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Abstract 
 
The paper presents a generative development 

methodology and component models of COMDES-II, a 
component-based software framework for distributed 
embedded control systems with real-time constraints. 
The adopted methodology allows for rapid modeling 
and validation of control software at a higher level of 
abstraction, from which a system implementation in C 
can be automatically synthesized. To achieve this 
objective, COMDES-II defines formally various kinds 
of components to address the critical requirements of 
the targeted domain, taking into consideration both the 
architectural and behavioral aspects of the system. 
Accordingly, a system can be hierarchically composed 
from reusable components with heterogeneous models 
of computation, whereas behavioral aspects of interest 
are specified independently, following the principle of 
separation-of-concerns. The paper introduces the 
established generative methodology for COMDES-II 
from a general perspective, describes the component 
models in details and demonstrates their application 
through a DC-Motor control system case study.  

 
 

1. Introduction 
 

Recently emerging concepts and techniques, such as 
domain-specific modeling (DSM) and component-
based development (CBD) are considered particularly 
appropriate for the efficient development of reliable 
embedded software systems [1, 2]. DSM provides 
intuitive modeling concepts which are familiar to the 
domain experts, and accommodates important domain-
specific characteristics of embedded systems, such as 
system concurrency, environmental physicality, real-
time operation, etc. CBD can be regarded as one of the 
most suitable design paradigms for domain-specific 
modeling. Due to the inherent benefits brought by 
reusability of components, and higher-level of 

abstraction (modeling systems rather than 
programming systems), an embedded software system 
can be efficiently constructed from prefabricated and 
reusable components. Moreover, from a software 
engineering point of view, CBD is also an effective 
way to bridge the gap between the conceptual system 
design models and the concrete system implementation 
[3], provided that an automatic code generation 
technique is developed. 

The above arguments have been carefully taken into 
consideration during the development of COMDES-II 
(COMponent-based design of software for Distributed 
Embedded Systems - version II) [4], a component-
based software framework intended for efficient 
development of distributed embedded control systems 
with hard real-time requirements. The framework 
attempts to establish an engineering methodology 
encompassing high-level modeling and analysis issues 
as well as low-level implementation and deployment 
techniques. As a result, it emphasizes the following 
development issues: 

 
 Component models of computation (MoC) and the 

associated modeling techniques that can be used to 
specify significant characteristics of real-time 
control systems, following the principle of 
separation-of-concerns. 

 Practically applicable analysis techniques aiming at 
verifying system behavior at a higher abstraction 
level, e.g. model-checking. 

 Advanced algorithms and data structures enabling 
reusability and re-configurability of components. 

 Automatic code generation techniques to 
maximally reduce the manual coding effort, hence 
minimizing the errors introduced by manual 
coding. 

 Proper compilation and configuration techniques, 
which can be used to automatically synthesize the 
deployable systems from prefabricated component 
executables. 

 



 

This paper presents the COMDES-II design 
methodology, followed by a detailed description of the 
framework component models and the associated 
modeling techniques. The rest of paper is organized as 
follows: Section 2 outlines the COMDES-II 
methodology from a general perspective in order to 
provide a panorama of the framework features. 
Sections 3 and 4 present the framework component 
models in details, highlighting the architectural and 
behavioral aspects, respectively. Section 5 presents a 
DC-Motor control system case study developed using 
COMDES-II to demonstrate the application of the 
framework. Section 6 presents related research. 
Finally, the concluding section summarizes the 
features of the framework and their implications. 

 
2. COMDES-II methodology 
 

In order to realize efficient and unambiguous 
development of reliable control software systems, 
COMDES-II employs a generative programming 
software engineering methodology, which can be used 
to automate the generation of system implementations 
from higher-level abstractions represented as textual or 
graphical models [5]. This approach is characterized by 
a domain-specific, model-driven architecture in which 
each abstraction layer is represented as a set of models 
with distinct abstraction levels, as shown in Figure 1.  

The topmost abstraction layer, which formalizes the 
targeted domain characteristics, and the meta-modeling 
layer defining the framework modeling language are 
located in the problem space of this methodology, in 
the sense that the concrete models and techniques 
associated with these layers, e.g. mathematical 
formalisms and corresponding meta-models, should be 
developed by the framework developers. The other 
three layers: domain-specific modeling, 
implementation and deployment layers are in the 
solution space because the corresponding modeling 
and development automation techniques, belonging to 
these layers, are solutions provided by the framework 
developers to the framework users to solve their 
application-specific problems in a top-down 
abstraction refinement process. In this context, the 
development of a system starts from the specification 
and verification of system models, through code 
generation and validation, down to the configuration of 
system deployable code (executable systems at low 
abstraction level).  

The entire stepwise refinement process of system 
abstraction levels is fully assisted by the formally 
defined models and the corresponding model-based 
automation techniques, resulting in unambiguous and 
rapid development of reliable software systems [6]. 

 
 
 

 
 
 

Figure 1. Generative programming 
methodology for COMDES-II 

 
3. Architectural modeling of systems 
 

COMDES-II employs a hierarchical model to 
specify system architecture: at the system level a 
distributed control application is conceived as a 
network of communicating actors (active components). 
Distributed actors interact transparently with each 
other by exchanging labeled messages (signals), 
following an asynchronous producer-consumer 
protocol known as content-oriented message 
addressing. 

At the actor level, an actor is specified as a software 
artifact containing multiple I/O drivers and a single 
actor task (execution thread). I/O drivers are classified 
as communication drivers and physical drivers, which 
are associated with the actor task through a dataflow 
relationship denoting the exchange of local signals. 

The I/O drivers are responsible for sensing or 
actuating signals from/to network or physical units, 
while the actor task processes the acquired signals to 
fulfill the required functionality which is specified by a 
composition of different function block instances. 
Function block instances are instantiations of reusable 
and reconfigurable function block types, which can be 
categorized into four function block kinds (meta-
types):  basic, composite, modal as well as state 
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machine function blocks. A detailed description of 
each kind of function blocks will be given in Section 4. 

The example in Figure 2 shows the presented 
hierarchy of components used in modeling CODMES-
II systems. This architectural model features openness 
and information hiding at component level, which 
brings typical benefits, such as succinctness and 
readability, to the COMDES-II systems architecture. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 2. Hierarchical architecture model of a 

COMDES-II system 

 
4. Behavioral modeling of systems 
 

In order to clearly model various behavioral 
properties, COMDES-II adopts a separation-of-

concerns approach to systematically decompose 
different behavioral concerns into separate modeling 
units.  
 
4.1. Actor model 
 

In COMDES-II, all non-functional information is 
specified with respect to actors, including physicality, 
real-time reactivity and concurrency. The operational 
semantics concerning these non-functional issues is 
completely regulated by the underlying real-time 
kernel HARTEXTM

1
 which employs a fixed-priority 

timed multitasking scheduling policy [7, 8]. 
An actor is activated by an execution trigger, which 

may be a periodic or sporadic event. The occurrence of 
a triggering event is handled by the kernel to notify the 
corresponding actors for activation. Upon activation, 
the input drivers of the actor are executed atomically to 
acquire all input signals, which will be latched 
throughout the whole actor execution. The execution 
trigger releases the internal actor task, which will 
process the obtained input data once it becomes the 
highest priority task among all released/preempted 
tasks in the processor. The processed data will be 
buffered into output drivers that can be atomically 
executed to generate output signals when the 
corresponding actor deadline expires. In this 
computation model, preemption of actor task operation 
does not result in actor output jitter, as long as the task 
can finish its operation before the deadline. The split-
phase execution pattern of COMDES-II actors is 
illustrated as in Figure 3. 

Obviously, COMDES-II actors have a typical read-
do-write operational semantics, in which the read 
action only takes place at the activation instant and no 
new input signals will be read during actor task 
operation (do action). As a result, the do action of an 
actor is synchronous, i.e. the task operation takes zero 
logical execution time (LET), because the computation 
result generated by an actor task principally reflects the 
actor status at the activation instant. These properties 
are vital for establishing the correct analysis models for 
COMDES-II systems. 

The timed multitasking model of computation 
separates the timing behavior of an actor from its 
functional aspect, which may facilitate timing analysis, 
since real-time properties can be checked using 
schedulability analysis, rather than being checked 
together with the functional behavior (e.g. using timed 
automata models). 

                                                        
1  HARTEXTM is a hard real-time kernel for embedded systems 

developed by the Software Engineering Group, Mads Clausen 
Institute for Product Innovation, University of Southern Denmark. 
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Figure 3. Split-phase execution of actors 
under timed multitasking  

 
The combination of timed multitasking with 

transparent signal-based communication has resulted in 
a novel operation model - Distributed Timed 
Multitasking (DTM) [7], which is one of the distinctive 
features of COMDES-II. It provides for jitter-free 
execution of periodic distributed actor transactions, 
whereby transaction input and output actions are 
executed at precisely specified time instants on the 
time axis. A detailed description is referred to [4] and 
[7]. 

 
4.2 Function block models 
 

Function blocks (FBs) are pure functional 
components implementing concrete computation or 
control algorithms, which can be used to specify the 
system functional behavior. COMDES-II defines four 
kinds of FBs: basic, composite, modal as well as state 
machine FBs to help specify various kinds of system 
functionality,  in which basic and composite FBs can 
be used to model continuous behavior (data flow), 
while state machine and modal FBs describe the 
sequential system behavior (control flow). Moreover, 
COMDES-II provides adequate modeling and 
implementation techniques integrating heterogeneous 
data flow and control flow models to realize hybrid 
(modal continuous) system operation [4]. Each kind of 
FB may have a number of FB types, which can be 
instantiated into concrete FB instances with different 
settings. FB instances are the actual building blocks 
incorporated into the specific host actors to realize the 
required system functionality. 

 
4.2.1 Basic FB models. Basic FBs are the elementary 
function blocks in COMDES-II, from which more 
sophisticated kinds of FBs can be constructed, such as 

composite FBs and modal FBs. The design model of a 
basic FB is shown as in Figure 4. 
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Figure 4. An example of basic FB 

 
The presented basic FB model highlights the 

specification of FB attributes, in which finite sets of 
inputs, outputs, parameters and internal variables are 
declared, whereas the functionality is uniquely 
determined by the corresponding signal transformation 
or control functions (e.g. PID). The attribute aspect of 
all kinds of FB models is defined in a similar manner; 
therefore the following presentation of FB models will 
only focus on the specific functionality aspects of 
complex FB kinds. 
 
4.2.2 Composite FB models. A composite FB is a 
composition of basic and/or other composite FB 
instances used to accomplish complex computational 
behavior. The functionality aspect of a composite FB is 
represented as a function block diagram consisting of 
interconnected FB instances (see Figure 5), which 
essentially employs a synchronous data flow (SDF) 
model of computation. 
 
 
 
 
 
 
 
 
 

Figure 5. An example of composite FB 

 
The execution sequence of internal FB instances in 

a composite FB is controlled by a static execution 
schedule, which is a data structure automatically 
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synthesized from the corresponding FB diagram, 
according to the signal flow from inputs to outputs. An 
assumption for deriving such an execution schedule is 
that the contained FB diagram is acyclic, because the 
feedback connections in a synchronous function block 
diagram may cause a causality problem. 
 
4.2.3 State machine and modal FB models. In 
COMDES-II, state machine FBs and modal FBs are 
jointly used to specify the system sequential behavior, 
as illustrated in Figure 6.  

 
 
 
 
 
 
 
 
Figure 6. Interaction between a state machine 

FB and a modal FB 
 

In this context, a state machine FB consists of a 
number of binary event/guard inputs, an event-driven 
state machine model, and exactly two outputs: state 
and state_updated (see e.g. Figure 7). The internal 
state machine model contains a dummy initial state 
pointing to the actual initial state of the machine, a 
graphical label with the name history meaning that the 
state machine is historic, a number of states and state 
transitions that are labeled by events, guards and 
transition orders. Transition events/guards are 
manipulated as state machine FB input signals 
acquired from input drivers or preprocessing FBs, and 
transition order is a number indicating the importance 
of the transition, i.e. which transition should be fired 
when multiple transition triggers associated with the 
current state are evaluated as true (transitions are 
evaluated starting from 1). This technique avoids the 
undesirable non-determinism of state transitions, as 
required in safety-critical control systems. When a 
state machine FB is executed, the internal state 
machine model parses the binary event/guard input 
signals, determines the current state and updates two 
outputs: state and state_updated, where state 
represents the currently active state, and state_updated 
is set true if a state transition has happened, otherwise 
it is false. 

The two output signals from a state machine FB are 
used by the corresponding modal FBs to execute the 
control actions associated with the specific state (see 
Figure 6), and one state machine FB (master) may 
control multiple modal FBs (slaves) if these modal FBs 
share an identical state machine structure. As an 

example, Figure 8 illustrates the internal structure of a 
modal FB. A modal FB may contain multiple inputs 
and outputs, which can be connected with the I/O 
interfaces of the internal operation modes (states) via 
dataflow connections. Operation modes are software 
artifacts, within which the concrete control actions are 
specified by means of the corresponding function 
block diagrams. The selection of an executing 
operation mode is decided by the currently active state 
information provided by the supervisory state machine 
FB, whereas the execution of an operation mode is 
enabled by the state_updated value, i.e. the control 
action should be performed only when a state transition 
occurs, since the state machine model is event-driven.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. An example of state machine FB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. An example of modal FB 
 

Modal FBs support hierarchical composition, i.e. 
an operation mode of a modal FB can be refined by 
another state machine FB instance and the related slave 
MFB instances. This feature enables a hierarchical 
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state machine structure and a compositional semantics 
for modal FBs. Heterogeneous composition is also 
possible by allowing the integration of function block 
diagrams implementing continuous control behavior 
into the corresponding sequential modes of operation. 
Additionally, heterogeneity also means that a state 
machine FB instance and its slave modal FB instances 
can be connected with other basic and/or composite FB 
instances, resulting in a hybrid control system. 
 
5. DC-Motor control system case study 
 

The presented framework has been experimentally 
validated through a number of case studies, including 
the Production Cell Case Study, the Steam Boiler 
Control Specification Problem and the DC-Motor 
Control System Case Study. A tutorial version of the 
latter is presented in this section in order to illustrate 
the application of the framework. 

The system is a distributed hybrid control 
application. It controls a DC-Motor, through a real-
time network (CAN). The control commands are 
released from an operator station that interacts with the 
user through a keypad and an LCD display. The three 
nodes: Sensor, Controller, and Actuator implement 
the control loop, i.e. control the speed and direction of 
the motor.  

At the system level the distributed control system is 
modeled as an actor diagram consisting of three actors: 
Sensor, Controller, and Actuator, which interact with 
the DC-Motor and operator station (not shown here) as 
depicted in Figure 9. 

 
 

 
 

Figure 9. DC-Motor control system 

 
The Sensor actor accepts Pulses from an optical 

encoder indicating the current speed of the motor, and 
sends the information via the SensorSpeed message 
to the Controller actor. Depending on the data from 
operator station (messages: OSSetpoint, 
OSManualVoltage, OSMode), the Controller 
computes control signal (ControllerVoltage) and 
sends it to the Actuator, which applies Voltage to the 
motor. Control system actors are executed in a phase-

aligned transaction triggered by an OSSync message 
issued periodically by the operator station (Figure 9). 

The rest of the discussion focuses on the Controller 
actor, whose structure is presented as in Figure 10.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Controller actor 
 

The internal structure of the ControllerTask is 
modeled as a composition of function blocks as shown 
in Figure 11, in which the CStateMachine and 
CModal FBs are responsible for switching to 
appropriate mode of operation, i.e. manual or 
automatic control, and executing the corresponding 
control algorithms.  

The CStateMachine FB in the ControllerTask has 
three states: init, manual and automatic, representing 
the possible status that the Controller actor could be in. 
The required state transition signals (manual, 
automatic) used by the CStateMachine FB are 
computed beforehand by two comparator FB instances: 
compareModeManual, compareModeAutomatic. 
Outputs generated in different modes (init, manual, 
automatic) of the modal FB CModal are multiplexed 
by the multiplexVoltage multiplexer FB, which will 
write correct output signals to the corresponding output 
buffer according to the state information provided by 
the CStateMachine FB. 

The control action performed in the automatic 
mode of the CModal FB is presented in Figure 12.  
This operation mode implements a modal PID control 
action, which exhibits the hybrid (modal continuous) 
behavior of the system. In this operation mode, the 
determination of direction status is managed by the 
AutStateMachine FB containing stop, leftControl and 
rightControl states. The corresponding modal FB 
AutModal performs the continuous PID control actions 
associated with the leftControl and rightControl states, 
respectively. Once again, outputs generated in different 
modes (stop, leftControl and rightControl) of the 
modal FB AutModal are multiplexed by the 
multiplexVoltage multiplexer FB, which filters out the 
correct output according to the active state information 
provided by the AutStateMachine FB. 

DC-Motor and operator station 
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Figure 11. Internals of the ControllerTask 
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6. Related research 
 

Actor-based models are highly popular in the 
Software Engineering domain. A great number of 
frameworks use port-based objects that are mapped 
onto real-time tasks, e.g. Timed Multitasking (TM) [8] 
and xGiotto [9]. Unfortunately, it is difficult to identify 
reusable components with those models, since 
reusability is generally not well manifested at the task 
level. It is usually identified at a lower level 
exemplified by finer-grain components, such as 
function blocks and their equivalent - passive port-
based objects. However, their use may result in 
complex (nested) models featuring too many ports and 
port connections.  

Industrial software standards like IEC1131-3 and 
IEC 61449 reduce model complexity by adopting 
domain-specific modeling and interaction techniques, 
i.e. function block diagrams and signal-based 
communication. However, these frameworks do not 
provide modeling techniques and component 
definitions at task and subsystem levels, and 
component hierarchy as well as heterogeneity are not 
well specified either.  

These limitations are overcome in COMDES-II by 
introducing units of concurrency, i.e. actors, in 
addition to function blocks - an application is 
composed of actors and actors are configured from 
function blocks, whereby signal-based communication 
is used at all levels of specification. Moreover, 
transparent signal-based communication is combined 
with the concept of timed multitasking, resulting in an 
extended model denoted as Distributed Timed 
Multitasking. The latter has been inspired by the 
original TM model [8], and is similar to the 
computational model of the xGiotto framework [9]. 
However, these frameworks use port-based tasks and 
the reported implementations seem to be limited to 
single-computer systems, whereas COMDES-II 
accommodates distributed actors that interact via 
signal-based communication. On the other hand, TM 
and xGiotto employ only task-level actor models and 
do not define reusable components, such as function 
blocks. Conversely, COMDES-II specifies a number of 
generic function block kinds that provide support for a 
broad of sequential, continuous as well as 
heterogeneous (hybrid) systems. 

7. Conclusion 
 

The paper has presented a generative methodology 
and the associated systems design philosophy of 
COMDES-II, a component-based software framework 
for distributed, real-time embedded control systems.  

The adopted methodology is anticipated to automate 
the implementation of system and component codes 
from the corresponding high-level design models. This 
generative approach may remarkably leverage the 
application prospect of COMDES-II, in the sense that 
framework users are relieved from the error-prone 
manual coding effort, and as a result can focus on the 
high-level specification and analysis of the application 
domain models. 

The design concepts provided by COMDES-II for 
modeling control software systems take both system 
architectural and behavioral aspects into account. On 
one hand, the hierarchical modeling approach provides 
for an open system architecture featuring succinctness 
and readability. On the other hand, the separation-of-
concerns principle is extensively applied to help 
clearly specify various aspects of system behavior in 
the presented modeling context, which may facilitate 
the analysis of individual behavioral properties. 
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