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2 � P. L'Ecuyer and Y. ChampouxImportance sampling (IS) is the method of choice in such a situation. IS changesthe probability laws governing the system so that the rare events of interest oc-cur more frequently, eventually to the point of being no longer rare events. Theestimator is modi�ed accordingly so that it remains unbiased: It is multiplied bya quantity called the likelihood ratio. The hope is that the IS estimator is moree�cient ; i.e., that the product of its variance and its computing cost is smaller thanfor the regular estimator. The most di�cult problem in applying IS is (in general)to �gure out how to change the probability laws so that the variance gets reducedto an acceptable level. Theoretically, there always exists a change of measure thatreduces the variance to an arbitrary small positive value, but �nding it is usuallymuch too complicated and not practical.[Chang et al. 1994] derived an asymptotically optimal change of measure, basedon the theories of e�ective bandwidth and large deviations , for estimating the prob-ability p that a queue length exceeds a given level x before returning to empty,given that the queue is started from empty, for a single queue with multiple inde-pendent arrival sources. Roughly, asymptotically optimal means that the standarderror of the IS estimator converges to zero exponentially fast with the same decayrate (exponent) as the quantity to be estimated, as a function of the level x. Aprecise de�nition can be found in [Chang et al. 1994]. An asymptotically optimalchange of measure does not minimize the variance, but it can reduce it by severalorders of magnitude. [Chang et al. 1994] extended their method to intree networksof queues, which are acyclic tree networks where customers ow only towards theroot of the tree. For intree networks, they gave an upper bound on the varianceof the IS estimator, and conjectured that this estimator is asymptotically optimal(or almost), but did not prove it. In numerical experiments with queueing modelswith a single node, or two nodes in series , they observed large variance reductionswith their IS estimator.The probability p just described is closely related to the CLR when x equals thebu�er size (it measures almost the same events), so it seems quite reasonable touse the change of measure proposed by [Chang et al. 1994] to estimate the CLR aswell, as pointed out by these authors themselves.[Beck et al. 1998; Dabrowski et al. 1998] also study the application of IS to adiscrete-time queueing network model of an ATM switch. Their model is verygeneral. Assuming in�nite bu�ers at all nodes, they obtain the asymptotics of thetail of the queue size distribution in steady-state, and they use that to propose achange of measure for estimating the CLR at a given node. Their IS methodologyis related (but di�erent) to that of [Chang et al. 1994].For general background on e�ciency improvement (or variance reduction), werefer the reader to [Bratley et al. 1987; Fishman 1996; Glynn 1994; L'Ecuyer 1994].IS is well explained in [Glynn and Iglehart 1989; Heidelberger 1995; Shahabuddin1994] and the several other references given there. Application of IS to the simu-lation of communication systems is studied by [Bonneau 1996; Chang et al. 1994;Chang et al. 1995; Heegaard 1998], among others.In this paper, we consider queueing networks having a large number of nodes, fedby a large number of Markov-modulated on/o� sources. The nodes are organized insuccessive layers and each cell (or customer) goes through exactly one node of eachlayer, following a path uniquely determined by its source. This type of queueing



Small Cell Loss Ratios in ATM via IS � 3network is a widely used model for the tra�c in an ATM switch. We apply ISto estimate the CLR at any pre-speci�ed node of the network, using a change ofmeasure based on the same approach as [Chang et al. 1994]. We obtain spectaculare�ciency improvements for both small and large networks.The model is de�ned is Section 1. Section 2 recalls the A-cycles method andthe batch-means method, which we use jointly to compute con�dence intervals. InSection 3 we explain how IS is applied to estimate the CLR at a given target node.The idea is to increase the tra�c to the target node by increasing the average on/o�ratio for all the sources (and only those) feeding that node. The exact change ofmeasure is determined by a heuristic. Numerical results are reported in Section 4.In Section 5, we consider various re�nements of the basic IS scheme, and test themempirically to see how much additional variance reduction they can bring. Section 6explains how the CLR can be estimated in functional form, as a function of certainparameters of the model. Additional numerical results and details can be found in[Champoux 1998]. A preliminary report of this work was presented in [L'Ecuyerand Champoux 1996].1. THE MODELWe consider an acyclic queueing network with 4 layers of nodes , as illustrated inFigure 1. Each node is a single-server FIFO queue with �nite bu�er size. The `-thlayer is called level ` and the nodes at level 4 transmit cells to destinations . Levels2 and 3 have m2 nodes each, while levels 1 and 4 have m1m2 nodes each. Eachlevel-2 node is fed by m1 level-1 nodes, while each level-3 node feeds m1 nodesat level 4. Cells (i.e., packets of information) arrive at level 1, visit one node ofeach level, in succession, then leave the network. Each node at level 1 is fed by m0arrival sources . These m0m1m2 sources are assigned to speci�c destinations; i.e.,all the cells produced by a given source follow exactly the same path. The arrivalsources are time-synchronized, but otherwise independent, stochastically identical,discrete-time on/o� Markov modulated processes. A source is o� for a while,then on for a while, then o� again, and so on. The source produces one cell perunit of time during a on period, and none during a o� period. The durationsof o� and on periods are independent geometric random variables with means �0and �1, respectively, so the arrival rate is � = �1=(�1 + �0). The parameter �1is called the average burst size. If we denote o� and on by 0 and 1, respectively,our assumptions imply that the state of a source evolves as a discrete-time Markovchain with two states, 0 and 1, with transition probability matrixR = � r00 r01r10 r11� = � 1� 1=�0 1=�01=�1 1� 1=�1� : (1)These Markov chains comprise all the stochasticity of the model; everything else isdeterministic. The arrival sources are numbered from 1 to m0m1m2 and the nodesare numbered from 1 to 2m2(1+m1), level by level. When two or more cells reach agiven node simultaneously, they are placed in the queue (the bu�er) by order of thenumber of the node or source where they come from. This deterministic orderingrule is for simpli�cation and tends to favor the cells coming from certain sourcesand nodes. One could order the cells randomly instead, but that would have nomajor qualitative impact on our results.



4 � P. L'Ecuyer and Y. Champoux

Fig. 1. An ATM Switch Modeled as 4 Layers of Queues with Finite Bu�er SizesAll the nodes at level ` have the same bu�er size B` and the same constant servicetime 1=c` (so c` is the service rate). Whenever a cell arrives at a node where thebu�er is full, it is lost and disappears from the network. Our aim is to estimatethe CLR at a given node of the network, say node q� at level `�, where the CLR isde�ned as � = limt!1E[NL(t)]=E[NT(t)]; (2)where NT(t) is the total number of cells reaching node q� during the time interval(0; t] and NL(t) is the number of those cells that are lost due to bu�er overowat node q�. We assume that the total arrival rate is less than the service rate ateach node, so that the network is stable. That is, if the cells from m sources passthrough a given node at level `, then m� < c`, and this holds for all nodes.To simplify the discussion, we assume that each c` is an integer. Since the bu�ersare �nite, the model is then a discrete-time Markov chain with �nite state space.It is also aperiodic, and the zero state (the state where all sources are o� and allthe nodes are empty) is positive recurent and is accessible from every other state.As a consequence, there exists a limiting distribution � over the state space of thatchain, de�ned as �(�) = limn!1Pfstate 2 � at time ng:This model could of course be generalized in several directions and our approachwould be easy to adapt for certain types of generalizations. For example, the bu�ersizes and constant service times can di�er between nodes at a given level, di�erentsources can have di�erent transition probability matrices R, and a source couldproduce a cell only with some probability when it is on. IS would still work nicely



Small Cell Loss Ratios in ATM via IS � 5in these situations. We keep our simpler model to avoid burying the key ideas undera complicated notation. On the other hand, if the destinations were determinedrandomly and independently for each cell, or for each on period at each source,�nding an e�cient way of applying IS would be more di�cult. Our �xed source-destination assignment model is reasonable because in the ATM switches that wehave in mind, a typical connection between a source and a destination lasts forseveral orders of magnitude longer than the sevice times 1=c`.2. A REGENERATION APPROACH FOR CONFIDENCE INTERVALSIS is generally easier to apply to a model de�ned over a short time horizon or whenthe model's evolution can be decomposed into short regenerative cycles. Here, themodel is over an in�nite horizon, and to decompose its trajectory into cycles, weapply a generalization of the classical regenerative method introduced by [Nicolaet al. 1993; Chang et al. 1994], and called the A-cycle method. Let A be a subsetof the state space of the system. Here we take A as the set of states for which thebu�er at q� is empty. Let t0 = 0 and let t1; t2; : : : be the successive hitting times ofthe set A; i.e., ti = infft > ti�1 : the bu�er at q� is empty at time t but not at timet� 1g. The system state at those hitting times ti has a pointwise limit distribution�, over A, de�ned by: �(�) = limi!1Pfstate 2 � at time tig:The process over the time interval (ti�1; ti] is called the ith A-cycle. Let Xi bethe number of cells reaching node q� during the ith A-cycle, and Yi be the numberof those Xi cells that are lost due to bu�er overow at q�. Let E� denote themathematical expectation over an A-cycle when the initial state (at the beginningof the A-cycle) has distribution �. One has:� = E�[Y1]E�[X1] : (3)In the limit, as the number of A-cycles increases, the average distribution of thesystem states at the times ti approaches �. By taking the average of the Yi and Xiover the �rst n A-cycles, one obtains the consistent estimator of �:�̂ = Pni=1 YiPni=1Xi :This estimator is biased unless the initial state at time 0 is generated from �, whichis usually much too hard to achieve, but the bias can be reduced by warming upthe system, e.g., by running n0 + n A-cycles and discarding the �rst n0 from thestatistics.The A-cycles are asymptotically identically distributed (with probability law �for their initial state) but they are dependent . To reduce the dependence, andalso improve the normality, one can batch the cycles, as in the usual batch meansmethod. One then applies the standard methodology for computing a con�denceinterval for a ratio of expectations, using the batch means as observations, andobtain a con�dence interval for � [Law and Kelton 1991].



6 � P. L'Ecuyer and Y. Champoux3. APPLYING IMPORTANCE SAMPLINGWhen � is very small, the vast majority of the Yi's in (2) are 0 and the relative errorof �̂ (i.e., its standard deviation divided by �) blows up. In (3), the denominatorE�[X1] is easy to estimate, but the numerator is hard to estimate because it dependson rare events. In fact, denoting �Y = E�[Y1] and observing that Y1 is a non-negative integer, one has Var�[Y1] = E�[Y 21 ]��2Y � E�[Y1]��2Y = �Y (1��Y ), sothe squared relative error satis�esRE2[Y1] = Var�[Y1]�2Y � 1�Y � 1!1 (4)as �Y ! 0. Following [Chang et al. 1994], we will use IS for the numerator of (3)and not for the denominator.Let S� denote the set of sources feeding q�. The IS strategy for increasing thetra�c towards q� is to increase r01 and r11 in the matrix R, for all the sources thatbelong to S� and only those, so that the total long run arrival rate at q� becomeslarger than the service rate. The system starts with an empty bu�er at q� (astate in A) and the change remains in e�ect until the bu�er at q� empties again oroverows. When the bu�er overows, R is set back to its original for all the sourcesuntil the bu�er at q� empties again, which marks the end of the A-cycle. We callthis an A-cycle with IS . Under this strategy, if the tra�c to q� can be increasedsu�ciently, cell losses are no longer rare events. This can certainly be achieved ifm� > c�, where m� is the cardinality of S� and c� = c`� is the service rate at thetarget node.It remains to decide how to change R. For a real-valued parameter �, de�ne�(�) = � r00 r01e�r10 r11e� � ;let �(�) be the spectral radius (largest eigenvalue) of �(�), and let (f0(�); f1(�)) bethe corresponding eigenvector, so that� r00 r01e�r10 r11e� �� f0(�)f1(�)� = �(�)� f0(�)f1(�)� :The eigenvalue �(�) can be written explicitly as�(�) = 12 �r00 + r11e� +q(r00 � r11e�)2 + 4e�r01r10� :For IS, we will change R to the stochastic matrix~R = � ~r00 ~r01~r10 ~r11 � = 1�(�) � r00 r01e�f1(�)=f0(�)r10f0(�)=f1(�) r11e� � :This formulation is quite exible, because the mean arrival rate from a source canbe set to an arbitrary value between 0 and 1 by choosing an appropriate �, and itleads to important simpli�cations in the likelihood ratio over an A-cycle, as we willsee.During a given A-cycle, let Nij be the number of times a source in S� goes fromstate i to state j while using the probabilities ~rij , for i = 0; 1 and j = 0; 1. The totalnumber of transitions generated from ~R is then NT = N00+N01+N10+N11 = m�t,



Small Cell Loss Ratios in ATM via IS � 7where t is the number of time steps where IS is on. The state transitions of thesources are assumed to occur right before the (discrete) times of cell production.The number of cells generated for q� during the time interval (0; t] is thus N01+N11.If the bu�er overows at time t, that number should be approximately equal to thenumber of cells required to �ll up the bu�er plus those that are served at q� duringthat time period, i.e., approximately B� + c�t, where B� is the bu�er size at q�.The di�erence � = N01+N11�B�� c�t can be written as � = Qt+Lt�Q0�Ft,where Q0 and Qt are the numbers of cells already generated and on their way tonode q� at time 0 and at time t, respectively, Lt is the number of cells headed to q�but lost due to bu�er overow either at q� or upstream during (0; t], and Ft is thedi�erence between the total capacity of service c�t of the server at q� during (0; t]and the actual number of cells served at q� during that interval of time. We assumethat at the levels upstream of q�, the increase of tra�c when using ~R instead of Ris divided among several nodes and the bu�er sizes at these nodes remain almostempty most of the time, whereas the server at q� is almost always busy, so Qt, Lt,Q0, and Ft remain small. This is typical.The likelihood ratio associated with this change of probabilities isL = �r00~r00�N00 �r01~r01�N01 �r10~r10�N10 �r11~r11�N11= W (�)�(�)NT exp[��(N01 +N11)]= W (�) exp[m�t ln�(�)� �(B� + c�t+�)] (5)where W (�) = (f0(�)=f1(�))N01�N10 :If V is a random variable de�ned over an A-cycle with initial state that has distribu-tion �, E�[V ] = ~E�[LV ], where ~E� denotes the expectation under the probabilities~R, over an A-cycle with IS, with initial state drawn from �. Thus, computing LVover the A-cycle with IS yields an unbiased estimator of E�[V ].In (5), jN01 � N10j in W (�) is bounded by m�, exp(��B�) is a constant, andthe variance of exp(���) is expected to remain under control even for large t. Anannoying term that remains is exp[t(m� ln�(�)��c�)], and our strategy is to simplykill it by choosing � = �� > 0 such thatm� ln�(��) = ��c: (6)Note that ln�(0) = 0, ln�(�)=� is strictly increasing and di�erentiable (see, e.g.,[Chang et al. 1994], Example 2.6), and ln�(�)=� ! 1 as � !1. Therefore, this ��exists if and only if m� > c�, which we assume (otherwise, one cannot overload thenode q�). With � = ��, the likelihood ratio becomesL = e���(B�+�)W (��):The variance of the estimator of �Y is ~Var�[LY1] = ~E�[L2Y 21 ]� �2Y and one has~E�[L2Y 21 ] = e���B� ~E�[LY1e����Y1W (��)]: (7)We pursue with heuristic arguments . A �rst observation is that in most casesof interest, f0(��)=f1(��) < 1, in which case W (��) is almost always less than



8 � P. L'Ecuyer and Y. Champoux1 and usually much smaller than 1. As a second observation, since q� is stablewithout IS and since IS is stopped as soon as the bu�er overows, Y1 should remain\reasonable". Thirdly, by looking at the de�nition of �, the reader would agreethat � should usually be positive and almost never take large negative values.Moreover, � should usually be larger (positive) when Y1 is larger, because a largeY1 is much more likely when Qt � Q0 is large. Therefore, e����Y1W (��) in (7) isexpected to remain small. These arguments, together with (7), lead to the verycrude approximation ~E�[L2Y 21 ] = O(e���B��Y ): (8)If (8) holds, then IS provides the approximate variance reduction factor~Var�[LY1]Var�[Y1] � ~E�[L2Y 21 ]� �2Y�Y � �2Y = O(e���B�):Independently of (8), the squared relative error of the IS estimator satis�es~RE2[LY1] = ~Var�[LY1]�2Y � ~E�[L2Y 21 ]�2Y � ~E�[(e����Y1W (��))2]~E2�[e����Y1W (��)] (9)The ratio of expectations in (9) is � 1 (by the Cauchy-Schwartz inequality) andshould remain under control when B� increases. Bounding this ratio by a constantindependent of B� would prove that the relative error under IS is bounded, but wedo not have the proof. One may be tempted to modify the IS scheme adaptively(e.g., by stopping IS earlier or later) in order to reduce the variability of the quantitye����Y1W (��). We will return to this in Section 5.What about the variance of the variance estimator, with and without IS? Theycan be compared by comparing ~E�[L4Y 41 ] with E�[Y 41 ]. Using the same heuristicargument as in (8) above, one obtain the crude approximation~E�[L4Y 41 ]E�[Y 41 ] = ~E�[L4Y 41 ]~E�[LY 41 ] = O(e�3��B�):Not only the estimator itself is less noisy with IS than without, its sample varianceis also much less noisy, and by a larger factor.We now explain how the A-cycles are simulated to estimate both the numeratorand the denominator in (3), in the IS case. One simulates two versions of each A-cycle, one with IS and the other without, both starting from the same initial state.Thus, the A-cycles come in pairs. For the ith A-cycle pair, one �rst simulates anA-cycle with IS, which provides an estimation LiYi of the numerator, where Li andYi are the value of the L and the number of cell losses for this cycle. Then, thestate of the system is reset to what it was at the beginning of this A-cycle with IS,and a second A-cycle is simulated to obtain an estimator Xi of the denominator.The �nal state of the no-IS A-cycle, which obeys approximately the distribution �,is then saved and is taken as the initial state for the next pair of A-cycles. After awarmup of n0 cycles without IS, n pairs of A-cycles are thus simulated and the ISestimator of � is �̂ = Pni=1 LiYiPni=1Xi :



Small Cell Loss Ratios in ATM via IS � 9A con�dence interval is computed using batch means as explained in Section 2.Starting the two A-cycles of each pair from the same state means that one mustsave or reset the entire state of the system after each cycle. This means copyinghow many cells are at each node of the network, the destinations of these cells,and the state (on or o� ) of each source. One can also memorize/reset the stateof each random number generator, so that the two A-cycles of a pair use commonrandom numbers. This tends to increase the correlation between LiYi and Xi, andto decrease the variance of �̂ as a result.4. SIMULATION EXPERIMENTS4.1 The SetupFor several examples and parameter sets, we ran the simulation �rst using thestandard approach without IS, for C A-cycles, and then with IS for C 0 pairs ofA-cycles. In each case, the values of C and C 0 were chosen so that the total CPUtime was about the same for both IS and no-IS, and these A-cycles were regroupedinto b = 200 batches. (For sensitivity analysis with respect to b, we tried di�erentvalues of b ranging from 50 to 3200, for several examples, and found that thevariance estimates were practically independent of b, in that range, for the valuesof C and C 0 that we use). For 1 � j � b, let �Xj and �Yj denote the samplesmeans of the Xi and Yi (or of the Xi and LiYi, for IS), respectively, within batch j.The tables that follow report the value of the CLR estimator �̂ and of its varianceestimator �̂2 = (S2Y + �̂2S2X � 2�̂SXY )=(b �X2); (10)where �̂ = �Y = �X, and �Y , �X , S2Y , S2X , and SXY are the sample means, samplevariances, and sample covariance of the �Yj and �Xj , respectively. The tables alsoreport the relative half-width �̂ = 2:57�̂=�̂ of a 99% con�dence interval on � (underthe normality assumption), the CPU time t (in seconds) required to perform thesimulation, and the relative e�ciency (e�.), de�ned as �̂2=(t�̂2). These values areall noisy estimates but give a good indication of what happens.For the cases where no cell loss was observed in all the A-cycles simulated, weput �̂ = 0 and the entries for the variance and e�ciency are left blank. Thesimulation with IS takes more CPU time than no-IS for the same total number ofsimulated cells, but the relative e�ciency takes both the variance reduction andthe overhead into account. Beware: E�ciencies and CPU times can be comparedwithin a given table, but not across the tables, because the models are di�erentand the experiments were run on di�erent machines (SUN SparcStations 4, 5, and20). Within each table, common random numbers were used for the correspondingA-cycles across the di�erent lines of the table.4.2 CLR Estimation at Level 2Example 1. Let `� = 2, B1 = 512, m0 = 2, m1 = 25, c1 = 1, c2 = 3, �1 = 50,� = 1=101 (i.e., r11 = 49=50 = 0:9800 and r00 = 0:9998) and vary the bu�er sizeB� = B2. There are 50 sources feeding the target node q�, so the average arrivalrate at q� is 50=101 � 0:495, while the service rate is 3. With these numbers,we compute �� = 0:018127, f0(��) = 0:0581, f1(��) = 0:3676, ~r11 = 0:99684,~r00 = 0:99871, and IS increases the total arrival rate at q� from 0.495 to 14.48.



10 � P. L'Ecuyer and Y. ChampouxWe took C = 7200 000 for no-IS and C 0 = 300 000 for IS (note that the IS cyclesare much longer than the no-IS on the average, and their average length increaseswith B�, because most of them �ll up the bu�er before emptying it again, whereasfor most of the no-IS cycles the bu�er empties after just a few cell arrivals). Table 1gives the results. For B2 � 512, without IS, not a single cell loss was observed, sothe estimates are useless. On the other hand, the relative error of the IS estimatorsdoes not increase signi�cantly as a function of B2, and these estimators work nicelyto estimate very small CLRs. The e�ciency decreases slowly with B2. (The outlierat B2 = 768 will be discussed later on.)Example 2. Same as the preceding example, except that B2 is now �xed at 512and we vary the average burst size �1. For large �1, � is large and easy to estimate,but not for small �1 (the other parameters remaining the same). The results are inTable 2. Without IS, cell losses were observed only for �1 � 100, and even in thatcase IS is much more e�cient. The total arrival rate with IS decreases with �1: Itgoes from 22.5 for �1 = 25 to 5.95 with �1 = 150. The squared relative error withIS (not show in the table) is approximately constant as a function of �1.Table 1. CLR estimation at level 2 for di�erent bu�er sizesB2 �̂ �̂2 �̂ CPU e�.no-IS128 2.8E-5 2.5E-11 45% 2828 0.0113256 6.8E-7 4.6E-13 257% 2828 0.0003512 0 2828768 0 28291024 0 2827IS128 3.0E-5 6.3E-13 7% 1675 0.838256 9.8E-7 1.5E-15 10% 1993 0.315512 2.5E-9 5.4E-20 24% 2593 0.043768 3.7E-11 5.9E-22 170% 3108 0.0011024 5.6E-14 3.6E-29 28% 3634 0.023Table 2. CLR estimation at level 2 for di�erent average burst sizes�1 �̂ �̂2 �̂ CPU e�.no-IS10 0 196925 0 224550 0 2828100 8.1E-5 1.0E-10 32% 4591 0.014150 3.0E-3 2.9E-9 5% 7641 0.414IS10 1.1E-39 1.5E-79 87% 2897 0.00325 2.1E-17 8.6E-36 36% 2884 0.01750 2.5E-9 5.4E-20 24% 2593 0.043100 7.2E-5 3.2E-12 6% 2445 0.659150 3.0E-3 3.9E-9 5% 2585 0.905



Small Cell Loss Ratios in ATM via IS � 11An important question now arises: How noisy are the variance and e�ciencyestimates given in the tables? One way of estimating the distribution of the varianceand e�ciency estimators is to bootstrap from the b batch means, as follows. Putthe b pairs ( �X1; �Y1); : : : ; ( �Xb; �Yb) in a table. Draw b random pairs from that table,with replacement, and compute the quantities �̂2 and e�. that correspond to thissample of size b. Repeat this N times and compute the empirical distributions ofthe N values of �̂2 and of e�. thus obtained. These empirical distributions arebootstrap estimators of the distributions of �̂2 and e�., and the interval betweenthe 2.5th and 97.5th percentiles of the empirical distribution is a 95% bootstrapcon�dence interval for the variance of �̂ or for the e�ciency. Table 3 gives the xthpercentilesQx of the bootstrap distributions obtained from the results of Example 1,for x = 2:5, 50, and 97.5, with N = 10 000.Table 3. Bootstrap quantile estimates for Example 1�̂2 e�.B2 Q2:5 Q50 Q97:5 Q2:5 Q50 Q97:5128 4.3E-13 6.2E-13 8.8E-13 0.23 0.31 0.42256 8.1E-16 1.5E-15 2.4E-15 0.08 0.12 0.19512 6.2E-21 5.4E-20 1.5E-19 7.5E-3 1.6E-2 1.0E-1768 3.6E-25 5.9E-22 1.8E-21 2.4E-4 3.7E-4 3.7E-31 024 9.9E-30 3.4E-29 8.1E-29 5.1E-3 8.7E-3 2.2E-2We already pointed out the very low empirical e�ciency of the IS estimator withB2 = 768 in Table 1. A closer look at the 200 batch means �Yj reveals that one ofthe �Yj in that case is 4:19� 10�8, whereas all others are less than 10�9, except onewhich is 1:92�10�9. It seems that a rare event has happened within that particularbatch. We did not observe such outliers for the other values of B2, but we foundsome in other examples, although rarely as excessive. The presence of these outliersis due to the important tail which remains in the distribution of �Yj after IS, despitethe large reduction in the variance of �Yj . (It would have been easy to change theexample in the paper for one that gives no outlier. Of course, this would have beenmisleading. And the current example, with the outlier, is instructive.) This outlierhas an important e�ect not only on the variance and e�ciency estimators, but alsoon the bootstrap distributions, as can be seen from Table 3 (compare the behaviorof the quantiles for B2 = 768 with those for the other values of B2). To assess thee�ect of the outlier, we repeated the bootstrap after removing it from the sample(i.e., with the 199 remaining pairs), and obtained the following quantiles for �̂2:(Q2:5; Q50; Q97:5) = (2:7� 10�25; 1:7� 10�24; 4:5� 10�24). The e�ect is signi�cant.The numbers suggest that for B2 = 768, the variance is highly overestimated,that the e�ciency is underestimated, and that the bootstrap distribution is morewidely spread than the true distribution. To con�rm these suspicions, we made 5additional replications of the entire experiment, independently, with B2 = 768 andIS. The results, in Table 4, give an idea of the variability. Table 5 provides similarresults for B2 = 512. One can see that the e�ciency estimator is (unfortunately)noisy. On the other hand, �̂ is (fortunately) much less noisy, and this is reassuring.



12 � P. L'Ecuyer and Y. ChampouxTable 4. Five additional independent replications for B2 = 768 with IS�̂ �̂2 �̂ CPU e�.1.2E-11 1.1E-24 22% 3132 0.0441.2E-11 2.1E-24 30% 3100 0.0231.1E-11 8.0E-25 21% 3108 0.0481.1E-11 1.8E-24 31% 3119 0.0229.5E-12 2.9E-25 14% 3100 0.101Table 5. Five additional independent replications for B2 = 512 with IS�̂ �̂2 �̂ CPU e�.3.1E-9 1.8E-19 35% 2592 0.0202.5E-9 2.0E-20 15% 2587 0.1153.8E-9 2.0E-18 94% 2591 0.0033.3E-9 3.5E-19 46% 2600 0.0122.4E-9 1.0E-20 11% 2588 0.2234.3 CLR Estimation at Level 3Example 3. Let `� = 3, B1 = B2 = 512, c1 = 1, c2 = c3 = 2, m0 = 2,m1 = 3, m2 = 10, �1 = 50, � = 1=21, and we vary the bu�er size B� = B3. Weassign 6 of the 60 sources to q�. One node at level 2 is fed by 2 of these 6 hotsources, while no other node at levels 1 and 2 is fed by more than 1 of them. Here,�� = 0:027287, f0(��) = 0:0851186, f1(��) = 0:839641, and the total arrival rate atq� is 6/21 without IS and 5.0 with IS. We take C = 1800 000 and C 0 = 100 000.The results appear in Table 6. Again, IS works nicely while the no-IS observesno cell loss except at the smallest bu�er size. With IS, the relative error and therelative e�ciency are almost constant with respect to B�.Example 4. Same as the preceding example, except that B3 is �xed at 256and we vary the average burst size �1. Table 7 gives the results. While no-IS hasdi�culty to observe cell losses, IS gives reasonable estimations.Table 6. CLR estimation at level 3 for di�erent bu�er sizesB3 �̂ �̂2 �̂ CPU e�.no-IS128 2.4E-5 1.1E-10 112% 7036 0.002256 0 7024512 0 7059768 0 70371024 0 7027IS128 4.1E-5 5.3E-12 14% 5779 0.056256 6.0E-7 7.2E-16 11% 7316 0.069512 3.4E-10 2.9E-22 13% 10246 0.040768 2.5E-13 1.7E-28 13% 12930 0.0291024 2.1E-16 1.4E-34 14% 15649 0.020



Small Cell Loss Ratios in ATM via IS � 13Table 7. CLR estimation at level 3 for di�erent average burst sizes�1 �̂ �̂2 �̂ CPU e�.no-IS10 0 108825 0 105050 0 1125100 2.1E-5 2.1E-10 178% 1134 0.007150 1.1E-4 1.6E-9 94% 1136 0.015IS10 5.4E-20 8.6E-42 14% 1454 0.2425 1.3E-10 2.8E-23 11% 1213 0.4950 6.0E-7 7.2E-16 11% 1042 0.48100 4.1E-5 6.7E-12 16% 881 0.28150 1.7E-4 9.1E-11 15% 813 0.384.4 CLR Estimation at Level 4Example 5. Let `� = 4, B1 = B2 = B3 = 512, c1 = c4 = 1, c2 = c3 = 4,m0 = 5, m1 = 10, m2 = 6, �1 = 50, � = 1=41, and we vary the bu�er size B� = B4.We assign 6 of the 300 sources to q�. They are distributed as in Example 3. Here,�� = 0:021218, f0(��) = 0:0813754, f1(��) = 0:644124, and the total arrival rateat q� is 6/41 without IS and 3.692 with IS. We take C = 800 000 and C 0 = 50 000.The results are in Table 8 and they resemble what was observed at level 3. For thisexample, we also varied �1 with B2 �xed at 512, and the results were qualitativelysimilar to those of Table 7.Table 8. CLR estimation at level 4 for di�erent bu�er sizesB4 �̂ �̂2 �̂ CPU e�.no-IS128 1.6E-3 7.5E-8 44% 3580 0.004256 8.3E-6 6.8E-11 255% 3593 0.013512 0 3586768 0 35921024 0 3595IS128 1.1E-3 4.0E-9 15% 1881 0.15256 5.5E-5 1.4E-10 55% 2440 0.008512 1.4E-7 4.4E-16 39% 3580 0.012768 3.6E-10 2.7E-21 36% 4488 0.0111024 1.0E-12 1.5E-26 31% 5550 0.0124.5 Other Variants of the ModelWe made several experiments with variants of the model to explore the e�ectivenessof the proposed IS strategy in other (sometimes more realistic) situations.The original model is called variant A. For variant B , the sources are no longera�ected to �xed destinations, but the destination of each cell is chosen randomly,independently of other cells, uniformly over all destinations. Variant C is similarexcept that each burst (i.e., all the cells from a source during a given on period) has



14 � P. L'Ecuyer and Y. Champouxa random destination. The IS approach of Section 3 did very badly for variant B,and gave improvement for variant C only when � was very small. An appropriate ISstrategy for these models should also change the probabilities over the destinationsto increase the tra�c towards q�. In any case, variants B and C are not realisticfor ATM switches.In variant D, each node at level 3 has k bu�ers, the �rst one receiving the cellsoriginating from the sources 1 to m0m1m2=k, the second one taking those from thesources 1 +m0m1m2=k to 2m0m1m2=k, and so on. A server at level 3 takes cellsfrom those bu�ers according to either a round robin or longest queue �rst policy.In variant E, the sources produce two classes of cells: High priority constant bitrate (CBR) cells and low priority variable bit rate (VBR) cells. The VBR sourcesare Markov modulated as before, whereas the CBR sources have constant on ando� periods (they are completely deterministic). Each node has two bu�ers, onefor the CBR cells and one for the VBR cells, and the CBR cells are always servedbefore the VBR ones.The IS strategy of Section 3 works �ne for the variants D and E: It providesreasonable estimates for values of � that standard simulation cannot handle. Wealso observed in our empirical results that the longest queue �rst policy gives aCLR generally smaller than round robin.5. REFINING THE IMPORTANCE SAMPLING SCHEME5.1 Optimizing �The IS approach of Section 3 provides a good change of measure, but based onlyon a heuristic and asymptotic argument, not necessarily the optimal value of � fora given bu�er size. Moreover, when choosing �, the approach does not take intoaccount the computational costs which may depend on �. To evaluate the sensitivitywith respect to �, we performed additional experiments where � was varied around��, and the variance and e�ciency were estimated. As a general rule, we found thatthe optimal � was around 20% to 25% less than ��, and increased the e�ciency bya factor betwen 2 to 15 compared with ��, at level 2 or 3 where m� is typicallylarge. At level 1 or 4, where m� is usually small, the optimal � tends to be muchcloser to (and no signi�cantly better than) ��. We emphasize that there is noise inthese estimated factors, due to the variance of the e�ciency estimators. However,the tendency persisted when we replicated the experiments. Such factors constitutesigni�cant e�ciency improvements, so it would make sense to use, e.g., � = (4=5)��instead of �� at levels 2 and 3, and perhaps try to optimize � adaptively in a smallneighborhood around that value, during the simulation. It is very dangerous to use� > ��, because the variance increases very fast with � in that area, and may evenbecome in�nite for �nite �. The next examples illustrate typical behavior at levels3 and 4.Example 6. Let `� = 3, B1 = B2 = B3 = 256, m0 = 2, m1 = 3, m2 = 10,c1 = 1, c2 = c3 = 2, �1 = 50, and � = 1=21. The node q� is fed by 6 sources, whosetra�c passes through as in example 3. We take C = 1920 000. Here, �� = 0:0272,and the results for di�erent values of � around �� are in Table 9. Taking � = 0:0185improves the empirical e�ciency by a factor of approximately 25 compared with ��.By examining the data more closely, we found that the e�ciency improves because



Small Cell Loss Ratios in ATM via IS � 15the smaller � gives a smaller value of S2Y =(b �X2), which is the dominant term in �̂2.Further replications showed similar results, with � = 0:0185 registering e�ciencies15 to 60 times higher than ��.Table 9. Comparing di�erent values of �, for `� = 3� �̂ �̂2 �̂ CPU e�.0.0170 6.3E-7 9.3E-17 3.9 % 16672 0.2580.0185 6.4E-7 8.0E-17 3.6 % 16744 0.3040.0200 6.4E-7 1.4E-16 4.8 % 16321 0.1760.0215 6.2E-7 1.3E-16 4.7 % 15088 0.2010.0230 6.2E-7 3.4E-16 7.7 % 14307 0.0790.0245 6.2E-7 1.4E-15 15.5 % 13701 0.0200.0260 5.7E-7 2.5E-15 22.4 % 15478 0.008! 0.0272 5.2E-7 1.7E-15 20.4 % 12945 0.0120.0290 5.2E-7 5.1E-15 35.2 % 12667 0.004Example 7. Let `� = 4, B1 = B2 = B3 = B4 = 512, m0 = 2, m1 = m2 = 5,c1 = c4 = 1, c2 = c3 = 5, � = 1=41, and �1 = 50. Only 2 sources feed the node q�.Both sources feed the same node at level 3, but di�erent nodes at levels 1 and 2.We take C = 120 000. In this case, �� = 0:0394, and the results for di�erent valuesof � are given in Table 10. In this case, taking � < �� brings no signi�cant e�ciencyimprovement. This was con�rmed by 4 additional independent replications of thisentire experiment. We made similar experiments with exactly the same data as inExample 5, with B4 = 256, and observed an e�ciency improvement by a factorbetween 1.5 and 2.Table 10. Comparing di�erent values of �, for `� = 4�=�� �̂ �̂2 �̂ CPU e�.1:00 1.73E-11 7.5E-26 4.1 % 5840 0.680:95 1.74E-11 1.2E-25 5.1 % 5810 0.440:90 1.74E-11 1.0E-25 4.7 % 5764 0.520:85 1.74E-11 9.8E-26 4.6 % 5681 0.540:80 1.72E-11 7.2E-26 4.0 % 5569 0.740:75 1.73E-11 9.4E-26 4.6 % 5398 0.590:70 1.73E-11 8.6E-26 4.4 % 5134 0.670:65 1.76E-11 1.2E-25 5.0 % 4767 0.560:60 1.76E-11 1.6E-25 5.8 % 4246 0.470:55 1.77E-11 2.5E-25 7.3 % 3470 0.360:50 1.65E-11 7.8E-25 14 % 2392 0.15



16 � P. L'Ecuyer and Y. Champoux5.2 De�ning the A-Cycles Di�erentlyInstead of starting the A-cycles when the bu�er at q� becomes empty, one can startthem when the number of cells in the bu�er crosses � upward, where � is a �xedinteger. There is essentially nothing to gain in that direction, however, becausewhen increasing � the no-IS A-cycles tend to become excessively long (typically,the bu�er at q� remains nearly empty most of the time).Another idea is to impose a lower bound, say t0, on the length of the A-cycles, toget rid of the extremely short (and wasteful) A-cycles which tend to occur frequentlyunder both the IS and no-IS setup. The A-cycle ends at the maximum time betweent0 and the �rst time when node q� becomes empty. How to choose t0? We want tochoose it large enough to make sure that most A-cycles under IS see some overow,but not too large, so that the A-cycles end at the �rst return to the empty stateafter overow. According to our arguments in Section 3, if overow occurs attime t1, then the total production by the twisted sources up to time t1 should beapproximately equal to the number of cells required to keep the server busy untiltime t1 and �ll up the bu�er at node q�, that is, m�~�t1 � B�+ c�t1, where ~� is theaverage production rate of a twisted source. The additional time t2 to empty thebu�er (with IS turned o�) should satisfy (c� �m��)t2 � B�. We want (roughly)t0 � t1 + t2, i.e., t0 � B�m�~�� c� + B�c� �m�� :We suggest taking t0 somewhere between 20% and 50% of the value of that upperbound. In our experiments, this always gave e�ciency improvement. Since thevariance associated with the IS cycles is the dominant term in the variance of �̂,a good strategy is to choose t0 just large enough so that most of the IS cycles �llup the bu�er. Taking t0 too large (close to t1 + t2) is not a good idea because itmakes us spend too much time on the no-IS cycles without bringing much additionalvariance reduction. Beyond a certain point, increasing t0 eventually decreases thee�ciency.Example 8. We used the same data as in Example 5 (for `� = 4), with B4 = 256and C 0 = 160 000, with IS. For � = ��, we have t1 � 95 and t2 � 300. For� = 0:80 ��, we have a total arrival rate of 1:82 with IS, which give t1 � 312 andt2 � 300. Table 11 give the results. With � = ��, raising t0 from 0 to 75 increasesthe (empirical) e�ciency approximately by a factor of 4. With � = 0:8 ��, raisingt0 from 0 to 150 improves the (empirical) e�ciency by a factor of more than 10.This gain is related to the rapid increase of �X, which decreases �̂2 (see Eq. (10)),when t0 is small. We made 2 additional replications of this experiments and theresults were similar (although the empirical e�ciency for � = �� and t0 = 0 was0.02 and 0.04, which suggests that the factor of e�ciency improvement from thissetup to � = 0:8 �� and t0 = 150 is more around 20 to 30 instead of 10).Example 9. Let `� = 3, B1 = B2 = B3 = 256, m0 = 2, m1 = 3, m2 = 10,c1 = 1, c2 = c3 = 2, � = 1=21 and �1 = 50. Six sources feed the target nodeq�, as in example 3, which gives an average arrival rate of 6=21 � 0:286 to thatnode. We run simulations for di�erent values of t0 both with the ~rij associatedto �� = 2:73 � 10�2 (with ~� = 5=6, a total arrival rate of 5:00, t1 � 85, and



Small Cell Loss Ratios in ATM via IS � 17Table 11. Imposing Lower Bounds on the A-cycle lengths, for `� = 4t0 �̂ �̂2 �̂ �X Var( �X) CPU e�.� = ��0 4.2E-5 4.2E-11 39.2 % 0.2 0.03 404 0.1025 5.1E-5 2.9E-12 8.6 % 4.3 0.66 4328 0.2050 4.8E-5 8.8E-13 5.0 % 8.1 1.25 7089 0.3775 4.9E-5 5.1E-13 3.7 % 11.7 1.76 9097 0.52100 4.8E-5 5.0E-13 3.8 % 15.8 2.43 10523 0.43150 5.0E-5 6.7E-13 4.2 % 23.1 2.90 12501 0.29200 4.9E-5 7.6E-13 4.5 % 30.7 3.25 13890 0.23250 5.0E-5 3.0E-12 8.9 % 38.0 5.45 14933 0.06� = 0:8 ��t0 �̂ �̂2 �̂ �X Var( �X) CPU e�.0 5.1E-5 8.2E-11 45.3 % 0.2 0.03 399 0.0825 4.7E-5 1.6E-12 6.9 % 4.3 0.66 2641 0.5250 4.8E-5 6.6E-13 4.4 % 8.1 1.24 4646 0.7575 4.9E-5 4.5E-13 3.5 % 11.7 1.76 6397 0.83100 4.8E-5 3.0E-13 2.9 % 15.7 2.42 7886 0.98150 4.8E-5 1.9E-13 2.4 % 23.0 2.90 10468 1.13200 4.8E-5 2.5E-13 2.6 % 30.7 3.24 12645 0.75250 4.8E-5 2.2E-13 2.5 % 37.9 5.45 14439 0.73t2 � 150) and 0:80 �� = 2:18 � 10�2 (with ~� � 0:54, a total arrival rate of 3:26,t1 � 200, and t2 � 150). The results are in Table 12. Using t0 = 100 togetherwith � = 0:8�� gives the best empirical e�ciency in this case, about 20 times theempirical e�ciency observed with t0 = 0 and � = ��.Table 12. Imposing Lower Bounds on the A-cycle lenghts, for `� = 3t0 �̂ �̂2 �̂ CPU e�.��0 8.6E-7 3.4E-14 55.5 % 451 0.04825 6.4E-7 1.1E-15 13.3 % 6821 0.05450 9.2E-7 9.2E-14 84.1 % 8908 0.00175 6.7E-7 6.1E-16 9.5 % 9823 0.075100 6.9E-7 2.9E-15 20.0 % 10409 0.016150 6.9E-7 1.5E-15 14.6 % 11781 0.026200 6.3E-7 4.3E-15 26.9 % 12118 0.007250 5.2E-7 1.2E-15 17.0 % 12880 0.0180.8 ��0 5.5E-7 1.7E-15 19.2 % 455 0.4025 6.5E-7 1.3E-16 4.5 % 5355 0.6050 6.4E-7 5.4E-17 3.0 % 8298 0.9075 6.5E-7 5.3E-17 2.9 % 10209 0.78100 6.4E-7 3.3E-17 2.3 % 11531 1.07150 6.5E-7 5.0E-17 2.8 % 13387 0.63200 6.4E-7 6.1E-17 3.1 % 14784 0.46250 6.6E-7 1.0E-16 3.9 % 15938 0.27



18 � P. L'Ecuyer and Y. Champoux5.3 Stopping IS EarlierSuppose that `� = 4 and that we use IS. When the target bu�er at q� overows andIS is turned o�, there may be several cells already in the network at previous levels,and this may produce more overow than necessary. Because of that, it could makesense to turn o� IS earlier, e.g., when the total number of cells in bu�er q� or atprevious nodes but on their way to q�, reaches some threshold N0. [Beck et al.1998; Dabrowski et al. 1998] use this criterion for turning o� IS, with N0 = B�.Our experiments with this idea showed no signi�cant improvement compared withthe method which turns o� IS when q� overows. With N0 < B�, this idea seemsto reduce the e�ciency instead. Here is a typical illustration.Example 10. Let `� = 4, B1 = B2 = B3 = B4 = 512, m0 = 2, m1 = 5, m2 = 5,c1 = c4 = 1, c2 = c3 = 5, � = 1=5, and �1 = 50. Two sources feed the node q�,which gives an arrival rate at q� of 2=5 = 0:4. When IS is applied the arrival rateincreases to 1:5887. These 2 hot sources feed di�erent nodes at level 2. In Table 13,CL is the average number of cell losses per cycle with IS and N0 =1 correspondsto turning o� IS when q� overows. Taking N0 between 520 and 600 appears to beabout as good as our usual method, but N0 � 510 is de�nitely worse.Table 13. Di�erent stopping criteria for ISN0 �̂ �̂2 �̂ �Y Var( �Y ) CPU e�. (�10�3)500 4.72E-9 6.7E-18 19.8% 1.51 0.188 3308 1.1510 4.86E-9 1.5E-17 29.2% 1.97 0.148 3354 0.5520 4.36E-9 1.8E-18 11.3% 2.77 0.322 3397 4.0530 4.56E-9 2.0E-18 11.1% 3.55 0.340 3433 3.7540 4.60E-9 2.1E-18 11.3% 4.37 0.515 3508 3.5550 4.62E-9 1.3E-18 8.9% 5.15 0.469 3539 5.4560 4.68E-9 1.4E-18 9.3% 6.24 0.610 3659 4.8570 4.76E-9 1.5E-18 9.4% 7.42 0.854 3699 4.5580 4.76E-9 1.4E-18 8.9% 8.36 0.935 3603 5.1590 4.66E-9 1.3E-18 8.8% 9.34 1.235 3667 5.31 4.71E-9 1.4E-18 9.1% 29.5 3.947 3959 4.55.4 Retroactive Manipulations to Control the OverowThe criterion for turning o� IS earlier, considered in the previous subsection, israther blind. Remember that all the randomness in our model is in the statetransitions of the sources. It is therefore possible, in principle, to compute at anygiven point t in time whether or not there will be overow at q� caused only bythe cells generated so far, and turn o� IS as soon as this happens. In this way, ISis turned o� before the target bu�er �lls up, but only when overow is guaranteedto occur. In practice, this can be implemented by actually running the simulationuntil there is overow, and then turning o� IS retroactively right after the time twhen all the cells having reached q� when the �rst cell overows (at time t+ �, say)were already produced by a source. This is complicated to implement and impliessigni�cant overhead. Despite spending a lot of time on experimenting with thisidea, we were unsuccessful in improving the e�ciency with it.



Small Cell Loss Ratios in ATM via IS � 195.5 Combining IS with Indirect Estimation[Srikant and Whitt 1997] proposed the following indirect estimator of the CLR.(This approach was presented by Ward Whitt during the keynote address of the1997 Winter Simulation Conference.) The CLR at node q� satis�es� = 1� �=�0 = 1� Lc�=�0 (11)where �0 = m0�1=(�0+�1) is the total (average) production rate of the m0 sourcesfeeding node q�, � is the (average) output rate from node q�, 1=c� is the service timeat node q�, and L is the steady-state fraction of time where the server is busy atnode q�. The second equality follows from the Lindley equation L = �=c�. Using(11), � can be estimated indirectly by estimating L. [Srikant and Whitt 1997]showed that the indirect estimator brings substantial variance reduction in heavytra�c situations, especially for queues with several servers and random servicetimes, but not in light tra�c. In our context, the tra�c at q� is light, but becomesheavy when IS is applied, so it was not clear to us a priori if the indirect estimatorcombined with IS could help.The results of our extensive numerical experiments can be summarized as follows.For a single queue with several servers, without IS, the indirect estimator reducesthe variance by large factors when the total arrival rate exceeds the service capacity,and increases the variance by large factors when the total arrival rate is much lessthan the service capacity. This is true even for constant service times and single-server queues, but less servers or less variability in the service times favors thedirect estimator. A larger bu�er at q� tends to accentuate the factor of variancereduction or variance increase. When the indirect estimator was combined with IS,we observed a variance increase instead of a variance reduction, even if the totalarrival rate after IS was larger than the service rate. An intuitive explanation seemsto be that because IS is turned o� as soon as the bu�er overows, the conditionsfavoring the indirect estimator (sustained overloading at q�) do not hold for a largeenough fraction of the time.6. FUNCTIONAL ESTIMATIONSo far we have considered the problem of estimating the CLR for �xed values of themodel parameters. But in real life one is often interested in a wide range of valuesof the rij 's and of the bu�er sizes. We now examine how the CRL can be estimatedin functional form, as a function of the matrix R, from a single simulation, and alsoas a function of B� by re-using certain portions of the simulation.Let R and ~R be as before, where ~R is the twisted version of R determined as inSection 3, but suppose that we now want to estimate the CLR � for R replacedby �R, for several �R in some neighborhood of R, by simulating pairs of A-cycleswith ~R and R only. This can be achieved as follows. One simulates pairs of A-cycles and computes Xi, Yi, and the likelihood ratio Li for each pair just as before.Afterwards, the estimators LiYi and Xi of the numerator and the denominator aremultiplied by the likelihood ratiosL0i( �R) = � �r00r00�N 000 � �r01r01�N 001 � �r10r10�N 010 � �r11r11�N 011



20 � P. L'Ecuyer and Y. Champouxand L00i ( �R) = � �r00r00�N 0000 � �r01r01�N 0001 � �r10r10�N 0010 � �r11r11�N 0011 ;respectively, where N 0kl and N 00kl are the total number of transitions of the sourcesfrom state k to state l during the A-cycle with IS and without IS, respectively. Thefunctional estimator of � is then�̂( �R) = Pni=1 L0i( �R)LiYiPni=1 L00i ( �R)Xiand it can be evaluated a posteriori for as many di�erent matrices �R as desired,as long as �R is not too far away from R. The additional overhead during thesimulation amounts only to storing the values of N 0kl and N 00kl, together with thoseof Xi and LiYi, for all the pairs of A-cycles. This type of functional estimator basedon a likelihood ratio is discussed in a more general context in [L'Ecuyer 1993] and[Rubinstein and Shapiro 1993], for example.Example 11. We give an example of functional estimation at level 4. Let B1 =B2 = B3 = B4 = 500, m0 = 4, m1 = 6, m2 = 8, c1 = c4 = 1, c2 = c3 = 3, �1 = 50,and � = 1=21. We assign 4 sources to the node q� and take C = 150 000. We �nd~R and run the simulation as usual, and then compute two functional estimators.For the �rst one, �1 is �xed and � is estimated as a function of �0, whereas forthe second one, � = �1=(�1 + �0) is �xed and � is estimated as a function of �1.Tables 14 and 15 give a partial view of the results.The relative half-widths of pointwise 99% con�dence interval, �̂, remain reason-able for a good range of values of �0 and �1. If one is interested in a wider region,that region can be partitioned into a few subintervals and a di�erent ~R can be usedfor each subinterval.Table 14. Functional estimation at level 4, for �xed �1�0 �̂ �̂2 �̂500 2.4E-6 6.5E-14 27%541 1.6E-7 1.7E-14 22%588 9.8E-7 4.0E-15 17%645 6.0E-7 8.8E-16 13%714 3.5E-7 1.9E-16 10%800 2.0E-7 4.3E-17 7%909 1.1E-7 1.0E-17 7%1050 5.8E-8 2.7E-18 7%1250 2.8E-8 7.2E-19 8%1540 1.2E-8 2.1E-19 10%We now consider the estimation of � as a fonction of B�. For this, one cannotuse the likelihood ratio approach, because B� is not a parameter of a probabilitydistribution in the model. However, observe that when an A-cycle is simulated, thesample path of the system is independent of B� as long as there is no overow at



Small Cell Loss Ratios in ATM via IS � 21Table 15. Functional estimation at level 4, for �xed ��1 �̂ �̂2 �̂25.0 2.3E-13 3.7E-27 68%29.4 1.2E-11 5.8E-24 50%32.3 7.9E-11 1.2E-22 36%35.7 5.0E-10 1.6E-21 21%40.0 3.2E-9 1.9E-20 11%45.5 2.1E-8 4.2E-19 8%52.6 1.4E-7 1.4E-17 7%62.5 9.0E-7 9.0E-16 9%76.9 6.0E-6 1.8E-13 18%q�. Therefore, when estimating � for several large values of B�, the initial part ofthe simulation (until overow occurs) does not have to be repeated for each value.One can start with a single simulation (or sample path) and create a new subpath(or branch) each time the number of cells at q� exceeds one of the bu�er sizes ofinterest. If one is interested in N distinct values of B�, one eventually ends upwith N parallel simulations, but a lot of work is saved by starting these parallelsimulations only when needed. This type of approach is studied in more generalityin [L'Ecuyer and V�azquez-Abad 1997]. In our experiments with this method, thesavings in CPU time were typically around 50%.The development of Section 3 suggests an approximately linear relationship be-tween ln� and B�, at least asymptotically. Our empirical experiments con�rm thatthe linear model ln� = �0+�1B� �ts very well indeed, for large enough B�. We cantherefore recommend, for estimating � as a function of B�, to perform simulationsat 4 or 5 values of B� only, and �t a linear model to the observations (B�; ln �̂) byleast squares regression.As an illustration, for the same model as in Example 11 and `� = 4, Figure 2shows the 10 points (B�; ln �̂), for B� = 250; 300; : : : ; 700. It is clear from the �gurethat a linear model is an excellent �t.
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