maintained,

regardless of population density, by decreasing the location accuracy through enlarging the exposed spatial

area, such that there are other k − 1 mobile clients present in the same spatial area. This approach is called

spatial cloaking. Second, one can achieve location anonymity by delaying the message until k mobile clients

have visited the same area located by the message sender. This approach is called temporal cloaking. For

reference convenience, we provide Table 1 to summarize the important notations used in this section and

throughout the rest of the paper. The last three notations will be introduced in Section 3.

Notation Meaning

S Source message set
T Transformed message set
ms A message in set S

mt A message in set T

R(ms) Transformed format of ms

k Anonymity level
uid, rno Sender id, message no

dt and dx, dy Temporal and spatial tolerances
L(ms) = (x, y, t) Spatio-temporal point of ms

Bcn(ms) Constraint box of ms

Bcl(mt) Cloaking box of mt

Bm(S′) MBR of a set of source messages
Gm(S, E) Constraint graph

nbr(ms, Gm) Neighbors of ms in Gm

Table 1: Notation Reference Table

We denote the set of messages received from the

mobile clients as S. We formally define the messages

in the set S as follows:

ms ∈ S : 〈uid, rno︸ ︷︷ ︸
sender id

message no

, {t, x, y}︸ ︷︷ ︸
spatio-temporal

point

, k︸︷︷︸
anonymity

level

, {dt, dx, dy}︸ ︷︷ ︸
temporal and spatial

tolerances

, C〉

Messages are uniquely identifiable by the sender’s

identifier, message reference number pairs, (uid, rno),

within the set S. Messages from the same mobile

client have same sender identifiers but different refer-

ence numbers. In a received message, x, y, and t to-

gether form the three dimensional spatio-temporal lo-

cation point of the message, denoted as L(ms). The coordinate (x, y) refers to the spatial position of the

mobile client in the two dimensional space (x-axis and y-axis), and the timestamp t refers to the time point

at which the mobile client was present at that position (temporal dimension: t-axis).

The k value of the message specifies the desired minimum anonymity level. A value of k = 1 means

that anonymity is not required for the message. A value of k > 1 means that the perturbed message will

be assigned a spatio-temporal cloaking box that is indistinguishable from at least k − 1 other perturbed
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messages, each from a different mobile client. Thus, larger k values imply higher degrees of privacy. One

way to determine the appropriate k value is to assess the certainty with which an adversary can link the

message with a location/identity association or binding. This certainty is given by 1/k.

The dt value of the message represents the temporal tolerance specified by the user. It means that the

perturbed message should have a spatio-temporal cloaking box whose projection on the temporal dimension

does not contain any point more than dt distance away from t. Similarly, dx and dy specify the tolerances

with respect to the spatial dimensions. The values of these three parameters are dependent on the require-

ments of the external LBS and users’ preferences with regard to quality of service. For instance, larger

spatial tolerances may result in less accurate results to location-dependent service requests and larger tem-

poral tolerances may result in higher latencies of the messages. The dt value also defines a deadline for the

message, such that a message should be anonymized until time ms.t + ms.dt. If not, the message cannot be

anonymized according to its constraints and it is dropped. Let Φ(v, d) = [v − d, v + d] be a function that

extends a numerical value v to a range by amount d. Then, we denote the spatio-temporal constraint box of

a message ms as Bcn(ms) and define it as (Φ(ms.x,ms.dx), Φ(ms.y,ms.dy), Φ(ms.t,ms.dt)). The field C

in ms denotes the message content.

We denote the set of perturbed (anonymized) messages as T . The messages in T are defined as follows:

mt ∈ T : 〈uid, rno, {X : [xs, xe], Y : [ys, ye], I : [ts, te]}︸ ︷︷ ︸
Bcl(mt), spatio-temporal cloaking box

, C〉

For each message ms in S, there exists at most one corresponding message mt in T . We call the message

mt, the perturbed format of message ms, denoted as mt = R(ms). The function R defines a surjection (onto

mapping) from S to T ∪{null}. Concretely, if R(ms) = mt, then mt.uid = ms.uid and mt.rno = ms.rno. If

R(ms) = null, then the message ms is not anonymized. The (uid, rno) fields of a message in T are replaced

with a randomly generated identifier before the message can be safely forwarded to the LBS provider.

In a perturbed message, X : [xs, xe] denotes the extent of the spatio-temporal cloaking box of the message

on the x-axis, with xs and xe denoting the two end points of the interval. The definitions of Y : [ys, ye] and

I : [ts, te] are similar with y-axis and t-axis replacing the x-axis, respectively. We denote the spatio-temporal

cloaking box of a perturbed message as Bcl(mt) and define it as (mt.X : [xs, xe],mt.Y : [ys, ye],mt.I :

[ts, te]). The field C in mt denotes the message content.

Basic Service Requirements

The following basic properties must hold between a raw message ms in S and its perturbed format mt in T ,

where A � B notation is used in the rest of the paper to express that the n-dimensional rectangular region

A is contained in the n-dimensional rectangular region B:
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i) Spatial Containment: ms.x ∈ mt.X , ms.y ∈ mt.Y

ii) Spatial Resolution: mt.X � Φ(ms.x,ms.dx), mt.Y � Φ(ms.y,ms.dy)

iii) Temporal Containment: ms.t ∈ mt.I

iv) Temporal Resolution: mt.I � Φ(ms.t,ms.dt)

v) Content Preservation: ms.C = mt.C

Spatial containment and temporal containment requirements state that the cloaking box of the perturbed

message, Bcl(mt), should contain the spatio-temporal point L(ms) of the original message ms. Spatial

resolution and temporal resolution requirements amount to say that, for each of the three dimensions, the

extent of the spatio-temporal cloaking box of the perturbed message on that dimension should be contained

within the interval defined by the desired maximum tolerance value specified in the original message. This is

equivalent to stating that the cloaking box of the perturbed message should be contained within the constraint

box of the original message, i.e., Bcl(mt) � Bcn(ms). Content preservation property ensures that the

message content remains as it is.

Anonymity Requirement

We formally capture the essence of location k-anonymity by the following requirement, which states that

for a message ms in S and its perturbed format mt in T , the following condition must hold:

– Location k-anonymity: ∃T ′ ⊂ T, s.t. mt ∈ T ′, |T ′| ≥ ms.k,

∀{mti ,mtj }⊂T ′ , mti .uid 
= mtj .uid and ∀mti∈T ′ , Bcl(mti) = Bcl(mt)

The k-anonymity requirement demands that, for each perturbed message mt = R(ms), there exist at

least ms.k − 1 other perturbed messages with the same spatio-temporal cloaking box, each from a different

mobile client. A key challenge for the cloaking algorithms employed by the message perturbation engine is

to find a set of messages within a minimal spatio-temporal cloaking box that satisfies the above conditions.

The following formal definition summarizes personalized location k-anonymity:

Definition 2.1. Personalized location k-anonymity:

The set T of anonymized messages respect personalized location k-anonymity if and only if the following

conditions are met for each message mt in T and its corresponding message ms in S where mt = R(ms):

(i) Spatial Containment, (ii) Spatial Resolution, (iii) Temporal Containment, (iv) Temporal Resolution, (v)

Content Preservation, and (vi) Location k-anonymity.
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2.2 Location k-Anonymity: Privacy Value and Performance Implications

The personalized location k-anonymity model presented in this paper strives to strike a balance between

providing effective location privacy and maintaining desired quality of service and performance character-

istics. In the rest of this section, we first describe the privacy value of our approach and then discuss the

impact of location perturbation on the performance and QoS of the location-based applications.

Privacy Value of Location k-Anonymity

A

B
C x

Rc
Ra

Rb

Figure 2: Linking attack

We illustrate the privacy value of our location k-anonymity model by

comparing it with the strategy that only masks the sources of the LBS

requests. Assuming that the sources of service request messages of

mobile clients can be masked from the LBS servers through the use of a

trusted anonymization server as a mix [14, 15], we want to show that the

location information retained in these messages can still create a threat

against location privacy, especially when combined with information

obtained from external observation or knowledge.

As an example consider the scenario in Figure 2, where three mobile

clients, labeled as A, B, and C, and their trajectories (routes), denoted as Ra, Rb, and Rc, are depicted. If

no location k-anonymization is performed at the anonymity server, then the following linking attack can

be performed by an adversary: First, the adversary can construct an approximation of the trajectories of

the mobile clients using the location information exposed in the service request messages of the mobile

clients. Second, it can obtain a location/identity binding through external observation [8], such as A has

been spotted at position x at time t. Finally, the adversary can link this binding with the trajectories it has at

hand, finding the correct trajectory of node A. In Figure 2, if node A has been spotted at the position marked

as x, then the trajectory Ra can be associated with A, since no other trajectories cross the point x. However,

such a linking attack is not effective if proper location perturbation is performed by the trusted anonymity

server. For instance, assume that the location information in the service request messages of nodes A, B,

and C are perturbed according to location k-anonymity with k = 3. The location k-anonymization replaces

the point position information x included in the request messages by a location cloaking box, as shown in

Figure 2. Now, even if the adversary can infer approximate trajectories, it cannot link the location/identity

binding with one of the trajectories with certainty, because the point x now links with three different request

messages, each with probability k−1 = 1/3. In summary, the higher the k value is, the better the protection

one can achieve against linking attacks.
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QoS and Performance Implications of Location k-Anonymity

Achieving location k-anonymity with higher k, thus with higher location privacy, typically requires assign-

ing larger cloaking boxes to perturbed messages. However, arbitrarily large cloaking boxes can potentially

result in decreased level of QoS or performance with respect to the target location-based application. Here

we give an example scenario to illustrate the negative impacts of using large cloaking boxes.

A
Ra

o1

o2

o3

o4

Figure 3: Loss of QoS/performance

Assume that our LBS application provides resource location ser-

vice, such as providing answers to continuous queries asking for near-

est resources with certain types and properties during a specified time

interval, e.g. nearest gas station offering gas under $2/gal during next

half an hour. Figure 3 shows four objects o1, o2, o3, and o4 that are

valid gas stations for the result of such a query posed by a mobile client A, where the aim of the LBS is to

provide A with the nearest gas station, that is o1. The figure also shows a sample cloaking box assigned to

one of the service request messages of node A by the anonymity server. Since the LBS is unable to tell the

exact location of node A within the cloaking box, and since the cloaking box covers all of the four objects,

the LBS will be unable to determine the exact result, i.e., it cannot decide which of the four objects is the

closest one. There are different possible ways of handling this problem, each with a different shortcoming.

First, the server may choose to report only one result by making a random decision. In this case the QoS

of the application, as perceived by the user, will degrade. The larger the cloaking box is, the higher the

expected distance between the actual result and the reported result will be. Second, the server may choose

to report all valid resources within the cloaking box. In this case several side-effects arise. For instance,

one side-effect is the larger the cloaking box is, the larger the size of the result set will be, and thus the

higher the communication and processing costs are, which degrades the performance. Moreover, the result

set requires further filter processing at the mobile client side to satisfy the application semantics. This means

each LBS may need to ship some amount of post-processing to the mobile client side in order to complete

query processing, and results in running untrusted code at the mobile client side. On the other hand, the

LBS may choose to skip the post processing step, which leaves the filtering to the user of the system and

thus decreases the QoS. An alternative for the LBS is to use probabilistic query processing techniques [16]

to rank the results and provide hints to the filtering process to alleviate the degradation in QoS.

In summary, we argue that there is a need for adjusting the balance between the level of protection

provided by location k-anonymity and the level of performance degradation in terms of the QoS of LBSs

due to location cloaking. Such a balance should be application driven. Our personalized location-anonymity

model makes it possible to adjust this balance at per-user level with the granularity of individual messages.
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3 Message Perturbation: Design and Algorithms

In this section, we first give an overview of the message perturbation engine. Then we establish a theo-

retical basis for performing spatio-temporal cloaking. This is followed by an in-depth description of the

perturbation engine and the algorithms involved.

3.1 Engine Overview

The message perturbation engine processes each incoming message ms from mobile clients in four steps.

The first step, called zoom-in, involves locating a subset of all messages currently pending in the engine.

This subset contains messages that are potentially useful for anonymizing the newly received message ms.

The second step, called detection, is responsible for finding the particular group of messages within the set

of messages located in the zoom-in step, such that this group of messages can be anonymized together with

the newly received message ms. If such a group of messages is found, then the perturbation is performed

over these messages in the third step, called perturbation, and the perturbed messages are forwarded to the

LBS provider. The last step, called expiration, checks for pending messages whose deadlines have passed,

and thus should be dropped. The deadline of a message is the high point along the temporal dimension of

its spatio-temporal constraint box and it is bounded by the user-specified temporal tolerance level.

In order to guide the process of finding the particular set of messages that should be anonymized as a

group, we develop the CliqueCloak theorem (see Section 3.2). We refer to cloaking algorithms that make

their decisions based on this theorem as CliqueCloak algorithms. The perturbation engine, which is driven

by the local-k search as the main component of the detection step, is our base CliqueCloak algorithm.

Other CliqueCloak algorithms are discussed in Section 4.

3.2 Grouping Messages for Anonymization

A key objective for location anonymization is to develop efficient location cloaking algorithms for providing

personalized privacy protection while maintaining the desired quality of service. A main technical challenge

for developing an efficient cloaking algorithm is to find the smallest spatio-temporal cloaking box, for each

message ms ∈ S, within its specified spatial and temporal tolerances, such that there exist at least ms.k − 1

other messages, each from a different mobile client, with the same minimal cloaking box. Let us consider

this problem in two steps, in reverse order: (1) given a set M of messages that can be anonymized together,

how to find the minimal cloaking box in which all messages in M reside; and (2) for a message ms ∈ S,

how to find the set M containing ms and the group of messages that can be anonymized together with ms.

A set M ⊂ S of messages are said to be anonymized together if they are assigned the same cloaking box
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and all the requirements defined in Section 2.1 are satisfied for all messages in M .

Consider a set M ⊂ S of messages that can be anonymized together. The best strategy to find a minimal

cloaking box for all messages in M is to use the minimum bounding rectangle (MBR†) of the spatio-temporal

points of the messages in M as the minimal cloaking box. This definition of minimal cloaking box also

ensures that the cloaking box is contained in the constraint boxes of all other messages in M . We denote

the minimum spatio-temporal cloaking box of a set M ⊂ S of messages that can be anonymized together

as Bm(M), and define it to be equal to the MBR of the points in the set {L(ms)|ms ∈ M}, where L(ms)

denote the spatio-temporal location point of the message ms.

Now let us consider the second step: given a message ms ∈ S, how to find the set M containing ms

and the group of messages that can be anonymized together with ms. Based on the above analysis and

observations, one way to tackle this problem is to model the anonymization constraints of all messages in S

as a constraint graph defined below and translate the problem into the problem of finding cliques that satisfy

certain conditions in the constraint graph:

Definition 3.1. Constraint Graph

Let G(S,E) be an undirected graph where S is the set of vertices, each representing a message received at

the trusted location perturbation engine, and E is the set of edges. There exists an edge e = (msi
,msj

) ∈ E

between two vertices msi
and msj

, if and only if the following conditions hold: (i) L(msi
) ∈ Bcn(msj

), (ii)

L(msj
) ∈ Bcn(msi

), (iii) msi
.uid 
= msj

.uid. We call this graph the constraint graph.

The conditions (i), (ii), and (iii) together state that, two messages are connected in the constraint graph

if and only if they originate from different mobile clients and their spatio-temporal points are contained in

each other’s constraint boxes defined by their tolerance values.

Theorem 3.1. CliqueCloak Theorem

Let G(S,E) be a constraint graph, M = {ms1 ,ms2 , . . . ,msl
} ⊂ S, and ∀1≤i≤l, mti = 〈msi

.uid, msi
.rno,

Bm(M),msi
.C〉. Then, ∀1≤i≤l,mti is a valid k-anonymous perturbation of msi

, i.e., mti = R(msi
), if and

only if the set M of messages form an l-clique in the constraint graph G(S,E) such that ∀1≤i≤l,msi
.k ≤ l.

Proof. First we show that the left hand side holds if we assume that the right hand side holds. Spatial and

temporal containment requirements are satisfied as we have ∀1≤i≤l, L(msi
) ∈ Bm(M) = Bcl(mti) from

definition of an MBR. k-anonymity is also satisfied, as for any message msi
∈ M there exists l ≥ msi

.k

messages {mt1 ,mt2 , . . . ,mtl} ⊂ T s.t. ∀1≤j≤l, Bm(M) = Bcl(mtj) = Bcl(mti) and ∀1≤i�=j≤l,mti .uid 
=
†The MBR of a set of points is the smallest rectangular region that would enclose all the points.
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mtj .uid. The latter follows as M forms an l-clique and due to condition (iii) two messages msi
and msj

do

not have an edge between them in G(S,E) if msi
.uid = msj

.uid and we have ∀1≤i≤l,msi
.uid = mti .uid.

It remains to prove that spatial and temporal resolution constraints are satisfied. To see this, consider

one of any three dimensions in our spatio-temporal space, without loss of generality, say x-dimension. Let

xmin = min1≤i≤l msi
.x and let xmax = max1≤i≤l msi

.x. Since M forms an l-clique in G(S,E), from

condition (i) and (ii) we have ∀1≤i≤l, {xmin, xmax} � Φ(msi
.x,msi

.dx) and thus ∀1≤i≤l, [xmin, xmax] �
Φ(msi

.x,msi
.dx) from convexity. Using a similar argument for other dimensions and noting that Bm(M) =

([xmin, xmax], [ymin, ymax], [tmin, tmax]), we have ∀1≤i≤l, Bm(M) � Bcn(msi
). Now we show that the right

hand side holds if we assume that the left hand side holds. Since ∀1≤i≤l,mti = R(msi
), from definition of k-

anonymity, we must have ∀1≤i≤l,msi
.k ≤ l. From spatial and temporal containment requirements, we have

∀1≤i≤l, L(msi
) ∈ Bm(M) and from spatial and temporal resolution constraints we have ∀1≤i≤l, Bm(M) �

Bcn(msi
). These two imply ∀1≤i,j≤l, L(msi

) ∈ Bcn(msj
) satisfying conditions (i) and (ii); and again from

k-anonymity we have ∀1≤i�=j≤l,msi
.uid 
= msj

.uid satisfying condition (iii). Thus S forms an l-clique in

G(S,E), completing the proof.

3.3 Illustration of the Theorem
constraint box of m1 constraint box of m2

constraint box of m3 constraint box of m4

MBR of {m1,m2,m3,m4}
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constraint graph I
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Figure 4: Illustration of the CliqueCloak theorem

We demonstrate the application of this theorem

with an example. Figure 4 shows four messages,

m1, m2, m3, and m4. Each message is from a

different mobile client‡. We omitted the time do-

main in this example for ease of explanation, but

the extension to spatio-temporal space is straight-

forward. Initially, the first three of these messages

are inside the system. Spatial layout I shows how

these three messages spatially relate to each other.

It also depicts the spatial constraint boxes of the

messages. Constraint graph I shows how these

messages are connected to each other in the constraint graph. Since the spatial locations of messages m1

and m2 are mutually contained in each other’s spatial constraint box, they are connected in the constraint

graph and m3 lies apart by itself. Although m1 and m2 form a 2-clique, they cannot be anonymized and

are removed from the graph. This is because m2.k = 3 and as a result the clique does not satisfy the

‡If a node sends a message while it already has one in the system, the new message can be easily detected
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CliqueCloak theorem. Spatial layout II shows the situation after m4 arrives and constraint graph II shows

the corresponding status of the constraint graph. With the inclusion of m4, there exists only one clique whose

size is at least equal to the maximum k value of the messages it contains. This clique is {m1,m2,m4}. We

can compute the MBR of the messages within the clique and use it as the spatio-temporal cloaking box of the

perturbed messages and then safely remove this clique. Figure 4(b) clearly shows that the MBR is contained

by the spatial constraint boxes of all messages within the clique. Once these messages are anonymized, the

remaining message m3 is not necessarily dropped from the system. It may later be picked up by some other

new message and anonymized together with it or it may be dropped if it cannot be anonymized until its

deadline specified by its temporal tolerance constraint.

Although in the described example we have found a single clique immediately after m4 was received,

we could have had cliques of different sizes to choose from. For instance, if m4.k was 2, then {m3,m4}
would have also formed a valid clique according to the CliqueCloak theorem. We address the questions of

what kind of cliques to search, when and how to search for such cliques, in detail in Section 4.

3.4 Data Structures

We briefly describe the four main data structures that are used in the message perturbation engine.

The Message Queue Qm is a simple FIFO queue, which collects the messages sent from the mobile

clients in the order they are received. The messages are popped from this queue by the message perturbation

engine in order to be processed.

The Multi-dimensional Index Im is used to allow efficient search on the spatio-temporal points of the

messages. For each message, say ms, in the set of messages that are not yet anonymized and are not

yet dropped according to the expiration condition specified by the temporal tolerance, Im contains a three

dimensional point L(ms) as a key, together with the message ms as data. The index is implemented using

an in-memory R∗-Tree [17] in our system.

The Constraint Graph Gm is a dynamic in-memory graph, which contains the messages that are not yet

anonymized and not yet dropped due to expiration. The structure of the constraint graph is already defined

in Section 3.2. The multi-dimensional index Im is mainly used to speed-up the maintenance of the constraint

graph Gm, which is updated when new messages arrive or when messages are anonymized or expired.

The Expiration Heap Hm is a mean-heap, sorted based on the deadline of the messages. For each mes-

sage, say ms, in the set of messages that are not yet anonymized and are not yet dropped due to expiration,

Hm contains a deadline ms.t+ms.dt as the key, together with the message ms as the data§. Expiration heap

§It is memory-wise more efficient to store only identifiers of messages as data in Im, Gm, and Hm
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is used to detect expired messages that cannot be successfully anonymized, so that they can be dropped and

removed from the system.

3.5 Engine Algorithms

MSGPERTENGINE()
The engine runs in its own thread, as long as the variable
engine running remains set to true. This variable is initial-
ized to true when the engine is turned on, and is set to false
when the engine is closed down upon an explicit command.
(1) while engine running = true
(2) if Qm 
= ∅
(3) msc ← Pop the first item in Qm

(4) Add msc into Im with L(msc)
(5) Add msc into Hm with (msc .t + msc .dt)
(6) Add the message msc into Gm as a node
(7) N ← Range search Im using Bcn(msc)
(8) foreach ms ∈ N , ms 
= msc

(9) if L(msc) ∈ Bcn(ms)
(10) Add the edge (msc , ms) into Gm

(11) G
′
m ← Subgraph of Gm consisting of messages in N

(12) M ← LOCAL-k SEARCH(msc .k, msc , G
′
m)

(13) if M 
= ∅
(14) Randomize the order of messages in M
(15) foreach ms in M
(16) Output perturbed message

mt ← 〈ms.uid, ms.rno, Bm(M), ms.C〉
(17) Remove the message ms from Gm, Im, Hm

(18) while true
(19) ms ← Topmost item in Hm

(20) if ms.t + ms.dt < now
(21) Remove the message ms from Gm, Im

(22) Pop the topmost element in Hm

(23) else break

Algorithm 1: Message Perturbation Engine

Upon arrival of a new message, the perturba-

tion engine will update the message queue

(FIFO) to include this message. The mes-

sage perturbation process works by contin-

uously popping messages from the message

queue and processing them for k-anonymity

in four steps. The pseudo code of the pertur-

bation engine is given in Algorithm 1.

Phase 1: Zoom-in − In this step we up-

date the data structures with the new mes-

sage from the message queue, and inte-

grate the new message into the constraint

graph, i.e., search all the messages pend-

ing for perturbation and locate the messages

that should be assigned as neighbors to it in

the constraint graph (zoom-in). Concretely,

when a message msc is popped from the

message queue, it is inserted into the index Im using L(msc), inserted into the heap Hm using msc .t+msc .dt,

and inserted into the graph Gm as a node. Then the edges incident upon vertex msc are constructed in the

constraint graph Gm by searching the multi-dimensional index Im using the spatio-temporal constraint box

of the message, i.e., Bcn(msc), as the range. The messages whose spatio-temporal points are contained in

Bcn(msc) are candidates for being msc’s neighbors in the constraint graph. These messages (denoted as N

in the pseudo code) are filtered based on whether their spatio-temporal constraint boxes contain L(msc).

The ones that pass the filtering step become neighbors of msc . We call the subgraph that contains msc and

its neighbors the focused subgraph, denoted by G
′
m. See lines 3-11 in the pseudo code.

Phase 2: Detection − In this step we apply the local-k search algorithm in order to find a suitable clique

in the focused subgraph G
′
m of Gm, which contains msc and its neighbors in Gm denoted by nbr(msc , Gm).

Formally nbr(msc , Gm) is defined as {ms|(msc ,ms) is an edge in Gm}. In local-k search, we try to find a
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clique of size msc .k that includes the message msc and satisfies the CliqueCloak theorem. The pseudo code

of this step is given separately in Algorithm 2 as the function local-k Search. Note that the local-k Search

function is called within Algorithm 1 (line 12) with parameter k set to msc .k. Before beginning the search,

a set U ⊂ nbr(msc , G
′
m) is constructed such that for each message ms ∈ U , we have ms.k ≤ k (lines 1-2).

This means that the neighbors of msc whose anonymity values are higher than k are simply discarded from

U , as they cannot be anonymized with a clique of size k. Then the set U is iteratively filtered until there is

no change (lines 3-8). At each filtering step, every message ms ∈ U is checked to see whether it has at least

k−2 neighbors in U . If not, the message cannot be part of a clique that contains msc and has size k, thus the

message is removed from U . After the set U is filtered, the possible cliques in U ∪ {msc} that contain msc

and have size k are enumerated and if one satisfying the k-anonymity requirements is found, the messages

in that clique are returned.
LOCAL-k SEARCH(k, msc , G

′
m)

(1) U ← {ms|ms ∈ nbr(msc , G
′
m) and ms.k ≤ k}

(2) if |U | < k − 1 then return ∅
(3) l← 0
(4) while l 
= |U |
(5) l← |U |
(6) foreach ms ∈ U
(7) if (|nbr(ms, G

′
m) ∩ U | < k − 2)

(8) U ← U\{ms}
(9) Find any subset M ⊂ U , s.t.

|M | = k − 1 and M ∪ {msc} forms a clique
(10) if M found then return M
(11) else return ∅

Algorithm 2: local-k Search Algorithm

Phase 3: Perturbation − In this step we generate

the k-anonymized messages to be forwarded to the

external LBS providers. If a suitable clique is found

in the detection step, then the messages in the clique

(denoted as M in the pseudo code) are first random-

ized to prevent temporal correlations with message

arrival times. Then they are anonymized by assign-

ing Bm(M) (the MBR of the spatio-temporal points

of the messages in the clique), as their cloaking box.

Then they are removed from the graph Gm, as well as from the index Im and the heap Hm. This step is

detailed in the pseudo code through lines 13-17. In case a clique cannot be found, the message stays inside

Im, Gm, and Hm. It may be later picked up and anonymized during the processing of a new message or may

be dropped when it expires.

Phase 4: Expiration − A message is considered to be expired if the current time is beyond the high

point along the temporal dimension of the message’s spatio-temporal constraint box, which means that the

message has delayed beyond its deadline. In this step we take care of the expired messages. After the

processing of each message, we check the expiration heap for any messages that have expired. The message

on top of the expiration heap is checked and if its deadline has passed, it is removed from Im, Gm, and Hm.

Such a message cannot be anonymized and is dropped. This step is repeated until a message whose deadline

is ahead of the current time is reached. Lines 18-23 of the pseudo code deals with expiration.
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4 Improved CliqueCloak Algorithms

How

When

What

Progressive One-time

Deferred Immediate

Local-k Nbr-k

Figure 5: Algorithmic Dimensions

In this section, we describe several CliqueCloak algorithms that im-

prove the performance of the base algorithm described in Section 3.5.

These variations are introduced through configurations along the three

dimensions shown in Figure 5. These three dimensions represent the

following three critical aspects of the clique search performed for locat-

ing a group of messages that can be anonymized together: (i) what sizes of message groups are searched

(ii) when the search is performed, (iii) how the search is performed.

In the rest of this section, we discuss various optimizations we propose along these three dimensions to

improve the basic algorithm. All of the proposed optimizations are heuristic in nature. We would like to

note that the general problem of optimal k-anonymization is shown to be NP-hard [18, 19].

4.1 What Size Cliques to Search: Nbr-k vs. Local-k

NBR-k SEARCH(msc , G
′
m)

(1) if |nbr(msc , G
′
m)| < msc .k − 1 then return ∅

(2) V ← {ms.k|ms = msc ∨ms ∈ nbr(msc , G
′
m)}

(3) foreach distinct k ∈ V in decreasing order
(4) if k < msc .k then return ∅
(5) M ← LOCAL-k SEARCH(k, msc , G

′
m)

(6) if M 
= ∅ then return M
(7) return ∅

Algorithm 3: nbr-k Search Algorithm

When searching for a clique in the focused subgraph,

it is essential to ensure that the newly received mes-

sage, say msc , should be included in the clique. If

there is a new clique formed due to the entrance of

msc in the graph, it must contain msc . Thus, msc

is a good starting position. In addition, we want to

look for bigger cliques that include msc , instead of

searching for a clique with size msc .k, provided that the k value of each message within the clique is smaller

than or equal to the size of the clique. There are two strong motivations behind this approach. First, by

anonymizing a larger number of messages at once, we can minimize the number of messages that have to

wait for later arriving messages in order to be anonymized. Second, by anonymizing messages in larger

groups, we can provide better privacy protection against linking attacks. We develop the nbr-k search algo-

rithm based on these design guidelines. Its pseudo code is given in Algorithm 3.

Nbr-k search first collects the set of k values the new message msc and its neighbors nbr(msc , G
′
m) have,

denoted as V in the pseudo code. The k values in V are considered in decreasing order until a clique is found

or k becomes smaller than msc .k, in which case the search returns empty set. For each k ∈ V considered, a

clique of size k is searched by calling the local-k Search function with appropriate parameters (see line 5).

If such a clique can be found, the messages within the clique are returned. To integrate nbr-k search into the

message perturbation engine, we can replace line 12 of Algorithm 1 with the call to nbr-k Search function.
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4.2 When to Search for Cliques: Deferred vs. Immediate

We have described the algorithm of searching for cliques upon the arrival of a new message, and refer to

this type of search as immediate search. The immediate search is not beneficial when the constraint graph is

sparse around the new message and the anonymization is less likely to be successful. Thus it may result in

increased number of unsuccessful searches and deteriorate the performance.

Instead of immediately searching for a clique for each newly arrived message, we can defer this pro-

cessing. One extreme approach to deferred search is to postpone the clique search for every message and

perform clique search for a deferred message at the time of its expiration if it has not yet anonymized to-

gether with other messages. However, this will definitely increase the delay for all messages. An alternative

way to deferred search is to postpone the search only if the new message does not have enough neighbors

around and thus the constraint graph around this new message is sparse. Concretely, we introduce a system

parameter α ≥ 1 to adjust the amount of messages for which the clique search is deferred, and perform the

clique search for a new message msc only if the number of neighbors this new message has at its arrival time

is larger than or equal to α ∗msc .k. Smaller α values push the algorithm toward immediate processing. We

can set the α value statically at compile time based on experimental studies or adaptively during runtime

by observing the rate of successful clique searches with different α values. We refer to this variation of the

clique search algorithm as deferred CliqueCloak. The main idea of deferred search is to wait until certain

message density is reached and then perform the clique search. Thus, the deferred approach performs less

number of clique searches at the cost of larger storage and data structure maintenance overhead. The de-

ferred search can improve the overall performance when clique searches dominate the running time when

compared to the performance of index search and update.

4.3 How to Search Cliques: Progressive vs. One-time

Another important aspect that we can optimize the clique search performance is from the how to search

perspective. It is interesting to note that when the constraint boxes of messages are large, messages are more

likely to be anonymized since the constraints are relaxed. However, when the constraint boxes of messages

are large, the clique searches do not terminate early and incur a high performance penalty. We observe that

this is due to the increased search space of the clique search phase, which is a direct consequence of the fact

that large constraint boxes result in large number of neighbors around the messages in the constraint graph.

This inefficiency becomes more prominent with increasing k due to the combinatorial nature of the search.

An obvious way to improve the search is to first consider neighbors that are spatially close by, which allows

us to terminate our search quickly and avoid or reduce the processing time spent on the neighbors that are
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spatially far away and potentially less useful for anonymization.

PROGRESSIVESEARCH(msc , G
′
m)

(1) U ← Sort nbr(msc , G
′
m) based on

Euclidean distance between L(ms) and
L(msc), ms ∈ nbr(msc , G

′
m)

(2) z ← 1
(3) repeat
(4) z ← z + 1
(5) v ← MIN(z*msc .k, |U |)
(6) G

′′
m ← Subgraph of G

′
m containing msc

and the first v − 1 messages in U
(7) M ← LOCAL-k SEARCH(k, msc , G

′′
m)

// or NBR-k SEARCH(msc , G
′′
m)

(8) if M 
= ∅ then return M
(9) until v < |U |
(10) return ∅

Algorithm 4: Progressive Search Algorithm

The progressive search technique builds upon this in-

sight. It first sorts (in increasing order) the neighbors

of a message msc , based on the distance of their spatio-

temporal point to msc’s spatio-temporal point. Then the

search (either local-k or nbr-k) is performed iteratively

over the set of sorted messages using a progressively en-

larging subgraph that consists of progressively increasing

number of messages from the sorted set of messages. Ini-

tially the subgraph consists of only z ∗ msc .k messages,

where z = 2. If a proper clique cannot be found, we in-

crease z by one and apply the search over the enlarged

subgraph again. This process repeats until the complete set of sorted messages is exhausted. Algorithm 4

gives a sketch of the progressive search. For the purpose of comparison, we refer to the non-progressive

search as one-step search.

5 Evaluation Metrics

In this section we discuss several evaluation metrics for system level control of the balance between privacy

value and performance implication in terms of QoS. These metrics can be used to evaluate the effectiveness

and the efficiency of the message perturbation engine.

Success Rate is an important measure for evaluating the effectiveness of the proposed location k-

anonymity model. Concretely, the primary goal of the cloaking algorithm is to maximize the number of

messages perturbed successfully in accordance with their anonymization constraints. In other words, we

want to maximize |T |. Success rate can be defined over a set S ′ ⊂ S of messages as the percentage of

messages that are successfully anonymized (perturbed), i.e., |{mt|mt=R(ms),mt∈T,ms∈S′}|
100−1∗|S′| .

Important measures of efficiency include relative anonymity level, relative temporal resolution, rela-

tive spatial resolution, and message processing time. The first three are measures related with quality of

service, whereas the last one is a performance measure. It is important to remember that the primary evalu-

ation metric for our algorithms is the success rate. This is because our approach always guarantees that the

anonymization constraints are respected for the messages that are successfully anonymized. When compar-

ing two approaches that have similar success rates, then one that provides better relative anonymity level or

relative spatial/temporal resolution is preferred.
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Relative anonymity level is a measure of the level of anonymity provided by the cloaking algorithm,

normalized by the level of anonymity required by the messages. We define relative anonymity level over a set

T ′ ⊂ T of perturbed messages by 1
|T ′|

∑
mt=R(ms)∈T ′

|{m|m∈T ∧ Bcl(mt)=Bcl(m)}|
ms.k

. Note that relative anonymity

level cannot go below 1. Higher relative anonymity levels mean that on the average messages are getting

anonymized with larger k values than the user-specified minimum k-anonymity levels. Due to the inherent

trade-off between the anonymity level and the spatial and temporal resolutions, a user may have to specify

a lower k value than what she actually desires, in order to maintain a certain amount of spatial resolution

and/or temporal resolution for the service request messages. In these cases, we will prefer algorithms that

can provide higher relative anonymity levels.

Relative spatial resolution is a measure of the spatial resolution provided by the cloaking algorithm,

normalized by the minimum acceptable spatial resolution defined by the spatial tolerances. We define rel-

ative spatial resolution over a set of perturbed messages T ′ ⊂ T by 1
|T ′|

∑
mt=R(ms)∈T ′

√
2∗ms.dx∗2∗ms.dy

||mt.X||∗||mt.Y || ,

where ||.|| is applied to an interval and gives its length. The numerator in the equation is the area of the

constraint box for the source message, whereas the denominator is the area of the cloaking box for its trans-

formed format. Higher relative spatial resolution values imply that anonymization is performed with smaller

spatial cloaking regions relative to the constraint boxes specified.

Relative temporal resolution is a measure of the temporal resolution provided by the cloaking algo-

rithm, normalized by the minimum acceptable temporal resolution defined by the temporal tolerances. We

define relative temporal resolution over a set of perturbed messages T ′ ⊂ T by 1
|T ′|

∑
mt=R(ms)∈T ′

2∗ms.dt

||mt.I|| .

Higher relative temporal resolution values imply that anonymization is performed with smaller temporal

cloaking intervals and thus with smaller delays due to perturbation. Relative spatial and temporal resolu-

tions cannot go below 1.

Message processing time is a measure of the running time performance of the message perturbation

engine. The message processing time may become a critical issue, if the computational power at hand is not

enough to handle the incoming messages at a high rate. In the experiments of Section 6, we use the average

CPU time needed to process 103 messages as the message processing time.

6 Experimental Study

We break up the experimental evaluation into three components. The first two components demonstrate the

effectiveness of the CliqueCloak algorithms in realizing the proposed personalized location k-anonymity

model, in terms of the success rate, relative anonymity level, and relative spatial/temporal resolution. The

third component studies the scalability of the algorithms under extreme cases, in terms of the running-
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Parameter Default value

anonymity level range {5, 4, 3, 2}
anonymity level Zipf param 0.6

mean spatial tolerance 100m

variance in spatial tolerance 40m2

mean temporal tolerance 30s

variance in temporal tolerance 12s2

mean inter-wait time 15s

variance in inter-wait time 6s2

Table 2: Message generation parameters

road type expressway arterial collector

mean of car speeds (km/h) 90 60 50
std.dev. in car speeds (km/h) 20 15 10
traffic volume data (cars/h) 2916.6 916.6 250

Table 3: Car movement parameters
Figure 6: The trace generator

time performance. Before presenting our experimental results, we first describe the trace generator used to

generate realistic traces that are employed in the experiments and the details of our experimental setup.

6.1 Experimental Setup

We have developed a trace generator (shown in Figure 6), that simulates cars moving on roads and generates

requests using the position information from the simulation. The trace generator loads real-world road

data, available from the National Mapping Division of the United States Geological Survey (USGS) [20]

in SDTS [21] format. We use transportation layer of 1:24K Digital Line Graphs (DLGs) as road data.

We convert the graphs into Scalable Vector Graphic [22] format using the Global Mapper [23] software

and use them as input to our trace generator. We extract three types of roads from the trace graph, class

1 (expressway), class 2 (arterial), and class 3 (collector). The generator uses real traffic volume data to

calculate the total number of cars for different road classes. The total number of cars on a certain class of

roads is proportional to the total length of the roads for that class, the traffic volume for that class, and is

inversely proportional to the average speed of cars for that class. Once the number of cars on each type of

road is determined, they are randomly placed into the graph and the simulation begins. Cars move on the

roads and take other roads when they reach joints. The simulator tries to keep the fraction of cars on each

type of road constant as time progresses. A car changes its speed at each joint based on a normal distribution

whose mean is equal to the average speed for the particular class of roads that the car is on.

We used a map from the Chamblee region of the state of Georgia in the USA to generate the trace

used in this paper. Figure 6 shows this map loaded into the trace generator. The map covers a region of

≈ 160km2. In terms of the length of roads, class 1 roads constitute 7.3% of the total, whereas class 2 and
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3 roads constitute 5.4% and 87.3%, respectively. The mean speeds and standard deviations for each road

type are given in Table 3. The traffic volume data is taken from Gruteser and Grunwald [8] and is also

listed in Table 2. These settings result in approximately 10,000 cars, 32% of which are on class 1 roads,

13% are on class 2 roads, and 55% are on class 3 roads. The trace has the duration of one hour. Each car

generates several messages during the simulation. All evaluation metrics are calculated over these messages

generated within the one hour period ¶ (over one million messages). The experimental results are averages

of large number of messages. Each message specifies an anonymity level in the form of a k value, which is

picked from the list {5, 4, 3, 2} using a Zipf distribution with parameter 0.6. The setting of k = 5 is the most

popular one, and k = 2 is the least popular one based on the Zipf distribution. In certain experiments we

extend this list up to k = 12, keeping the highest k value as the most popular anonymity level. This enables

us to model a population which prefers higher privacy in general. We show that even for such a workload,

the personalized k-anonymity model provides significant gains.

The spatial and temporal tolerance values of the messages are selected using normal distributions whose

default parameters are given in Table 2. Whenever a message is generated, the originator of the message

waits until the message is anonymized or dropped, after which it waits for a normally distributed amount of

time, called the inter-wait time, whose default parameters are listed in Table 2.

All parameters take their default values, if not stated otherwise. We change many of these parameters to

observe the behavior of the algorithms in different settings. For spatial points of the messages, the default

settings result in anonymizing around 70% of messages with an accuracy of < 18m in 75% of the cases,

which we consider to be very good when compared to the E-911 requirement of 125m accuracy in 67% of

the cases [6]. For temporal point of the messages, the default parameters also result in a delay of < 10s

in 75% of the cases and < 5s in 50% of the cases. Our results show that the personalized location k-

anonymity approach presented in this paper is a promising solution. Although there are many aspects of

the experimental design, such as car movement patterns, privacy and QoS requirements of users, message

generation rates, etc., which can effect the results of our experiments, we believe that our results provide

a necessary and informative first step to understand the fundamental characteristics of this personalized

location privacy model. We hope that the results presented in this paper will stimulate more research to

comprehensively evaluate the applicability of personalized location privacy in real-world LBS applications.

¶From running 15 minutes traces 12 times we have observed insignificant standard deviation values (≈ 0.4 for mean success

rate of ≈ 70) and thus decided to report results from a single 1 hour trace.
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6.2 Effectiveness of Personalized k-Anonymity Model

We first study the effectiveness of our personalized location k anonymity model with respect to (1) different

k requirements from individual users and (2) the uniform k-anonymity model.

with variable k with fixed
2 3 4 5 k (=5)

success rate 79.1 70.1 64.2 59.8 59.4
relative spatial res. 6.3 4.0 3.6 3.3 3.0

relative temporal res. 15.9 14.0 13.4 13.0 12.2

Table 4: Success rate and relative spatial/temporal resolutions,
fixed k compared to variable k

Table 4 shows the advantage of using

variable k, compared to using a uniform k

value (= 5) independent of the individual

k values specified in the messages. We ob-

serve that the variable k approach provides

33% higher success rate, 110% better relative spatial resolution, and 30% better relative temporal resolu-

tion for messages with k = 2. The improvements are higher for messages with smaller k values, which

imply that the variable k location anonymity approach does not unnecessarily penalize users with low pri-

vacy requirements, when compared to the uniform k approach. The amount of improvement in terms of the

evaluation metrics decreases as k approaches to its maximum value of 5.

6.3 Results on Success Rate
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Figure 7 shows the success rate for nbr-k and local-k approaches.

The success rate is shown (on y-axis) for different groups of mes-

sages, each group representing messages with a certain k value (on

x-axis). The two leftmost bars show the success rate for all of the

messages. The wider bars show the actual success rate provided

by the CliqueCloak algorithm. The thinner bars represent a lower

bound on the percentage of messages that cannot be anonymized no

matter what algorithm is used. This lower bound is calculated as fol-

lows. For a message ms, if the set U = {msi
|msi

∈ S ∧ L(msi
) ∈

Bcn(ms) ∧ msi
.t ∈ Φ(ms.t,ms.dt)} has size less than ms.k, the

message cannot be anonymized. This is because, the total number

of messages that ever appear inside ms’s constraint box during its

lifetime are less than ms.k. However, if the set U has size of at

least ms.k, the message ms may still not be anonymized under a

hypothetical optimal algorithm. This is because, the optimal choice

may require anonymizing a subset of U that does not include ms,

together with some other messages not in U . As a result, the remaining messages in U may not be suffi-
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cient to anonymize ms. It is not possible to design an on-line algorithm that is optimal in terms of success

rate, due to the fact that such an algorithm will require future knowledge of messages, which is not known

beforehand. If a trace of the messages is available, as in this work, the optimal success rate can be com-

puted off-line. However, we are not aware of a time and space efficient off-line algorithm for computing

the optimal success rate. As a result, we use a lower bound on the number of messages that cannot be

anonymized.

There are three observations from Figure 7. First, the nbr-k approach provides around 15% better average

success rate than local-k. Second, the best average success rate achieved is around 70%. Out of the 30%

dropped messages, at least 65% of them cannot be anonymized, meaning that in the worst case remaining

10% of all messages are dropped due to non-optimality of the algorithm with respect to success rate. If we

knew of a way to construct the optimal algorithm with a reasonable time and space complexity given full

knowledge of the trace, we could have gotten a better bound. Last, messages with larger k values are harder

to anonymize. The success rate for messages with k = 2 is around 30% higher than the success rate for

messages with k = 5.
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Figure 8 shows the relative anonymity level (the higher, the bet-

ter) for nbr-k and local-k. The relative anonymity level is shown (on

y-axis) for different groups of messages, each group representing

messages with a certain k value (on x-axis). Nbr-k shows a relative

anonymity level of 1.7 for messages with k = 2, meaning that on

the average these messages are anonymized with k = 3.4 by the al-

gorithm. Local-k shows a lower relative anonymity level of 1.4 for

messages with k = 2. This gap between the two approaches van-

ishes for messages with k = 5, since both algorithms do not attempt

to search cliques of sizes larger than the maximum k value in the

system. The difference in the relative anonymity level between nbr-

k and local-k shows that the nbr-k approach is able to anonymize

messages with smaller k values together with the ones with higher

k values. This is particularly beneficial for messages with higher k

values, as they are harder to anonymize. This also explains why nbr-k results in a better success rate.

We also studied the average success rate and the message processing time for nbr-k and local-k search

approaches with immediate or deferred processing mode. The results can be found in our technical re-

port [13]. In summary, we found that the immediate approach provides better success rate than the deferred
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approach, and that the deferred approach does not provide improvement in terms of the message processing

time even though it decreases the number of times the clique search is performed. The reason that the de-

ferred approach performs worse in terms of the total processing time is that, for k ≤ 10 the index update

dominates the cost of processing the messages and the deferred approach results in a more crowded index.

However, the deferred approach is promising in terms of message processing time, for cases where k values

are really large and thus the clique search phase dominates the cost.

Figure 9 plots the average success rate as a function of mean inter-wait time and mean temporal tolerance.

Similarly, Figure 10 plots the average success rate as a function of mean inter-wait time and mean spatial

tolerance. For both of the figures, the variances are always set to 0.4 times the means. We observe that,

the smaller the inter-wait time, the higher the success rate. For smaller values of the temporal and spatial

tolerances, the decrease in inter-wait time becomes more important, in terms of keeping the success rate

high. When the inter-wait time is high, we have a lower rate of messages coming into the system. Thus, it

becomes harder to anonymize messages, as the constraint graph becomes sparser. Both spatial and temporal

tolerances have tremendous effect on the success rate. Although high success rates (around 85) are achieved

with high temporal and spatial tolerances, we will show in the next section that the relative temporal and

spatial resolutions are much larger than 1 in such cases.

6.4 Results on Spatial/Temporal Resolution
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Figure 11: Relative temporal and spa-
tial resolution distributions

In Section 6.3, we showed that one way to improve success rate is

to increase the spatial and temporal tolerance values specified by

the messages. In this section, we show that our CliqueCloak algo-

rithms have the nice property that, for most of the anonymized mes-

sages, the cloaking box generated by the algorithm is much smaller

than the constraint box of the received message specified by the tol-

erance values, resulting in higher relative spatial and temporal reso-

lutions. Figure 11(a) plots the frequency distribution (y-axis) of the

relative temporal resolutions (x-axis) of the anonymized messages.

For a specific resolution value ν on the x-axis, the corresponding

value on the y-axis represents the frequency of messages having a

relative temporal resolution value of ν. Figure 11 shows that in 75% of the cases the provided relative tem-

poral resolution is > 3.25, thus an average temporal accuracy of roughly < 10s (recal that the default mean

temporal tolerance was 30s). For 50% of the cases it is > 5.95 and for 25% of the cases it is > 17.25. This
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points out that the observed performance with regard to temporal resolutions is much better than the worst

case specified by the temporal tolerances. Moreover, this property of the algorithm holds under different

settings of the mean and variance values for the spatial and temporal tolerances [13].

Figure 11(b) plots the frequency distribution (y-axis) of the relative spatial resolutions (x-axis) of the

anonymized messages. Figure 11 shows that in 75% of the cases the provided relative spatial resolution is

> 5.85, thus an average spatial accuracy of roughly < 18m (recal that the default mean spatial tolerance

was 100m). In 50% of the cases it is > 7.75 and for 25% of the cases it is > 12.55. This points out that, the

observed performance with regard to spatial resolutions is much better than the worst case specified by the

spatial tolerances. Moreover, this property of the algorithm holds under different settings of the mean and

variance values for the spatial and temporal tolerances [13].

6.5 Results on Message Processing Time

We now evaluate the scalability of our algorithms with respect to message processing time and message

success rate. We measure how the CliqueCloak algorithm performs in extreme conditions with large k

and large subgraphs on which the search is performed. Given that larger constraint boxes lead to larger

subgraphs, we multiply the default values of the spatial and temporal tolerances that define the constraint

boxes with a scaling factor. Larger values of the scaling factor represent more relaxed constraints with

respect to spatial and temporal tolerances, and thus larger constraint boxes.
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Figure 12: Scalability with respect to size of constraint boxes and k

Figure 12 (a) plots the time to process 103 messages as a function of the scaling factor, for various k

values going up to 12. All experiments reported in Figure 12 use [nbr-k, immediate, one-time] configuration.

We make two observations from Figure 12 (a). First, the message processing time shows a smaller increase

with increasing k initially, which is replaced by an exponential increase after k = 10. We have omitted

cases where k > 12 due to their very high message processing times. This observation is in line with our

previous claim that the clique search part does not dominate the message processing cost until k gets close
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Figure 13: Break-up of message processing time with varying k
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Figure 14: Impact of progressive
search on Performance

to 10. This is further backed up by Figure 13, which will be described shortly. The second, and more

interesting observation is that, the message processing time shows an increase with increasing constraint

box size (scaling factor), especially for large k. Certain amount of increase in message processing time can

be described by the fact that the number of successfully anonymized messages increases with increasing

scaling factor. This is shown by Figure 12 (b), which plots the success rate as a function of scaling factor

for various k values. Although the increase in message processing time can be justified by the extra work

done for anonymizing a larger number of messages, the exact evaluation requires a new metric, which we

define as the time to process 103 messages divided by the fraction of messages successfully anonymized.

We call this metric the processing time per 103 anonymized messages. Figure 12 (c) plots processing time

per 103 anonymized messages as a function of the scaling factor for various k values. Now we can observe

a decrease in the evaluation metric with increasing scaling factor, which is intuitive since more relaxed

tolerance values (large scaling factor) is expected to improve running-time performance. However, after the

scaling factor goes over 2 (2.5 for k ≤ 6), we see a reverse trend!

Before presenting results on “fixing” this behavior by employing the progressive search technique, we

present the breakdown of the message processing cost into its components to show that the clique search

starts to dominate the processing time when the scaling factor becomes high, especially for large k. Figure 13

shows the time to process 103 messages as a function of scaling factor for various k values as a bar chart,

where each bar is divided into two parts. The upper thin bar represents the time spent for the clique search

(detection step) and the lower thick bar represents the time spent for searching the spatio-temporal index
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(zoom-in step). Percentages are also given over each bar, representing the first part’s share. We can observe

that for small k the detection step is not dominant. Even for k = 10, it is responsible for half the processing

time only when the scaling factor is increased to 2.5. For k = 12 we observe that the detection step clearly

dominates and becomes even more dominant with increasing scaling factor.

Figure 14 (a) plots the time to process 103 messages as a function of the scaling factor, for k = 12 with

two different configurations; progressive search and one-time search. All experiments reported in Figure 14

use [nbr-k, immediate] configuration for the other two dimensions. Figure 14 (a) shows that the progressive

approach is able to scale linearly with the tolerance values and provides up to 50% improvement over the

one-time seach approach for the particular range of scaling factors used in this experiment. Figure 14 (b)

plots the success rate as a function of scaling factor, for k = 4 and k = 12 with progressive and one-step

search. It shows that the improvement in processing time comes at no cost with respect to success rate,

both for small k and large k. Finally, Figure 14 (c) plots processing time per 103 anonymized messages

as a function of the scaling factor, for k = 12 with progressive and one-step search. We observe that the

progressive search succesfully removes most of the increasing trend seen in one-step search. However, it is

not completly removed, as can be seen from the small increase when the scaling factor goes from 2.5 to 3.

This also points out that there should be a system specified maximum constraint box to stop the performance

degradation with unnecessarily large constraint boxes.

6.6 Summary of Experimental Results

We summarize major findings from our experiments and the insights obtained from the experimental results

in four points: i) Nbr-k outperforms local-k in both success rate and relative anonymity level metrics, with-

out incurring extra processing overhead. This is due to its ability to anonymize larger groups of messages

together at once. ii) Deferred search, a technique that aims at decreasing the number of clique searches

performed in an effort to increase running time performance, turns out to be inferior to immediate search.

This is because, for smaller k values the index search and update cost is dominant over the clique search

cost, and the deferred search increases the size of the index due to batching more messages before perform-

ing the clique searches. iii) Progressive search improves the running time performance of anonymization,

especially when constraint boxes and k values are large, without any side-effects on other evaluation met-

rics. This nature of progressive search is due to its proximity-aware nature − the close-by messages that

are more likely to be included in the result of the clique search are considered first with progressive search.

iv) The CliqueCloak algorithms have the nice property that, for most of the anonymized messages, the

cloaking box generated is much smaller than the constraint box of the received message specified by the tol-
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erance values, resulting in higher relative spatial and temporal resolutions. In conclusion, the configuration

of [Nbr-k, Immediate, Progressive] is superior to other alternatives.

7 Discussions and Future Work

This section discusses some potential improvements, alternatives, and future directions of our work.

Success Rate and QoS vs. Privacy Trade-off

Our personalized k-anonymity model requires mobile clients to specify their desired location anonymity

level and their spatial/temporal tolerance constraints. It is possible that the level of privacy and the QoS

can be in conflict in a user’s specification. When such conflicts occur, the success rate of anonymization

will be low for this user’s messages. In practice, such conflicts should be checked to determine the need for

fine-tuning in the privacy level or QoS. The trade-off between the QoS defined by spatial/temporal tolerance

constraints and the level of privacy protection defined by anonymity level k should be adjusted, such that

success rate of anonymization is kept close to 1. In this paper, we developed a location anonymization

framework and associated system-level facilitates for fine-tuning of the QoS vs. privacy protection trade-

off. Due to the space constraint, we did not discuss the application-dependent management of user involved

adjustment of this trade-off. We believe that these issues merit an independent study.

Optimality of the CliqueCloak Algorithms

It is important to note that the CliqueCloak algorithms we introduced in this paper are heuristic in nature.

Although we do not know the best success rates that can be achieved for various distributions of anonymity

constraints, we experimentally showed that for practical scenarios, in the worst case our algorithms drop only

10% of the messages due to non-optimality. Furthermore, since it is extremely hard to accurately predict

future patterns of messages, it is difficult to build an on-line optimal algorithm. These two observations lead

us to the conclusion that our algorithms will be highly effective in practice. However, it is an open problem

to study advanced algorithms that have better optimality and runtime performace.

Pseudonymous and Non-anonymous LBSs

In this paper we assumed that the LBSs are anonymous, i.e., the true identities of mobile clients are not

required in the services provided. Services that require the knowledge of user identities or pseudonyms

(non-anonymous and pseudonymous LBSs) will make tracking of successive messages from the same users

trivial at the LBS side. We beleive that the pseudonymous LBSs can benefit from our solution with some

modifications. For instance, one complication may arise when successive location-identity bindings take

place, and the set of k messages from the two adjacent bindings share one and only one pseudonym, which

can easily lead to a trajectory-identity binding. This type of vulnerabilities can be prevented or mitigated
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by setting proper time intervals for changing the pseudonyms associated with mobile clients, without vio-

lating the service requirements of the LBSs. Nevertheless, further research is needed for devising effective

techniques for performing privacy-preserving pseudonym updates. In the case of non-anonymous LBSs, we

believe that the location privacy protection will need to be guaranteed through policy-based solutions man-

aged by LBS providers. Policy-based solutions require mobile clients to completely trust the LBS providers

in order to use the services provided.

8 Related Work

Location Privacy and Anonymity

In the telecommunications domain, policy-based approaches have been proposed for protecting location

privacy [9, 24]. Users may use policies to specify their privacy preferences. These policies specify what

data about the user can be collected, when and for which purposes it can be used, and how and to whom it

can be distributed. Mobile clients have to trust the LBSs that location information is adequately protected.

Another approach to location privacy is a k-anonymity based approach, which depersonalizes data

through perturbation techniques before forwarding it to the LBS providers. Location k-anonymity is first

studied by Gruteser and Grunwald [8]. Its location perturbation is performed by the quadtree-based algo-

rithm executing spatial and temporal cloaking. However, this work suffers from several drawbacks. First,

it assumes a system-wide static k value for all mobile clients, which hinders the service quality for those

mobile clients whose privacy requirements can be satisfied using smaller k values. Furthermore, this as-

sumption is far from optimal, as mobile clients tend to have varying privacy protection requirements under

different contexts and on different subjects. Second, their approach fails to provide any quality of service

guarantees with respect to the sizes of the cloaking boxes produced. This is because, the quadtree-based

algorithm anonymizes the messages by dividing the quadtree cells until the number of messages in each cell

falls below k and by returning the previous quadrant for each cell as the spatial cloaking box of the mes-

sages under that cell. In comparison, our framework for location k-anonymity captures the desired degree

of privacy and service quality on per-user base, supporting mobile clients with diverse context-dependent

location privacy requirements. Our message perturbation engine can anonymize a stream of incoming mes-

sages with different k anonymization constraints. Unlike earlier work [8], we do not assume knowledge of

user positions at the anonymity server at all times. Our work assumes that the user positions are known at

the anonymity server side only to the extent they can be deduced from the users’ request messages. Our

proposed location cloaking algorithms are effective in terms of the success rate of message perturbation and

the amount of QoS loss due to location cloaking. They are also flexible in the sense that each user can spec-
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ify a personalized k value, as well as spatial and temporal tolerance values at per-message granularity, to

adjust the requested level of privacy protection and to bound the amount of loss in spatial resolution and the

temporal delay introduced during message perturbation. The spatial and temporal tolerances in our model

provide a flexible way of independently adjusting the level of spatial and temporal cloaking performed.

Anonymity Support in Databases

In the database community, there exists a large amount of literature on security control against disclosure

of confidential information. Such disclosures may occur if through the answer to one or more queries an

adversary can infer the exact value of or an accurate estimate of a confidential attribute of an individual.

Privacy protection mechanisms suggested in the statistical databases literature can be classified under three

general methods, namely query restriction, data perturbation, and output perturbation. In query restriction,

the queries are evaluated against the original database, but the results are only reported if the queries meet

certain requirements. There are many flavors of query restriction, like restricting the number of entities in the

result set [25], controlling the overlap among successive queries [26], keeping up-to-date logs of all queries

and checking for compromises whenever a new query is issued [27], and clustering individual entities in

mutually exclusive subsets and restricting the queries to the statistical properties of these subsets [28]. In

data perturbation, the database is perturbed and the queries are evaluated against the perturbed database.

This is usually done by replacing the database with a sample of it [29], or by perturbing the values of the

attributes in the database [30]. In output perturbation, the results to the queries are perturbed, whereas the

original database is not. This is commonly achieved by sampling the query results [31] or by introducing a

varying perturbation (not permanent) to the data that are used to compute the result of a given query [32].

Another piece of related research is computing over encrypted data values in data mining and database

queries. One representative work in the recent years is the privacy-preserving indexing technique proposed

by Hore, Mehrotra and Tsudik for supporting efficient query evaluation over encrypted data [33]. This

work is based on the Database as a Service (DAS) model, where the service providers store encrypted data

owned by the content provider in their servers and provide query services over the encrypted data. User

queries are translated into two parts, a server-side query that works over the encrypted data, and a client-

side query that does decryption and post processing over the results of the server query part. Although the

motivation and the problems addressed in our paper is different, our work shares a common assumption with

the DAS work in the sense that the content producer does not trust the service providers and thus provides

privacy-preserving index instead of the actual data content in the DAS scenario, or the perturbed location

data through location anonymizer in the anonymous LBS scenario as discussed in this paper.

Finally, Samarati and Sweeney have developed a k-anonymity model [12, 11, 10] for protecting data
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privacy and a set of generalization and suppression techniques for safeguarding the anonymity of individuals

whose information is recorded in database tables. Our work makes use of this basic idea of k-anonymity.

9 Conclusion

We proposed a personalized k-anonymity model for providing location privacy. Our model allows mobile

clients to define and modify their location privacy specifications at the granularity of single messages, in-

cluding the minimum anonymity level requirement, and the inaccuracy tolerances along the temporal and

spatial dimensions. We developed an efficient message perturbation engine to implement this model. Our

message perturbation engine can effectively anonymize messages sent by the mobile clients, in accordance

with location k-anonymity, while satisfying the privacy and QoS requirements of the users. Several varia-

tions of spatio-temporal cloaking algorithms, collectively called CliqueCloak algorithms, are proposed as

the core algorithms of the perturbation engine. We experimentally studied the behavior of our algorithms

under various conditions, using realistic workloads synthetically generated from real road maps and traffic

volume data. Our work continues along a number of directions, including the investigation of more optimal

algorithms under the proposed framework, the study of QoS characteristics of real-world LBS applications,

and how QoS requirements impact the maximum achievable anonymity level with reasonable success rate.
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