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Abstract: We have developed a software system called SIMISYS that
models and simulates aspects of the human immune system based on
the computational framework of cellular automata. We are motivated
by the goal of modeling participants in the immune system at the cell
level, simulate their interactions and infer overall system behavior. We
model tens of thousands of cells as exemplars of the significant players in
the functioning of the immune system, and simulate normal and simple
disease situations. We present the simulation while in progress with
graphical illustration of the participating cells and appropriate graphs.
SIMISYS 0.3, the current version of the software, is able to model and
simulate the innate and adaptive components of the human immune
system. The specific players of the immune system we model are the
macrophages, dendritic cells, neutrophils, natural killer cells, B cells, T
helper cells, complement proteins and pathogenic bacteria
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1 INTRODUCTION

The immune system is a collection of molecules, cells and organs whose complex in-
teractions form an efficient system that protects the individual from potential harm
and outside invaders (11). There are up to 1012 cells that participate in the immune
system. A traditional view is that the immune system can be divided into two func-
tionally distinct categories: innate (non-adaptive), and acquired (adaptive). These
two arms of the immune response may not perform their duties independently. In-
nate immunity is characterized by its non-specificity, and is achieved by the actions
of physical or chemical barriers, phagocytes, neutrophils, natural killer cells and
complement proteins. Adaptive (or, acquired) immunity is specific, has a diversity
of responsiveness and appears to maintain memory. This type of immunity is usu-
ally found only in vertebrates and is mediated by B- and T-lymphocytes, clonally
distributed and characterized by specificity and memory.

The main function of the immune system is to provide specific protection from
harm. Different types of immune cells play different roles in the overall immune
response. Chemical signals provide communication among these cells. In this study
we model features of innate and adaptive immune responses. All immune cells are
modeled as classes using object-oriented technology (3). Cellular interactions are
modeled based on the computational paradigm of cellular automata (6; 31; 33; 35;
36). A graphical user interface is provided so that the user can vary parameters of
the simulation. A graphical display, created using the SDL library (24), provides
visual images during the simulation.

The organization of this paper is as follows. Section 2 provides an overview
of related research. Section 3 describes the architecture of the software system
designed and implemented. Section 4 provides details of the object-oriented class
structure. Section 5 discusses an XML language that we use in a prototype of
SIMISYS. In Section 6 we analyze the simulation results. Section 7 discusses an
extension to SIMISYS for a simple simulation of Anthrax infection. Finally, in
Section 8, we discuss future directions for research.

2 RELATED RESEARCH

In spite of the enormous complexity of the immune system, several computa-
tional studies present a global and thus, necessarily simplified understanding of the
system. Three main approaches have been adopted by researchers:

• Ordinary differential equations (as summarized in (25)) ,

• Qualitative, i.e., non-numeric, information for modeling (e.g.,(32)), and

• Distributed computation using cellular automata (e.g.,(16)).

Ordinary differential equations (ODE) have been traditionally used to model
complex systems. Perelson and Weisbuch(25) use physical concepts and differential-
equations based mathematical methods for modeling immunological problems. For
example, they present models for clonal selection and affinity maturation, network
models for antibody and B-cell interactions, and autoimmune diseases. Differential
equations also have been used in other efforts such as for modeling virus-neutralizing
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immunoglobulin response(8), dynamics of co-infection of M. tuberculosis and HIV-
1(13), the dynamics of Plasmodium falciparum blood-stage infection(21), change in
CD4 lymphocyte counts in patients before and after administration of HIV protease
inhibitor indianvir(30), and the differentiation of B lymphocytes under control of
antigen(15).

However, researchers have also enumerated problems with pure ODE approaches
(16). Some of the problems with ODEs are a) The ODE approach assumes large
populations of essentially identical entities, which is not the case with biological
cells as each cell has a unique life history that defines its interaction with the
environment, b) The ODE approach gives only average behavior of the system, and
c) It is difficult to model non-linear behavior.

Cellular automata(6; 31; 33; 35; 36) are discrete dynamical systems whose be-
havior is completely specified in local terms. They have been widely studied as
examples of complex dynamical systems(10; 35; 22), originally as examples of com-
ponents in a self-reproducing machine(4; 9; 10) and then within the area of artificial
life(18). In a cellular automata model, a uniform grid represents space, with each
cell containing a small amount of data. Time advances in discrete steps and sim-
ple laws of behavior are used at each step for each cell to compute its new state
from that of its neighbors. The behavior of a complex system emerges from sim-
ple interactions of simple individuals following simple rules. Cellular automata are
sometimes described as counterpart to ordinary or partial differential equations for
describing continuous dynamical systems. There have been attempts to simulate
aspects of the immune system using cellular automata(2; 5; 17; 19; 29). For exam-
ple, Bezzi(1) discusses models for evolution of the immune system. In particular, he
introduces a cellular automata model for studying an evolving set of individuals as
well as the effects of co-evolution. Schadschneider et al.(28) simulate pedestrian dy-
namics with friction to validate models of emergency egress in aircraft. Weimar(34)
models and simulates enzymatic reaction networks. He uses each lattice site as a
container for one enzyme molecule and multiple metabolite molecules.

3 IMPLEMENTATION OVERVIEW

While developing SIMISYS, we have made simplifying assumptions about the
innate and adaptive immune systems, and the communications between the two.
We follow a systems biology approach(14) that requires us to model the system by
understanding:

• the structure in terms of components and interfaces among the components,

• the dynamics of the system and

• the control structure.

Figure 1 gives the high level view of the immune system according to our model.
Many details are purposely left out in this figure to keep it simple, and also to
emphasize that ours is a proof-of-concept model and is being continuously improved.
Immune cells such as macrophages, dendritic cells, neutrophils, phagocytes, and
natural killer (NK) cells are created in the bone marrow. Neutrophils, the most
abundant of all white cells, are recruited to the region of a pathogen’s attack in an
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Figure 1 System Biology View of the Immune System

infected tissue based on the concentration of chemo-attractants. The requirements
for activation of antigen-specific lymphocytes, either T or B, are recognition of
antigen and other co-stimuli, including cytokines. NK cells need certain cytokines
to be activated and kill target cells. They have been implemented as being attracted
to the region of infection as a function of the amount of lipopolysaccharide chemical
(LPS) produced by the antigen.

The blood vessel is the main port of entry of immune cells into the tissue. Both
innate and adaptive players look for a suitable place to exit the blood vessels so that
they can enter the lymph node where the lymphocytes become focused to respond
to the potential invaders. There is a flow from any location in the tissue to the
lymph vessel so that the immune cells responding to the invaders may move to a
lymph node. To maintain a continuous movement of immune cells in the tissue
(also called the grid structure or grid in our model), the blood vessels translocate
the immune cells from the lymph node back to the tissue. Coordination between
the blood vessels and the lymph vessel set up in the simulation has a major role
in maintaining flow. For example, antibodies, secreted by the primed B cells, are
created in the lymph node and translocated to the tissue. There they opsonize the
bacteria. The complement proteins puncture these tagged bacteria in the tissue.

Movement of chemicals such as cytokines in the blood and tissues are modeled
using diffusion. A chemical is loaded onto the grid cells at the location of the
cell that secretes it. They are diffused through the whole grid depending on their
respective breakdown rate and their diffusion constants. This sets up a gradient of
chemicals in the tissue allowing for the movement of the immune cells in the tissue
based on chemo attractants. This also allows the activation of the appropriate
immune cells. based on cytokine stimulation. The behavior of certain immune cells,
especially macrophages, depends on the state of their activation. In summary, the
number of immune cells of various types and their movement are managed by the
combined action of the blood and lymph systems and chemical gradients. Figure 7
shows the flow of control between the entities and the interactions.

3.1 Software Architecture

The interaction between immune cells and pathogens has been modeled using cel-
lular automata. SIMISYS 0.3 is a complex software system with many interacting
components. It has been developed keeping in mind that the system will evolve
over time as additional complexities are added. Figure 2 provides an overview of
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Figure 2 Software Architecture for SIMISYS

the software components that constitute SIMISYS.
There are three main components:

• The Modeler

• The Matrix

• The Visualization Engine

The main driver program brings up a graphical user interface (GUI) through which
the user inputs parameters to model pathogens and immune cells. The user can
vary the parameters describing the cellular players such as their initial number, life
span and maximum count. The user can also provide data to set up the size of the
grid and study the impact of changes on the immune response through the GUI.
The emphasis of the design has been to create a highly configurable system so that
specific scenarios can be modeled with ease. Some of the parameters that can be
input are given in Table 3.1. Once the parameters have been specified, control of the
system passes to the Modeler. The Modeler reads the values entered and starts the
Simulator. The Simulator creates the Matrix, all immune cells, pathogens, blood
and lymph vessels, and controls interactions among them. The Matrix models the
physical space that the cells occupy. It consists of a 3D grid of cells, where the
simulator places all cells and pathogens. Each entity occupies one cell. The matrix
also holds chemo-attractants and diffuses them.

The Visualization Module is responsible for display and its simulation. The Data
Reader reads the information from the Matrix and provides the information to be
displayed to the Display Engine. The Display Engine presents this information to
the graphical interface built using SDL which presents a view of the infected tissue
or the lymph Matrix depending on the users interest. A separate panel for the
display of the statistical results of the system is also provided.

4 Software Details

The SIMISYS Immune System simulation is implemented in C and C++. It
has a multithreaded architecture based on pthreads(23). The images are displayed
using SDL(24), a graphics library.
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ENTITY NAME PARAMETERS
Neutrophil Number of Neutrophils, Life Span
Natural Killer Number of Neutrophils, Life Span
Macrophage Number of Macrophages, Life Span
Bacteria Initial Count, Maximum Count,

Life Span, Mature Age
B cells Initial Count, Maximum count,

Life Span, Plasma B Life Span,
AB BreakDown

T cells Initial Count, Maximum Count,
Life Span

Display Display Concentration, Display
Gradient

Grid Rows, Columns, Depth, Minimum
Concentration, Maximum Concen-
tration, Diffusion Constant, Break-
down Constant

Table 1 Parameters that can be input through GUI

Figure 3 Main C++ Classes Implemented

4.1 The Modeler Entities

A C++ object represents each entity in the model. Some of the C++ objects
we use are given in Figure 3. Each classs behavior is described in terms of a
deterministic finite automaton or DFA (20). The DFA is expressed in terms of an
XML language discussed in Section 5. In the discussions below, we show the DFA
for a few of the classes
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4.1.1 Class BasicCell

Class BasicCell is at the top level of the hierarchy tree. All cells inherit its char-
acteristics. Common methods such as setType(), setStatus(), setState() are
defined in this class. Methods like move(), setGridWrapper() and setLifeSpan()
are also coded here. A few classes at lower levels of hierarchy, modify the method
move()depending on the specific manners in which they move.

4.1.2 Class ImmuneCell

This class at the second level of hierarchy is the parent class of all immune cells.
The main methods of interest are hasBumped(), selfNonself() and die(). An
immune cell calls the method hasBumped() to check whether it has bumped into
another cell and it calls selfNonself() to check whether another cell is an invader.
The method die() is called when a cell attains its mature age.

4.1.3 Class Bacteria

Currently we have only one type of pathogen: a generic bacterium. The class
Bacteria exhibits the behavior of bacteria once it enters the body. A bacterium
reproduces at a specified age and moves through the tissue, travels with the flow
maintained in the grid and finally reaches the lymph node by using the method
moveBacteriaLymph(). It carries its bit signature (expressed in its epitope), which
allows T cells with the complimentary signature to be activated. They also secrete
LPS, a chemical which affects the tissue and its cells.

4.1.4 Class Macrophage and Class DendriticCell

The class Macrophage models macrophages that are prevalent in the tissue in
the beginning of the simulation. A fixed number of these move around at random
in the tissue and exhibit their garbage collector behavior of eating any dead or
foreign entity. A macrophage moving around in the tissue checks if it has found an
entity in its vicinity by the method hasBumped(). It further checks if the entity is
foreign by the method selfNonself() inherited from the ImmuneCell class. The
DFA given in Figure 4 depicts its behavior.

Before presenting the antigen to T cells, a macrophage processes the ingested
antigen using the chopAntigen() method implemented in the class Cytoplasm.
Simply encountering an antigen does not make a macrophage an APC. A cytokine
signal such as IFNγ secreted mainly by T-Helper Typ1 (or Th1) NK cells may
be needed to become an APC. This is incorporated by loading this chemical onto
the grid using the method loadChem() in the class Grid. The hyper-activated
state of a macrophage is implemented by loading the LPS secreted by bacteria
and checking its concentration in the vicinity of an activated macrophage using
the method getConcentration() of Grid class. Finally, the method move() lets
macrophages move around in the grid unless they bump into another entity and
undergo processing.

Another category of phagocytes is the dendritic cells implemented as class
Dendritic. Dendritic cells have been implemented to move to the site of infec-
tion and eat the bacteria. Normally the macrophages present in the grid perform
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Figure 4 DFA for Macrophage

this function but in a more serious situation, the dendritics are called to the site of
infection. When activated macrophages secrete TNF, dendritic cells are activated
and they return to the lymph node. On the way they increase MHC expression and
the quantity of B7 family of co-stimulators.

4.1.5 Class Neutrophil

Neutrophils have been implemented as immune fighters with a very low life span
but which arrive in large quantity. Instances of the class Neutrophil move out of
the damaged area on sensing the concentration of the inflammatory cytokines. The
software simulates a scenario where neutrophils are not called unless the battle is
intense. This is followed by the macrophages and dendritic cells removing all the
bacteria. It is only when the macrophages are activated by the IFNγ secreted by
a large number of cells that they in turn secrete cytokines to signal to the resting
state neutrophils in the blood vessels to go to the site. This is an important detail
because in normal circumstances a small number of antigens are easily cleared off
by the phagocytic cells.

4.1.6 Class NaturalKiller

Before the adaptive immune fighters are called to the battle site, there is another
category of immune cells that play an effective role in killing antigens. These are
natural killer cells implemented as the class NaturalKiller. The natural killers
are implemented as coming out of blood vessels on sensing LPS secreted by the
bacteria. When the bacteria are killed, the IFNγ released by them are loaded onto
the grid. This activates the macrophages and as a result more secretion of TNF
and IL1 occurs. These two chemicals are diffused through the grid by loadChem().
This in turn accelerates NK cells to produce even more IFNγ; this is how the innate
fighters accelerate one another’s actions. The methods of interest are also mainly
those that it inherits from BasicCell. It uses the method hasBumped() to check
the type of the cell into which it has bumped, discriminates it on the basis of
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selfNonself() method of ImmuneCell class and kills it using kill(). They move
in the tissue in a random fashion since they are long lived and have a large capacity
to kill the invaders. The method moveNKrandom() guides their movement in the
tissue

4.1.7 Class ComplementSystem

The complement proteins are in the tissue and blood as the simulation starts.
They are spread all over the grid in a random manner with no gradient basis.
Complement proteins act as a part of innate immunity during the initial phase of
an infection. Their main function is to punch holes into the cell walls of antigens.
But before they can make holes using the Membrane Attack Complex (MAC), they
need to be activated either by the alternative pathway or by the lectin activation
pathway. Whatever pathway activates them, the initial spark comes from the C3
convertase formed by the cleaving of the protein C3. This results in further cleaving
of some more neighboring C3 proteins and ultimately the chain of C5, C6, C7
and C8 is produced. The end product of this chain is the formation of MAC. In
our simulation, opsonization is implemented so that complement proteins coat the
pathogens; this eases their phagocytosis. Once a bacterium tagged by antibodies
produced by the activated B cells finds the complement proteins in its vicinity, it
succumbs to the MAC created by these proteins. This completes the link from
the adaptive fighters back to the innate fighters in assisting them in the killing of
pathogens.

One method of interest in the ComplementSystem class is inspectForNeighbors()
whereby once the bacteria find complement proteins in their vicinity, the C3 pro-
tein is cleaved to form C3a and C3b. The C3b attaches itself to the bacteria to
further cleave more C3 and C5 so that they can proceed to form the MAC. In our
simulation, the antibody IgM is able to activate five C1 protein complexes at a
time. These activated complexes can initiate a cascade of events that produce a
C3 convertase. On the other hand, in our software, antibody IgG can activate only
one C3 convertase at a time. At times other than when they are not in the vicinity
of any bacteria, the complement proteins move in the grid by moveComplement().
They are very unstable so their number is maintained constant by continuously
creating more of them.

4.1.8 Class THelper

T cells are responsible for activating B cells after they themselves get activated
on bumping into an APC. The complement() method finds the complement string
of the signature of the antigen. String matching is used to activate T cells if a right
match of the epitope of bacteria (a string of characters) and the signature of the
T cell is found. The activated T cells carry the signature of the processed antigen
from the membrane of the APC. This signature is needed to prime B cells which can
create antibodies specific for an antigen. Cytokine signal IL1 released by activated
phagocytes is needed for T cells to be activated. Chemicals loaded at one position
in the grid are spread throughout the grid by the diffuseChemicals() method.
A concentration gradient is maintained in the grid depending on the flow of body
fluids in the grid. T cells follow this gradient. Once activated, T cells follow the
flow of body fluids and travel to the nearest lymph vessel. Currently, our software



10 Computational Modeling and Simulation of the Immune System

Figure 5 DFA for T Cell

supports T cell generation and activation, but assumes a generic T cell whose role
is integral to the generation of antibodies. T cells are activated by APCs. But it
must meet its cognate antigen peptide for activation. This feature is implemented
by allocating a unique signature to every T cell. This is stored in the T cell receptor
(tcr, also called the signature) field of the T cell. When a T helper cell bumps into
a bacteria, it uses the find() method to find the tcr complement in the bacteria
membrane. If the match is found, the T cell is activated and it can activate the
matching B cell to produce the antibodies.

4.1.9 Class Bcell

B cells created in the bone marrow are released into the grid through the blood
vessels simulated in our model. Our software model has antigen specific B Cells
generated by a random bit generator. The process of binding to specific parts of the
antigen presented by the APCs is simulated in the readBact() method. Only B
cells that find the complement of their receptors (bcr or signature) in the signature
of the bacterial membrane are primed by setting the prime flag to be true. When a
B cell meets an activated T cell, readTcell() compares its bcr with that of the T
cell using the find() method. This renders B cells activated and the active flag
is set to true. The DFA for Bcells is given in Figure 6.

The primed B cells follow the flow set by the blood vessel and travel to the
lymph node where they perform clonal selection. Only the B cells that are primed
and active form clones by using the method reproduce(). In the human immune
system, each B cell can produce only one kind of antibody. Once the primed B cell
knows the signature of the bacteria, the activated T cell provides it the required
growth factor IL2. The primed and activated B cell proliferates to form a clone of
B cells with the same bcr. Finally, we have enough B cells to produce antibodies
against the bacteria with a particular signature.

The next stage is the career decision, whether to be a memory B cell or plasma
B cell. A few of the reproduced B cells are created to be memory B cells to fight
against the invasion by the same bacteria at later stages in the life cycle of the
host; others take the function of plasma B cells. In the current simulation, this
categorization is on the basis of a randomly generated bit. The plasma B cell takes
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Figure 6 DFA for B Cell

the job of producing antibodies. Going through the list of B cells, a plasma B cell
places an antibody in its grid position. Currently the model assumes bacteria of
only one type, so only one type of antibody is released. We also have implemented
the process of repeated mitosis and generation of plasma cells secreting a specific
receptor or antibody into the tissue.

4.1.10 Class Antibody

Two kinds of antibodies are created in the present simulation in SIMISYS: IgM
and IgG. IgM is created in the initial phase of the simulation and IgG toward the
end. An antibody of the type IgM is capable of activating five of the complement
convertase complexes. This in turn can deactivate five bacteria at a time so that
in the beginning of the simulation antibodies of only the type IgM are created.
Towards the end when usually only a few bacteria are left in the system, IgG can
very well do the job by activating just one convertase molecule at a time. In the
current simulation, this is implemented by creating IgM or IgG based on the total
count of bacteria in the simulation. Antibodies are produced in the lymph node by
the method produceAntibodies() and are translocated to the tissue by the blood
vessels by the method searchForAntibody(). We have only one lymph node in
our current simulation and it is situated behind the tissue in the grid and in the
display. There is a lymph vessel inside the lymph node. The antibodies find bacteria
by using the method inspectForNeighbor() where they look for entities in their
current position by isOccupied() method, check its type by getType() and if it
is a bacteria, the antibody status is set to dissolve and it attaches itself to this
bacteria rendering its status to disabled.

4.1.11 Class Cytoplasm

Every cell, whether basic or immune, has cytoplasm in it where all metabolic
activities vital for the survival of the cell take place. The class Cytoplasm has been
introduced mainly to process the ingested antigen and present it to the T cells. In
addition, every Antigen Presenting Cell (APC) has MHC class II (Major Histocom-
patibility Complex) molecules in its cytoplasm. This molecule has a groove on its
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surface where it holds the chopped peptides of the ingested antigen. A variable mhc
in the cytoplasm holds the groove in our simulated cells. The groove has markings
in the form of a string of 0s and 1s expressed in one byte. When the macrophage
or the dendritic cell ingests the bacteria, it calls the method loadMHC() wherein
the chopAntigen() method creates strings of peptides, again 0s and 1s expressed
in one byte.

4.1.12 Classes LymphVessel, LymphNode and BloodVessel

There are two different “worlds” in our simulation: one is the infected tissue
and the other is the lymph node. The immune cells and bacteria move around in
the grid whether in the tissue or in the lymph at random. But when the number of
bacteria is large, the bacteria as well as the APCs and immune fighters, specifically
the adaptive fighters move to the lymph node where they can easily get hold of
the bacteria and create antibodies to kill them with specificity. To achieve this,
the movement of the cells from one grid world to another (tissue to node and vice
versa) has been accomplished through blood vessels and lymph vessels.

There are two active BloodVesssels in the grid which send new entities to the
grid after they sense the chemicals around them by the inspectForChemicals().
This method checks for the concentration of the chemicals LPS, INF and IFNy
around its walls and on detecting their presence allows the entry of instances of
class Neutrophil, NaturalKiller and Thelper. The blood vessels also suck in
the activated immune fighters: Bcells, Tcells and Bacteria and send them to
LymphVessel after they sense their presence using inspectForNeighbors(). This
method checks for the type of these entities and places these entities in the grid
inside the LymphNode created at the back of the main screen of the simulation using
the placeEntity() method. The LymphVessel, located in the lymph node, looks
for entities like antibodies and translocates them back to the tissue so that they can
pinpoint the intruders and make the job of phagocytes and complement proteins
easy. This is how a continuous flow of entities is maintained.

4.2 The Matrix

The Matrix represents the physical space we simulate. It is implemented using
the Grid and Gridwrapper classes. The implementation of cellular automata ap-
proach to modeling and simulation requires that we have a physical space composed
of physical cells. The Grid implements the physical cells. Sometimes we just call it
the grid. Inside each physical cell in the grid, we can place one biological cell and
one or more identified molecules.

4.2.1 Class Grid

The basis of the simulation rests with the Grid structure. The Grid is composed
of an array defined in 3D making up the world of simulation. Each grid cell or box
can contain a pointer to an entity and also store information about the current
conditions in that cell. Currently we have implemented a grid with 100 rows, and
100 columns. The depth is 20. This allows us to simulate up to 100 x 100 x 20 =
200,000 cells. This is a small number compared to the many billions of players in
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the immune system, but this is still a very high number for computer simulation.
The Grid forms the main section of the tissue where all immune cells move around
and interact with each other. Each grid cell maintains a concentration list of all
chemicals in it. Currently we take into account six chemicals that stimulate the
cells and maintain the concentration gradients required for the movement of the
cells. These are:

• LPS (lipopolysaccharide)

• IFN (Interferon)

• IL-1 (Interlukin-1)

• IL-2 (Interlukin-2)

• TNF (Tumor Necrosis Factor)

• IFNγ (Interferon-gamma)

There are other chemicals that we do not model; these include IL-4 for example.
Three blood vessels and one lymph vessel are stationed in the main grid as well.
The lymph node present inside the lymph vessel encloses another small grid in
itself. The smaller grid has a size of 30 x 30 x 20 or 18,000 physical cells. A grid
pointer is used in each entity to point to the grid position in its world. Using the
grid pointer, a cell can check its neighboring grid positions for other entities, or
inquire about the chemicals, complement proteins and antibodies present within
its own position. A back end pointer, present in each grid cell points to the cell
that is in it currently. The back end pointer reveals the identity of the immune
cells or the bacteria present in the neighboring positions. Further, it also helps the
visualization module to get the identity of cells at the positions that it is displaying.

There are several methods of this class. For example, isOccupied() lets an
entity to know whether the neighboring position is occupied. When we say the
neighboring position, we mean anyone of the neighboring 27 positions since it is
a 3-dimensional grid. The methods setOccupied() updates the status of each
of the grid cells as it is occupied or emptied out. The method loadChem() al-
lows for the loading of a specific concentration of a chemical and the method
getConcentration() allows the access to the concentration of an already loaded
chemical onto a grid location.

4.2.2 Class GridWrapper

The class GridWrapper, as the name suggests, encapsulates a 3D rectangle of
grid cells. It allows us to contain information about a grid along with the memory
allocated to it. The GridWrapper class is essential in cases where more than one
grid or world is simulated such as a section of infected tissue and a lymph node as
we do currently. Each of this is implemented as a separate grid. We have to inform
each entity that we create about the world that it belongs to. Hence each entity
structure contains a pointer to a GridWrapper class object through which it can
access the appropriate data in the world to which it belongs.
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4.2.3 The Visualization Engine

We have developed a tightly integrated visualization engine that is easy to set
up and can be adapted to handle introduction of entities in future releases. We also
use a graphing package to illustrate the results of the simulation. The engine is
based on the use of the SDL library(24), an open source package suitable for direct
screen manipulation. The advantages of using the SDL package are the ability to
blit, or paste an image on the screen at a specified location. The SDL library can
be used for normal 3D operations, but the direct blitting of images facilitates rapid
prototyping. The engine operates described below.

1. The user specifies the images that are to be used for each type of entity present
in the simulation. The engine ignores display of any entity that has not been
specified.

2. The engine formats the image loaded for transparent background color and
performs scaling of each of the entities to have a series of increasingly larger
images.

3. Based on the user’s key presses, the engine decides the area of the simulation
to be displayed. Currently six possible directions of movement, two on each
of the three dimensional axes have been implemented. This allows the user
to zoom in and out of the screen as well as to move up and down the screen.

4. The engine scans the specified section of the grid.

5. For each of the entities recognized in the grid, the engine computes the dis-
tance of the entity from the front of the screen. Based on this distance, the
image is blitted on screen such that a smaller image is pasted for an entity
further than an entity closer to the user. This gives the impression of a 3D
engine, without the computational expense.

4.3 Simulation

The objective of SIMISYS is to simulate various normal and infection scenarios.
Simulating scenarios helps us understand how the players in the immune system
interact. Our long term goal is to develop a platform that allows simulation of
many different infection and disease scenarios in great detail. At this time, the
simulation is fairly simple. The algorithm used for the simulation is given below.

Read the input file and get counts for each entity

Create linked lists of each entity

For each timestamp do

Select one of the linked lists randomly

For each entity in the linked list do

Run the live method of the entity

If the entity is dead, remove it

from the linked list

End do

If there are chemicals to be
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spread in the grid,

spread them to neighboring cells

Gather information about

the currently viewed portion of the grid

Pass the currently viewed

portion to the display module

Provide visual display

End do

The main driver reads an input file and creates a list of the entities in the sim-
ulation. The multithreaded architecture lets one of the linked lists to be selected
at random and for each entity of the system, the live() method from its corre-
sponding class is executed. The live() method of a class decides the status of
the entity at the end of a simulation cycle. The entities which are dead at the
end of a simulation cycle are removed from the list and new entities are added if
they are created. The dynamics of the system are controlled partly by chemicals
and partly by the changes in the life cycle of the entities. One after the other,
depending upon which thread of computation gets the control, each linked list of
entities goes through the simulation cycle. The display engine also gets the control
on a regular basis. It gathers information about the currently processed portion of
the grid, updates the data and passes the information to the display module which
provides the visual display. Figure 7 gives a flow chart depicting the processes that
are modeled and simulated.

5 Use of XML in SIMISYS

It was recognized during the creation of SIMISYS that developing a robust way
of obtaining, storing and using information is an essential requirement. XML is
a standard format for handling such information(26). The hierarchical document
format is intuitive and easy to handle. Open-source parsers are available to create
and extract the information in the XML format. We use the Iksemel parser from
the Jabber project available from http://ikesemel.jabberstudio.org.

In SIMISYS, the configuration files for setting up the parameters that control
the simulation are written in XML. In addition, the attributes and behavior of each
entity are encoded in the XML format. For example, Figure 11 shows the behavior
details of macrophage.xml. The contents of this file is based on the DFA for class
Macrophage given in Figure 5.

One of the design goals while incorporating XML into SIMISYS is that we want
to describe an entity’s behavior, parse it, interpret it, and create code from it. We
have developed an XML language that can facilitate this process. The features of
the language are given below.

• Supports the following data types: int, double, string and boolean.

• Supports mathematical evaluations such as +, −, ∗, / and ^ in expressions.

• Supports strict data type checking.

• Supports the common conditional statements.
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Figure 7 Flow
Diagram showing the
role of innate and
adaptive immune
fighters. The arrows
show the flow of
control and the boxes
highlight actions.
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<entity type="macrophage">

<properties>

<life-span>1000</life-span>

<start-age>0</start-age>

<membrane>MHCMACROPHAGE</membrane>

</properties>

<behavior start-BU="incrementAge">

<BU name="incrementAge">

<event name="alive" reaction="move"/>

<event name="dead" reaction="death"/>

</BU>

<BU name="move">

<event name="" reaction="inspectNeighborhood"/>

</BU>

<BU name="death">

<event name="" reaction="death"/>

</BU>

<BU name="inspectNeighborhood">

<event name="contact" reaction="testContact"/>

<event name="" reaction="incrementAge"/>

</BU>

<BU name="testContact">

<event name="self" reaction="incrementAge"/>

<event name="non-self" reaction="ingest"/>

</BU>

<BU name="ingest">

<event name="" reaction="incrementAge"/>

</BU>

</behavior>

</entity>

Figure 8 XML File for Macrophages

• Supports indefinitely nested conditionals.

• Supports the ability to call C functions from XML.

• Supports the writing of DFAs in XML.

An interpreter has been written in order to handle this specification. The system
works as given below.

• Each entity is represented by the same class called Entity.

• From the configuration file, each instance of the class reads the location of
the XML file representing its behavior and loads it.

• Based on the DFA present in each XML file, the behavior of the entity is
determined. The XML file for macrophages is shown in Figure 8. The inter-
preter determines the state of each entity depending upon the state in which
the entity is currently in.

• For each state in the DFA, a code block is written that determines the behavior
of the entity while in that state.
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Figure 9 Result Graphs for Scenario 1

• Transitions from one state to another are made while interpreting the code
block.

• There is a facility to call C++ functions in order to explore the environment of
the entity such as other cells in the neighborhood or the presence of chemicals.
Such stimuli can be used in conditionals in order to modify the flow of the
code.

6 Results and Analysis

We discuss four scenarios modeled and simulated using SIMISYS 0.3. They
explain the immune response to a simple infection. The numbers displayed in the
result graphs of the run of the simulation are the ratios of the number of the entities.
On the X-axis, we indicate the number of iterations of the simulation. The change
in the number of the associated entities is on the Y axis.

Situation 1 assumes that a person is infected with a generic bacterium. For
example, the individual may have been exposed to bacteria from some other person
sneezing. Here we assume a minor infection. The bacteria, in such a case, travel
through the nasal path and activate the nearest lymph node situated in the throat.
We see the bacteria number quite high as the simulation starts at the origin. As
simulation progresses, we see the number of neutrophils growing in number between
0 and the point a. NK cells also participate in the fight but may be due to the
scale used in the graph, they do not show up earlier. Between points a and b, we
see that the bacteria number does not rise and also the number of neutrophils fades
away. This agrees with real life where a minor infection is usually taken care by
the neutrophils.

In Scenario 2, we assume that the person is infected with bacteria and the
infection remains local. The result in this case is different from the previous case
at point b. Here also the neutrophils and the NK cells are the first ones to reach
the battle site. Between points 0 and a, the bacteria number stays constant for
some time and then it starts increasing. It seems that at point a that the bacteria
are all destroyed. But at point b, the appearance of macrophages indicates that
the bacteria are still there and are being eaten by macrophages. The macrophage
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Figure 10 Result Graphs for Scenario 2

Figure 11 Result Graphs for Scenario 3

graph here represents the number of macrophages that have engulfed the bacteria.
Finally after a few more runs of the simulation we see that the bacteria are totally
gone. This result also matches favorably with a real life situation whereby the
macrophages become activated by the secretions of an invader and help the innate
fighters clean up the infection by eating them.

Scenario 3 is a case of real bad infection where the neutrophils alone are not
able to kill the bacteria.. The macrophages enter the battle site at point b. At
point c, even the dendritics, which join the innate fighters only when the infection
is really out of control, also appear at the battle scene. But we still see the number
of bacteria rising up between points c and d. At point d we see the activated B
cells also are releasing the antibodies. Even if their number is so high, the bacteria
number is still uncontrolled. It takes some time for the antibodies to tag the bacteria
and make their killing by phagocytes easier. The results of the simulation comply
very well with the real life situations.

Situation 4 is a case of bad infection where the neutrophils alone are not able
to kill the bacteria. The macrophages enter the battle site at point b. At point
c, the dendritics, which join the innate fighters only when the infection is out of
control, also appear at the battle scene. But we still see the number of bacteria
rise between point c and d. At point d we see the activated B cells also release
antibodies. Even if their number is high, the bacteria number is still uncontrolled.
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Figure 12 Result Graphs for Scenario 4

It takes some time for the antibodies to tag the bacteria and make their killing
by phagocytes easier. The results of the simulation comply very well with real life
even if the classes implement very simple methods as of now.

7 Simple Extensions for ANTHRAX Simulation

We have extended SIMISYS 0.3 to illustrate infection by the anthrax bacteria
Bacillus anthracis (7; 12; 27). We achieve this by simulating the following.

• The behavior of spore form of bacteria in the body,

• The release of toxins by the bacteria and the damage caused, and

• The action of the known antibiotics for anthrax.

Figure 13 describes the flow of events during the anthrax simulation. The anthrax
bacteria invade the human body in the form of spore. When a spore is eaten by an
immune cell such as macrophage or neutrophil, the spore finds suitable conditions
to germinate and multiplies. The resulting bacteria are carried to the lymph node
and spread into the blood stream. The bacteria continue to release the toxins:
Protective antigen (PA), Edema factor (EF) and the Lethal factor (LF). Edema
toxin increases cAMP that upsets water homeostasis and causes edema. It also
impairs neutrophil function. Lethal toxin stimulates the macrophages to release
TNFa and IL1b that are responsible for shock and death.

The main methods which have been modified for the simplistic modeling and
simulation of anthrax are those of the classes: BasicCell, Bacteria and Macrophage.
They are briefly explained below:

7.1 Extensions to the Bacteria Class

For this simulation, the bacteria are initially placed at the site of infection in
spore form. As long as these bacteria are in spore form their age is not incremented;
they cannot release toxins or reproduce but only move. When a bacterium is eaten
by an immune cell such as a macrophage or a neutrophil, its state is changed to
vegetative. In this state the bacteria release toxins, reproduce and age in every



J. Kalita, K, Chandrashekar, R. Hans, P. Selvam and K. Newell 21

Figure 13 High-level Flow Diagram for anthrax simulation

simulation cycle. Based on the bacteria’s position (inside an immune cell or in the
grid), the reproduced bacteria and the toxins are released inside the immune cell
or the grid. The bacteria stop reproducing and releasing toxins after reaching a
certain age and eventually die.

The eat() method no longer kills the bacteria when a macrophage ingests the
spore form of anthrax. Instead the releaseToxins() method of the Bacteria
class allows the release of toxins into the cytoplasm of the macrophage. When the
maximum fluid parameter associated with the macrophage reaches its upper limit,
the macrophage bursts, i.e., dies and the chemicals EF, LF and PA and also the
vegetative form of bacteria are released into the grid. The diffuseChemical()
method (that runs as a thread in main) diffuses these chemicals into the grid and
on reaching a threshold value, any other cell that comes in contact with these toxins
dies due to cell lysis. A method findToxins() checks for the presence of toxins
within a cell and also in its grid position. If edema toxin is found, the macrophages
are set to produce increased amounts of cAMP and IL6. If lethal toxin is present
the macrophages produce more IL1 and releases less TNFa. The IL1 accumulates
inside the macrophage using addChem().

7.2 Extensions to the BasicCell Class

Since all cells inherit from the BasicCell class, the effect of the bacterial toxins
was added to this class. If edema toxin is found to be present, the Macrophages
are set to produce increased amounts of cAMP and IL6. If lethal toxin is present
the macrophages produce more IL1 and releases less TNFa. The presence of these
toxins also sets the neutrophils to become impaired and hence the neutrophils’
ability to phagocytose is disabled.
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7.3 Extensions to the Macrophage and Neutrophil Classes

Since the Anthrax bacteria primarily affects macrophages, harmful effects are
added to the Macrophage class. A macrophage moves around and eats a bacterium
whether spore or vegetative. If the bacterium multiplies within the macrophage,
the reproduced bacteria are maintained in a vector with the macrophage. The
toxins released by the bacteria are also held within the macrophage. When the
macrophages capacity exceeds either due to the multiplication of bacteria or the
toxins released, the macrophage bursts and the bacteria and the toxins within
the macrophage are released to the grid cell in which the macrophage is currently
present. The macrophage status is set to dead. The released toxins add to the total
toxin levels shown in the graph and contribute to the change in the behavior of the
macrophages and other cells. The toxins released when the macrophage bursts are
diffused to the surrounding locations.

A normal neutrophil eats bacteria, whether spore or vegetative. The bacteria
multiplies and releases toxins within the neutrophil until its bursts. When a neu-
trophil moves to a grid cell that has EF and PA, the edema toxins get into the
neutrophil. This also increases the cAMP within the neutrophil and causes it to
become impaired. This impaired neutrophil does not function normally.

7.4 Antibiotic

We model the effect of a generic antibiotic in a very simplistic manner. The
antibiotic cipro is injected at a location within a blood vessel. Cipro like all the
other chemicals in the simulation is diffused through the tissue using the method
diffuseChemicals(). The live() method of the Bacteria class has been modified
to look for the cipro chemical in its vicinity and the bacteria are rendered dead
if they sense cipro in their surroundings. The bacteria check the concentration of
cipro in its vicinity using getConcentration(). Antibiotics have been found to
be effective if administered during the initial stages of an infection. If the bacteria
have already started germinating and releasing their harmful toxins, the antibiotic
only kills the bacteria but the toxins continue to affect the cells. The antibiotic
coats the bacterial cell wall, impairs it and eventually kills the bacteria. Also if
before contact with cipro, the toxin level reaches a threshold, the body succumbs
to it. This is what our graphs show. By the time the bacteria come in contact
with the cipro chemical diffused through the tissue, a good amount of toxins have
already been released. Some bacteria are rendered dead due to cipro, but the
toxins show their harmful effects.

7.5 Observed Results

The behavior of different cells discussed above have been incorporated to the
model. An example simulation is shown in Figure 14.

The graph shows increase in the levels of cAMP, IL1 and TNF due to the
toxins released by the Anthrax bacteria. For simplicity, only the level of toxin
PA (Protective Antigen) has been shown but the edema and lethal toxins are also
released in proportional amounts. The edema toxin causes an increase in the level
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Figure 14 Result Graphs for Simple Anthrax Situation

of cAMP and the lethal factor stimulates the macrophages to release TNF and IL1.
Due to these factors the macrophages and the neutrophils are impaired and the
host defense is affected.

8 CONCLUSIONS

In summary, SIMISYS 0.3, the latest version of our software has well-integrated
modules simulating the innate and adaptive systems. The salient features are:

• A stable grid structure called the Matrix to facilitate positioning of large
number of cells in space.

• A hierarchical class structure of cells and other players that closely resembles
Nature implemented in C++.

• Each of the large number of cells is implemented as an object with its own
characteristics and identity

• A 3-D visualization module that offers scrolling in 6 directions and statistical
graphing capabilities using the SDL libraries.

• Models the working of the simulation based on a section of generic tissue
connected to a lymph node through lymph vessels.

The current model of the innate immune system simulates the self non-self
recognition, garbage collection by macrophages, and the role of complement pro-
teins, and the attraction of neutrophils and NK cells to the region of attack. The
adaptive part stimulates the activation of T cells, B cells, production of antibod-
ies, and the final action of complement proteins by MAC to kill bacteria. The
model also simulates the diffusion of six chemicals in the grid and their effect on
the functioning of the immune cells. We make many simplifying assumptions to
obtain a fully-functioning software system. In future versions, we intend to imple-
ment further details into all these already implemented classes. We intend to add
other immune cells and “organs” such as bone marrow and the liver. We intend to
improve the GUI to make it more user friendly. Currently we are working on par-
allelizing the implementation of SIMISYS on a 32-machine Beowulf cluster so that
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we can dramatically increase the numbers and details of the cells and chemicals we
model and simulate.

The anthrax version of the software currently exhibits the basic features of the
infection. We can further explore the details of the infection and the possible ways
in which the body can fight against it by adjusting the parameters responsible for
damage to the body and the parameters which can help stop the release and the
spread of these toxins and study their effect in-silica.

Even in its current form, SIMISYS can be useful in many ways. It can be used as
an educational aid. We can modify the parameters and see how the response of the
immune system varies in a specific scenario. In its current form, it can also be used
as a tool to simulate many of the known diseases including autoimmune diseases.
Also it can be modified to model and simulate the effect of known antibiotics for
some diseases and trying new ones.
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