

COMDES-II: A Component-Based Framework for Generative Development
of Distributed Real-Time Control Systems

Xu Ke, Krzysztof Sierszecki, Christo Angelov
Mads Clausen Institute for Product Innovation, University of Southern Denmark

Grundtvigs Alle 150, 6400 Soenderborg, Denmark
{xuke, ksi, angelov}@mci.sdu.dk

Abstract

The paper presents a generative development

methodology and component models of COMDES-II, a
component-based software framework for distributed
embedded control systems with real-time constraints.
The adopted methodology allows for rapid modeling
and validation of control software at a higher level of
abstraction, from which a system implementation in C
can be automatically synthesized. To achieve this
objective, COMDES-II defines formally various kinds
of components to address the critical requirements of
the targeted domain, taking into consideration both the
architectural and behavioral aspects of the system.
Accordingly, a system can be hierarchically composed
from reusable components with heterogeneous models
of computation, whereas behavioral aspects of interest
are specified independently, following the principle of
separation-of-concerns. The paper introduces the
established generative methodology for COMDES-II
from a general perspective, describes the component
models in details and demonstrates their application
through a DC-Motor control system case study.

1. Introduction

Recently emerging concepts and techniques, such as
domain-specific modeling (DSM) and component-
based development (CBD) are considered particularly
appropriate for the efficient development of reliable
embedded software systems [1, 2]. DSM provides
intuitive modeling concepts which are familiar to the
domain experts, and accommodates important domain-
specific characteristics of embedded systems, such as
system concurrency, environmental physicality, real-
time operation, etc. CBD can be regarded as one of the
most suitable design paradigms for domain-specific
modeling. Due to the inherent benefits brought by
reusability of components, and higher-level of

abstraction (modeling systems rather than
programming systems), an embedded software system
can be efficiently constructed from prefabricated and
reusable components. Moreover, from a software
engineering point of view, CBD is also an effective
way to bridge the gap between the conceptual system
design models and the concrete system implementation
[3], provided that an automatic code generation
technique is developed.

The above arguments have been carefully taken into
consideration during the development of COMDES-II
(COMponent-based design of software for Distributed
Embedded Systems - version II) [4], a component-
based software framework intended for efficient
development of distributed embedded control systems
with hard real-time requirements. The framework
attempts to establish an engineering methodology
encompassing high-level modeling and analysis issues
as well as low-level implementation and deployment
techniques. As a result, it emphasizes the following
development issues:

 Component models of computation (MoC) and the

associated modeling techniques that can be used to
specify significant characteristics of real-time
control systems, following the principle of
separation-of-concerns.

 Practically applicable analysis techniques aiming at
verifying system behavior at a higher abstraction
level, e.g. model-checking.

 Advanced algorithms and data structures enabling
reusability and re-configurability of components.

 Automatic code generation techniques to
maximally reduce the manual coding effort, hence
minimizing the errors introduced by manual
coding.

 Proper compilation and configuration techniques,
which can be used to automatically synthesize the
deployable systems from prefabricated component
executables.

This paper presents the COMDES-II design
methodology, followed by a detailed description of the
framework component models and the associated
modeling techniques. The rest of paper is organized as
follows: Section 2 outlines the COMDES-II
methodology from a general perspective in order to
provide a panorama of the framework features.
Sections 3 and 4 present the framework component
models in details, highlighting the architectural and
behavioral aspects, respectively. Section 5 presents a
DC-Motor control system case study developed using
COMDES-II to demonstrate the application of the
framework. Section 6 presents related research.
Finally, the concluding section summarizes the
features of the framework and their implications.

2. COMDES-II methodology

In order to realize efficient and unambiguous
development of reliable control software systems,
COMDES-II employs a generative programming
software engineering methodology, which can be used
to automate the generation of system implementations
from higher-level abstractions represented as textual or
graphical models [5]. This approach is characterized by
a domain-specific, model-driven architecture in which
each abstraction layer is represented as a set of models
with distinct abstraction levels, as shown in Figure 1.

The topmost abstraction layer, which formalizes the
targeted domain characteristics, and the meta-modeling
layer defining the framework modeling language are
located in the problem space of this methodology, in
the sense that the concrete models and techniques
associated with these layers, e.g. mathematical
formalisms and corresponding meta-models, should be
developed by the framework developers. The other
three layers: domain-specific modeling,
implementation and deployment layers are in the
solution space because the corresponding modeling
and development automation techniques, belonging to
these layers, are solutions provided by the framework
developers to the framework users to solve their
application-specific problems in a top-down
abstraction refinement process. In this context, the
development of a system starts from the specification
and verification of system models, through code
generation and validation, down to the configuration of
system deployable code (executable systems at low
abstraction level).

The entire stepwise refinement process of system
abstraction levels is fully assisted by the formally
defined models and the corresponding model-based
automation techniques, resulting in unambiguous and
rapid development of reliable software systems [6].

Figure 1. Generative programming
methodology for COMDES-II

3. Architectural modeling of systems

COMDES-II employs a hierarchical model to
specify system architecture: at the system level a
distributed control application is conceived as a
network of communicating actors (active components).
Distributed actors interact transparently with each
other by exchanging labeled messages (signals),
following an asynchronous producer-consumer
protocol known as content-oriented message
addressing.

At the actor level, an actor is specified as a software
artifact containing multiple I/O drivers and a single
actor task (execution thread). I/O drivers are classified
as communication drivers and physical drivers, which
are associated with the actor task through a dataflow
relationship denoting the exchange of local signals.

The I/O drivers are responsible for sensing or
actuating signals from/to network or physical units,
while the actor task processes the acquired signals to
fulfill the required functionality which is specified by a
composition of different function block instances.
Function block instances are instantiations of reusable
and reconfigurable function block types, which can be
categorized into four function block kinds (meta-
types): basic, composite, modal as well as state

Problem Space

Solution Space

machine function blocks. A detailed description of
each kind of function blocks will be given in Section 4.

The example in Figure 2 shows the presented
hierarchy of components used in modeling CODMES-
II systems. This architectural model features openness
and information hiding at component level, which
brings typical benefits, such as succinctness and
readability, to the COMDES-II systems architecture.

Figure 2. Hierarchical architecture model of a

COMDES-II system

4. Behavioral modeling of systems

In order to clearly model various behavioral
properties, COMDES-II adopts a separation-of-

concerns approach to systematically decompose
different behavioral concerns into separate modeling
units.

4.1. Actor model

In COMDES-II, all non-functional information is
specified with respect to actors, including physicality,
real-time reactivity and concurrency. The operational
semantics concerning these non-functional issues is
completely regulated by the underlying real-time
kernel HARTEXTM

1
 which employs a fixed-priority

timed multitasking scheduling policy [7, 8].
An actor is activated by an execution trigger, which

may be a periodic or sporadic event. The occurrence of
a triggering event is handled by the kernel to notify the
corresponding actors for activation. Upon activation,
the input drivers of the actor are executed atomically to
acquire all input signals, which will be latched
throughout the whole actor execution. The execution
trigger releases the internal actor task, which will
process the obtained input data once it becomes the
highest priority task among all released/preempted
tasks in the processor. The processed data will be
buffered into output drivers that can be atomically
executed to generate output signals when the
corresponding actor deadline expires. In this
computation model, preemption of actor task operation
does not result in actor output jitter, as long as the task
can finish its operation before the deadline. The split-
phase execution pattern of COMDES-II actors is
illustrated as in Figure 3.

Obviously, COMDES-II actors have a typical read-
do-write operational semantics, in which the read
action only takes place at the activation instant and no
new input signals will be read during actor task
operation (do action). As a result, the do action of an
actor is synchronous, i.e. the task operation takes zero
logical execution time (LET), because the computation
result generated by an actor task principally reflects the
actor status at the activation instant. These properties
are vital for establishing the correct analysis models for
COMDES-II systems.

The timed multitasking model of computation
separates the timing behavior of an actor from its
functional aspect, which may facilitate timing analysis,
since real-time properties can be checked using
schedulability analysis, rather than being checked
together with the functional behavior (e.g. using timed
automata models).

1 HARTEXTM is a hard real-time kernel for embedded systems

developed by the Software Engineering Group, Mads Clausen
Institute for Product Innovation, University of Southern Denmark.

inp out

i_data_1

inp out

i_msg_1

inp out

o_msg_2

inp out

o_msg_1inp
inp

out
out

Task
id1_v

om1_vim1_v

om2_v

input communication
driver control task

output communication
driver

input physical driver local signal
Actor_1

input2

output1input1

output2

inp out

pre_processing_1

inp out

pre_processing_2

inp
inp con

control

function block instance input output

Task

environment
actor communication

signal

i_m
i_d

o_m
o_m

Actor_1

i_m
i_m

o_m
o_d

Actor_2

msg_2

msg_3

msg_1
data_1 data_2

Figure 3. Split-phase execution of actors
under timed multitasking

The combination of timed multitasking with

transparent signal-based communication has resulted in
a novel operation model - Distributed Timed
Multitasking (DTM) [7], which is one of the distinctive
features of COMDES-II. It provides for jitter-free
execution of periodic distributed actor transactions,
whereby transaction input and output actions are
executed at precisely specified time instants on the
time axis. A detailed description is referred to [4] and
[7].

4.2 Function block models

Function blocks (FBs) are pure functional
components implementing concrete computation or
control algorithms, which can be used to specify the
system functional behavior. COMDES-II defines four
kinds of FBs: basic, composite, modal as well as state
machine FBs to help specify various kinds of system
functionality, in which basic and composite FBs can
be used to model continuous behavior (data flow),
while state machine and modal FBs describe the
sequential system behavior (control flow). Moreover,
COMDES-II provides adequate modeling and
implementation techniques integrating heterogeneous
data flow and control flow models to realize hybrid
(modal continuous) system operation [4]. Each kind of
FB may have a number of FB types, which can be
instantiated into concrete FB instances with different
settings. FB instances are the actual building blocks
incorporated into the specific host actors to realize the
required system functionality.

4.2.1 Basic FB models. Basic FBs are the elementary
function blocks in COMDES-II, from which more
sophisticated kinds of FBs can be constructed, such as

composite FBs and modal FBs. The design model of a
basic FB is shown as in Figure 4.

set
fee con

PID

Figure 4. An example of basic FB

The presented basic FB model highlights the

specification of FB attributes, in which finite sets of
inputs, outputs, parameters and internal variables are
declared, whereas the functionality is uniquely
determined by the corresponding signal transformation
or control functions (e.g. PID). The attribute aspect of
all kinds of FB models is defined in a similar manner;
therefore the following presentation of FB models will
only focus on the specific functionality aspects of
complex FB kinds.

4.2.2 Composite FB models. A composite FB is a
composition of basic and/or other composite FB
instances used to accomplish complex computational
behavior. The functionality aspect of a composite FB is
represented as a function block diagram consisting of
interconnected FB instances (see Figure 5), which
essentially employs a synchronous data flow (SDF)
model of computation.

Figure 5. An example of composite FB

The execution sequence of internal FB instances in

a composite FB is controlled by a static execution
schedule, which is a data structure automatically

control_signal

feedback

P D

previous_error

I

setpoint

type name
PID

input

output

parameter

internal variable

synthesized from the corresponding FB diagram,
according to the signal flow from inputs to outputs. An
assumption for deriving such an execution schedule is
that the contained FB diagram is acyclic, because the
feedback connections in a synchronous function block
diagram may cause a causality problem.

4.2.3 State machine and modal FB models. In
COMDES-II, state machine FBs and modal FBs are
jointly used to specify the system sequential behavior,
as illustrated in Figure 6.

Figure 6. Interaction between a state machine

FB and a modal FB

In this context, a state machine FB consists of a
number of binary event/guard inputs, an event-driven
state machine model, and exactly two outputs: state
and state_updated (see e.g. Figure 7). The internal
state machine model contains a dummy initial state
pointing to the actual initial state of the machine, a
graphical label with the name history meaning that the
state machine is historic, a number of states and state
transitions that are labeled by events, guards and
transition orders. Transition events/guards are
manipulated as state machine FB input signals
acquired from input drivers or preprocessing FBs, and
transition order is a number indicating the importance
of the transition, i.e. which transition should be fired
when multiple transition triggers associated with the
current state are evaluated as true (transitions are
evaluated starting from 1). This technique avoids the
undesirable non-determinism of state transitions, as
required in safety-critical control systems. When a
state machine FB is executed, the internal state
machine model parses the binary event/guard input
signals, determines the current state and updates two
outputs: state and state_updated, where state
represents the currently active state, and state_updated
is set true if a state transition has happened, otherwise
it is false.

The two output signals from a state machine FB are
used by the corresponding modal FBs to execute the
control actions associated with the specific state (see
Figure 6), and one state machine FB (master) may
control multiple modal FBs (slaves) if these modal FBs
share an identical state machine structure. As an

example, Figure 8 illustrates the internal structure of a
modal FB. A modal FB may contain multiple inputs
and outputs, which can be connected with the I/O
interfaces of the internal operation modes (states) via
dataflow connections. Operation modes are software
artifacts, within which the concrete control actions are
specified by means of the corresponding function
block diagrams. The selection of an executing
operation mode is decided by the currently active state
information provided by the supervisory state machine
FB, whereas the execution of an operation mode is
enabled by the state_updated value, i.e. the control
action should be performed only when a state transition
occurs, since the state machine model is event-driven.

Figure 7. An example of state machine FB

Figure 8. An example of modal FB

Modal FBs support hierarchical composition, i.e.
an operation mode of a modal FB can be refined by
another state machine FB instance and the related slave
MFB instances. This feature enables a hierarchical

history

s1

s2

initialState

e2

state

state_updated

g1

e1

1

e1[g1]

1
e1[!g1]

1

e2[]

1[]

e2

state_updated enabled

state state

inputs

outputs
a0

a1

e1 e2

e1

a0

a1

SMFB MFB

SMFB_1

historic state machine dummy initial state

state

state
transition

enabled

input

state

inp
inp out

Mode_1

output1

output2

input2

inp out

Mode_2

input1

MFB_1

operation mode
(state)

dataflow
connection

state machine structure and a compositional semantics
for modal FBs. Heterogeneous composition is also
possible by allowing the integration of function block
diagrams implementing continuous control behavior
into the corresponding sequential modes of operation.
Additionally, heterogeneity also means that a state
machine FB instance and its slave modal FB instances
can be connected with other basic and/or composite FB
instances, resulting in a hybrid control system.

5. DC-Motor control system case study

The presented framework has been experimentally
validated through a number of case studies, including
the Production Cell Case Study, the Steam Boiler
Control Specification Problem and the DC-Motor
Control System Case Study. A tutorial version of the
latter is presented in this section in order to illustrate
the application of the framework.

The system is a distributed hybrid control
application. It controls a DC-Motor, through a real-
time network (CAN). The control commands are
released from an operator station that interacts with the
user through a keypad and an LCD display. The three
nodes: Sensor, Controller, and Actuator implement
the control loop, i.e. control the speed and direction of
the motor.

At the system level the distributed control system is
modeled as an actor diagram consisting of three actors:
Sensor, Controller, and Actuator, which interact with
the DC-Motor and operator station (not shown here) as
depicted in Figure 9.

Figure 9. DC-Motor control system

The Sensor actor accepts Pulses from an optical

encoder indicating the current speed of the motor, and
sends the information via the SensorSpeed message
to the Controller actor. Depending on the data from
operator station (messages: OSSetpoint,
OSManualVoltage, OSMode), the Controller
computes control signal (ControllerVoltage) and
sends it to the Actuator, which applies Voltage to the
motor. Control system actors are executed in a phase-

aligned transaction triggered by an OSSync message
issued periodically by the operator station (Figure 9).

The rest of the discussion focuses on the Controller
actor, whose structure is presented as in Figure 10.

Figure 10. Controller actor

The internal structure of the ControllerTask is
modeled as a composition of function blocks as shown
in Figure 11, in which the CStateMachine and
CModal FBs are responsible for switching to
appropriate mode of operation, i.e. manual or
automatic control, and executing the corresponding
control algorithms.

The CStateMachine FB in the ControllerTask has
three states: init, manual and automatic, representing
the possible status that the Controller actor could be in.
The required state transition signals (manual,
automatic) used by the CStateMachine FB are
computed beforehand by two comparator FB instances:
compareModeManual, compareModeAutomatic.
Outputs generated in different modes (init, manual,
automatic) of the modal FB CModal are multiplexed
by the multiplexVoltage multiplexer FB, which will
write correct output signals to the corresponding output
buffer according to the state information provided by
the CStateMachine FB.

The control action performed in the automatic
mode of the CModal FB is presented in Figure 12.
This operation mode implements a modal PID control
action, which exhibits the hybrid (modal continuous)
behavior of the system. In this operation mode, the
determination of direction status is managed by the
AutStateMachine FB containing stop, leftControl and
rightControl states. The corresponding modal FB
AutModal performs the continuous PID control actions
associated with the leftControl and rightControl states,
respectively. Once again, outputs generated in different
modes (stop, leftControl and rightControl) of the
modal FB AutModal are multiplexed by the
multiplexVoltage multiplexer FB, which filters out the
correct output according to the active state information
provided by the AutStateMachine FB.

DC-Motor and operator station

i1
i2
i3
i4

o1

ControllerTask

i1

oControllerVoltage

o1

iSensorSpeed

o1

iOSManualVoltage

o1

iOSMode

o1

iOSSetpoint
manualVoltage

mode

setRPM

voltage

realRPM

Figure 11. Internals of the ControllerTask

i2

o1

i1

EAutomatic

i4

i1
i2 o1

compareModeManual

EManual

i3

i1
i2 o1

compareModeAutomatic

sta
ena
man
set
rea

ini
man
aut

CModal
sel
i1
i2
i3

out

multiplexVoltage

man
aut

sta
sta

CStateMachine

stateUpdated

manualVoltage

manualmode

mode

state

setRPM

automatic

realRPM

iVoltage voltage

state

mVoltage
aVoltage

initialState
history

manual

init

automatic

1 automatic[]

1manual[]

1[]

2 automatic[]

1manual[]

manual state

automatic stateUpdated

realRPM

state

initVoltage

setRPM

enabled

manualVoltage

i1
i2 o1

automatic

o1

init

i1 o1

manual

manualVoltage

automaticVoltageautomaticVoltage

manualVoltage

realRPM

initVoltage

setRPM

manualVoltage

Figure 12. Internals of the automatic mode in CModal FB

o1

i1

i2

i1
i2 o1

compareDirection

0
i1
i2 o1

compareSpeed

0

sta
ena
set
rea

sto
rig
lef

AutModal
rig
sto

sta
sta

AutStateMachine

sel
i1
i2
i3

out

multiplexVoltage

sVoltage

stopped

stateUpdated

stateright

setRPM

state

realRPM

setRPM

realRPM

automaticVoltagerVoltage
lVoltage

initialStatehistory

rightControlleftControl stop

1[]

1[!right]

1 stopped[right]

2stopped[!right]

1 [right]

state

stateUpdatedstopped

right

rightVoltage

stopVoltage

state

i1
i2 o1

leftControl

enabled

setRPM

realRPM

i1
i2 o1

rightControl

o1

stop

leftVoltage

rightVoltage

realRPM

setRPM

stopVoltage

leftVoltage

i1

i2

o1set
fee con

PID
setRPM

lef tVoltage

realRPM

6. Related research

Actor-based models are highly popular in the
Software Engineering domain. A great number of
frameworks use port-based objects that are mapped
onto real-time tasks, e.g. Timed Multitasking (TM) [8]
and xGiotto [9]. Unfortunately, it is difficult to identify
reusable components with those models, since
reusability is generally not well manifested at the task
level. It is usually identified at a lower level
exemplified by finer-grain components, such as
function blocks and their equivalent - passive port-
based objects. However, their use may result in
complex (nested) models featuring too many ports and
port connections.

Industrial software standards like IEC1131-3 and
IEC 61449 reduce model complexity by adopting
domain-specific modeling and interaction techniques,
i.e. function block diagrams and signal-based
communication. However, these frameworks do not
provide modeling techniques and component
definitions at task and subsystem levels, and
component hierarchy as well as heterogeneity are not
well specified either.

These limitations are overcome in COMDES-II by
introducing units of concurrency, i.e. actors, in
addition to function blocks - an application is
composed of actors and actors are configured from
function blocks, whereby signal-based communication
is used at all levels of specification. Moreover,
transparent signal-based communication is combined
with the concept of timed multitasking, resulting in an
extended model denoted as Distributed Timed
Multitasking. The latter has been inspired by the
original TM model [8], and is similar to the
computational model of the xGiotto framework [9].
However, these frameworks use port-based tasks and
the reported implementations seem to be limited to
single-computer systems, whereas COMDES-II
accommodates distributed actors that interact via
signal-based communication. On the other hand, TM
and xGiotto employ only task-level actor models and
do not define reusable components, such as function
blocks. Conversely, COMDES-II specifies a number of
generic function block kinds that provide support for a
broad of sequential, continuous as well as
heterogeneous (hybrid) systems.

7. Conclusion

The paper has presented a generative methodology
and the associated systems design philosophy of
COMDES-II, a component-based software framework
for distributed, real-time embedded control systems.

The adopted methodology is anticipated to automate
the implementation of system and component codes
from the corresponding high-level design models. This
generative approach may remarkably leverage the
application prospect of COMDES-II, in the sense that
framework users are relieved from the error-prone
manual coding effort, and as a result can focus on the
high-level specification and analysis of the application
domain models.

The design concepts provided by COMDES-II for
modeling control software systems take both system
architectural and behavioral aspects into account. On
one hand, the hierarchical modeling approach provides
for an open system architecture featuring succinctness
and readability. On the other hand, the separation-of-
concerns principle is extensively applied to help
clearly specify various aspects of system behavior in
the presented modeling context, which may facilitate
the analysis of individual behavioral properties.

8. References

[1] T. A. Henzinger and Joseph Sifakis, “The Embedded
Systems Design Challenge”, Proceedings of the 14th
International Symposium on Formal Methods (FM),
Lecture Notes in Computer Science, Springer, 2006.

[2] E.A. Lee, “Embedded Software”, Advances in
Computers, Vol.56, Academic Press, London, 2002.

[3] J. Reekie and E. A. Lee, “Lightweight Component
Models for Embedded Systems”, Technical Memorandum
UCB/ERL M02/30, University of California, Berkeley,
CA 94720, USA, October 30, 2002.

[4] C. Angelov, Xu Ke and K. Sierszecki, “A Component-
Based Framework for Distributed Control Systems”,
Proc. of the 32nd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA 2006),
Cavtat-Dubrovnik, Croatia, August, 2006.

[5] Czarnecki, K. and Eisenecker, U. W., Generative
Programming: Methods, Tools, and Applications,
Addison-Wesley Professional. 1st edition, June, 2000.

[6] Xu Ke and K. Sierszecki, “Generative Programming for a
Component-based Framework of Distributed Embedded
Systems”, Proc. of the 6th OOPSLA Workshop on Domain
Specific Modeling, Portland, Oregon, USA, Oct. 2006.

[7] C. Angelov and J. Berthing, “Distributed Timed
Multitasking: a Model of Computation for Hard Real-
Time Distributed Systems”, Proc. of the 5th IFIP Working
Conference on Distributed and Parallel Embedded
Systems DIPES'06, Braga, Portugal, Oct. 2006.

[8] J. Liu and E.A. Lee, “Timed Multitasking for Real-Time
Embedded Software”, IEEE Control Systems Magazine:
Advances in Software Enabled Control, Feb. 2003, pp. 65-
75.

[9] A. Ghosal, T.A. Henzinger, C.M. Kirsch and M.A.A.
Sanvido, “Event-Driven Programming with Logical
Execution Times”, Proc. of HSCC 2004, Lecture Notes in
Computer Science, vol. 2993, pp. 357-371.

