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The cell-loss ratio at a given node in an ATM switch, defined as the steady-state fraction of packets
of information that are lost at that node due to buffer overflow, is typically a very small quantity
which is hard to estimate by simulation. Cell losses are rare events and importance sampling is
normally the appropriate tool in this situation. However, finding the right change of measure is
generally hard. In this paper, importance sampling is applied to estimate the cell-loss ratio in an
ATM switch modeled as a queueing network fed by several sources emitting cells according to a
Markov-modulated on/off process, and where all the cells from the same source have the same
destination. The numerical experiments show impressive efficiency improvements.
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INTRODUCTION

An Asynchronous Transfer Mode (ATM) communication switch can be modeled as
a network of queues with finite buffer sizes. Packets of information (called cells)
join the network from several sources according to stochastic processes, and some
cells may be lost due to buffer overflow. The long-term (or steady-state) fraction
of cells that are lost at a given node is called the cell-loss ratio (CLR) at that node.
Typical CLRs are small (e.g., less than 10~8) and the cell losses tend to occur in
bunches. Cell losses are thus so rare that estimating the CLR with good precision
by straightforward simulation is very time-consuming, and in some cases practically
impossible.
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Importance sampling (IS) is the method of choice in such a situation. IS changes
the probability laws governing the system so that the rare events of interest oc-
cur more frequently, eventually to the point of being no longer rare events. The
estimator is modified accordingly so that it remains unbiased: It is multiplied by
a quantity called the likelihood ratio. The hope is that the IS estimator is more
efficient; i.e., that the product of its variance and its computing cost is smaller than
for the regular estimator. The most difficult problem in applying IS is (in general)
to figure out how to change the probability laws so that the variance gets reduced
to an acceptable level. Theoretically, there always exists a change of measure that
reduces the variance to an arbitrary small positive value, but finding it is usually
much too complicated and not practical.

[Chang et al. 1994] derived an asymptotically optimal change of measure, based
on the theories of effective bandwidth and large deviations, for estimating the prob-
ability p that a queue length exceeds a given level x before returning to empty,
given that the queue is started from empty, for a single queue with multiple inde-
pendent arrival sources. Roughly, asymptotically optimal means that the standard
error of the IS estimator converges to zero exponentially fast with the same decay
rate (exponent) as the quantity to be estimated, as a function of the level z. A
precise definition can be found in [Chang et al. 1994]. An asymptotically optimal
change of measure does not minimize the variance, but it can reduce it by several
orders of magnitude. [Chang et al. 1994] extended their method to intree networks
of queues, which are acyclic tree networks where customers flow only towards the
root of the tree. For intree networks, they gave an upper bound on the variance
of the IS estimator, and conjectured that this estimator is asymptotically optimal
(or almost), but did not prove it. In numerical experiments with queueing models
with a single node, or two nodes in series, they observed large variance reductions
with their IS estimator.

The probability p just described is closely related to the CLR when z equals the
buffer size (it measures almost the same events), so it seems quite reasonable to
use the change of measure proposed by [Chang et al. 1994] to estimate the CLR as
well, as pointed out by these authors themselves.

[Beck et al. 1998; Dabrowski et al. 1998] also study the application of IS to a
discrete-time queueing network model of an ATM switch. Their model is very
general. Assuming infinite buffers at all nodes, they obtain the asymptotics of the
tail of the queue size distribution in steady-state, and they use that to propose a
change of measure for estimating the CLR at a given node. Their IS methodology
is related (but different) to that of [Chang et al. 1994].

For general background on efficiency improvement (or variance reduction), we
refer the reader to [Bratley et al. 1987; Fishman 1996; Glynn 1994; L'Ecuyer 1994].
IS is well explained in [Glynn and Iglehart 1989; Heidelberger 1995; Shahabuddin
1994] and the several other references given there. Application of IS to the simu-
lation of communication systems is studied by [Bonneau 1996; Chang et al. 1994;
Chang et al. 1995; Heegaard 1998], among others.

In this paper, we consider queueing networks having a large number of nodes, fed
by a large number of Markov-modulated on/off sources. The nodes are organized in
successive layers and each cell (or customer) goes through exactly one node of each
layer, following a path uniquely determined by its source. This type of queueing
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network is a widely used model for the traffic in an ATM switch. We apply IS
to estimate the CLR at any pre-specified node of the network, using a change of
measure based on the same approach as [Chang et al. 1994]. We obtain spectacular
efficiency improvements for both small and large networks.

The model is defined is Section 1. Section 2 recalls the A-cycles method and
the batch-means method, which we use jointly to compute confidence intervals. In
Section 3 we explain how IS is applied to estimate the CLR at a given target node.
The idea is to increase the traffic to the target node by increasing the average on/off
ratio for all the sources (and only those) feeding that node. The exact change of
measure is determined by a heuristic. Numerical results are reported in Section 4.
In Section 5, we consider various refinements of the basic IS scheme, and test them
empirically to see how much additional variance reduction they can bring. Section 6
explains how the CLR can be estimated in functional form, as a function of certain
parameters of the model. Additional numerical results and details can be found in
[Champoux 1998]. A preliminary report of this work was presented in [L’Ecuyer
and Champoux 1996].

1. THE MODEL

We consider an acyclic queueing network with 4 layers of nodes, as illustrated in
Figure 1. Each node is a single-server FIFO queue with finite buffer size. The /-th
layer is called level £ and the nodes at level 4 transmit cells to destinations. Levels
2 and 3 have my nodes each, while levels 1 and 4 have miyms nodes each. Each
level-2 node is fed by my level-1 nodes, while each level-3 node feeds m; nodes
at level 4. Cells (i.e., packets of information) arrive at level 1, visit one node of
each level, in succession, then leave the network. Each node at level 1 is fed by mq
arrival sources. These mgmims sources are assigned to specific destinations; i.e.,
all the cells produced by a given source follow exactly the same path. The arrival
sources are time-synchronized, but otherwise independent, stochastically identical,
discrete-time on/off Markov modulated processes. A source is off for a while,
then on for a while, then off again, and so on. The source produces one cell per
unit of time during a on period, and none during a off period. The durations
of off and on periods are independent geometric random variables with means g
and K, respectively, so the arrival rate is p = k1/(k1 + ko). The parameter x;
is called the average burst size. If we denote off and on by 0 and 1, respectively,
our assumptions imply that the state of a source evolves as a discrete-time Markov
chain with two states, 0 and 1, with transition probability matrix

_ Too To1 _ 1-— 1//‘.}0 1//{,0

R_<7‘10 7‘11)_< 1/k1 11/"""1)- W
These Markov chains comprise all the stochasticity of the model; everything else is
deterministic. The arrival sources are numbered from 1 to mgmim» and the nodes
are numbered from 1 to 2my (14 m,), level by level. When two or more cells reach a
given node simultaneously, they are placed in the queue (the buffer) by order of the
number of the node or source where they come from. This deterministic ordering
rule is for simplification and tends to favor the cells coming from certain sources

and nodes. One could order the cells randomly instead, but that would have no
major qualitative impact on our results.
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Fig. 1. An ATM Switch Modeled as 4 Layers of Queues with Finite Buffer Sizes

All the nodes at level £ have the same buffer size B, and the same constant service
time 1/c¢s (so ¢ is the service rate). Whenever a cell arrives at a node where the
buffer is full, it is lost and disappears from the network. Our aim is to estimate
the CLR at a given node of the network, say node ¢* at level £*, where the CLR is
defined as

p= lim E[NL(1))/E[Nx(0)]. (2)

where Nr(t) is the total number of cells reaching node ¢* during the time interval
(0,] and Ni(t) is the number of those cells that are lost due to buffer overflow
at node ¢*. We assume that the total arrival rate is less than the service rate at
each node, so that the network is stable. That is, if the cells from m sources pass
through a given node at level £, then mp < ¢¢, and this holds for all nodes.

To simplify the discussion, we assume that each ¢, is an integer. Since the buffers
are finite, the model is then a discrete-time Markov chain with finite state space.
It is also aperiodic, and the zero state (the state where all sources are off and all
the nodes are empty) is positive recurent and is accessible from every other state.
As a consequence, there exists a limiting distribution v over the state space of that
chain, defined as

v(:) = nll)ngo P{state € - at time n}.

This model could of course be generalized in several directions and our approach
would be easy to adapt for certain types of generalizations. For example, the buffer
sizes and constant service times can differ between nodes at a given level, different
sources can have different transition probability matrices R, and a source could
produce a cell only with some probability when it is on. IS would still work nicely
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in these situations. We keep our simpler model to avoid burying the key ideas under
a complicated notation. On the other hand, if the destinations were determined
randomly and independently for each cell, or for each on period at each source,
finding an efficient way of applying IS would be more difficult. Our fixed source-
destination assignment model is reasonable because in the ATM switches that we
have in mind, a typical connection between a source and a destination lasts for
several orders of magnitude longer than the sevice times 1/¢y.

2. A REGENERATION APPROACH FOR CONFIDENCE INTERVALS

IS is generally easier to apply to a model defined over a short time horizon or when
the model’s evolution can be decomposed into short regenerative cycles. Here, the
model is over an infinite horizon, and to decompose its trajectory into cycles, we
apply a generalization of the classical regenerative method introduced by [Nicola
et al. 1993; Chang et al. 1994], and called the A-cycle method. Let A be a subset
of the state space of the system. Here we take A as the set of states for which the
buffer at ¢* is empty. Let to = 0 and let #1, ¢, ... be the successive hitting times of
the set A;i.e., t; = inf{t > t;_1 : the buffer at ¢* is empty at time ¢ but not at time
t —1}. The system state at those hitting times ¢; has a pointwise limit distribution
m, over A, defined by:
7(-) = lim P{state € - at time t;}.
1—> 00

The process over the time interval (¢;_1,t;] is called the ith A-cycle. Let X; be
the number of cells reaching node ¢* during the ith A-cycle, and Y; be the number
of those X; cells that are lost due to buffer overflow at ¢*. Let E, denote the
mathematical expectation over an A-cycle when the initial state (at the beginning
of the A-cycle) has distribution 7. One has:

E.[Y1]

Eﬂ[Xl]- (3)

/'L =
In the limit, as the number of A-cycles increases, the average distribution of the
system states at the times ¢; approaches w. By taking the average of the Y; and Xj;
over the first n A-cycles, one obtains the consistent estimator of u:

Ia — Z?:l Y;
Z?:1 Xi

This estimator is biased unless the initial state at time 0 is generated from 7, which
is usually much too hard to achieve, but the bias can be reduced by warming up
the system, e.g., by running ng + n A-cycles and discarding the first ng from the
statistics.

The A-cycles are asymptotically identically distributed (with probability law «
for their initial state) but they are dependent. To reduce the dependence, and
also improve the normality, one can batch the cycles, as in the usual batch means
method. One then applies the standard methodology for computing a confidence
interval for a ratio of expectations, using the batch means as observations, and
obtain a confidence interval for g [Law and Kelton 1991].
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3. APPLYING IMPORTANCE SAMPLING

When p is very small, the vast majority of the Y;’s in (2) are 0 and the relative error
of i (i.e., its standard deviation divided by u) blows up. In (3), the denominator
E,[X1] is easy to estimate, but the numerator is hard to estimate because it depends
on rare events. In fact, denoting py = E.[Y;] and observing that Y; is a non-
negative integer, one has Var,[Vi] = E;[V?] — p3 > E-[Vi] — 3 = uy (1 — py ), so
the squared relative error satisfies

_ Var,[V;] 1

REZ[Yl]—TZH—Y—léoo (4)
Y

as puy — 0. Following [Chang et al. 1994], we will use IS for the numerator of (3)
and not for the denominator.

Let S* denote the set of sources feeding ¢*. The IS strategy for increasing the
traffic towards ¢* is to increase rg; and r1; in the matrix R, for all the sources that
belong to S* and only those, so that the total long run arrival rate at ¢* becomes
larger than the service rate. The system starts with an empty buffer at ¢* (a
state in A) and the change remains in effect until the buffer at ¢* empties again or
overflows. When the buffer overflows, R is set back to its original for all the sources
until the buffer at ¢* empties again, which marks the end of the A-cycle. We call
this an A-cycle with IS. Under this strategy, if the traffic to ¢* can be increased
sufficiently, cell losses are no longer rare events. This can certainly be achieved if
m* > ¢*, where m* is the cardinality of S* and ¢* = ¢4+ is the service rate at the
target node.

It remains to decide how to change R. For a real-valued parameter 6, define

(4
_ [ Too To1€
re = <7“10 7“11€0> ’

let A(6) be the spectral radius (largest eigenvalue) of T'(#), and let (fo(6), f1(6)) be
the corresponding eigenvector, so that

(o ) (1) =0 (36

The eigenvalue A\(f) can be written explicitly as

1
)\(9) = 5 (’I’oo + ,,,1160 + \/(’I’oo — T1160)2 + 46'97'01’['10) .

For IS, we will change R to the stochastic matrix

m= (T ) = 5w (o ™ e ™)

This formulation is quite flexible, because the mean arrival rate from a source can
be set to an arbitrary value between 0 and 1 by choosing an appropriate 6, and it
leads to important simplifications in the likelihood ratio over an A-cycle, as we will
see.

During a given A-cycle, let N;; be the number of times a source in S* goes from
state i to state j while using the probabilities 7,5, for i = 0,1 and j = 0, 1. The total
number of transitions generated from Ris then Ny = Noo+ No1 + N1g+ Nqi1 = m*t,
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where t is the number of time steps where IS is on. The state transitions of the
sources are assumed to occur right before the (discrete) times of cell production.
The number of cells generated for ¢* during the time interval (0, ] is thus Ng1 + Ny1.
If the buffer overflows at time ¢, that number should be approximately equal to the
number of cells required to fill up the buffer plus those that are served at ¢* during
that time period, i.e., approximately B* + ¢*t, where B* is the buffer size at ¢*.
The difference A = Ngj + N1 — B* — ¢*t can be written as A = Q; + L; — Qo — F},
where (Qy and @; are the numbers of cells already generated and on their way to
node ¢* at time 0 and at time ¢, respectively, L; is the number of cells headed to ¢*
but lost due to buffer overflow either at ¢* or upstream during (0,¢], and F} is the
difference between the total capacity of service ¢*t of the server at ¢* during (0, ¢]
and the actual number of cells served at ¢* during that interval of time. We assume
that at the levels upstream of ¢*, the increase of traffic when using R instead of R
is divided among several nodes and the buffer sizes at these nodes remain almost
empty most of the time, whereas the server at ¢* is almost always busy, so Q;, L;,
o, and F; remain small. This is typical.
The likelihood ratio associated with this change of probabilities is

= () () GG
= W(O)ABO)NT exp[—8(No1 + Ni1)]
= W(f) exp[m*tIn A(8) — (B* + ¢t + A)] (5)

where

W) = (fo(®)/f(8)" e

If V is a random variable defined over an A-cycle with initial state that has distribu-
tion 7, E;[V] = Ex[LV], where E, denotes the expectation under the probabilities
R, over an A-cycle with IS, with initial state drawn from x. Thus, computing LV
over the A-cycle with IS yields an unbiased estimator of E[V].

In (5), |No1 — Nig| in W(6) is bounded by m*, exp(—#B*) is a constant, and
the variance of exp(—#A) is expected to remain under control even for large ¢. An
annoying term that remains is exp[t(m* In A(8) —6c*)], and our strategy is to simply
kill it by choosing § = 6* > 0 such that

m*In A(6%) = 0"c. (6)

Note that In A(0) = 0, In A(A)/@ is strictly increasing and differentiable (see, e.g.,
[Chang et al. 1994], Example 2.6), and In A(#)/8 — 1 as § — oco. Therefore, this 6*
exists if and only if m* > ¢*, which we assume (otherwise, one cannot overload the
node ¢*). With 8 = 6*, the likelihood ratio becomes

L = e B+ (9%,
The variance of the estimator of py is Varg[LY:] = E-[L?Y?] — 3 and one has
EL[L?Y?] = e " B R [LY;e AV W (67)]. (7)

We pursue with heuristic arguments. A first observation is that in most cases
of interest, fo(6*)/f1(6*) < 1, in which case W(#*) is almost always less than
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1 and usually much smaller than 1. As a second observation, since ¢* is stable
without IS and since IS is stopped as soon as the buffer overflows, Y7 should remain
“reasonable”. Thirdly, by looking at the definition of A, the reader would agree
that A should usually be positive and almost never take large negative values.
Moreover, A should usually be larger (positive) when Y7 is larger, because a large
Y; is much more likely when Q; — Qo is large. Therefore, e %" 2Y, W (6*) in (7) is
expected to remain small. These arguments, together with (7), lead to the very
crude approximation

BaL2V2] = 0(e "B py), (8)
If (8) holds, then IS provides the approximate variance reduction factor
Var,[LY:] _ E.[L?Y?] —u}

> =0(e "B,
Vel S o o)

Independently of (8), the squared relative error of the IS estimator satisfies

Ry = VRl BV Bl VW)

Hy py T E2enAviw(97)]

The ratio of expectations in (9) is > 1 (by the Cauchy-Schwartz inequality) and
should remain under control when B* increases. Bounding this ratio by a constant
independent of B* would prove that the relative error under IS is bounded, but we
do not have the proof. One may be tempted to modify the IS scheme adaptively
(e.g., by stopping IS earlier or later) in order to reduce the variability of the quantity
e~ "AY, W (6*). We will return to this in Section 5.

What about the variance of the variance estimator, with and without IST They
can be compared by comparing E,[L*Y;}] with E,[Y}!]. Using the same heuristic
argument as in (8) above, one obtain the crude approximation

Eﬂ[L4Y14] EW[L4Y14] _ 0(6739*8*)_

E-[V/] EL[LY,!]
Not only the estimator itself is less noisy with IS than without, its sample variance
is also much less noisy, and by a larger factor.

We now explain how the A-cycles are simulated to estimate both the numerator
and the denominator in (3), in the IS case. One simulates two versions of each A-
cycle, one with IS and the other without, both starting from the same initial state.
Thus, the A-cycles come in pairs. For the ith A-cycle pair, one first simulates an
A-cycle with IS, which provides an estimation L;Y; of the numerator, where L; and
Y; are the value of the L and the number of cell losses for this cycle. Then, the
state of the system is reset to what it was at the beginning of this A-cycle with IS,
and a second A-cycle is simulated to obtain an estimator X; of the denominator.
The final state of the no-IS A-cycle, which obeys approximately the distribution ,
is then saved and is taken as the initial state for the next pair of A-cycles. After a
warmup of ng cycles without IS, n pairs of A-cycles are thus simulated and the IS
estimator of y is

ﬂ — Z?:l LZY;
Z?:1 X
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A confidence interval is computed using batch means as explained in Section 2.

Starting the two A-cycles of each pair from the same state means that one must
save or reset the entire state of the system after each cycle. This means copying
how many cells are at each node of the network, the destinations of these cells,
and the state (on or off) of each source. One can also memorize/reset the state
of each random number generator, so that the two A-cycles of a pair use common
random numbers. This tends to increase the correlation between L;Y; and X;, and
to decrease the variance of i as a result.

4. SIMULATION EXPERIMENTS
4.1 The Setup

For several examples and parameter sets, we ran the simulation first using the
standard approach without IS, for C A-cycles, and then with IS for C' pairs of
A-cycles. In each case, the values of C and C' were chosen so that the total CPU
time was about the same for both IS and no-IS, and these A-cycles were regrouped
into b = 200 batches. (For sensitivity analysis with respect to b, we tried different
values of b ranging from 50 to 3200, for several examples, and found that the
variance estimates were practically independent of b, in that range, for the values
of C and C' that we use). For 1 < j < b, let X; and Y; denote the samples
means of the X; and Y; (or of the X; and L;Y;, for IS), respectively, within batch j.
The tables that follow report the value of the CLR estimator f and of its variance
estimator

0% = (S3 + i* Sk — 2uSxy)/(bX?), (10)

where i = Y/X, and Y, X, S2, S%, and Sxy are the sample means, sample
variances, and sample covariance of the f’J and Xj, respectively. The tables also
report the relative half-width § = 2.576//i of a 99% confidence interval on p (under
the normality assumption), the CPU time ¢ (in seconds) required to perform the
simulation, and the relative efficiency (eff.), defined as i?/(t6?). These values are
all noisy estimates but give a good indication of what happens.

For the cases where no cell loss was observed in all the A-cycles simulated, we
put 4 = 0 and the entries for the variance and efficiency are left blank. The
simulation with IS takes more CPU time than no-IS for the same total number of
simulated cells, but the relative efficiency takes both the variance reduction and
the overhead into account. Beware: Efficiencies and CPU times can be compared
within a given table, but not across the tables, because the models are different
and the experiments were run on different machines (SUN SparcStations 4, 5, and
20). Within each table, common random numbers were used for the corresponding
A-cycles across the different lines of the table.

4.2 CLR Estimation at Level 2

EXAMPLE 1. Let £* =2, By =512, mg =2, m; =25, ¢1 =1, co =3, k1 = 50,
p = 1/101 (i.e., 111 = 49/50 = 0.9800 and oo = 0.9998) and vary the buffer size
B* = By. There are 50 sources feeding the target node ¢*, so the average arrival
rate at ¢* is 50/101 ~ 0.495, while the service rate is 3. With these numbers,
we compute 6* = 0.018127, fo(6*) = 0.0581, f1(6*) = 0.3676, 711 = 0.99684,
7oo = 0.99871, and IS increases the total arrival rate at ¢* from 0.495 to 14.48.
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We took C' = 7200000 for no-IS and C’ = 300000 for IS (note that the IS cycles
are much longer than the no-IS on the average, and their average length increases
with B*, because most of them fill up the buffer before emptying it again, whereas
for most of the no-IS cycles the buffer empties after just a few cell arrivals). Table 1
gives the results. For B > 512, without IS, not a single cell loss was observed, so
the estimates are useless. On the other hand, the relative error of the IS estimators
does not increase significantly as a function of By, and these estimators work nicely
to estimate very small CLRs. The efficiency decreases slowly with By. (The outlier
at By = 768 will be discussed later on.)

EXAMPLE 2. Same as the preceding example, except that B is now fixed at 512
and we vary the average burst size k1. For large 1, p is large and easy to estimate,
but not for small k; (the other parameters remaining the same). The results are in
Table 2. Without IS, cell losses were observed only for k1 > 100, and even in that
case IS is much more efficient. The total arrival rate with IS decreases with x1: It
goes from 22.5 for k1 = 25 to 5.95 with k1 = 150. The squared relative error with
IS (not show in the table) is approximately constant as a function of k;.

Table 1. CLR estimation at level 2 for different buffer sizes

Bs I G2 ) CPU eff.
no-IS

128 | 2.8E-5 2.5E-11 45% 2828  0.0113
256 | 6.8E-7 4.6E-13  257% 2828  0.0003

512 | 0 2828
768 | O 2829
1024 | 0 2827
1S
128 | 3.0E-5 6.3E-13 7% 1675  0.838

256 | 9.8E-7 1.5E-15 10% 1993  0.315
512 | 2.5E-9 5.4E-20 24% 2593  0.043
768 | 3.7TE-11  5.9E-22 170% 3108  0.001
1024 | 5.6E-14  3.6E-29 28% 3634  0.023

Table 2. CLR estimation at level 2 for different average burst sizes

K1 I G2 ) CPU eff.
no-IS

10 | O 1969

25 10 2245

50 | O 2828

100 | 8.1E-5 1.0E-10 32% 4591 0.014
150 | 3.0E-3 2.9E-9 5% 7641  0.414
IS
10 | 1.1E-39 1.5E-79 87% 2897  0.003
25 | 2.1E-17 8.6E-36 36% 2884 0.017
50 | 2.5E-9 54E-20 24% 2593  0.043
100 | 7.2E-5 3.2E-12 6% 2445  0.659
150 | 3.0E-3 3.9E-9 5% 2585  0.905
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An important question now arises: How noisy are the variance and efficiency
estimates given in the tablesI" One way of estimating the distribution of the variance
and efficiency estimators is to bootstrap from the b batch means, as follows. Put
the b pairs (X1,Y1),...,(Xp,Y3) in a table. Draw b random pairs from that table,
with replacement, and compute the quantities 62 and eff. that correspond to this
sample of size b. Repeat this IV times and compute the empirical distributions of
the N values of 62 and of eff. thus obtained. These empirical distributions are
bootstrap estimators of the distributions of 62 and eff., and the interval between
the 2.5th and 97.5th percentiles of the empirical distribution is a 95% bootstrap
confidence interval for the variance of i or for the efficiency. Table 3 gives the zth
percentiles (), of the bootstrap distributions obtained from the results of Example 1,

for x = 2.5, 50, and 97.5, with N = 10000.

Table 3. Bootstrap quantile estimates for Example 1

&2 eff.
By | Qa5 Q50 Qoa7.5 Q2.5 Q50 Qo7.5
128 4.3E-13 6.2E-13 8.8E-13 0.23 0.31 0.42
256 8.1E-16 1.5E-15 2.4E-15 0.08 0.12 0.19

512 | 6.2E-21 5.4E-20 1.5E-19 | 7.5E-3 1.6E-2 1.0E-1
768 | 3.6E-25 5.9E-22 1.8E-21 | 24E-4 3.7E-4 3.7E-3
1024 | 9.9E-30 3.4E-29 8.1E-29 | 5.1E-3 8.7E-3 2.2E-2

We already pointed out the very low empirical efficiency of the IS estimator with
By = 768 in Table 1. A closer look at the 200 batch means Y] reveals that one of
the f’J in that case is 4.19 x 10~8, whereas all others are less than 10~?, except one
which is 1.92 x 1072, It seems that a rare event has happened within that particular
batch. We did not observe such outliers for the other values of Bs, but we found
some in other examples, although rarely as excessive. The presence of these outliers
is due to the important tail which remains in the distribution of Y; after IS, despite
the large reduction in the variance of Y;. (It would have been easy to change the
example in the paper for one that gives no outlier. Of course, this would have been
misleading. And the current example, with the outlier, is instructive.) This outlier
has an important effect not only on the variance and efficiency estimators, but also
on the bootstrap distributions, as can be seen from Table 3 (compare the behavior
of the quantiles for By = 768 with those for the other values of By). To assess the
effect of the outlier, we repeated the bootstrap after removing it from the sample
(i.e., with the 199 remaining pairs), and obtained the following quantiles for 62:
(Qa.5,Qs0, Qor.5) = (2.7 x 10725, 1.7 x 10724,4.5 x 10~ 24). The effect is significant.
The numbers suggest that for B, = 768, the variance is highly overestimated,
that the efficiency is underestimated, and that the bootstrap distribution is more
widely spread than the true distribution. To confirm these suspicions, we made 5
additional replications of the entire experiment, independently, with B, = 768 and
IS. The results, in Table 4, give an idea of the variability. Table 5 provides similar
results for By = 512. One can see that the efficiency estimator is (unfortunately)
noisy. On the other hand, j is (fortunately) much less noisy, and this is reassuring.
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Table 4. Five additional independent replications for Ba = 768 with IS

) G2 o CPU  eff.
1.2E-11 1.1E-24 22% 3132 0.044
1.2E-11  2.1E-24 30% 3100 0.023
1.1E-11  8.0E-25 21% 3108  0.048
1.1E-11  1.8E-24 31% 3119 0.022
9.5E-12  2.9E-25 14% 3100 0.101

Table 5. Five additional independent replications for Ba = 512 with IS

1) 52 ) CPU eff.
3.1E-9 1.8E-19 35% 2592 0.020
2.5B-9 2.0E-20 15% 2587 0.115
3.8E-9 2.0E-18 94% 2591 0.003
3.3E-9 3.5E-19 46% 2600 0.012
24E-9 1.0E-20 11% 2588 0.223

4.3 CLR Estimation at Level 3

ExXAMPLE 3. Let ¢* = 3, By = By = 512/ c1 = ].7 Cy = C3 = 2, mop = 2,
my = 3, ma = 10, k1 = 50, p = 1/21, and we vary the buffer size B* = B;. We
assign 6 of the 60 sources to ¢*. One node at level 2 is fed by 2 of these 6 hot
sources, while no other node at levels 1 and 2 is fed by more than 1 of them. Here,
6* = 0.027287, fo(0*) = 0.0851186, f1(6*) = 0.839641, and the total arrival rate at
q* is 6/21 without IS and 5.0 with IS. We take C' = 1800000 and C' = 100 000.
The results appear in Table 6. Again, IS works nicely while the no-IS observes
no cell loss except at the smallest buffer size. With IS, the relative error and the
relative efficiency are almost constant with respect to B*.

ExXAMPLE 4. Same as the preceding example, except that Bjs is fixed at 256
and we vary the average burst size k. Table 7 gives the results. While no-IS has
difficulty to observe cell losses, IS gives reasonable estimations.

Table 6. CLR estimation at level 3 for different buffer sizes

B3 m G2 0 CPU eff.
no-1IS
128 | 2.4E-5 1.1E-10  112% 7036  0.002
256 | 0 7024
512 | 0 7059
768 | 0 7037
1024 | 0 7027
1S

128 | 4.1E-5 5.3E-12 14% 5779  0.056
256 | 6.0E-7 7.2E-16 11% 7316  0.069
512 | 3.4E-10 2.9E-22 13% 10246  0.040
768 | 2.6E-13 1.TE-28 13% 12930  0.029
1024 | 2.1E-16  1.4E-34 14% 15649  0.020
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Table 7. CLR estimation at level 3 for different average burst sizes

K1 I 42 ) CPU eff.
no-IS

10 | O 1088

25 |0 1050

50 0 1125
100 | 2.1E-5 2.1E-10  178% 1134  0.007
150 1.1E-4 1.6E-9 94% 1136 0.015

1S

10 | 5.4E-20 8.6E-42 14% 1454 0.24
25 | 1.3E-10 2.8E-23 11% 1213 0.49
50 | 6.0E-7 7.2E-16 11% 1042 0.48
100 | 4.1E-5 6.7E-12 16% 881  0.28
150 | 1.7E-4 9.1E-11 15% 813 0.38

4.4 CLR Estimation at Level 4

EXAMPLE 5. Let £* =4, By = By = Bs =512, ¢ = ¢4 = 1, ¢35 = ¢3 = 4,
mo =5, my; = 10, my = 6, K1 = 50, p = 1/41, and we vary the buffer size B* = Bj.
We assign 6 of the 300 sources to ¢*. They are distributed as in Example 3. Here,
6* = 0.021218, fo(0*) = 0.0813754, f,(6*) = 0.644124, and the total arrival rate
at ¢* is 6/41 without IS and 3.692 with IS. We take C' = 800000 and C’ = 50 000.
The results are in Table 8 and they resemble what was observed at level 3. For this
example, we also varied k; with B, fixed at 512, and the results were qualitatively
similar to those of Table 7.

Table 8. CLR estimation at level 4 for different buffer sizes

By it 52 ) CPU  eff.
no-1S

128 | 1.6E-3  7.5E-8 44% 3580  0.004
256 | 8.3E-6  6.8E-11 255% 3593  0.013

512 | 0 3586
768 | 0 3592
1024 | O 3595
IS
128 | 1.1E-3 4.0E-9 15% 1881  0.15

256 | 5.5E-5 1.4E-10 55% 2440  0.008
512 | 1.4E-7 4.4E-16 39% 3580 0.012
768 | 3.6E-10 2.7TE-21 36% 4488 0.011
1024 | 1.0E-12 1.5E-26 31% 5550 0.012

4.5 Other Variants of the Model

We made several experiments with variants of the model to explore the effectiveness
of the proposed IS strategy in other (sometimes more realistic) situations.

The original model is called variant A. For variant B, the sources are no longer
affected to fixed destinations, but the destination of each cell is chosen randomly,
independently of other cells, uniformly over all destinations. Variant C is similar
except that each burst (i.e., all the cells from a source during a given on period) has
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a random destination. The IS approach of Section 3 did very badly for variant B,
and gave improvement for variant C only when u was very small. An appropriate IS
strategy for these models should also change the probabilities over the destinations
to increase the traffic towards ¢*. In any case, variants B and C are not realistic
for ATM switches.

In variant D, each node at level 3 has k buffers, the first one receiving the cells
originating from the sources 1 to mgmima/k, the second one taking those from the
sources 1 + momima/k to 2momima /k, and so on. A server at level 3 takes cells
from those buffers according to either a round robin or longest queue first policy.

In variant E, the sources produce two classes of cells: High priority constant bit
rate (CBR) cells and low priority variable bit rate (VBR) cells. The VBR sources
are Markov modulated as before, whereas the CBR sources have constant on and
off periods (they are completely deterministic). Each node has two buffers, one
for the CBR cells and one for the VBR cells, and the CBR cells are always served
before the VBR ones.

The IS strategy of Section 3 works fine for the variants D and E: Tt provides
reasonable estimates for values of p that standard simulation cannot handle. We
also observed in our empirical results that the longest queue first policy gives a
CLR generally smaller than round robin.

5. REFINING THE IMPORTANCE SAMPLING SCHEME
5.1 Optimizing 6

The IS approach of Section 3 provides a good change of measure, but based only
on a heuristic and asymptotic argument, not necessarily the optimal value of 6 for
a given buffer size. Moreover, when choosing 6, the approach does not take into
account the computational costs which may depend on 6. To evaluate the sensitivity
with respect to 0, we performed additional experiments where 6 was varied around
6*, and the variance and efficiency were estimated. As a general rule, we found that
the optimal 6 was around 20% to 25% less than 6*, and increased the efficiency by
a factor betwen 2 to 15 compared with 6*, at level 2 or 3 where m* is typically
large. At level 1 or 4, where m™ is usually small, the optimal 6 tends to be much
closer to (and no significantly better than) 6*. We emphasize that there is noise in
these estimated factors, due to the variance of the efficiency estimators. However,
the tendency persisted when we replicated the experiments. Such factors constitute
significant efficiency improvements, so it would make sense to use, e.g., § = (4/5)6*
instead of 8* at levels 2 and 3, and perhaps try to optimize 8 adaptively in a small
neighborhood around that value, during the simulation. It is very dangerous to use
6 > 6*, because the variance increases very fast with # in that area, and may even
become infinite for finite . The next examples illustrate typical behavior at levels
3 and 4.

EXAMPLE 6. Let £* = 3, By = By = By = 256, mg = 2, m; = 3, my = 10,
¢1 =1, =c¢3 =2,k =50, and p = 1/21. The node ¢* is fed by 6 sources, whose
traffic passes through as in example 3. We take C' = 1920000. Here, 8* = 0.0272,
and the results for different values of § around 6* are in Table 9. Taking § = 0.0185
improves the empirical efficiency by a factor of approximately 25 compared with 6*.
By examining the data more closely, we found that the efficiency improves because
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Further replications showed similar results, with 8 = 0.0185 registering efficiencies
15 to 60 times higher than 6*.

Table 9. Comparing different values of 0, for £* = 3
0 il G2 F} CPU  eff.
0.0170 | 6.3E-7  9.3E-17 39 % 16672  0.258
0.0185 | 6.4E-7 8.0E-17 3.6 % 16744 0.304
0.0200 | 6.4E-7 1.4E-16 4.8 % 16321  0.176
0.0215 | 6.2E-7 1.3E-16 4.7 % 15088  0.201
0.0230 | 6.2E-7 3.4E-16 7.7 % 14307  0.079
0.0245 | 6.2E-7 14E-15 155 % 13701  0.020
0.0260 | 5.7E-7 2.5E-15 224 % 15478  0.008

— 0.0272 | 5.2E-7 1.7E-15 20.4 % 12945 0.012
0.0290 | 5.2E-7 5.1E-15 35.2 % 12667 0.004

EXAMPLE 7. Let £* =4, By = By = B3 = By = 512, mg = 2, m; = my = 5,
¢ =c4=1,¢c0 =c3 =5, p=1/41, and k1 = 50. Only 2 sources feed the node ¢*.
Both sources feed the same node at level 3, but different nodes at levels 1 and 2.
We take C' = 120 000. In this case, #* = 0.0394, and the results for different values
of § are given in Table 10. In this case, taking # < * brings no significant efficiency
improvement. This was confirmed by 4 additional independent replications of this
entire experiment. We made similar experiments with exactly the same data as in
Example 5, with By = 256, and observed an efficiency improvement by a factor

between 1.5 and 2.

Table 10. Comparing different values of 0, for £* =4
0/0* I 52 ) CPU  eff.
1.00 | 1.73E-11 7.5E-26 4.1 % 5840 0.68
0.95 | 1.74E-11 1.2E-25 5.1 % 5810 0.44
0.90 | 1.74E-11  1.0E-25 4.7 % 5764  0.52
0.85 | 1.74E-11 9.8E-26 4.6 % 5681  0.54
0.80 | 1.72E-11  7.2E-26 4.0 % 5569  0.74
0.75 | 1.73E-11  9.4E-26 4.6 % 5398  0.59
0.70 | 1.73E-11  8.6E-26 4.4 % 5134 0.67
0.65 | 1.76E-11 1.2E-25 5.0 % 4767  0.56
0.60 | 1.76E-11  1.6E-25 5.8 % 4246  0.47
0.55 | 1.77E-11  2.5E-25 7.3 % 3470  0.36
0.50 | 1.65E-11  7.8E-25 14 % 2392  0.15
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5.2 Defining the A-Cycles Differently

Instead of starting the A-cycles when the buffer at ¢* becomes empty, one can start
them when the number of cells in the buffer crosses # upward, where 3 is a fixed
integer. There is essentially nothing to gain in that direction, however, because
when increasing 3 the no-IS A-cycles tend to become excessively long (typically,
the buffer at ¢* remains nearly empty most of the time).

Another idea is to impose a lower bound, say tg, on the length of the A-cycles, to
get rid of the extremely short (and wasteful) A-cycles which tend to occur frequently
under both the IS and no-IS setup. The A-cycle ends at the maximum time between
to and the first time when node ¢* becomes empty. How to choose toI' We want to
choose it large enough to make sure that most A-cycles under IS see some overflow,
but not too large, so that the A-cycles end at the first return to the empty state
after overflow. According to our arguments in Section 3, if overflow occurs at
time 1, then the total production by the twisted sources up to time ¢; should be
approximately equal to the number of cells required to keep the server busy until
time ¢, and fill up the buffer at node ¢*, that is, m*pt; ~ B* + c*t1, where p is the
average production rate of a twisted source. The additional time ¢y to empty the
buffer (with IS turned off) should satisfy (¢* —m*p)ts & B*. We want (roughly)
t(] S t1 + tQ, i.e.,

B* B*

tg < — + .
m*p—c* ¢t —m*p

We suggest taking ¢y somewhere between 20% and 50% of the value of that upper
bound. In our experiments, this always gave efficiency improvement. Since the
variance associated with the IS cycles is the dominant term in the variance of f,
a good strategy is to choose ty just large enough so that most of the IS cycles fill
up the buffer. Taking ¢y too large (close to t; + t2) is not a good idea because it
makes us spend too much time on the no-IS cycles without bringing much additional
variance reduction. Beyond a certain point, increasing ¢y eventually decreases the
efficiency.

ExaMPLE 8. We used the same data as in Example 5 (for £* = 4), with B, = 256
and C' = 160000, with IS. For § = 6*, we have t; ~ 95 and ¢» ~ 300. For
0 = 0.806*, we have a total arrival rate of 1.82 with IS, which give #; ~ 312 and
to = 300. Table 11 give the results. With § = 8%, raising to from 0 to 75 increases
the (empirical) efficiency approximately by a factor of 4. With # = 0.8 6*, raising
to from 0 to 150 improves the (empirical) efficiency by a factor of more than 10.
This gain is related to the rapid increase of X, which decreases 62 (see Eq. (10)),
when tg is small. We made 2 additional replications of this experiments and the
results were similar (although the empirical efficiency for § = 6* and ¢, = 0 was
0.02 and 0.04, which suggests that the factor of efficiency improvement from this
setup to # = 0.86* and ¢y, = 150 is more around 20 to 30 instead of 10).

EXAMPLE 9. Let £* = 3, B1 = Bz = Bg = 256, mgo = 2, mp = 3, mo = ].0,
¢ =1, ¢ =c¢3 =2, p=1/21 and k; = 50. Six sources feed the target node
q*, as in example 3, which gives an average arrival rate of 6/21 ~ 0.286 to that
node. We run simulations for different values of ¢, both with the 7;; associated

to 0* = 2.73 x 1072 (with g = 5/6, a total arrival rate of 5.00, #; ~ 85, and
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Table 11. Imposing Lower Bounds on the A-cycle lengths, for £* =
to i 52 5 X  Var(X) CPU eff.
0= 0"

0| 4.2E-5 4.2E-11 392 % 0.2 0.03 404 0.10
25 | 5.1E-5 2.9E-12 8.6 % 4.3 0.66 4328 0.20
50 | 4.8E-5 8.8E-13 5.0 % 8.1 1.25 7089 0.37
75 | 4.9E-5 5.1E-13 3.7% 117 1.76 9097 0.52

100 | 4.8E-5 5.0E-13 3.8% 15.8 2.43 10523 0.43

150 | 5.0E-5 6.7E-13 4.2 % 231 290 12501  0.29

200 | 4.9E-5 T7.6E-13 4.5 %  30.7 3.25 13890 0.23

250 | 5.0E-5 3.0E-12 8.9 % 38.0 5.45 14933  0.06
6 =0.86"

to i 52 5 X  Var(X) CPU eff.

0| 5.1E-5 8.2E-11 453 % 0.2 0.03 399 0.08
25 | 4.7E-5 1.6E-12 6.9 % 4.3 0.66 2641 0.52
50 | 4.8E-5 6.6E-13 4.4 % 8.1 1.24 4646 0.75
75 | 4.9E-5 4.5E-13 35% 11.7 1.76 6397 0.83

100 | 4.8E-5 3.0E-13 29 % 15.7 2.42 7886 0.98
150 | 4.8E-5 1.9E-13 24 % 23.0 290 10468 1.13
200 | 4.8E-5 2.5E-13 2.6 % 30.7 3.24 12645 0.75
250 | 4.8E-5 2.2E-13 25% 379 5.45 14439 0.73
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ty ~ 150) and 0.806* = 2.18 x 1072 (with § ~ 0.54, a total arrival rate of 3.26,
t; ~ 200, and ¢ = 150). The results are in Table 12. Using to = 100 together
with 6 = 0.86* gives the best empirical efficiency in this case, about 20 times the
empirical efficiency observed with tyo = 0 and 6 = 6*.

Table 12. Imposing Lower Bounds on the A-cycle lenghts, for ¢* = 3
to i a2 0 CPU eff.
6*

0 | 8.6E-7 3.4E-14 555 % 451  0.048
25 | 6.4E-7 1.1E-15 133 % 6821  0.054
50 | 9.2E-7 9.2E-14 84.1 % 8908  0.001
75 | 6.7E-7 6.1E-16 9.5 % 9823  0.075

100 | 6.9E-7 29E-15 20.0% 10409 0.016

150 | 6.9E-7 1.5E-15 14.6 % 11781 0.026

200 | 6.3E-7 4.3E-15 269 % 12118 0.007

250 | 5.2E-7 1.2E-15 17.0 % 12880 0.018
0.8 6%

0| 5.5E-7 1.7E-15 19.2 % 455 0.40
25 | 6.5E-7 1.3E-16 4.5 % 5355 0.60
50 | 6.4E-7 5.4E-17 3.0% 8298 0.90
75 | 6.5E-7  5.3E-17 2.9 % 10209 0.78

100 | 6.4E-7 3.3E-17 2.3 % 11531 1.07
150 | 6.5E-7  5.0E-17 2.8 % 13387 0.63
200 | 6.4E-7 6.1E-17 3.1 % 14784 0.46
250 | 6.6E-7 1.0E-16 3.9 % 15938 0.27
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5.3 Stopping IS Earlier

Suppose that £* = 4 and that we use IS. When the target buffer at ¢* overflows and
IS is turned off, there may be several cells already in the network at previous levels,
and this may produce more overflow than necessary. Because of that, it could make
sense to turn off IS earlier, e.g., when the total number of cells in buffer ¢* or at
previous nodes but on their way to ¢*, reaches some threshold Ny. [Beck et al.
1998; Dabrowski et al. 1998] use this criterion for turning off IS, with Ny = B*.
Our experiments with this idea showed no significant improvement compared with
the method which turns off IS when ¢* overflows. With Ny < B*, this idea seems
to reduce the efficiency instead. Here is a typical illustration.

ExXaMPLE 10. Let £* =4, By = By = B3 = By =512, mg =2, m; =5, my = 5,
cp=cs=1,¢=c3 =05, p=1/5 and k1 = 50. Two sources feed the node ¢*,
which gives an arrival rate at ¢* of 2/5 = 0.4. When IS is applied the arrival rate
increases to 1.5887. These 2 hot sources feed different nodes at level 2. In Table 13,
CL is the average number of cell losses per cycle with IS and Ny = oc corresponds
to turning off IS when ¢* overflows. Taking Ny between 520 and 600 appears to be
about as good as our usual method, but Ny < 510 is definitely worse.

Table 13. Different stopping criteria for IS

No i} G2 ) Y  Var(Y) CPU eff. (x1073)
500 | 4.72E-9 6.7E-18 19.8% 1.51 0.188 3308 1.1
510 | 4.86E-9 1.5E-17 29.2%  1.97 0.148 3354 0.5
520 | 4.36E-9 1.8E-18 11.3% 2.77 0.322 3397 4.0
530 | 4.56E-9 2.0E-18 11.1% 3.55 0.340 3433 3.7
540 | 4.60E-9 2.1E-18 11.3%  4.37 0.515 3508 3.5
550 | 4.62E-9 1.3E-18  89% 5.15 0.469 3539 5.4
560 | 4.68E-9 1.4E-18  9.3% 6.24 0.610 3659 4.8
570 | 4.76E-9 1.5E-18  9.4% 7.42 0.854 3699 4.5
580 | 4.76E-9 1.4E-18  8.9%  8.36 0.935 3603 5.1
590 | 4.66E-9 1.3E-18  8.8% 9.34 1.235 3667 5.3
oo | 471E-9  1.4E-18  91% 29.5 3.947 3959 4.5

5.4 Retroactive Manipulations to Control the Overflow

The criterion for turning off IS earlier, considered in the previous subsection, is
rather blind. Remember that all the randomness in our model is in the state
transitions of the sources. It is therefore possible, in principle, to compute at any
given point ¢t in time whether or not there will be overflow at ¢* caused only by
the cells generated so far, and turn off IS as soon as this happens. In this way, IS
is turned off before the target buffer fills up, but only when overflow is guaranteed
to occur. In practice, this can be implemented by actually running the simulation
until there is overflow, and then turning off IS retroactively right after the time ¢
when all the cells having reached ¢* when the first cell overflows (at time ¢ + ¢, say)
were already produced by a source. This is complicated to implement and implies
significant overhead. Despite spending a lot of time on experimenting with this
idea, we were unsuccessful in improving the efficiency with it.
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5.5 Combining IS with Indirect Estimation

[Srikant and Whitt 1997] proposed the following indirect estimator of the CLR.
(This approach was presented by Ward Whitt during the keynote address of the
1997 Winter Simulation Conference.) The CLR at node ¢* satisfies

/I,ZI*)\/)\OZ].*LC*/AU (11)

where A\g = mok1/(ko+ k1) is the total (average) production rate of the mq sources
feeding node ¢*, A is the (average) output rate from node ¢*, 1/c¢* is the service time
at node ¢*, and L is the steady-state fraction of time where the server is busy at
node ¢*. The second equality follows from the Lindley equation L = A\/c*. Using
(11), p can be estimated indirectly by estimating L. [Srikant and Whitt 1997]
showed that the indirect estimator brings substantial variance reduction in heavy
traffic situations, especially for queues with several servers and random service
times, but not in light traffic. In our context, the traffic at ¢* is light, but becomes
heavy when IS is applied, so it was not clear to us a priori if the indirect estimator
combined with IS could help.

The results of our extensive numerical experiments can be summarized as follows.
For a single queue with several servers, without IS, the indirect estimator reduces
the variance by large factors when the total arrival rate exceeds the service capacity,
and increases the variance by large factors when the total arrival rate is much less
than the service capacity. This is true even for constant service times and single-
server queues, but less servers or less variability in the service times favors the
direct estimator. A larger buffer at ¢* tends to accentuate the factor of variance
reduction or variance increase. When the indirect estimator was combined with IS,
we observed a variance increase instead of a variance reduction, even if the total
arrival rate after IS was larger than the service rate. An intuitive explanation seems
to be that because IS is turned off as soon as the buffer overflows, the conditions
favoring the indirect estimator (sustained overloading at ¢*) do not hold for a large
enough fraction of the time.

6. FUNCTIONAL ESTIMATION

So far we have considered the problem of estimating the CLR for fixed values of the
model parameters. But in real life one is often interested in a wide range of values
of the r;;’s and of the buffer sizes. We now examine how the CRL can be estimated
in functional form, as a function of the matrix R, from a single simulation, and also
as a function of B* by re-using certain portions of the simulation.

Let R and R be as before, where R is the twisted version of R determined as in
Section 3, but suppose that we now want to estimate the CLR u for R replaced
by R, for several R in some neighborhood of R, by simulating pairs of A-cycles
with R and R only. This can be achieved as follows. One simulates pairs of A-
cycles and computes X;, Y;, and the likelihood ratio L; for each pair just as before.
Afterwards, the estimators L;Y; and X; of the numerator and the denominator are
multiplied by the likelihood ratios

. N/ . N/ . N! . N!

LU(R) = (7“00) 00 <7“01> o (7“10) o <7“11> "
i = | — — — —
Too o1 T10 11
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respectively, where N}, and IV} are the total number of transitions of the sources
from state k to state [ during the A-cycle with IS and without IS, respectively. The
functional estimator of y is then

and

A(EY) = 2iz1 ZildD LY
M L TR,

and it can be evaluated a posteriori for as many different matrices R as desired,
as long as R is not too far away from R. The additional overhead during the
simulation amounts only to storing the values of N}, and N}, together with those
of X; and L;Y;, for all the pairs of A-cycles. This type of functional estimator based
on a likelihood ratio is discussed in a more general context in [L’Ecuyer 1993] and
[Rubinstein and Shapiro 1993], for example.

ExaMpPLE 11. We give an example of functional estimation at level 4. Let B; =
Bg:Bg:B4:500,m0:4,m1:6,m2:8,01204:1,02203:3,111:50,
and p = 1/21. We assign 4 sources to the node ¢* and take C' = 150 000. We find
R and run the simulation as usual, and then compute two functional estimators.
For the first one, k1 is fixed and u is estimated as a function of kg, whereas for
the second one, p = k1 /(k1 + ko) is fixed and p is estimated as a function of k.
Tables 14 and 15 give a partial view of the results.

The relative half-widths of pointwise 99% confidence interval, §, remain reason-
able for a good range of values of kg and k1. If one is interested in a wider region,
that region can be partitioned into a few subintervals and a different R can be used
for each subinterval.

Table 14. Functional estimation at level 4, for fixed k1

Ko i 5’ 5
500 | 24E6 65B-14 27%
541 | 1.6E-7  1.7E-14  22%
588 | 9.8E-7 4.0E-15 17%
645 | 6.0E-7 8.8E-16 13%
714 | 35E-7 19E-16 10%
800 | 20E-7 4.3E17 7%
909 | 1.1E7 1.0E17 7%
1050 | 5.8E-8 2.7E-18 7%
1250 | 28E-8 7.2E-19 8%
1540 | 1.2E-8 2.1E-19 10%

We now counsider the estimation of u as a fonction of B*. For this, one cannot
use the likelihood ratio approach, because B* is not a parameter of a probability
distribution in the model. However, observe that when an A-cycle is simulated, the
sample path of the system is independent of B* as long as there is no overflow at



Small Cell Loss Ratios in ATM via IS . 21

Table 15. Functional estimation at level 4, for fixed p

1 i 57 5

25.0 | 2.3E-13  3.7E-27 68%
294 | 1.2E-11 5.8E-24 50%
32.3 | 79E-11 1.2E-22 36%
35.7 | 5.0E-10 1.6E-21 21%
40.0 | 3.2E-9 1.9E-20 11%
45.5 | 2.1E-8 4.2E-19 8%
52.6 | 1.4E-7 1.4E-17 %
62.5 | 9.0E-7 9.0E-16 9%
76.9 | 6.0E-6 1.8E-13 18%

q*. Therefore, when estimating p for several large values of B*, the initial part of
the simulation (until overflow occurs) does not have to be repeated for each value.
Oune can start with a single simulation (or sample path) and create a new subpath
(or branch) each time the number of cells at ¢* exceeds one of the buffer sizes of
interest. If one is interested in N distinct values of B*, one eventually ends up
with N parallel simulations, but a lot of work is saved by starting these parallel
simulations only when needed. This type of approach is studied in more generality
in [L’Ecuyer and Vazquez-Abad 1997]. In our experiments with this method, the
savings in CPU time were typically around 50%.

The development of Section 3 suggests an approximately linear relationship be-
tween In u and B*, at least asymptotically. Our empirical experiments confirm that
the linear model In u = By + 81 B* fits very well indeed, for large enough B*. We can
therefore recommend, for estimating p as a function of B*, to perform simulations
at 4 or 5 values of B* only, and fit a linear model to the observations (B*,In i) by
least squares regression.

As an illustration, for the same model as in Example 11 and ¢* = 4, Figure 2
shows the 10 points (B*,In 1), for B* = 250,300, ..., 700. It is clear from the figure
that a linear model is an excellent fit.

CLR

10°°
1076
1077
1078
10°°

- Buffer Size
300 400 500 600 700

Fig. 2. [ as a function of B4 at level 4
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