
Toward Unsupervised Protocol Feature Word Extraction
Zhuo Zhang, Zhibin Zhang, Patrick P. C. Lee, Yunjie Liu, and Gaogang Xie

Abstract—Protocol feature words are byte subsequences within
traffic payload that can distinguish application protocols, and
they form the building blocks of many constructions of deep
packet analysis rules in network management, measurement, and
security systems. However, how to systematically and efficiently
extract protocol feature words from network traffic remains a
challenging issue. Existing approaches like those based on n-
gram or Common String (CS), which simply breaks payload
into equal-length pieces or attempts to find a frequent itemset,
are ineffective in capturing the hidden statistical structure of
the payload content. In this paper, we propose ProWord, an
unsupervised approach that extracts protocol feature words from
traffic traces. ProWord builds on two nontrivial algorithms.
First, we propose an unsupervised segmentation algorithm based
on the modified Voting Experts algorithm, such that we break
payload into candidate words according to entropy information
and provide more accurate segmentation than existing n-gram
and CS approaches. Second, we propose a ranking algorithm
that incorporates different types of well-known feature word
retrieval heuristics, such that we can build an ordered structure
on the candidate words and select the highest ranked ones
as protocol feature words. We compare ProWord and existing
prior approaches via evaluation on real-world traffic traces. We
show that ProWord captures true protocol feature words more
accurately and performs significantly faster.

Keywords-Network traffic analysis, network traffic identifi-
cation, protocol reverse engineering, unsupervised information
extraction.

I. INTRODUCTION

To deal with the increasing variety and complexity of mod-

ern Internet traffic, operators often need deep understanding of

applications running in their networks. Today’s operators are

challenged by how to keep pace with the explosive growth of

new web and mobile applications [35]. Protocol feature words
(or feature words for short) are byte subsequences within pay-

load that can distinguish application protocols. If we consider

each protocol as a type of communication language, feature

words make up a lexicon and form the building blocks for any

deep packet analysis. Feature words are important in security

and measurement systems. For example, the Linux application

classifier L7-Filter [1] uses layer-7 feature words to build
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regular expressions for traffic identification. Intrusion detection

systems, such as Snort [8] and Bro [3], need feature words to

construct rules and guide their engines to properly conduct

application layer protocol processing. Traffic analysis tools

such as Wireshark [11] and NetDude [5] require third-party

development of additional plugins to provide feature support

for new protocols. Compared with the noise-prone and easily

morphed behavioral features such as packet sizes and interval

times, feature words are more stable and distinguishable in

traffic classification related applications [13], [16].

However, existing studies on protocol feature word dis-

covery, or in machine learning terms the feature engineering
process, critically depend on manual labors when protocol

specifications are undocumented. When performing protocol

reverse engineering, we need many prior experiences to dis-

cover feature word boundaries and select candidates as feature

words from continuous payload. Text-based protocols, such as

SMTP and FTP, contain human-readable feature words, and

word boundaries in general can be identified by common de-

limiters such as whitespaces. However, in the realm of binary

protocols, extracting feature words becomes challenging for

humans without grammar and syntax prompt. Even worse,

we cannot easily tell whether a traffic trace belongs to a

text or binary protocol if the protocol is totally unknown.

Thus, generating effective rules to identify traffic is labor

and experience intensive. For example, L7-Filter pattern files,

which include regular expressions built with feature words, are

contributed by many researchers and developers worldwide.

This motivates us to investigate how to integrate protocol

reverse engineering experiences into algorithmic design, so as

to automatically extract feature words from network traffic.

A. Related Work and Their Limitations

Traditionally, the intuition behind feature word extraction

is based on frequent itemset mining. That is, we believe

that feature words must be the substrings that appear more

frequently than others. Although Apriori [24] is the most

natural choice, it cannot scale well as it needs multiple scans

of the original traffic traces. Thus, many other studies have

been raised, which usually break continuous payload into small

blocks and can be regarded as an attempt to build a bag-of-

words model. For text protocols, using whitespaces to delimit

feature words [15] is a good choice, but is clearly ineffective

for binary protocols.

The n-gram approach can be regarded as a variation of

Apriori. It has been widely used to extract feature words in

both text and binary protocols [19], [20], [25], [26], [29], [38],

[39], such that it uses a sliding window of size n bytes to break

payload into equal-length pieces. However, it can tear a feature

word larger than n bytes into different pieces, or squish noise
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bytes into one piece with a shorter one. Recent experimental

studies show that n-gram analysis quickly becomes ineffective

when capturing relevant content features in moderately varying

traffic [22].

Common substring extraction is another popular approach

for feature words extraction [34], [36], [37], [40], [42], [43].

Inspired by sequence alignment in bioinformatics for DNA

analysis, this approach will find the most common substrings

within flows or packets. It selects substrings with a minimum

length and a minimum coverage in the trace. Although it can

identify words of various lengths with given frequencies, the

result may include too many redundancies if we improperly set

the minimum length or the minimum coverage. For example,

if a substring RCPT TO is a common substring that meets

the requirement of minimum coverage, its subset items like

{RCPT T, RCPT, CPT, RCP, TO, ...} can also be

included in our results if we set the minimum length as 2.

Some redundancy reduction methods can be applied. The

most natural one is the longest common substring (LCS)

approach, which only selects the longest one from a set of

common substrings1. For {RCPT TO, RCPT, CPT, RCP,
TO, ...}, we only choose RCPT TO as the final result. An

obvious problem is that, some useful substrings with short

length are always excluded if they happen to be a part of

another longer one. For example, DATA, EXDATA are two

feature words in the SMTP protocol and its extension [6], but

DATA will be ignored as EXDATA is the longest common sub-

string. To remove redundancies, Wong et al. [41] propose an

algorithm for discovering biological non-induced patterns (or

substrings) from sequences, and it excludes redundant patterns

(or substrings) by statistically induction instead of selecting

the longest common ones. However, the single threshold is

empirical and limited for redundancy reduction. SANTaClass

[36], [37] proposes different rules to filter redundant com-

mon terms, but some of the rules, such as removing terms

unrelated to applications and removing bad terms, require

detailed knowledge of application protocols and hence manual

interventions seem inevitable.

To wrap up, the prior studies have two limitations. The first

limitation is that they are parameter sensitive approaches. We

must select the parameters properly to reach useful results.

The parameters, such as n for n-gram or the length and

frequency thresholds for CS or LCS, have strong dependencies

with final results. However, it is very difficult for an engineer

to accurately build the prior knowledge. As a substitute, an

engineer with experiences of traffic and protocol analysis may

believe how possible that a feature word appears in ranges,

rather than exact values, of length, frequency, or position

within a trace. Thus, the first problem is how to inject this

implicit knowledge into real traffic analysis and make the

process insensitive with parameters.

The second limitation is that the prior approaches cannot

scale well for large-scale traffic traces. For example, the

1The formal definition of the longest common substring (LCS) approach is
to find the longest substring that appears in all input strings. The LCS approach
in our description can be viewed as a variant of the formal definition, since
it first extracts all (common) substrings that meets the minimum coverage
requirement and then picks the longest (common) substring.

common substring approaches usually keep the information

about substrings, say their frequencies, in a generalized suffix

tree [21], which can explode when facing a large volume of

data. In network traffic, most substrings appear only once but

they can occupy the most memory. Thus, the second problem

is how to filter these low frequent items out and save memory

for latent useful ones.
Supervised machine learning approaches have been widely

used in traffic classification. Most studies focus on design-

ing effective classification algorithms based on state-of-the-

art learning tools like support vector machines [18], [28]

and Naive Bayesian classifier [12], [33]. Supervised learning

approaches require a training set to classify traffic accurately,

and they do not give us suggestions on feature generation or

selection. In this work, we focus on designing an unsupervised

learning approach.

B. Our Contributions
We formulate the protocol reverse engineering problem

as an information retrieval problem. We design ProWord, a

lightweight unsupervised mechanism that automatically and

accurately extracts from traffic traces a set of byte subse-

quences that are most likely to be feature words. ProWord ad-

dresses two major challenges: (i) how to identify word bound-

aries within traffic traces to extract candidate feature words

and (ii) how to rank byte subsequences such that the ones that

are more likely to be feature words will be assigned higher

rank scores. To address the first challenge, our idea originates

from a segmentation approach in natural language processing,

in which texts are divided into meaningful units based on

statistical models. As the target network protocol may have

unknown specifications, we leverage unsupervised segmenta-

tion that discovers word boundaries based on the statistics such

as entropy or frequency. Specifically, our work builds on the

Voting Experts (VE) algorithm [14], which identifies possible

word boundaries using entropy. For example, for the message

“MAIL FROM:<a@gmail.com>\r\n” in SMTP payload,

our partition result can be the set of “MAIL FROM:<”, “a@”,

“gmail”, “.com”, and “>\r\n”. Compared with existing n-

gram approaches, such as the 3-gram partition {MAI, AIL,
IL_, L_F, _FR, FRO, ROM, OM:, M:<, ...}, we

respect the hidden statistical structure when recognizing word

boundaries. Since the baseline VE algorithm can lead to mem-

ory explosion, we enhance the VE algorithm with less memory

usage by filtering low-frequency subsequences, thereby mak-

ing the algorithm scalable to high-volume traffic payload.
To address the second challenge, we need to construct an

ordered structure on the set of candidate words obtained from

our segmentation. Our idea is inspired by the heuristics in

information retrieval such as TF-IDF weighting [17], and we

adapt such heuristics into traffic analysis. ProWord uses a

ranking algorithm that maps different dimensions of proto-

col feature heuristics (e.g., frequency, occurrence location,

and length) into different word scoring functions and uses

the aggregate score to rank the candidates. To maintain the

compactness of our final result, ProWord filters any redundant

candidates that are very similar to some higher ranked words,

and returns the top k candidates as the resulting feature words.
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ProWord is designed as an offline analysis tool that extracts

feature words from packet traces. Compared with n-gram

approaches, ProWord makes a trade-off of using more memory

space to keep track of occurrences of candidate feature words

in the VE algorithm, so as to achieve more accurate feature

word extraction. Nevertheless, our modified VE algorithm

significantly reduces the memory usage for practical use.

In summary, we propose ProWord for unsupervised feature

word extraction and make three key contributions.

• Segmentation on payload: To our knowledge, this is the

first work that adapts a segmentation approach from nat-

ural language processing into traffic analysis. We present

a novel unsupervised segmentation algorithm that divides

payload into a set of candidate words with respect to the

hidden statistical structure, while reducing the memory

usage for scalable traffic analysis.

• Ranking on candidate words: We transform feature word

selection into a ranking problem based on our word

selection experience and the actual word properties. We

propose a ranking algorithm that integrates different di-

mensions of prior knowledge about feature words. The

algorithm also filter any redundancy to maintain the

compactness of the returned set of feature words.

• Evaluation: We conduct extensive trace-driven evalua-

tion. Using six protocols of different types, we compare

ProWord with existing n-gram and common substring

approaches. Our results show that ProWord provides

more accurate feature word extraction. ProWord also

performs significantly faster than the state-of-the-art n-

gram approach ProDecoder [38], which requires exten-

sive computations to combine equal-length pieces into

meaningful feature words.

The rest of this paper proceeds as follows. In Section II, we

describe how we extend the VE algorithm for segmentation. In

Section III, we describe our ranking model that incorporates

various heuristics. In Section IV, we conduct trace-driven

evaluation and compare ProWord with other prior approaches.

Finally, Section V concludes the paper.

II. SEGMENTATION

We explore how we generate candidate feature words from

a continuous stream of payload. The challenge is how to

recognize word boundaries, namely segmentation, when no

lexicon is available for word recognition.

A. Background: Voting Experts

ProWord builds on the Voting Experts (VE) algorithm

[14], which is an unsupervised segmentation approach in

natural language processing. It is a local greedy algorithm

that operates by sliding a relatively small window along

a continuous input stream and selecting the most possible

boundary positions for word partitioning. We leverage the

VE algorithm to identify the subsequences that are potentially

feature words. In this subsection, we first provide an overview

of the baseline VE algorithm.

The VE algorithm takes the votes of two experts as inputs.

One expert specifies the word internal entropy (denoted by

Input

DATA\r\n

RCPT TO:<Jones@BBN-VAX.ARPA>\r\n

250 OK\r\n

RCPT TO:<steven@pchome.com.tw>\r\n

Output Decision

...

R   C    P    T        T    O    :   <    J     o    n    ...

T

V

x
Decision rules: V(x) >= T

V(x-1) < V(x) > V(x+1)

Voting
V(x):    0    0    0    0 0    0    4    0    2  ...

R   C    P    T         T   O    :    <    J    o    n   ...

R   C    P    T         T   O    :    <    J    o    n   ...

Total Vote Sequence(partly): 

R   C    P    T         T   O    :    <    J    o    n   ...

:vote from EI :vote from EB

DATA\r\n

RCPT TO:<Jones@BBN-VAX.ARPA>\r\n

250 OK\r\n

RCPT TO:<steven@pchome.com.tw>\r\n

Fig. 1: Overview of the VE algorithm.

HI ), following the intuition that if a subsequence always

occurs as a whole in a stream, then it should be retained in

entirety. HI is defined as:

HI(w) = − logP (w), (1)

where P (w) is the occurrence probability of subsequence w
within a given stream. A low HI means that w usually occurs

in entirety and has a high probability to be a word.

Another expert specifies the word boundary entropy (de-

noted by HB), following the intuition that if the successor

byte of a subsequence has many variations, then we should

put a word boundary in between. HB is defined as:

HB(w) = −
∑
c∈C

P (c|w) logP (c|w), (2)

where C is the set of all possible successor bytes following a

subsequence w, and P (c|w) is the occurrence probability of

byte c following w. For example, consider the input sequence

“DATA.DAT”. The set C of subsequence “DA” only has one

element ‘T’, while that of “A” has two elements ‘T’ and ‘.’.

HB estimates the amount of uncertainty of the bytes after a

subsequence. A high HB indicates that the byte after w varies

aggressively and the point after w has a high probability to be

a word boundary.

In order to compare these statistical measures among sub-

sequences of different lengths, we normalize them among all

subsequences with the same length and denote their normal-

ized values as EI(w) = (HI(w) − H̄I)/σI and EB(w) =
(HB(w) − H̄B)/σB , where H̄ and σ denote the mean and

standard deviation, respectively.

Figure 1 illustrates the VE algorithm. There are two key

phases: voting and decision. In the voting phase, each expert

will vote one position as a possible boundary within each

sliding window. The sliding window size, which we denote

by L, enables us to generate words of length less than or

equal to L. Suppose that i is the offset of the beginning of the

sliding window. The internal voting point xI
i and the boundary

voting point xB
i at offset i can be represented as:

xI
i = arg min

xI
i=i+j

(EI(wi,i+j) + EI(wj+1,i+L)), (3)

xB
i = arg max

xB
i =i+j

EB(wi,i+j), (4)

where j ∈ (0, L], and wa,b represents the subsequence between
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Fig. 2: The 2-depth Trie produced by “DATA.DAT” in the VE

algorithm.

offsets a and b inclusively within the input sequence. Each

point x has a vote score V (x), which can be computed as:

V (x) =
∑
i

(1(x = xI
i ) + 1(x = xB

i )), (5)

where 1(.) is the indicator function such that 1(x = y) = 1
if x = y; otherwise 1(x = y) = 0 if x �= y.

In the decision phase, we identify a point x as a word

boundary if the following two rules are met: (i) if the point x
obtains more votes than its neighbors (i.e., V (x) > V (x− 1)
and V (x) > V (x+1)) and (ii) if its number of votes exceeds

some pre-defined threshold T (i.e., V (x) > T ).

To illustrate both voting and decision phases, consider

the example in Figure 1. Suppose that the input sequence

is “RCPT TO:<Jon...”. In the voting phase, the experts

EI and EB vote a position as the possible boundary. For

example, in the first sliding window, both EI and EB vote

the same position right after “RCPT TO”; in the second and

third sliding windows, EI votes the position after “RCPT TO”,

while EB votes the position after “RCPT TO:<”. If we collect

votes for the first three sliding windows, we can get the

numbers of votes as “0, 0, 0, 0, 0, 0, 4, 0, 2 · · · ”, as shown in

Figure 1. In the decision phase, suppose that we obtain the

final V (x) as “0, 0, 0, 0, 0, 1, 8, 4, 3, 2, 2, 1 · · · ” after all sliding

windows are considered (see Figure 1), and that T = 6. Then

only the point after “RCPT TO”, which has eight votes, meets

both rules. Thus, we put a boundary at that point.

To implement the VE algorithm with sliding window size

L, we use an (L + 1)-depth Trie (or prefix tree) to hold all

possible byte combinations occurring in the stream, in which

we can calculate the entropy values accordingly. We set the

Trie depth as L+1 since we need one more byte to calculate

the word boundary entropy HB for the longest possible word

of length L. Each node at level i of the Trie corresponds to

a subsequence of length i. The children of a node have a

common prefix in their ascendants. Figure 2 shows how the

sequence “DATA.DAT” produces a 2-depth Trie. The number

at each node records the occurrence count of the subsequence.

For example, for all the three occurrences of ‘A’, there are two

possible successors in a window of size two, namely ‘.’ (with

two occurrences) and ‘T’ (with one occurrence).

B. Limitations of the Baseline VE Algorithm

Although the VE algorithm has been successfully used in

natural language processing, it is not a scalable approach in

traffic analysis. In the Trie constructed in the baseline VE
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Fig. 3: Node frequency statistics in Trie construction.

algorithm, the number of descendants of each node is at most

its alphabet size. In natural language processing, the actual

bound in reality is far less than the theoretical one because the

conventional language combinations can limit the occurrence

of some subsequences. For example, in English, when we

meet “tio” at the end of a word, we will predict the next

character to be ‘n’ with a very high probability as “-tion”

is a common combination.

On the other hand, when analyzing traffic payload, espe-

cially for pure binary data, the kind of conventional language

combination is very unlikely to occur. In other words, the

probability mass of subsequences can be distributed more

sparsely in network traffic. A more sparse data stream tends to

produce more new byte combinations, meaning that the stream

is more difficult to compress and needs more memory to store

and manipulate. In particular, this sparsity problem will lead

to the node space explosion in our algorithm design.

To illustrate the node space explosion, we conduct some

experimental studies on the frequency distributions of the Trie

nodes when analyzing the SMTP and BITTORRENT traffic

traces with an 8-byte window Trie (see the trace descriptions

in Section IV). The key observation is that some protocols

may have very high sparsity. As shown in Figure 3(a), as a

binary protocol, BITTORRENT has significantly more Trie

nodes than SMTP and is much more sparse. Specifically, for

20K packets from real traffic, BITTORRENT itself produces

130 million nodes, which account for over 5GB of memory.

Nevertheless, a majority of nodes have very low frequency

counts. Figure 3(b) plots the frequency distribution of all Trie

nodes. It shows that 95% of nodes only occur once or twice

throughout the entire trace. Thus, although capturing all nodes

requires a huge space, we only need to focus on a small subset

of them that have sufficiently high frequencies. We use this as

a guideline to address the node space explosion problem.

C. Pruning And Compensation for the VE algorithm

To address the node space explosion problem when applying

the VE algorithm to traffic analysis, we propose a pruning step

for Trie construction so as to limit the memory usage. The

intuition is that subsequence nodes with very low frequencies

are unlikely to be the true feature words. Thus, we can

prune the node space by periodically removing nodes with

frequencies below some pre-defined threshold.
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Our pruning step builds on the Lossy Counting Algo-

rithm [31], an approximate counting algorithm that can return

frequency estimations of high-frequency data items over a

data stream using limited memory by periodically removing

low-frequency items. In this step, one key parameter is the

maximum probability estimation error ε, which limits our

estimation error within [0, ε]. Intuitively, we only prune a node

if its corresponding subsequence has an occurrence probability

no more than ε. Since any new byte introduces (L + 1) new

subsequence instances, we can use ε to compute the pruning

period M = �1/(ε × (L + 1))� and the pruning frequency

threshold θ = i × M × (L + 1) × ε ≈ i, where i is the

number of periods that have been processed. As each newly

added subsequence in the ith period may be removed before,

its estimated frequency in this period has a difference with the

true one. Thus, we add an error (i−1) to each Trie node as in

[31], which is the maximum possible error to the frequency.

We will remove a subsequence if its frequency plus error is

no more than θ ≈ i times in the current ith period.

There is a trade-off between the estimation error and mem-

ory cost. A low ε (or a high M ) can retain more subsequence

nodes, but will increase the risk of running out of memory in a

period, while a high ε may lose useful frequency information.

In practice, since we do not determine the actual subsequence

distribution for a given trace, we can set M as large as

possible, as long as it does not induce the out-of-memory error

in a period. Then we can determine ε and θ accordingly.

Our pruning step removes the low-frequency subsequences

from the Trie, but we cannot exclude these subsequences

for certain when computing the entropy values in the VE

algorithm. In other words, we need to consider every subse-

quence within the sliding window in the entropy computations,

regardless of if the subsequence appears in the Trie or has

been pruned. Here, we propose a compensation step. Here, we

assign an occurrence probability ε/2 to each subsequence that

does not appear in the Trie, since the occurrence probability

of any pruned subsequence is at most ε due to the maximum

estimation error.

Algorithm 1 shows the entire segmentation algorithm, which

generates a set of candidate feature words for a given protocol

trace P . The function BUILDTRIE computes the occurrence

frequencies for the subsequences over each pruning period

(lines 7-17) and deletes nodes if their corresponding subse-

quences have frequencies below the pruning frequency thresh-

old i (lines 18-22). The segmentation algorithm first constructs

a Trie and computes the entropy values for all subsequences in

the Trie (lines 29-30). For each packet, it slides a window over

the packet payload. Within a sliding window, the algorithm

first runs the compensation step on the pruned subsequences

(line 34) and computes the votes (line 35). It finally identifies

the boundaries (lines 37-42) and extracts all candidate feature

words into W (line 43).

We analyze the computational complexity of the segmen-

tation algorithm, which dominates the load of ProWord (see

Section IV-D). Its complexity is mainly due to the Trie con-

struction, which has two key operations: frequency counting

and periodic pruning. Consider an (L + 1)-depth Trie for m
bytes of input payload. Frequency counting takes place at

Algorithm 1 Segmentation Algorithm

1: Input: Protocol trace P ; Pruning period M ; Sliding window
length L; Decision threshold T

2: Output: Candidate word set W
3: TrieNode (w, f, e): w = subsequence, f = estimated frequency

of w, and e = maximum error to f
4: function BUILDTRIE(P , M , L)
5: Trie T = ∅
6: for ith period of M bytes Pi for pruning do
7: for each subsequence w with length ≤ (L+1) in Pi do
8: fi ← frequency count of w in Pi

9: v ← vertex of w in T
10: if v = none then
11: e ← i− 1
12: v ← (w, fi, e)
13: Insert v to T
14: else
15: v.f ← v.f + fi
16: end if
17: end for
18: for all v in T do
19: if v.f + v.e ≤ i then
20: Delete v from T
21: end if
22: end for
23: end for
24: return T
25: end function
26:

27: procedure SEGMENTATION(P , M , L, T )
28: ε = 1/(M · (L+ 1))
29: T = BUILDTRIE(P,M,L)
30: Compute EI , EB for all subsequences in T
31: W = ∅
32: for all packet in P do
33: while sliding window of L through the packet do
34: Compute EI , EB for pruned subsequences with oc-

currence probability ε/2
35: Compute votes according to EI , EB

36: end while
37: Compute votes into V
38: for all vote point x do
39: if V (x) > V (x − 1) and V (x) > V (x + 1) and

V (x) > T then
40: Set a boundary at x
41: end if
42: end for
43: Insert all words between boundaries to W
44: end for
45: end procedure

most m(L + 1) times since any new byte can introduce at

most (L + 1) subsequence instances into counting. Periodic

pruning traverses all nodes in the Trie for pruning at each

pruning period. The total number of pruning operations can

be upper bounded by 7m(L + 1) [31]. To sum up, the total

complexity of Trie construction is O(mL), which is actually

also the complexity of ProWord.

III. RANKING

We may extract millions of candidate feature words from

the VE algorithm. It is important to identify the words of

interest that can be used as protocol features in traffic analysis.

Our goal is to rank the extracted candidate words and select
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the top k of them that are most likely to be feature words.

Specifically, we construct an ordered structure on the candidate

words with a score function that aggregates various attribute

values of individual words based on our prior knowledge on

protocol features. As a proof of concept, here we exploit three

attributes that are widely used in real-life protocol reverse

engineering, namely frequency, location, and length. First, a

feature word is expected to occur in most packets or flows.

To distinguish it from others, we identify the candidate words

that have relatively high frequencies. Second, we identify the

candidate words that appear at a relatively fixed location from

the beginning or the end of a packet or flow, since these words

may be used as part of the protocol definitions. Finally, a

possible feature word should have a length within a reasonable

range, since a very short word has weak distinguishability

while a very long word costs much resource in communication.

Thus, we define an aggregate score function (denoted by Fagg)

of word w by combining all above heuristics as follows:

Fagg(w) = Ffreq(w) · Floc(w) · Flen(w), (6)

where Ffreq(w), Floc(w), and Flen(w) denote the score

functions for the attributes frequency, location, and length,

respectively. In this way, we can rank all candidate words

by comparing their aggregate scores. Here, we combine the

individual score functions by multiplication, as it represents

proportional fairness [27] among the score functions and

brings the best result based on our experience.

We emphasize that our goal is not to find a feature word

that scores high in all attributes. For example, the header fields

of HTTP may appear in different orders, and hence they may

score low in the location score. However, if they still score

high in both frequency and location, and hence the aggregate

score, then they can still be extracted as feature words, as

shown in our evaluation (see Section IV).

A. Score Rules and Score Functions

To construct the score functions, we formally define intuitive

and reasonable score rules that should be satisfied when

determining the protocol features. In this work, our score

rules and score functions build on the information retrieval

heuristics proposed for ranking web pages [17]. The novelty

of our work is to adapt the heuristics into the context of traffic

analysis. In particular, when we adapt the heuristics, we must

respect the specific properties of network protocols in general,

so as to accurately extract the feature words from traffic traces.

Rules for the frequency score function. Let W be the

candidate word set. For w ∈ W , let Xt(w) be the total number

of occurrences of w in all packets, and Xp(w) be the number

of packets containing w. We define two rules for the frequency

score function as follows.

Rule 1: For w1, w2 ∈ W , suppose that Xt(w1) = Xt(w2).
If Xp(w1) > Xp(w2), then Ffreq(w1) > Ffreq(w2). �

Rule 2: For w1, w2 ∈ W , suppose that Xp(w1) = Xp(w2).
If Xt(w1) > Xt(w2), then Xt(w1)

Xt(w2)
Ffreq(w2) > Ffreq(w1) >

Ffreq(w2). �
These two rules use Xt(w) and Xp(w) as two inputs for

Ffreq(w). We would like to select a word occurring in most

packets or flows. In other words, we are interested in finding

how many packets or flows can be covered if we take a word

as a feature word. Here, we only discuss the packet coverage

of a word (i.e., number of packets containing the word), while

the idea can be easily extended to flow coverage (i.e., number

of flows containing the word). Rule 1 states that if two words

have the same total number of occurrences, the one with higher

packet coverage is more likely to be a feature word; Rule 2

states that if two words have the same packet coverage, we give

a higher score to the one with more occurrences. In particular,

we expect that Ffreq follows a sub-linear growth with total

number of occurrences of a candidate word if its packet

coverage is fixed, since subsequences occurring multiple times

within one packet tend to be trivial ones such as padded bytes

and we should limit the score growth due to a high number of

occurrences. Here, we define
Xt(w1)
Xt(w2)

as the linear factor that

bounds the growth of the score function. For example, there

is a packet segmented as “AB|AB|AB|AB|AB|CD”, where

subsequences “AB” and “CD” appear five times and once,

respectively. Then, the frequency score of a word in “AB”

should be less than five times that of “CD”. Here, we choose

the logarithmic function to define a monotonic and sub-linear

function, as the logarithmic function is the most common

choice for defining ranking functions in information retrieval

[32]. Based on the above two rules, we define Ffreq(w) as

follows:

Ffreq(w) = Xp(w) · (1 + log
Xt(w)

Xp(w)
). (7)

Rules for the location score function. For a given can-

didate word set W and w ∈ W , let Xp(w) be the number

of packets containing w. Also, let Xm(w) be the maximum

number of occurrences of w at a given position in all packets

(i.e., we count the occurrences of w in each possible position

and compute the maximum).

Rule 3: For w1, w2 ∈ W , suppose that Xp(w1) = Xp(w2).
If Xm(w1) > Xm(w2), then Floc(w1) > Floc(w2). �

Rule 4: For w1, w2 ∈ W , suppose that Xm(w1)
Xp(w1)

= Xm(w2)
Xp(w2)

.
If Xp(w1) > Xp(w2), then Floc(w1) > Floc(w2). �

Rules 3 and 4 stem from the intuition on location centrality

of feature words, in which we give a high score to a word that

appears in relatively fixed locations. Rule 3 captures the basic

location centrality heuristic, in which we score higher a word

that has more instances on some fixed locations; Rule 4 scores

higher a word with more occurrences if two words have same

possibilities of occurring at some fixed points, as it shows

more observable evidences in the data. Similar to above, we

here use a logarithmic function to limit the score growth to

be sub-linear and define Floc(w) as follows:

Floc(w) =
Xm(w)

Xp(w)
· logXp(w). (8)

Rule for the length score function. For a given candidate

word set W and w ∈ W , let |w| be the length of w (in number

of bytes). Let the range [δl, δh] be the preferable length space

of feature words. Intuitively, if w is a feature word, its length

|w| is likely in the range [δl, δh].
Rule 5: For w1, w2 ∈ W , if |w1| ∈ [δl, δh] and |w2| /∈
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[δl, δh], then Flen(w1) > Flen(w2). �
Rule 5 presents our heuristic of identifying feature words

based on their lengths. We exclude the words that are too short

or too long, and hence define a piecewise function as follows:

Flen(w) =

⎧⎪⎨
⎪⎩

|w|
δl

if |w| < δl,

1 if δl ≤ |w| ≤ δh,
δh
|w| if |w| > δh.

(9)

The range [δl, δh] can be defined according to prior knowledge.

In this work, we set the range as [2, 10].

B. Compactness

Based on our definition of Fagg , we can rank the set

of candidate words and select the top k ranked words as

feature words. Here, k is a very small integer compared to

the number of candidate words, and can be chosen by users

in real deployment.

On the other hand, when a protocol uses feature words to

define semantics, there are some option fields or variations

that will induce redundancies, which refer to the words that

have similar patterns or even the same semantics. These

redundancies may show up in the returned top k feature

words. For example, “RCPT TO:” and “RCPT TO” are two

common feature words in SMTP indicating a recipient, and

due to their minor variations we may add them in our returned

results as two different words. Thus, one key requirement is

to filter these redundancies and maintain the compactness of

our resulting feature words.

To compact our results, a straightforward approach is to

recognize similar words based on the edit distance, defined as

the minimum number of edits needed to transform one string

into the other, due to the insertion, deletion, or substitution of a

single character. Although this metric can reflect the similarity

between two words, it can introduce errors to our redundancy

filtering. Since protocol feature words are typically some short

strings, two words with a small edit distance may actually

refer to semantically different words. For example, “250”

and “220” have the same edit distance as “RCPT TO:”

and “RCPT TO”. However, “250” and “220” are actually

different words in SMTP, where “250” is an “okay” reply

for a requested mail action, while “220” is a “ready” reply

for the mail transfer service.

Hence, we need a conservative strategy for redundancy

filtering. In this paper, we use two strict criteria to identify

redundancies. First, as a substitute of the edit distance, we

check if a word is a substring of another one. Second, as a

criterion to distinguish protocol features from common data,

we check if the two words begin at the same location within

packet payload. Algorithm 2 outlines our ranking algorithm on

how we select the top k feature words from a given candidate

word set W . The function ISREDUNDANT checks if two words

are redundant (lines 3-10). The algorithm first computes the

aggregate scores of all words in W (lines 13-15) and sorts all

words in descending order of the aggregate scores (line 16).

It then extracts the highest scored words and removes those

that are redundant (lines 17-24). Finally, it returns the set of

k feature words F .

Algorithm 2 Ranking Algorithm

1: Input: Candidate word set W; Number of output words k
2: Output: A set of k feature words F
3: function ISREDUNDANT(ŵ,F )
4: for all w ∈ F do
5: if ŵ is a substring of w and ŵ and w begin at the same

location then
6: return true
7: end if
8: end for
9: return false

10: end function
11:

12: procedure RANKING(W , k)
13: for all w ∈ W do
14: Fagg(w) ← Ffreq(w) · Floc(w) · Flen(w)
15: end for
16: Sort W in descending order of Fagg(w)
17: F = ∅
18: while F has less than k elements and W �= ∅ do
19: ŵ ← the highest scored word in W
20: if ISREDUNDANT(ŵ,F) = false then
21: F ← F + {ŵ}
22: end if
23: W ← W − {ŵ}
24: end while
25: end procedure

TABLE I: Summary of network protocols used in evaluation.

Protocol Size(B) Packet Flow

SMTP 81,366K 95,068 547
POP3 92,077K 101,253 719
FTP 7,032K 71,068 4,549

HTTP 65,423K 48,601 1,386
BITTORRENT 50,169K 62,613 1,260

TONGHUASHUN 3,020K 9,453 165

IV. EVALUATION

We evaluate ProWord on several widely used level-7 proto-

cols. We classify the protocols into two groups. The first group

has publicly available official specifications, which we use as

ground truths to identify the true feature words. The second

group has no specifications that document feature words, but

there exist effective rules for our verification. For example,

L7-Filter contains hundreds of rules that were manually built

by volunteers and can serve as references for our validation.

We collect traffic traces from a university network gateway.

We select six protocols shown in Table I. The protocols SMTP,

POP3, FTP, and HTTP have their specifications available in

the online RFC documents. They are all text-based protocols.

BITTORRENT [2] is a peer-to-peer file sharing protocol

whose official specifications are available but different client

applications often have their own variations in implementation.

TONGHUASHUN [9] is one of the most popular stock trade

applications in China. It was recorded with over one hundred

million users in early 2012. While its payload is encrypted,

it has identifiable patterns at the head of its flows. Both

BITTORRENT and TONGHUASHUN are binary protocols.

ProWord has a few tunable parameters as shown in Table II.
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TABLE II: Values of tunable parameters.

Parameter Value

Window size in byte L in VE 10
Vote threshold T in VE 6

Processing bytes M in a pruning period 10,000,000
Preferable word length [δl, δh] in byte [2,10]

We point out that the window size and the vote threshold, both

of which are used in the VE algorithm, are related to different

language properties but not sensitive to the result. Here, we

set their values based on our experience.

A. Evaluation on Protocol Feature Word Extraction

We compare ProWord with state-of-the-art approaches.

Firstly, we compare ProWord with existing n-gram approaches

on feature word extraction [25], [26], [29], [38], [39]. We

consider three ranking approaches based on n-gram partition:

(1) frequency statistics test (e.g., in [26], [29], [38]), which

selects the words that have the highest frequencies of occur-

rences; (2) two-sample Kolmogorov-Smirnov (K-S) test (e.g.,

in [25], [39]), which selects the words that have the most

similar distributions on different traces; and (3) ProDecoder

[38], a recently proposed approach that attempts to capture

the latent dependencies of n-grams and performs the selection

with the help of topic modeling. To choose n for n-gram, we

note that a larger n can generate sparse frequency distributions

[38]. Thus, we choose n = 3 in our evaluation. In addition,

we also compare ProWord with the approach (denoted by

“VE+Freq”) that uses the VE algorithm for unsupervised word

segmentation (see Section II) but uses the frequency statistics

test to rank candidate words. This enables us to evaluate

the effectiveness of ProWord in combining different types of

heuristics to rank different feature words.

Secondly, we also compare ProWord with typical common

substring (CS) extraction approaches [34], [36], [37], [40],

[42], [43]: (1) the baseline CS approach, which selects all

substrings with a minimum length and a minimum coverage in

the trace; (2) the longest common substring (LCS) approach,

which only selects the longest one among the set of results

extracted with CS; and (3) LCS + 64B, in which we limit

LCS to focus on the first 64 bytes to each packet or flow

(we focus on packets in this paper and it can be extended to

flows easily). We choose LCS + 64B for two reasons. First,

prior studies [23], [30], [43] conclude that this approach is

a competitive choice for feature words analysis. Second, as

LCS is usually implemented with the generalized suffix tree,

which implies higher space complexity for deeper inspection,

using the first 64 Bytes of payload is a natural trade-off choice.

Furthermore, we choose the minimum coverage as 1% and set

the minimum length with 2, as this setting gives the best result

in parameter selection based on our evaluation.

To fairly compare the accuracy of ProWord and state-of-

the-art approaches, we are interested in two metrics:

• Number of true feature words: We measure the number of

true feature words in a set of top k candidates, where k is

the input parameter. The ranked results are considered to

be effective if the number is high. As n-gram approaches

cannot output a whole word as long as n is less than the

original word length, we check their results manually and

score a hit if all pieces of a true feature word appear in

the top k list.

• Conciseness [15]: We measure the ratio of the number

of polymorphic candidates to the number of true feature

words. Two words are polymorphic to each other if

either they are identical or one of them is a substring

of another. For example, in the top 10 candidates, if

the true feature words are {RCPT TO, MAIL FROM}
while there are three polymorphic candidates {RCPT
TO, RCPT TO:, MAIL FROM}, then the conciseness

value is calculated as 3/2 = 1.5. The conciseness metric

captures how frequently a true feature word and its

variants appear in the final results of top k candidates. It

is desirable to have a lower conciseness value, meaning

that our results have fewer redundancies.

Figure 4 shows the results for the four protocols SMTP,

POP3, FTP, and HTTP, whose official specifications provide

ground truths of feature words. For the number of true feature

words (see Figures 4(a)-(d)), the VE-based approaches (i.e.,

“VE+Freq” and ProWord) are more effective than the n-gram

ones since the former ones identify word boundaries more

accurately while the latter ones always divide words into

equal-length pieces. ProWord returns more feature words than

“VE+Freq” since it includes more selection criteria in addition

to frequency. The y-axis of Figures 4(a)-(d) also shows the

actual number of feature word that appear in our traces, and

we find that ProWord can detect 82-94% of feature words,

significantly higher than other approaches. For conciseness

(see Figures 4(e)-(h)), VE-based approaches also have lower

conciseness than n-gram ones, and ProWord further reduces

the conciseness of “VE+Freq” by 12%.
The number of true feature words that can be captured

heavily depends on the available traces and the number of

feature words in protocol specification in addition to the value

of k. We point out that although ProWord only identifies

around 13-18 true feature words in the top 100 list, these

feature words can actually cover the protocol trace with a

very high accuracy. For each protocol we consider, 98% of

packets contains at least one of the feature words identified

by ProWord. Furthermore, we dig into the non-feature words

returned. For HTTP, we find that a majority of them are

format marks (e.g., “\r\n”, “://”), conventional words

(e.g., “google”, “com”), and random strings (e.g., padding

bytes or numbers). We can filter them easily through manual

inspection.
Figure 5 shows the number and conciseness of true feature

words identified comparison between ProWord and various

common substring approaches. For the number of true feature

words (see Figures 5(a)-(d)), ProWord outperforms the CS-

based approaches (i.e., CS, LCS, and LCS + 64B) by 2-3 times.

There are two reasons to explain this result. First, CS-based

approaches will rank higher many noise words that are induced

by some more trivial substrings. Take LCS for example, \r\n
is a very trivial substring in text-based traffic, while substrings

induced by it like n\r\n or s\r\n (which usually appear at
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Fig. 4: Number of true feature words captured (figures (a)-(d)) and conciseness (figures (e)-(h)) versus k for SMTP, POP3,

FTP, and FTTP. For the y-axis of figures (a)-(d), we also show the actual number of feature words that appear in our traces.
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Fig. 5: Comparison between ProWord and approaches based on common substrings. Number of true feature words captured

(figures (a)-(d)) and conciseness (figures (e)-(h)) versus k for SMTP, POP3, FTP, and HTTP. For the y-axis of figures (a)-(d),

we also show the actual number of feature words that appear in our traces.

the end of a line and n or s are the ending letters of many

words) can also be assigned a higher rank in LCS. Thus, LCS
will assign high ranks to many redundant words. However

with ProWord, it may include \r\n only once and its induced

substrings can be filtered out during payload segmented in

VE. Second, ProWord adopts an effective ranking mechanism,

which comprehensively take frequency, location, and length

of a candidate word into account. For conciseness (see Fig-

ures 5(e)-(h)), although ProWord has a close conciseness with

CS-based approaches in the low top ks, it is more stable with

the increase of the number of extracted feature words.

In addition to official specifications, L7-Filter rules

also provide some ground truths. Table III shows the rank

comparisons for capturing and ranking a specific set of feature

words we consider based on L7-Filter rules. We also consider

the binary protocols BITTORRENT and TONGHUASHUN,

whose feature words we choose are “d1:ad2:id20:”

and “\xfd\xfd\xfd\xfd\x30\x30\x30\x30\x30”

respectively. Here rank 1 refers to the highest. A smaller

rank value implies that a word is more likely to be excluded

from the top-k list for small k. We see that ProWord gives a

higher rank than other approaches, especially for long feature

words of BITTORRENT and TONGHUASHUN. In addition,

ProWord further reduces the rank range of “VE+Freq” by
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TABLE III: Ranks for different feature words based on L7-Filter rules.

Protocol 3-gram 3-gram 3-gram CS LCS LCS VE ProWord
(”feature words”) +Freq +KS +ProDecoder +64B +Freq

SMTP(”220”) 37 34 25±5 160 223 51 12 4
POP3(”+OK”) 1 1 4±1 1 6 7 1 1
POP3(”-ERR”) 114 113 >100 >500 >500 >500 43 7

FTP(”FTP”) 162 160 >100 440 203 233 47 25
HTTP(”HTTP”) 63 60 >100 69 16 1 3 2
BITTORRENT >500 >500 >100 >500 149 17 8 4

TONGHUASHUN >500 >500 >100 462 55 55 8 6
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Fig. 6: Flow coverage of top k protocol feature words in

ProWord.

about 36% on average.

B. Evaluation on Flow Coverage of Protocol Feature Words
in ProWord

In the previous subsection, we argue that ProWord has high

packet coverage. Here, we show that ProWord also has high

flow coverage, defined as the percentage of flows that contain

one keyword identified by ProWord. Figure 6 shows the flow

coverage for all protocols we consider (including text and

binary protocols) versus the number of top candidates being

selected. We see that if we set k = 15 (i.e., the top 15

candidates), ProWord can cover almost all flows.

C. Evaluation on Ranking Model

To evaluate the effect of the ranking functions used in

ProWord, we compare different ranking functions and their

combinations using the HTTP trace. Figure 7 shows the

results. All feature words (x-axis) get higher ranks (i.e.,

smaller rank values) with the frequency score function used

in ProWord compared to the results obtained from the pure

frequency function (PureF) that simply counts the occurrences,

as ProWord frequency function will score higher to a word

occurring in most packets or flows. Also, when combining all

three score functions as ProWord, all feature words rank even

higher and are more easily distinguished.

D. Evaluation on Running Speed

We evaluate the running speed of ProWord. We benchmark

ProWord on a server that has four Intel Xeon CPUs running at

2.50GHz with 16GB RAM. Table IV summarizes the running

speeds (in KB/s) of both segmentation and ranking phases.

0 2 4 6 8 10 12
0

20

40

60

80

100

Protocol Feature Words

R
an

ks

PureF
Ffreq
Ffreq&Floc
Ffreq&Floc&Flen
Ffreq&Floc&Flen&Compact

Fig. 7: Comparison of different combinations of score func-

tions in the ranking model.

TABLE IV: Running speeds (in KB/s) of ProWord.

Protocol Segmentation Ranking

SMTP 13.8 1,255
POP3 16.0 1,787
FTP 16.7 2,344

HTTP 11.8 2,128
BITTORRENT 16.5 2,144

TONGHUASHUN 12.7 1,399

We see that segmentation has a significantly lower speed

than ranking, and dominates the overall load of ProWord.

The running speed of segmentation is 10-20KB/s. Note that

ProWord is designed as an offline analysis tool and its running

speed is lower than the network line rate.

Nevertheless, ProWord runs significantly faster than the

state-of-the-art n-gram approach ProDecoder [38], and hence

allows more scalable analysis. ProDecoder is evaluated on

a testbed with similar hardware configurations to as ours,

and it needs almost 3 hours for keywords inference of 5,000

SMTP packets with a total of 340KB (see Table I of [38]).

This translates to a running speed of only 0.31KB/s, while

ProWord achieves 13.8KB/s, which is at least 40 times faster.

The main reason is that ProDecoder, which builds on n-gram,

breaks feature words into pieces. It needs more computational

cycles to recover the correlation among the pieces and rebuild

the feature words. On the other hand, ProWord uses a more

lightweight approach for segmentation.

E. Evaluation on Space Usage

Recall from Section II-C that ProWord uses the Lossy

Counting Algorithm (LCA) [31] to prune the Trie so as to

limit the memory requirement while minimizing the errors of
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Fig. 8: Node space reduction with Lossy Counting Algorithm

(LCA).

frequency estimation. Here, we evaluate the memory saving

of ProWord when using LCA. Figure 8 shows the results for

the protocols SMTP and BITTORRENT. We see that LCA

reduces the number of Trie nodes by an order of magnitude.

Also, LCA maintains the number at a low level even after the

traces have been processed for a long time.

One tradeoff that ProWord makes is to require more memory

space than n-gram approaches. In comparison, for the BIT-

TORRENT trace, n-gram approaches only need about 200MB

of memory, while ProWord uses 3GB after pruning the Trie.

On the other hand, n-gram approaches cost significantly more

time than ProWord to get useful results.

F. Evaluation on Hybrid Traffic

To the best of our knowledge, all prior protocol feature

extraction approaches have a strong assumption that they

require a single-protocol trace as the input. That is, we must

pre-process the trace data so that only the packets or flows that

belong to the target protocol are retained and all unrelated

packets or flows are filtered. In the following, we use real

traffic trace composed of a mix of different protocols as the

input and show how ProWord can play in a complicated

environment.

We collect a new trace from our institute gateway. The

trace lasts for one hour. It contains 32GB of traffic composed

of 43M packets and 875K flows. To provide a ground truth

for the trace, we first apply protocol classification to it using

conventional rules like transport layer ports and L7-filter rules.

Figure 9 shows the 5-tuple flow-level composition of the trace.

We see that the top 3 protocols include DNS, BitTorrent, and

HTTP. The Link Local Multicast Name Resolution (LLMNR)

[4] is a domain name resolution protocol based on DNS
for both IPv4 and IPv6 hosts on the same local link. The

Simple Service Discovery Protocol (SSDP) [7] is a network

protocol for advertisement and discovery of network services

and presence information. Corel VNC [10] is a protocol for

graphical desktop sharing provided by Canadian developer

Corel. To our knowledge, the trace has a larger volume and is

more diverse than those being used in the evaluation of prior

protocol feature extraction approaches.

In our evaluation, we do not conduct any preprocessing,

but instead directly run ProWord on the trace and examine the

robustness of ProWord. Table V presents the top 20 feature

24 18%24.18%
21.20%Traffic Composition

15.94%

11 53%11.53%

6.67% 6.43% 5 24%5.24%
3.91% 4.90%

Fig. 9: Protocols composition in hybrid traffic trace.

words output by ProWord, as well as their flow coverage

(i.e., percentage of all flows in the trace that contain the

corresponding feature word) and main protocol source. We

find that the top 20 feature words cover about 78% of all flows.

Note that the encrypted protocol Corel VNC has no feature

words found in ProWord. Similar to the previous results,

the running speed is around 15.9KB/s and the space usage

is 2.8GB. Therefore, we conclude that ProWord still works

as expected even in a hybrid trace with a mix of different

protocols.

V. CONCLUSIONS

This paper presents ProWord, an unsupervised approach that

automatically extracts protocol feature words from network

traffic traces. It builds on a modified word segmentation

algorithm to generate candidate feature words, while limiting

the memory space by filtering low-frequency subsequences. It

also builds on a ranking algorithm that incorporates protocol

reverse engineering experiences into extracting the top-ranked

feature words, and removes redundancies to maintain the

compactness of the results. Trace-driven evaluation shows that

ProWord is more effective than n-gram and common substring

approaches, in terms of accuracy and speed, in extracting

feature words from real-life protocol traces. Our work explores

a design space of how the domain knowledge of natural

language processing can be adapted into traffic analysis.
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