
ORIGINAL ARTICLE

Eduardo Souto Æ Germano Guimarães

Glauco Vasconcelos Æ Mardoqueu Vieira Æ Nelson Rosa

Carlos Ferraz Æ Judith Kelner

Mires: a publish/subscribe middleware for sensor networks

Received: 10 July 2004 / Accepted: 17 November 2004 / Published online: 9 October 2005
� Springer-Verlag London Limited 2005

Abstract A wireless sensor network (WSN) consists of a
large number of small devices with computational
power, wireless communication and sensing capability.
These networks have been developed for a wide range of
applications, such as habitat monitoring, object track-
ing, precision agriculture, building monitoring and mil-
itary systems. Meanwhile, middleware systems have also
been proposed in to facilitate both the development of
these applications and provide common application
services. The development of middleware for sensor
networks, however, places new challenges on middle-
ware developers due to the low availability of resources
and processing capacity of the sensor nodes. In this
context, this paper presents the design and implemen-
tation of a middleware for WSN named Mires. Mires
incorporates characteristics of message-oriented mid-
dleware by allowing applications communicate in a
publish/subscribe way. In order to illustrate the pro-
posed middleware, we have also developed an environ-
ment-monitoring application and a data aggregation
service.

Keywords Middleware Æ Publish/subscribe
systems Æ Wireless sensor networks

1 Introduction

A wireless sensor network (WSN) consists of a large
number of small devices with computational power,
wireless communication and sensing capability [1]. Sen-
sor nodes are usually scattered in an observation region.

Each sensor node in the observation region is responsi-
ble for extracting data from the environment (such as
temperature, humidity, pressure and luminosity), pro-
cessing and sending this data through one or more sink
nodes, which are in turn responsible for transmitting this
data to the final user.

These networks have been developed for a wide range
of applications such as habitat monitoring, object
tracking, precision agriculture, building monitoring and
military systems [1, 2, 3]. Common to these applications
is the need for continuous collection and integration of
data from a large number of sensor nodes. Hence, a
basic issue for middleware is how to satisfy an applica-
tions’ requirements considering the specific characteris-
tics of sensor networks such as constrained sensor power
and network bandwidth. The design of sensor networks
applications is therefore highly influenced by resource
scarcity (e.g., battery, memory and processor), commu-
nication models and application requirements.

In this way, most research in this area has been di-
rected to the development of new protocols that pro-
mote efficient resources utilization, mainly with respect
to the power consumption [4, 5, 6, 7]. Although these
protocols are effective in extending the lifetime of sensor
networks, the gap between the protocols and the appli-
cation inhibits their effective use by application devel-
opers [8]. To make these protocols more useful,
application designers would benefit from a middleware
layer that hides details of communication protocols,
while providing an API (Application Programming
Interface) that reduces the cost of developing applica-
tions.

In this context, the design and implementation of an
appropriate middleware layer to fully realise the capa-
bilities of sensor technologies and applications is now an
open research issue. Traditional middleware systems
such as Java RMI (Remote Method Invocation) [9], EJB
(Enterprise JavaBeans) [10] and CORBA (Common
Object Request Broker Architecture) [11] are normally
heavyweight in terms of memory and computation and
therefore not suitable for WSNs [12].

Amiddleware forWSN should facilitate development,
maintenance, deployment and execution of sensing-based

E. Souto (&) Æ G. Guimarães Æ G. Vasconcelos Æ M. Vieira Æ
N. Rosa Æ C. Ferraz Æ J. Kelner
Professor Luis Freire, Cidade Universitria, Federal University of
Pernambuco, Informatic Center, 50740-540 Recife, PE, Brazil
E-mail: ejps@cin.ufpe.br
Tel.: +55-81-21268430
E-mail: gfg@cin.ufpe.br
E-mail: gpv@cin.ufpe.br
E-mail: msv@cin.ufpe.br
E-mail: nsr@cin.ufpe.br
E-mail: cagf@cin.ufpe.br
E-mail: jk@cin.ufpe.br

Pers Ubiquit Comput (2006) 10: 37–44
DOI 10.1007/s00779-005-0038-3



applications. To accomplish this, it is necessary to enable
the development of complex and high-level sensing tasks.
These tasksmust be able to communicate with other tasks
in the WSN, coordinate sensors, be distributed amongst
individual sensor nodes, support data merging of sensor
readings in individual nodes into a higher level results and
report the result back to the task issuer. Moreover, one
should provide appropriate abstractions andmechanisms
for dealing with the heterogeneity of sensor nodes. All
mechanisms provided by a middleware system should
respect the restrictions involved in WSN systems, which
are mostly energy efficiency, robustness and scalability
[13].

In addition, the communication between applications
in WSNs is essentially based on events (event-driven
communication model), which suggests that the tradi-
tional request/response approach (synchronous) is not
appropriate. In most applications, data transmission is
triggered when either an event occurs or the sink node
generates a query. This kind of data dissemination is
well supported by the publish/subscribe paradigm where
a publisher makes information available to subscribers
in an asynchronous fashion.

Taking into account that the network nodes have
well-defined attributes (e.g., temperature, humidity,
pressure), a publish/subscribe scheme can be used to
query and extract data from the network. In such a
scheme, each node announces a set of attributes that
describe monitored data types. The user application
subscribes to a subset of the attributes offered by the
sensor nodes. A subscribe message is broadcasted
through the network until it reaches all the sensor nodes.
From this moment, the sensor nodes start to monitor,
collect, process and transmit the desired information.

This paper presents the design and implementation of
a publish/subscribe middleware, named Mires, which
encapsulates the network-level protocols (routing and
topology control protocols) and provides a high-level
API that facilitates the development of applications. In
order to validate our approach we have also developed
an environment-monitoring application and a data
aggregation service.

The remainder of the paper is organized as follows.
Section 2 introduces related work in the area. Section 3
provides a detailed description of the proposed publish/
subscribe middleware. Section 4 presents an environ-
mental monitoring application used to validate our
middleware. Finally, Sect. 5 presents some conclusions
and directions for future works.

2 Related work

Several middleware systems have been designed to deal
with WSN issues. Maté [14] is an architecture for con-
structing application-specific virtual machines that exe-
cutes on top TinyOS [15]. Using this architecture,
developers can easily change instruction sets, execution

events, and VM subsystems. Maté provides a simple
programming interface to sensor nodes. For example, a
sense-and-send program can be written with six
instructions.

Another middleware, Impala [16], designed for use in
the ZebraNet project, supports control in the applica-
tion itself by exploiting mobile code techniques to
change the functionality of the middleware executing at
a remote sensor. The key to energy efficiency for Impala
is for the sensor node applications to be as modular as
possible, enabling small updates that require little power
during transmission.

Unlike Impala and Maté, MiLAN (Middleware
Linking Applications and Networks) [8] has an archi-
tecture that reaches the network protocol. MiLAN is
intended to sit on top of multiple physical networks. It
acts as a layer that allows network-specific plug-ins to
convert MiLAN commands to protocol-specific ones
that are passed through the usual network protocol
stack. Therefore, MiLAN can continuously adapt to the
specific features of whichever network is being used in
the communication. Finally, Cougar [17] adopts a
database approach where sensor readings are considered
to be in ‘‘virtual’’ relational database tables. An SQL-
like query language is used to issue tasks to the WSN.

First concrete experiments show that even very sim-
ple protocols and algorithms can exhibit surprising
complexity at large scale [13].

3 The middleware Mires

WSN applications need to continuously collect and
integrate data generated from a large and physically
dispersed cohort of sensor nodes. Typically, there are a
large number of devices exchanging data, whilst some
information sources and sinks may not be present in the
network at the same time. Therefore, the request/re-
sponse communication is not adequate to satisfy this
requirement. For example, a client who requests
instantaneous updates of information would need to
continuously poll the information providers leading to
network overload and congestion. Moreover, as energy
is a scarce resource, unnecessary information requests
should be avoided.

Publish/subscribe communication is adequate for the
required information dissemination model of sensor
network applications [19, 20]. In this kind of commu-
nication, an information supplier publishes messages
that are forwarded to one or more subscribers (one-to-
many communication). An extension to this basic model
allows messages being associated to topics. In this par-
ticular case, the subscribers only receive messages asso-
ciated with the exact topic(s) to which they have
subscribed.

The key elements in publish/subscribe communica-
tion are the notification service and the buffer where
the messages are queued before they are passed to

38



subscribers. The notification service takes responsibility
for informing the subscribers when a new message ar-
rives. In this way it allows the asynchronous communi-
cation as producers and consumers are fully decoupled.
This loose coupling is the prime advantage of this kind
of communication for ad hoc and pervasive environ-
ments such as WSN [21].

The Mires middleware addresses the implementation
of publish/subscribe communication for wireless sensor
network applications. The communication between
nodes consists of three phases. Initially, the nodes in the
network advertise their available topics (e.g., tempera-
ture and humidity) collected from local sensors. Next,
the advertised messages are routed to the sink node
using a multi-hop routing algorithm. A user application
(e.g., a graphical user interface) connected to the sink
node is able to select (i.e., subscribe) the desired adver-
tised topics to be monitored. Finally, subscribe messages
are broadcasted down to the network nodes. After
receiving the subscribed topics, nodes are able to publish
their collected data to the network. Further details are
presented in the following sections.

3.1 MIRES architecture

Figure 1 shows the proposed middleware architecture.
From the bottom to the top, the first block corresponds
to the sensor node’s hardware components. It generally
includes a microcontroller unit, one or more sensors and
a radio transceiver. These components are directly
interfaced and controlled by the operating system (OS).
The low-level services provided by the OS can be ac-
cessed through standard interfaces.

Mires is placed on the top of the OS, encapsulating its
interfaces and providing higher-level services to the
Node Application. Mires internal structure is composed
of the publish/subscribe service, a routing component
and additional services. The additional services (e.g.,
data aggregation service) may be easily integrated to the
publish/subscribe service if they implement the appro-
priate interfaces.

The main component in Mires architecture is the
publish/subscribe service. This service mediates the
communication between middleware services. It is also
responsible for advertising the topics provided by the
local application, maintaining the list of topics sub-
scribed by the node application and publishing messages
containing data related to the advertised topics. Only
messages referring to the subscribed topics are trans-
mitted, thus saving precious power supplies.

In order to transmit either locally generated or for-
warded messages received from the network towards the
sink node, the publish/subscribe service uses a multi-hop
routing algorithm. Since the operating system does not
specify a standard routing algorithm, we have opted to
incorporate this feature into the middleware. The algo-
rithm must be implemented as an independent compo-
nent, allowing the utilization of any multi-hop routing
algorithm since it implements the required interface by
Mires.

As mentioned before, additional services can be easily
incorporated to Mires through interfaces that define
notification events. Thus, the publish/subscribe service
notifies the services (those interested in the message)
about message arriving from the network or submitted
by the local application. If a service is interested in being
notified of a certain event, it needs only to implement a
specific handle to that event.

There are three types of notification events: topicAr-
rival, stateArrival and topicSetupArrival. The topicArri-
val event signals that the node application has submitted
data collected from sensors. When this event occurs, the
notified service at first decides if the data are locally
processed (e.g., aggregated) or transmitted, and then
communicates its decision to the publish/subscribe ser-
vice. The stateArrival event is very similar to the previ-
ous one except for the fact that the data comes from the
network. The network data represents the results from
the processing in a node positioned in a lower level of
the routing hierarchy. Finally, the topicSetupArrival
event is the subscribe message broadcasted by the user
application. It contains both a list of subscribed topics
and configuration information for the services, e.g., the
policy that establishes stop criterion (time limit, number
of samples).

As soon as the stop criterion for a subscribed topic is
satisfied, the service can publish the local processing
results to the network. The publish/subscribe service
then interacts with the routing component to send a
message containing the local results to the node in the
next hierarchy level. This process repeats until a publish
message reaches the sink node, which is responsible for
transmitting the data collected by the sensor network to
the user application.

3.2 Publish/Subscribe service

Before presenting details of the proposed publish/sub-
scribe service, it is worth presenting some relevantFig. 1 Mires’ architecture

39



aspects of the implementation environment upon which
the service was built, namely TinyOS. This environment
has a component-based programming model provided
by the nesC [22] language. NesC is a high-level language
for building structured component-based applications.
TinyOS programs can be seen as a component graph,
where each component provides and uses external
interfaces, which are composed by commands and
events. Commands are procedures that are implemented
in the interface provider. When an interface provider
signals an event, this causes the execution of a procedure
(event handler) implemented in the interface user. The
communication among network nodes is based on the
Active Messages [23] paradigm. According to it, each
message contains the ID of a handle to be invoked on
the target node and data payload to pass in as argu-
ments. This event-based and message-oriented commu-
nication paradigm makes TinyOS a good foundation for
building a publish/subscribe-based communication
infrastructure.

Figure 2 illustrates the connections between the
publish/subscribe service component and the other ele-
ments of Mires. The PublishSubscribe component pro-
vides both the Advertise and Publish interfaces to the
node application. It also provides the PublishState and
the Notifier interfaces to ServiceX (e.g., aggregation
service). These two interfaces allow the addition of ser-
vices to Mires.

The PublishState interface defines the command used
by ServiceX to publish their processing results. The
Notifier interface defines three events to which new ser-
vices must provide handler implementations and then to
be notified by the publish/subscribe service of occur-
rences like local or remote data arrival.

The PublishSubscribe service uses three interfaces
(Send,Receive and Intercept) that are implemented by

the Bcast and MultiHopRouter communication compo-
nents. The MultiHopRouter component is responsible
for establishing the routing hierarchy towards the sink
node. The Bcast component is responsible to broadcast
set up information (e.g., subscribed topics by the user
application) across the network.

The following sequence diagrams show the interac-
tions between the publish/subscribe component and the
other Mires’ components. In Fig. 3, the node applica-
tion advertises to the PublishSubscribe service its capa-
bility of sensing data related to a certain topic (advertise
phase). The PublishSubscribe service encapsulates this
information in an advertiseMsg and sends it to the net-
work via the MultiHopRouter component.

The interaction in the bottom of Fig. 3 refers to the
occurrence of an advertiseMsg message arrival in the
node. All messages are addressed to the sink node, but in
the intermediate nodes the MultiHopRouter component
signals an intercept event whenever it receives an ad-
vertiseMsg message. Next, the PublishSubscribe service
extracts the advertised topic information from the mes-
sage, updates its internal control structure and returns
an indication to the MultiHopRouter that the message
should be forwarded to the upper nodes in the network
hierarchy.

Figure 4 illustrates the topic subscription interaction
that is initiated after the advertise phase. The user
application invokes the sink node’s send command in
order to broadcast the subscribed topics to the network.
In each node that receives the subscribeMsg, the Bcast
component signals a receive event. Then, the Publish-
Subscribe component extracts the set up information
from the message and signals the topicSetupArrival event
to notify the ServiceX components attached to it.

Figure 5 shows how the monitored data are both
published and processed by the network. The NodeAp-
plication periodically collects readings from the node’s
sensors and invokes the publish command of the Pub-

Fig. 2 Publish/subscribe component diagram Fig. 3 Topic advertisement sequence diagram

40



lishSubscribe component. If other services are attached
to it, the publish/subscribe component notifies them
through the topicArrival event.

In the next interaction, the service invokes the pub-
lishState command to the PublishSubscribe component
passing its processing results. Then, the PublishSubscribe
service encapsulates the local state inside a publishMsg
and sends it to the network by using the MultiHopR-
outer component.

Finally, the third interaction occurs when a publish-
Msg arrives at a node. The MultiHopRouter signals an
intercept event containing the publishMsg. The publish/
subscribe component extracts the remote state from the
message and notifies the other services by signalling the
stateArrival event. Thus, a notified service is supposed to
merge the remote state with its local one.

In the next section, we discuss how Mires can be used
to easily develop an environment monitoring applica-
tion, a very common application of wireless sensor
networks. We also exemplify how a service can be at-
tached to the Mires framework in a straightforward
manner.

4 Case study: an environment-monitoring application

This section presents an environment-monitoring
application built to validate the implementation of our
publish/subscribe middleware. To this end, an aggrega-
tion service was implemented and connected to Mires.

4.1 Scenario

Imagine a cubical environment-monitoring scenario
with the following characteristics: each environment is
formed by a group of sensor nodes that can monitor
variables such as temperature, humidity, sound and
luminosity. Figure 6 represents this scenario.

The sensors are grouped in rooms forming clusters.
Each room has a node responsible for the communica-
tion with the sink node, called a cluster head. Each node
inside a cluster integrates the information of nodes un-
der it in the routing hierarchy by means of some
aggregation technique and reports the results up in the
hierarchy until the cluster head. A sink node receives the
sensing tasks from the external application and spreads
them to the network. Thus, the flow of tasks goes from
the sink node to the sensor nodes, while the data flow
goes in the opposite direction. The external application
will collect this data and deal with it in the desired form.

4.2 Aggregation service

Environment-monitoring applications usually require
that collected data from sensor nodes be aggregated in
order to reduce the number of transmissions in the
network. Data aggregation is the combination of data
from different sources by functions such as suppression,
min, max and average [24]. A naive implementation of

Fig. 5 Data publishing sequence diagram

Fig. 4 Topic subscription sequence diagram

Fig. 6 Sensor nodes distributed in rooms

41



sensor network aggregation would be to use a central-
ized, server-based approach where all sensor readings are
sent to a base station, which computes the aggregates
[25]. In our case study, however, the aggregation has
been performed at each sensor node, by allowing sensors
to conduct in-network data reduction. This technique
has been used to reduce the number of message trans-
missions, latency and power consumption [5, 18, 26]. To
accomplish this requirement, we have implemented an
aggregation service, which can be configured during the
subscribe process. The user can set out how data will be
aggregated (aggregation function) along with the stop
criteria (aggregation policy). When the stop criterion is
satisfied in a node, it publishes its local result to the next
node according to the routing algorithm. The aggrega-
tion service implements three basic actions:

– Aggregate data originating from the local sensor(s)
with data coming from the network

– Control the association between the topics and its
aggregation functions. That is necessary because
nodes can receive data of several topics and each topic
can be associated to a different aggregation function.

– Verify the satisfaction of the aggregation policy’s
criteria and request publication of the associated
state1 with a topic. For example, the time criterion
defines an interval where the aggregation function is
applied on values obtained locally or generated from
its sub-nodes. When the time is over, the local state is
transmitted and restarted.

An aggregation function defines how the data are
combined. Figure 7 shows the structure of the proposed
aggregation service. The AggregationM module contains
the implementation of the aggregation service, handling
the notifications sent by the publication service. The
aggregation functions are implemented in separate
modules such as AVG and SUM. The AggregateUse
module carries out an activity of de-multiplexing, pass-
ing requests for the correct aggregation module in
accordance to its identifier. This way, flexibility to add
new aggregation functions is guaranteed, just requiring
the creation of a module for the new function and the
association between the function and an identifier to a
configuration file.

As this aggregation service is implemented in a dis-
tributed manner it decreases the communication re-

quired to compute an aggregate versus a centralized
aggregation approach.

4.3 Application example

In order to illustrate the applicability of the proposed
architecture, we present an application example in which
the user subscribes its topics of interest and visualizes the
response from the network through a graphical interface
of the incoming data. Figure 8 shows a user application
and its interaction with the middleware architecture. The
MIRES execution can be divided in the following pha-
ses: network establishment, announcement, subscription
and publication.

After the deployment of sensor nodes, configuration
messages start to be exchanged with the objective to
establish routes towards the sink node. This process is
controlled by the routing component of Mires, which
signals the conclusion of the network establishment to
the sensor node application. In this case study, the
routing component implements a multi-hop algorithm.

When the establishment of the routing tree is finished,
the announcement phase is initiated. In this phase, the
sensor node application informs the middleware that it
will publish data of a specific topic (e.g., temperature). It
is Mires’ responsibility to inform the other sensor nodes
in the routing tree. Thus, the application does not need
to worry about the procedure of topic diffusion in the
network.

Once the announced topics arrive at the sink node,
they are passed to the user application. In this case
study, a graphical interface was built to allow the user to
select one or more topics of interest, specifying desired
policies and aggregation functions. A screenshot of this
application is shown in Fig. 8, which demonstrates a
configuration where the user is interested in receiving
data about temperature every 4 min and luminosity ev-
ery 6 min. The user application sends a subscribe mes-
sage to the sink node, and then Mires is responsible for
the dissemination of the configurations of the user to the
other nodes in the network. This procedure corresponds
to the subscription phase.

After the subscription phase, the application starts to
publish the data of interest, as subscribed to by the user
application. In the aggregation service, the data are
combined in accordance with the function and policies
established by the user application in the subscription
phase. Mires is responsible for transmitting the data
processed by the aggregation service to other nodes.

In summary, the user application needs only inform
Mires which topics (temperature, luminosity or humid-
ity) interest it. The middleware receives this configura-
tion message (topics, function and aggregation policies)
and sends the requested data back to the user applica-
tion. In this way, Mires undertakes the control and
communication of the sensors’ readings, thus reducing
the semantic gap of the application development.

Fig. 7 Aggregation service structure

1A state is the data structure that represents the local result for the
aggregation of a certain topic.

42



5 Conclusions and future work

Wireless sensor network applications place new chal-
lenges on middleware developers due to the low
availability of resources and processing capacity of the
sensor nodes. This work’s main contribution is to
demonstrate that the publish/subscribe paradigm can
be successfully applied in WSNs, providing an asyn-
chronous communication model that is better suited
than the traditional request/response model to cope
with the event-driven nature of the sensor networks
applications. Mires has been designed to facilitate the
development of applications over WSNs. This mid-
dleware is implemented on the top of TinyOS, an
event-based operating system explicitly designed for
network sensors.

In Mires, each node advertises topics available in its
sensor hardware. A user application receives these topics
and selects the desired topics to be monitored. After this,
nodes are able to publish the collected data of interest.
The Mires’ core component is the publish/subscribe
service. This service acts as an intermediate between the
application running locally and the communication
components of the operating system. It is responsible for
advertising the topics provided by the local application,
maintaining a list of the topics subscribed by the user
application and publishing messages containing data
related to the advertised topics. Only messages referring
to the subscribed topics are transmitted, thus saving
precious energy supplies.

In our case study, we implemented a service that can
be attached to the Mires framework in a straightforward
manner. The aggregation service is responsible for
combining the data from different sources, eliminating
the redundancy of the transmitted data, minimizing the
number of transmissions and, thus, increasing the net-
work lifetime. This fact occurs because the parent nodes
in the routing hierarchy process the messages sent by
child nodes and the results are then published upwards
in the network. This processing consists of the compu-
tation of a mathematical function that summarizes the
results obtained by the cluster participants.

The next steps in Mires development are related to
the evaluation of its impact on the overall network
performance and power consumption. Improvements
will be made to make it more robust to sudden topology
changes and individual node crashes. Tests using real
sensor nodes (motes) are also been planned. Finally,
additional services such as security, trading and resource
management will be integrated into Mires.

Acknowledgements This work is partially sponsored by CNPq and
CAPES, Brazilian government research agency.

References

1. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002)
A survey on sensor networks. IEEE Communications Maga-
zine, pp. 102–114, August

2. Cerpa et al (2002) Habitat monitoring: application driver for
wireless communications technology. ACM SIGCOMM
workshop on data communications in Latin America and the
Caribbean, Costa Rica, April

3. Pottie GJ, Kaiser WJ (2000) Wireless integrated network sen-
sors. Communications of the ACM 43(5):51–58

4. Heinzelman W, Chandrakasan A, Balakrishnan H (2000) En-
ergy-efficient communication protocol for wireless microsensor
networks. In: Proceedings of the IEEE Hawaii international
conference on system sciences, Hawaii, USA, January

5. Lindsey S, Raghavendra CS (2002) PEGASIS: Power efficient
gathering in sensor information systems. In: Proceedings of the
IEEE aerospace conference, Montana, USA, March

6. Younis M, Youssef M, Arisha K (2002) Energy-aware routing
in cluster-based sensor networks. In: Proceedings of the 10th
IEEE/ACM international symposium on modelling, analysis
and simulation of computer and telecommunication systems,
Fort Worth, Texas, USA, October

7. Manjeshwar, Agrawal DP (2001) TEEN: a protocol for en-
hanced efficiency in wireless sensor networks. In: Proceedings
of the 1st International workshop on parallel and distributed
computing issues in wireless networks and mobile computing,
San Francisco, CA, USA, April

8. Heinzelman W, Murphy A, Carvalho H, Perillo M (2004)
Middleware to support sensor network applications. IEEE
Network Magazine Special Issue, pp 6–14, January

9. Wollrath, Riggs R, Waldo J (1996) A distributed object model
for the Java system. Usenix conference on object oriented
technologies and systems, May

Fig. 8 Application example

43



10. Thomas, Seybold P (1998) Enterprise JavaBeans Technology.
available in http://java.sun.com/products/ejb/whitepaper.html,
December

11. Object Management Group (1999) The common object request
broker: architecture and specification. Published by the Object
Management Group (OMG), Revision 2.3, June

12. Yu Y, Krishnamachari B, Prasanna VK (2004) Issues in
designing middleware for wireless sensor networks. IEEE
Network Magazine Special Issue 18(1):15–21

13. Rmer K, Kasten O, Mattern F (2002) Middleware challenges
for wireless sensor networks. ACM SIGMOBILE Mobile
Communication and Communications Review 6(2)

14. Levis P, Culler D (2002) Maté: a tiny virtual machine for sensor
networks’’, In: Proceedings of the 10th international conference
on achitectural support for programming languages and oper-
ating systems, San Jose, CA, USA, October

15. Hill J, Szewczyk R, Woo A, Hollar S, Culler D, Pister K
(2000) System architecture directions for networked sensors.
In: ACM SIGOPS operating systems review 34(5):93–104,
December

16. Liu T, Martonosi M (2003) Impala: a middleware system for
managing autonomic, parallel sensor systems. In: Proceedings
of the ninth ACM SIGPLAN symposium on principles and
practice of parallel programming, San Diego, CA, USA, June

17. Bonnet P, Gehrke JE, Seshadri P (2000) Querying the physical
world. IEEE Personal Communications 7(5):10–15

18. Krishnamachari, Estrin D, Wicker SB (2002) The impact of
data aggregation in wireless sensor networks. In: Proceedings
of the 22nd international conference on distributed computing
systems, pp 575–578, Vienna, Austria, July

19. Yoneki E (2003) Mobile applications with a middleware system
in publish-subscribe paradigm. In the 3rd Workshop on
applications and services in wireless networks, Bern, Switzer-
land, July

20. Cugola GH, Jacobsen A (2002) Using publish/subscribe mid-
dleware for mobile systems. In the ACM SIGMOBILE mobile
computing and communications review. ACM Press, New
York, 6(4):25–33 USA, October

21. Cilia M, Fiege L, Haul C, Zeidler A, Buchmann AP (2003)
Looking into the past: enhancing mobile publish/subscribe
middleware. In: Proceedings of the 2nd international work-
shop on distributed event-based systems, San Diego, CA,
USA, June

22. Levis GP, Culler D, Brewer E (2003) nesC 1.1 Language ref-
erence manual’’, In: TinyOS documentation site, available in
http://today.cs.berkeley.edu/tos/tinyos-1.x/doc/nesc/ref.pdf,
May

23. Buonadonna P, Hill J, Culler D (2001) Active message com-
munication for tiny networked sensors. In: Proceedings of the
20th annual joint conference of the IEEE computer and com-
munications societies, Anchorage, Alaska, USA, April

24. Krishnamachari B, Estrin D, Wicker S (2002) Modelling data
centric routing in wireless sensor networks. In: Proceedings of
the 21th annual joint conference of the IEEE computer and
communications societies, New York, USA, June

25. Madden SR, Franklin MJ, Hellerstein JM, Hong W (2002)
TAG: a tiny aggregation service for ad-hoc sensor networks. In:
Proceedings of the symposium on operating systems design and
implementation, Boston, MA, USA, December

26. Yao Y, Gehrke J (2002) The Cougar approach to in-network
query processing in sensor networks. In: Proceedings of the
ACM SIGMOD international conference on management of
data, Madison, Wisconsin, USA, September

27. Levis P (2003) Ad-hoc routing component architecture’’, in the
TinyOS documentation site, available in http://today.cs.berke-
ley.edu/tos/tinyos-1.x/doc/ad-hoc.pdf, February

44


	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Fig1
	Fig2
	Fig3
	Sec6
	Sec7
	Sec8
	Fig5
	Fig4
	Fig6
	Sec9
	Fig7
	Sec10
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	Fig8
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27

