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Abstract

We consider the problem of one-step ahead prediction of a real-valued, stationary, strongly

mixing random process {X;}2___. The best mean-square predictor of Xy is its conditional
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mean given the entire infinite past {X;} Given a sequence of observations X; Xo -+ Xy,
we propose estimators for the conditional mean based on sequences of parametric models of
increasing memory and of increasing dimension, for example, neural networks and Legendre
polynomials. The proposed estimators select both the model memory and the model dimension,
in a data-driven fashion, by minimizing certain complexity regularized least-squares criteria.
When the underlying predictor function has a finite memory, we establish that the proposed
estimators are memory-universal: the proposed estimators, which do not know the true mem-
ory, deliver the same statistical performance (rates of integrated mean-squared error) as that
delivered by estimators that know the true memory. Furthermore, when the underlying predic-

tor function does not have a finite memory, we establish that the estimator based on Legendre

polynomials is consistent.

Key WoRrDs: Time series prediction, memory-universal prediction, mixing processes, Markov
processes; complexity regularization, least-squares loss, model selection, neural networks, Leg-

endre polynomials, Bernstein inequality.
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I Introduction

Statistical prediction of random processes has numerous practical applications such as stock price
prediction [54], financial asset pricing [26], physical time series modeling [40, 54], predictive speech
coding [60], and signal processing [58]. Here, we consider the problem of one-step ahead prediction
of a real-valued, bounded, stationary random process {X;}22__ . Probabilistically, the conditional
mean of Xg given the entire infinite past X(_o _1) = (-, X9, X_1), namely E[Xo|X(_o 1)), is
the best mean-square predictor of Xy (Masani and Wiener [31]). Geometrically, the conditional

mean F[Xo|X(_ _1)] is the L? (nonlinear) projection of Xy onto the subspace generated by the

infinite past X(_ _1). For 1 < p < oo, write a predictor function as
my(x) = P[Xo|X(_p 1) = 2], = € IRP, (1)

where X(_, _1) = (X_p, X_py1,--+,X_1). In this paper, given a sequence of observations X; X ---

drawn form the process {X;}52___, we are interested in estimating the infinite memory predictor
function mea..

We say that the predictor function m., has a finite memory, if for some integer ¢, 1 < ¢ < 00,
Moo (X(—oo,—1)) = Mg(X(g,—1)) almost surely. (2)

The condition (2) is satisfied, for example, by Markov processes of order ¢, but is mathematically
weaker than the Markov property since only the first order conditional moments are involved in
(2). Under (2), the problem of estimating m., reduces to that of estimating the predictor function
my.

We would like to estimate the predictor function m., using an estimator, say "y, that is

simultaneously “memory-universal” and “consistent” as described below.

1. Suppose that the predictor function me, has a finite memory ¢, and that the estimator iy
does not know ¢q. We say that my is memory-universal, if (a) it is a consistent estimator of
Meo(= my); and (b) it delivers the same rate of convergence-in the integrated mean-squared

error sense—as that delivered by an estimator, say 1, n), that knows ¢.

2. Suppose that the predictor function m., does not have a finite memory. We say that the
(same) estimator my is consistent, if it converges to me, in the sense of integrated mean-

squared error.



Our notion of memory-universality is inspired by a similar notion in the theory of universal cod-
ing, see, for example, Ryabko [43, 44]. Roughly speaking, memory-universal estimators implicitly
“discover” the true unknown memory ¢. As an important aside, we point out that our notion of
memory-universality is distinct from the notion of “universal consistency” traditionally considered
in the nonparametric estimation literature where it means convergence under the weakest possible
regularity constraints on the underlying process, see, for example, Algoet [2, 3], Morvai, Yakowitz,
and Gyorfi [36], Devroye, Gyorfi, and Lugosi [20], and Stone [48]. In this paper, we assume that
the underlying random process is bounded and exponentially strongly mixing, hence our estimators
are not universally consistent in the traditional sense.

By the L? martingale convergence theorem [22, p. 217], the predictor function m,, is a mean-
square limit of the sequence of predictor functions {m,},>1. Hence, we propose the following
two-step scheme for estimating m., with the hope of attaining both memory-universality and

consistency.

L. For each fixed memory p > 1, formulate an estimator 7, ny of m;, by minimizing a certain

complexity regularized least-squares loss.

2. Given the sequence {m(%N)}le, select a memory p = py by minimizing a certain complexity

regularized least-squares loss, and use my = my; ) as the estimator of me.

Let’s consider the first step for a fixed memory p. In general, the predictor function m, is not
a member of any finite-dimensional parametric family of functions, hence we estimate m, using a
sequence of parametric families of functions such as neural networks and Legendre polynomials.
Statistical risk (measured by a certain integrated mean-squared error) in estimating m, using a
parametric model has two additive components: approximation error and estimation error. Gen-
erally speaking, a model with a larger dimension has a smaller approximation error but a larger
estimation error, while a model with a smaller dimension has a smaller estimation error but a larger
approximation error. Consequently, to minimize the statistical risk in estimating m, from a list of
parametric models, a trade-off between the approximation error and the estimation error must be
found. The trade-off can be achieved by judiciously selecting the dimension of the model used to
estimate m,. Assuming that the underlying process is exponentially strongly mixing, a data-driven
scheme—which minimizes a certain complexity regularized least-squares loss—for selecting the model
dimension was developed, in a slightly different context, in our previous work [34], which built

on the results of Barron [8, 10], McCaffrey and Gallant [32], and Vapnik [51] for independent and



identically distributed (i.i.d.) observations and the results of White [55] and White and Wooldridge
[57] for strongly mixing observations. For other related work, in an i.i.d. setting, see Barron, Birgé,
and Massart [12], Barron and Cover [13], Farago and Lugosi [23], Lugosi and Nobel [28], Lugosi
and Zeger [29, 30], and Yang and Barron [61]. For a general review of the methodology employed
to estimate a function from a sequence of parametric families of functions, see Vapnik [52].

Using the results of the first step as a building block, let’s now consider the second step which is
the central concern of this paper. The statistical risk in estimating the predictor function m, using
the estimator 1y, ) has two additive components: the approximation error between m., and m,
and the statistical risk in estimating m;, using 7, ny. It follows from L? martingale convergence
theorem that the approximation error between m., and m, is a decreasing function in the memory
p. On the other hand, since m, is a multivariate function from IR” to IR, the statistical risk in
estimating m,, is, generally speaking, an increasing function in the memory p. A trade-off between
the approximation error between m., and m, and the statistical risk in estimating m, can be
achieved by judiciously selecting the memory p. Two conceptually distinct approaches for memory
selection appear plausible: (i) we may select the memory, say py, to be a deterministic, increasing
function of the number of observations N, and use 7, n) as our estimator of m..; alternatively
(ii) we may select the memory, say py, in a data-driven fashion, and use my = M5y N) a8
our estimator of m.,. In this paper, we pursue a data-driven approach to memory selection,
which, although computationally more expensive, is statistically more desirable than deterministic
approaches as explained below. Suppose that the predictor function m., has a finite-but unknown—
memory ¢, then any deterministic, increasing memory py will asymptotically “over-estimate” the
true memory ¢, and hence, in general, the corresponding estimator 1, n) of m; will not deliver a
rate of convergence for the statistical risk comparable to that delivered by 1, n). In other words,
although 7v(, . ny may be consistent, it will not be memory-universal.

In this paper, we select the memory ppy, in a data-driven fashion, by minimizing a certain
complexity regularized least-squares loss. As the main contribution of this paper, assuming that
the underlying random process is bounded and exponentially strongly mixing, we establish that
the estimator my = 75, n) is memory-universal if the predictor function m, has a finite memory
(Theorems 3.2 and 4.2, and Corollary 5.1), and is consistent even if the predictor function m., does
not have a finite memory (Theorems 4.3 and 5.2, and Remark 6.3). These results are distinct from
the case when the underlying memory is known, and require novel formulation and analysis which

have no counterpart in [34].



Previously, complexity regularization has been used, in an i.i.d. setting, to construct smoothness-
universal or norm-universal estimators of a regression or density function (Barron [10, 11], Yang and
Barron [61], and Barron, Birgé, and Massart [12]). In this paper, we use complexity regularization
to construct memory-universal and consistent estimators of the (possibly) infinite memory predictor
function.

For a further discussion of the relevant literature, see Remark 6.1.

This paper is organized as follows. In Section II, we present some notation and our basic
assumptions. In Section III, we construct an estimator My, for m.,, based on neural networks.
Assuming that the predictor function m., has a finite memory, we establish memory-universality
of my (compare Theorems 3.1 and 3.2). In Section IV, we construct an estimator 1y, for me.,
based on Legendre polynomials. Assuming that the predictor function m., has a finite memory, we
establish memory-universality of my (compare Theorems 4.1 and 4.2). Furthermore, even if the
predictor function m., does not have a finite memory, we establish consistency of 7 (Theorem 4.3).
In Section V, which is the conceptual and technical backbone of this paper, we present a scheme for
constructing the estimator /my using a sequence of abstract parametric families of functions. The
estimators considered in Sections III and IV are obtained by simply adapting the estimation scheme
presented in Section V to neural networks and Legendre polynomials, respectively. Furthermore,
in Section V, we establish abstract upper bounds, in terms of a certain deterministic index of
resolvability, on the statistical risk in estimating m., using my (Theorem 5.2). Theorem 5.2 plays
a key role in establishing the memory-universality and consistency results stated in Sections III
and IV. A discussion of our results is presented in Section VI, and the proofs of the main results

are collected in Section VII.

IT Preliminaries

Let {X;}32__. be a stationary random process on a probability space (2, F, P). For —oo < i < o0,

let F;o0) and F(_ ;) denote the o-algebras of events generated by {X;,j > i} and {X;,j < i},

e el
1=—00

respectively. The process {X;} is called strongly mizing [42], if

sup |P[AB] — P[A]P[B]| = a(j) — 0 as j — . (3)
AEF(—20,0),BEF(j,00)

a(j) is called the strong mixing coefficient.



AssuMPTION 2.1 (exponentially strongly mixing property) Assume that the strong mizing
coefficient satisfies

a(j) < aexp(—ej”),j > 1,

for some a > 0, >0, and ¢ > 0, where the constants § and ¢ are assumed to be known.

Assumption 2.1 is satisfied—with @ = 1-by important classes of processes such as certain linear
(Withers [59]) and certain aperiodic, Harris-recurrent Markov processes (Athreya and Pantula [4,
Theorem A] and Davydov [19, Theorem 1]). The former class includes certain Gaussian and non-
Gaussian ARMA processes, while the latter class includes certain bilinear, nonlinear ARX, and
ARCH processes (Doukhan [21] and Auestad and Tjgstheim [5]).

For —oo < i < j < oo, let X(; 5y = (X, Xigr, -+, Xj) and X(_ 5y = (+++, X1, X;). Define the

N

effective number of observations contained in the sequence of observations {X(i_m) i=p+10 Where

0 < p < N, drawn from a process satisfying Assumption 2.1, by

Ny = [V = [V = e} 4] (1)

where |u]| ([u]) denotes the greatest (least) integer less (greater) than or equal to u. The concept
of effective number of observations stems from the Craig-Bernstein inequality for the observations
{X¢ )}f\;p_l_l (see Lemma 7.1); also, see [34].

1—p,

In the sequel, we will also need the following compactness assumption.
AssUMPTION 2.2 (compactness) Assume that Xo takes values in [—1,1].

We point out that Gaussian ARMA processes clearly do not satisfy the compactness condition
in Assumption 2.2. However, certain non-Gaussian ARMA, bilinear, nonlinear ARX, and ARCH
processes could have compact support, and hence could satisfy Assumption 2.2.

Let P(; ;) and P_. ;) denote the marginal distributions® of X(ijy and X(_o j), respectively.
For 1 < p < oo, let LQ(P(LP)) denote the space of all Borel measurable functions g : [-1,1]" — IR
that are square-integrable with respect to Py ;). For 1 <p; < py < o0, let g1 € LQ(P(Lpl)) and let

g2 € LZ(P(Lpz))? then, define an integrated squared distance between the functions ¢y and g, as

7‘(92,91) = 7‘(91792) = / [91(96) - 92($73/)]2dp(1,p2)($7y)7 (5)

[_171]132

where the dummy variables z and y take values in [—1,1]"* and [—1,1](P2=P1) | respectively.

!Strictly speaking, we assume that the sample space €2 is the canonical sample space HO_OOO[—I, 1]. Then, P_ j

is the restriction of the underlying probability measure P to the o-algebra of events F’ .



IIT Predictor Estimation using Neural Networks

A Neural Networks

We now present a sequence of parametric families of functions based on neural networks using some
results of Barron [10]. We assume that ¢ : IR — [0, 1] is a Lipschitz continuous sigmoidal function

such that its tails approach the tails of the unit step function at least polynomially fast.

AssumpTION 3.1 ([10]) Assume that

(a) ¢(u) — 1 as u — o0 and ¢(u) — 0 as u — —oo.

(b) ()] < 1 and |¢(u) — ¢(v)| < Dilu — v| for all u,v € TR and for some D} > 0. Set
Dy = max{1, D{}.

(c) |p(u) = Lpsoy] < Dy/|u|P? for u € IR, u # 0, and for some D3 > 0 and Dy > 0. Set
Dy = max{1, D}}.

Fix n > 1 and p > 1. We now proceed to define a neural network with dimension (or “hidden

units”) n and memory (or “time delays” or “lags”) p. Let

v(p,n)=mn(p+2)+1 (6)

represent the number of real valued parameters parameterizing such a neural network. For 0 <1z <
n,let ¢; e IR;for 1 < i< n,leta; € IR? and let b; € IR. Let v = (ay, -, an; by, -+, by coy v, ¢0)
represent a y(p,n)-dimensional parameter vector. Define a neural network with dimension n and
memory p parameterized by v as
n
Sy (@) = clip (CO + > cidla;w+ bi)) , € IRP, (7)
=1
where clip(t) = =113 +tl_1<¢<1) + 1{1<¢y- The function “clip” is used in (7) with the hindsight
that the abstract estimation framework developed in Section V requires that the range of f(, (n.))

be [—1,1] (see Assumption 5.1). Define

7, = 2(2Da+1)/Ds D%/D3 p(P2t1)/(2Ds) (8)
where Dy, D5, and D3 are as in Assumption 3.1, and define a compact subset of IRW(p’”), namely

Sy = o € [—1,1],;IC¢| < C(p),lg%§||a¢||1 < s max [bi] < 7}, (9)

where the constant C'®) is made concrete in the next sub-section.



B Estimation Schemes and Memory-Universality

AssumPTION 3.2 (finite memory) For some integer q, 1 < q < 0o, assume that
Moo (X(—oo,—1)) = Mg(X(g,—1)) almost surely.

Under Assumption 3.2, the problem of estimating the predictor function m., reduces to that of
estimating the predictor function m,. We assume that m, satisfies the following Fourier transform-
type representation due to Barron [9].

For w = (wy,...,w,) and @ = (21,...,2,) in R, let w-2 = 3! | w;z; denote the usual inner

product on IR? and let ||w||y = >_7_; |w;| denote a norm on IRY.

AssumpPTION 3.3 (bounded spectral norm) Assume that there exists a complex valued function

m, on IRY such that for x € [—1,1]7, we have

mg(z) — my(0) = / (em'x — 1) mg(w) dw

IR¢

and that figa [|w]|i]me(w)] dw < C < oo for some Cy > 0. Set Cy = max{1,Cy}.

For a detailed discussion of Assumption 3.3, we refer the interested reader to Barron [9]. Also,
see Hornik et al. [25] and Yukich, Stinchcombe, and White [62].

For the sake of brevity and simplicity, we assume that the constant C; is known. If, in fact, C,
is unknown, it may be possible to modify our estimators using the ideas in Barron [10, (31)-(32)].
Specifically, we can replace the index n in Section V by a multi-index (n, ('), which is like inserting
an additional minimization step (between steps 1 and 2) in Figure 1.

Suppose that the memory ¢ in Assumption 3.2 is known. In this case, by using the knowledge
of the memory ¢, we construct an estimator 7, ) by invoking the estimation scheme presented

in Figure 1 with the following specific input values:

o let ky = q, p=q, and kao(q) = ka(q, N) > [\/N,];

o let A > 20/3; for 1 < n < ka(q), let Ly, = [n(q +2) + 1]In (327’neDqu(Nq)D4), where

Dy >1/2, 7, is as in (8), Dy is as in Assumption 3.1, and C, is as in Assumption 3.3;

o for 1 <n < ka(q), let S, be obtained from (9) by substituting p = ¢ and C@ = Cy;

q7n

o for 1 <n < ka(q) and for v € Sy ), let f(4 (n,)) be obtained from (7).



The input values presented above are selected, with hindsight, to establish Theorem 3.1.
Throughout this section, we assume that the least-squares estimation step in Figure 1 delivers
the global minimum. From a strict mathematical perspective, finding the global minimum of a
nonlinear least-squares regression problem is computationally hard, see, for example, Farago and
Lugosi [23] and Jones [27]. In practice, however, the backpropagation algorithms described in Back
and Tsoi [7] and in Wan [53] started from a number of initial weights usually yield reasonably
acceptable results. Furthermore, various specialized hardware is now available to considerably

speed up training of neural networks, see, for example, Means et. al. [33] and Sackinger and Graf

[45)].

THEOREM 3.1 (memory ¢ is known) Suppose that Assumptions 2.1, 2.2, 3.1, and 3.3 hold.

Then, for all Ny > 2,
16
. In N\ 25+1
Bl pmg)) = 0 (55 ) 7

where N, is obtained from (4), B is as in Assumption 2.1, and r is as in (5).

The proof uses abstract upper bounds presented in Section V (namely Theorem 5.1), and is
briefly outlined in Sub-section VII.C.

Now, suppose that the memory ¢ in Assumption 3.2 is unknown. In this case, without the
knowledge of the memory ¢, we construct an estimator 7y by invoking the estimation scheme

presented in Figure 2 with the following specific input values:

e let by = k1(N) = o(N) be a function increasing to oo as N — oo, for example, ky = log N;

for 1 < p < ky, let kao(p) = ka(p, N) > [\/Ni, |;

where Dy > 1/2, 7, is as in (8), Dy is as in Assumption 3.1, and C, is as in Assumption 3.3;

for 1 < p<kyandfor 1 <n < ky(p),let S(pn) be obtained from (9) by substituting

) = ¢y (10)

for 1 < p < hy, for 1 < n < ka(q), and for v € S, ), let f, () be asin (7).

The input values presented above are selected, with hindsight, to establish the following result.

let A > 20/3;for1 < p < kyandforl <n < ky(p),let Lipny = [n(p4+2)+1]In (327’neDqu(Nk1)D4),



Inputs: Natural numbers p, where p < N, k1, where p < k; < N, and ka(p);

ka(p).
n=1 "

real numbers A and {L, )}
sets {S(p,n)}h(p)'

n=1"

. . k
parametric functions {{f(p,(n,u))}ueS(p,n) }ni(zf).

Estimation Scheme:
1. (least-squares estimation) For each dimension 1 < n < ks(p), compute

N
. . 1 2
v(p,n) = E;regs(ml?{N — 2 i Fo e (Ximpa-n)] }
p,n i=k1+1
2. (dimension selection criterion) Compute

) : 1 i g x 1 o B 2 In(n + 1)
A, = arg min i — Joo,(n,p(pyn i—pi— :
T ignghg |V -k i=ki+1 ) Ny

Outputs: Write é(p) = (fp, ¥(p, 71p)), and define the estimator parameterized by é(p) as mp Ny = f(p T

Figure 1: Scheme for computing the estimator my, n.

Inputs: Natural numbers kq, where k1 < N, and {kz(p)};flzl;
real numbers A and {{L(pyn)}fézf)}l;lzl;

ko 1.

sets {50 b2 L

parametric functions {{{f(p,(n,u))}ueS(p,n) }22:(11))}];1:1.

Estimation Scheme: R
1. For each memory 1 < p < k1, compute the parameter 6(p) = (n,, #(p, 7)) and the estimator m, )
by using the estimation scheme in Figure 1.

2. (memory selection criterion) Compute p =

N ~
~ 1 Lipsy) +2In(ip +1) 4+ 2In(p + 1)
Xi— oo A X io))]? + A2 .
alr;gpglln{]v — i:%:-l—l[ f(pﬁ(p))( (i-pi-»)]” + Ni,s

Output: Write the estimator parameterized by the memory p as my = m; n).

Figure 2: Scheme for computing the estimator my.
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THEOREM 3.2 (memory ¢ is unknown) Suppose that Assumptions 2.1, and 2.2, 3.1, 3.2, and
3.3 hold. Then, for ky > q and for Ny, > 2,

16

) In N\ 251

Bty my) = 0 (S) 7

where Ny, is obtained from (4), 3 is as in Assumption 2.1, and r is as in (5).

The proof uses abstract upper bounds presented in Section V (namely Corollary 5.1), and can

be found in Sub-section VII.C.

REMARK 3.1 (memory-universality) Comparing Theorems 3.1 and 3.2, we find that the inte-
grated mean-squared error in estimating m,-when the memory ¢ is unknown-has the same rate
of convergence, in terms of upper bounds, as the corresponding error in estimating m,~when ¢ is

known.

The dependence of our estimators on the parameter 3 is discussed in Remark 6.7.

By combining results of Barron [10, p. 129] and Barron, Birgé, and Massart [12, Proposition 6]
with the generalized approximation results of Hornik et al. [25] and Yukich, Stinchcombe, and
White [62], it is possible to relax Assumption 3.1 and the compactness restriction on the set of
parameters .5, ). We do not pursue these extensions here, since our principal focus is on memory-
universal prediction of stationary random processes and not on the richness of the class of parametric
functions employed to achieve this goal.

As an important aside, observe that in Theorems 3.1 and 3.2 the exponents of V in the respective
rates of convergence do not depend on the memory ¢, that is, neural networks mitigate the curse
of dimensionality in estimating the predictor function m, which satisfies Assumption 3.3. This fact

was first observed by Barron [10] in the context of regression estimation for i.i.d. observations.

IV Predictor Estimation using Legendre Polynomials
To prevent a notational overload, in this section, we recycle the notations used in Section III.

A Legendre Polynomials

Let {c,o(i)}izl denote the normalized Legendre polynomials [49] which are orthogonal with respect to

the Lebesgue measure on [—1, 1], where (9 is a polynomial of degree (i —1). Let IN = {1,2,3,---}.
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For p > 1, we now define a tensor product Legendre polynomial on [—1,1]?, indexed by a multi-

integer j = (j1,j2, -+, Jp) € INF, as

P (T) = e (21) o) (2q) --- @(jp)(wp% (11)

where © = (21,22, -+, 2,) € IRP.
Fix p>1and n > 1. Let
v(p,n) = n. (12)
Let 1 = (1,1,---,1) € IN” and n = (n,n,---,n) € INP. We adopt the convention that the
inequalities between multi-integers are to be interpreted component-wise. For 1 < j < n, let
a; € IR. Let v = (a1,---,an) represent a y(p,n)-dimensional parameter vector. Define a tensor
product Legendre polynomial with dimension (or the largest coordinate-wise degree) (n — 1) and

memory (or time delays) p parameterized by v as

n
Sy (@) = clip (JZ ajwp,.i)(ﬂf)) , v € IR, (13)
=1

where clip(t) = —1yc_1y + 1 {_1<i<1y + Li<ry and @, 5)(2) is as in (11). We restrict attention to

a compact subset of IRW(p’”), namely
n
Spm)y = 4V : Zajz <2P 3. (14)
J=1

B Estimation Schemes and Memory-Universality

In this sub-section, we suppose that Assumption 3.2 holds, that is, the predictor function m., has

a finite memory ¢. We assume that m, satisfies the following differentiability condition.

AssumpTION 4.1 (differentiability) For some unknown smoothness order s > 1, assume that
all partial deriwatives of total order s of the function m, exist, are measurable, and are square-

integrable.

In this section, we approximate the predictor function m, using Legendre polynomials. We note
that various other families of approximants such as trigonometric series, splines, neural networks,
or wavelets would suffice as well.

In the sequel, we need the following technical condition.

ASSUMPTION 4.2 Assume that the marginal distribution of Xy 4y, namely P 4, has a uniformly

bounded probability density.
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Suppose that the memory ¢ in Assumption 3.2 is known. In this case, by using the knowledge
of the memory ¢, we construct an estimator m, y) by invoking the estimation scheme presented

in Figure 1 (see Section III) with the following specific input values:
o let by = ¢, p=q, and ka(q) = ka(q, N) > [(Nq)l/qh

o let A > 20/3; for 1 < n < ka(q), let L,y = n?ln (2(‘1"'4)/2\/71‘1(271— 1)q(Nq)D4), where
Dy > 1;

o for 1 <n < ka(q), let S, ) be obtained from (14);

q7n

o for 1 <n < ka(q) and for v € Sy ), let fiy (n,)) be obtained from (13).

Note that the estimator 7, ;) makes no use of the smoothness order s. The input values presented

above are selected, with hindsight, to establish the following result.

THEOREM 4.1 (memory ¢ is known) Suppose that Assumptions 2.1, 2.2, 4.1, and 4.2 hold.
Then, for all Ny > 2,

. In N\ 757
Elr(ig,nymq)] = O (T)

8
B+l
b

where N, is obtained from (4), B is as in Assumption 2.1, and r is as in (5).

The proof uses abstract upper bounds presented in Section V (namely Theorem 5.1), and is
briefly outlined in Sub-section VII.D.

Now, suppose that the memory ¢ in Assumption 3.2 is unknown. In this case, without the
knowledge of the memory ¢, we construct an estimator 7y by invoking the estimation scheme

presented in Figure 2 (see Section III) with the following specific input values:

e let by = k1(N) = o(N) be a function increasing to oo as N — oo, for example, ky = log N;

for 1 < p < ky, let ky(p) = ka(p, N) > [(Ng,)/P];

o let A >20/3;for 1 < p < kyandforl <n < kay(p),let L,y = nPln (2(p+4)/2 nP(2n — 1)p(Nk1)D4),

where Dy > 1;
o for 1 <p <k and for 1 <n < kap), S(pn) be as in (14);
o for 1 <p < ky, for 1 <n < ky(p), and for v € S, 0y, let fi, (n)) be asin (13).

Note that the estimator 1y makes no use of the smoothness order s. The input values presented

above are selected, with hindsight, to establish the following result.
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THEOREM 4.2 (memory ¢ is unknown) Suppose that Assumptions 2.1, 2.2, 3.2, 4.1, and 4.2
hold. Then, for ky > q and for Ny, > 2,

2s

In N) 2S-I-q
N

8
B+l
b

Elrtinn,m) = O
where Ny, is obtained from (4), 3 is as in Assumption 2.1, and r is as in (5).

The proof uses abstract upper bounds presented in Section V (namely Corollary 5.1), and can
be found in Sub-section VIL.D.

Observe that Remark 3.1, when properly translated, continues to hold in the current context
as well. The dependence of our estimators on the parameter 3 is discussed in Remark 6.7.

By modifying our estimators using the ideas in Barron [11], it is possible to eliminate the
logarithmic factor in Theorems 4.1 and 4.2. However, for the sake of simplicity, and also since the

resulting estimators are computationally more expensive, we do not pursue that direction here.

C Consistent Estimation of m.,

In this sub-section, unlike the previous sub-section, we do not assume that the predictor function
Meo has a finite memory. Nonetheless, we continue to estimate the predictor function m, using the
estimator my constructed in the previous sub-section. To establish consistency of my, we require

the following technical condition.

ASSUMPTION 4.3 For each memory 1 < p < oo, assume that the marginal distribution of X p),

namely P ), has a uniformly bounded probability density.
THEOREM 4.3 (consistency) Suppose that Assumptions 2.1, 2.2, and 4.3 hold. Then,

lim E[r(my, me)] =0, (15)

N—co

where r is as in (5).

The proof uses abstract upper bounds presented in Section V (namely Theorem 5.2), and can
be found in Sub-section VIL.D.

To obtain a rate of convergence for E[r(ry, me )] in Theorem 4.3, we first need to obtain a
rate of convergence for the “approximation error” r(m,, ms) under Assumption 2.1. To the best

of our knowledge, no such results are currently known.
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Since the same estimator /iy is considered in Theorems 4.2 and 4.3, we have that if the predictor
function me, has a finite memory, then my delivers memory-universality, and even if the predictor
function does not have a finite memory, my delivers consistency. Also, observe that in Theorem 4.3

no smoothness assumptions are imposed on the predictor function m...

V Abstract Estimation Framework

In this section, given a sequence of abstract parametric families of functions, we propose an estima-
tor, say my, for the predictor function m.,, and upper bound the integrated mean-squared error of
the estimator in terms of certain indices of resolvability. The benefit of abstraction is that we are
able to capture the statistics behind the proposed estimation scheme in the most general case, in a
clean, economical fashion, without worrying about the cumbersome details of the specific cases of
interest.

Throughout this section, fix the number of observations N > 1.

A Parameter Spaces and Complexities

The development in this sub-section closely follows that in [34, Sub-section 3.A].

Throughout this sub-section, fix a memory 1 < p < oo. For each integer n > 1, let v(p,n)
denote a model dimension (for example, see (6) and (12)), and let S, ,,) denote a compact subset of
IR"("™) The set S(p,n) Will serve as a collection of parameters associated with the model dimension
v(p,n) (for example, see (9) and (14)). By introducing a prior density on the set .5, .,y as in Barron
[10, p. 129], it is possible to relax the compactness assumption.

For every v € S, ), let f(, (n,)) denote a real-valued function on [—1,1]P parameterized by
(n,v) (for example, see (7) and (13)). The following condition is required to be able to invoke the

Craig-Bernstein inequalities in Lemma 7.1.

ASSUMPTION 5.1 For each integer n > 1 and for every v € S, ), assume that fi, (n.)) takes

values in [—1,1].

Owing to the “clip” function in (7) and (13), Assumption 5.1 is satisfied for both neural networks
and Legendre polynomials.
Let p(,, ) denote a metric on IRYP™) . For ¢ € (0,1], let T(, »y(¢) denote an (e, p(p,n))-net

of the set S, ,); in other words, for every 11 € 5(,,) there exists a vy € T(pm)(g) such that



15

Pp)(V1,v2) < €. Assume that Ty, y(¢€) C Spny- Let L, n)(€) be such that

ln#(T(p,n)(g)) < L(p,n)(g)v (16)
where In = log, and # denotes the cardinality operator.

ExampLe 5.1 (neural networks) Let notations be as in Section Ill. Let o, ) denote a metric
on IRY(P:m) defined as in Barron [10, (19)], but by replacing d there by p. It follows from [10,
Lemma 2] by using (8) that for every 0 < ¢ < 1 and for every C?) > 1, there exists a (e, Oyt
of S(p.ny, namely T, )(¢), such that

4r,e
ln#(T(p,n)(g)) < [n(p + 2) + 1]In 8/—2 = L(p,n)(g)' (17)
ExamPLE 5.2 (Legendre polynomials) Let notations be as in Section IV. Let O(p,n) be simply

the Y metric on IRY®™) . The hypersphere S s contained in the hypercube [—2p/2 —e, 2p/2+5]”p,

pn)
which has volume [2(2°/% + &)™ Furthermore, the set [—2P/2 — ¢,2P/% 4 £]"" can be covered by
(small) hypercubes (with respect to the metric o(, y) with side length (2¢ [v/n?). Since by assumption
0 < e <1, there exists a (¢, 0(pn))-net of Sy, namely T, 1)(€), such that

200+2)/2, /p

In (T (2)) € 70—

L(pm)(&”). (18)

ASSUMPTION 5.2 For every n > 1, there exisls a strictly increasing function (in €) @, q)(+)
(0,1] — (0,00) such that for all ¢ € (0,1] and for all vi € S,y and vy € T, () with

P(pin)(V1,12) < €, we have

sup |f(p,(n,u1))($) - f(p,(n,l@))(x” < w(p,n)(g)‘

ze[—-1,1]p

Assumption 5.2 implies that the function @, ) is invertible; let w(_pln) denote the inverse. Observe

)

p,n)

that the inverse w(_p%n)(é) is defined for all 0 < ¢ < @, ,)(1) < oo and takes values in the range
(0,1].

Assumption 5.2 says that the class of parametric functions I'(p,n) = { f.(n0)) 1 ¥ € S(pn)} can
be covered in the supremum norm over [—1, 1] by a finite class of functions. In other words, we
limit attention to classes of parametric functions where upper bounds on the sup-norm covering
numbers of I'(p, n) are available; also, see [8, 32, 34]. This class is sufficient to demonstrate our main
contribution on memory-universal prediction of stationary random processes. We note in passing
that more general classes of parametric functions have been considered, for instance, by Barron,
Birgé, and Massart [12], Lugosi and Nobel [28], and Lugosi and Zeger [29, 30] in the context of

function estimation in an i.i.d. setting.
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ExaMPLE 5.1 (continued) [t follows from [10, Lemma 1], by invoking Assumption 2.2 and Part
(b) of Assumption 3.1, that Assumption 5.2 holds with w, ,)(c) = 4D1CWe. For all 0 < 6 <

(o)1) = 4D1C®), the inverse of @ can be writlen as

p,n)

wl (6) = 6/(4D,CP)), (19)

(p,n)

EXAMPLE 5.2 (continued) Let v = (ay,---,an) € RY®) qnd let v/ = (aj,---,a}l) e R(@n)

be such that Q(pm)(l/, V') < e. The following calculation shows that Assumption 5.2 holds with

W(pm)(é) = (\/271 — 1)p€.

INE
wn
=
=
[]=
S
&
|
L‘Q
Sa—’
6
S
=
=

SUD | fip,(n,01)) (%) = S(p,(n,02))(2)]

re[-1,1]P re[-1,1]P

A IN
S /\
b wn
s =
| o
—_
— _
N A
%\ S~
3 S
— S’
S —_—
e
T\ [y
[]=
S
h@
|
h@
=

< (V2n—1)Pe,

where (a) follows from (13). For all 0 < & < @, (1) = (v2n — 1)P, the inverse of @

pon) can be

written as

w b (8)=6/(V2n = 1)P. (20)

(p,n)

Let ko(p) denote a natural number (for example, ka(p) > [\/N, | for neural networks and
ka(p) > [(N,)Y/?] for Legendre polynomials). Let O (p,k,(p)) denote a collection of parameters of
different dimensions, with the maximum dimension less than or equal to kz(p), such that each of

the parameters comes packaged with the index of its dimension; formally, we write

k2 (p)
®(p,k2(p)) = U {(n,l/) S S(pﬂ”b)} (21)

n=1
It follows from (21) that every € € ©, 1,(p)) must be of the form 8 = (n,v) for some 1 < n < ky(p)

and for some v € 5, ,); then, define
fwo) = Jio(nw)) (22)
and for every 0 < ¢ < wmn)(l) define the “description complexity” of the parameter 8 as
LPN6,6) = 2In(n + 1) + Ly (@], (8), (23)

where @ is as in Assumption 5.2 and L =1 (8)) is obtained from (16) by substitutin
( p (pyn) ) y g

p,n) (pn
e=w "t (§).

(p,n)
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B An Abstract Scheme for Computing ﬁl(p,N)

In this sub-section, as a building block for the estimation scheme presented in the next sub-section,
we outline a scheme to construct the estimator 7, ). The estimation scheme presented in this
sub-section is conceptually the same as that presented in [34, (25)-(26)], but is different in details.

For any natural number p, where p < N, for any natural number ky, where p < ky < N, for
any natural number ky(p), for any real number §, where? 0 < § < Miny <<, (p) @(pn)( 1), and for

any real number A, write

R 1 N L66.5)
f(p) = arg min X, —f X 2\ 8,0) 7 01
) 96@%}?,k2(1’)) {N —h i:%;rl[ w0 (Xi=pi-n) N, (24)

where O, 1,(p)) is as in (21), f(,g) is as in (22), L®)(8,8) is as in (23), and Ny, is obtained from

(4). Now, define the estimator parameterized by #(p) as

M08 = i o)) (25)
We may now interpret the estimation scheme presented in Figure 1 (see Section III) as a computa-

tionally convenient version of (24) and (25), which are analytically more convenient. For the sake

of simplicity, in Figure 1, we write L(, ) instead of the complete expression L(pm)(w(pln)(é)) and

»,n
we implicitly set 6§ = §(N) = (N,)~Ds.

Define the p-index of resolvability corresponding to the estimator m, ny as

L®)(8, 8)
R ki) = i , + A———=>, 26
)y ke) = min {T(f@,e) M) Ve (26)
where O, 1, (p)) is as in (21), L®)(8,8) is as in (23), Ny, is obtained from (4), and (f(p,g), p) 18

obtained from (5) by substituting g; = f(, 4 and g2 = m,,.

REMARK 5.1 The index of resolvability was first introduced by Barron and Cover [13] in the
context of density estimation for i.i.d. observations, and by Barron [8] in the context of regression

estimation for i.i.d. observations.

THEOREM 5.1 Let p be a natural number such that p < N. Set ky = p. Suppose that Assump-
tions 2.1 and 2.2 hold, and that Assumptions 5.1 and 5.2 hold. Then, for all natural numbers ky(p),
for all real numbers 0 < & < miny<pcp, (p) T(pn)( 1), for all A >20/3, and for all N, > 2,

126 4aA

E [T(m(p,N)vmp)] < NR(p,n)(mp, p) + ' + N (27)

Tfwelet 0 < § < @(p,n)(1), then w(_plyn)(ﬁ) is well defined. Thus, if we let 0 < § < mini<n<iy(p) F(p,n)(1), then

w@%n)(ﬁ) is well defined for each 1 < n < k2(p).
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where n =4/(A=8/3), 7w =(1—=n), 1=(1+n)/(1—n), and & = (1 + 4 *a).

The proof is briefly outlined in Sub-section VIL.B.

C An Abstract Scheme for Computing my

k1

For any natural number ky, where ky < N, for any natural numbers {ka(p)};L,, for any real number

6, where 0 < & < miny<,<p, {Miny <<k, (p) @(pn) (1)}, and for any real number A, write

p = arg min
1<p<ky

{ Y L@m@%m+2m@+1}7 (28)

; — ~ . . 2
N -k i=§+1[XZ f(pﬁ(p))(X(z—p,Z—l))] + A v

where 8(p) is as in (24) and L(P)(4(p), §) is obtained from (23) by substituting § = 8(p). Roughly
speaking, the adaptive memory p is an estimator of the memory of the underlying predictor function

M. We now write the estimator mpy as

T = N = L) (29)
We may now interpret the estimation scheme presented in Figure 2 (see Section III) as a computa-
tionally convenient version of (28) and (29), which are analytically more convenient. For the sake
of simplicity, in Figure 2, we write L, 5 ) instead of the complete expression L(pﬁp)(w(_l )(6)) and

p7ﬁp
we implicitly set 6 = §(N) = (Ng, )~ P+,

THEOREM 5.2 Let ky be a natural number such that ky < N. Suppose that Assumptions 2.1 and
2.2 hold, and that Assumptions 5.1 and 5.2 hold for each 1 < p < ky. Then, for all natural numbers
{k2(p) ];1:1, Jor all real numbers 0 < 6 < miny<p<p, {Ming<p<y(p) @p,n) (1)}, for all A > 20/3, for
all N, > 2, and for all 1 < p < Ky,

) . . C2In(p+ 1) 126 4aA
r o0 7k s oo A Ve ’
[r(mn, meo )] < TR Ny (M, k1) + 117 (mp, meo ) + 17 Ny + " + VN

where n= 4/(A - 8/3)} 77/ = (1 - 77)} = (1 + 77)/(1 - 77)} a = (1 + 46_207)} and R(p,N)(mpvkl) is
as in (26).

The proof can be found in Sub-section VII.B.

REMARK 5.2 Observe from the proofs of Theorems 5.1 and 5.2 that the bounds stated in the

theorems continue to hold even when the parameters ki, k2(p), and 6 are functions of N.
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REMARK 5.3 Observe that the index of resolvability (which consists of an approximation error
term and an estimation error term) in Theorems 5.1 and 5.2 is multiplied by a constant 7 > 1.
This implies that, for each fixed N, the upper bounds established in Theorems 5.1 and 5.2 may
not be the best possible-in the sense of constant multipliers. In a concept learning (or pattern
recognition) setting, Lugosi and Zeger [30] avoid the problem of constant multipliers larger than
1 by using a Vapnik-Chervonenkis framework. However, in a mean-squared regression setting, a
direct application of their method of analysis leads to a slower overall rate of convergence which is

less desirable.

COROLLARY 5.1 Suppose all hypotheses of Theorem 5.2 hold. In addition, suppose that Assump-
tion 3.2 holds and that g < ky. Then,

A i _ 2n(g+1) 128 4a)
(s mq)] < 0 Riq,vy(mgs ku) A== ==+ = & 7=

where R, ny(my, k1) is obtained from (26) by substituting p = q.

Proor: The corollary follows by applying Theorem 5.2 with p = ¢ (since ¢ < k1) and my = my

(since Assumption 3.2 holds). O

VI Discussion

REMARK 6.1 (related works) We now discuss the relevant literature to establish a broader con-

text for our results.

e el
1=—00

e Suppose that the process {X;} is binary-valued. In this case, estimating the predictor
function my is essentially the same as estimating the corresponding conditional distribution
of Xo given the entire infinite history X(_., _1). The latter problem, owing to its applications
in data compression, has received wide attention, for example, see Algoet [2], Cover [18],
Rissanen [37, 38], and Ryabko [43, 44]. Our work fundamentally differs from the existing
body of work for binary-valued processes, in that, for binary-valued processes each element
of the sequence {m,},> is finitely parameterized, while for real-valued processes considered

here the elements of the sequence are not finitely parameterized.

e Suppose that the process {X;}:2___ is real-valued, stationary, Gaussian ARMA. In this case,
estimation of the predictor function m., has been widely studied, for example, see Akaike

[1], Bhansali [14], and Rissanen [39]. Our work fundamentally differs from the existing body
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of work for Gaussian ARMA processes, in that, for Gaussian ARMA processes each element
of the sequence {m,},>; is linear (in the observations) and finitely parameterized, while for
stationary random processes considered here the elements of the sequence are neither linear

nor finitely parameterized.

e el
1=—00

e Recently, supposing that the process {X;} is real-valued, stationary, and ergodic, Algoet
[2, 3], Morvai, Yakowitz, and Gyorfi [36], and Morvai, Yakowitz, and Algoet [35] proposed
several nonparametric estimators of the predictor function m.,, and established universal
consistency of their estimators. This is distinct from memory-universality—which is the main

focus of this paper.

e el
1=—00

e Recently, supposing that the process {X;} is real-valued, stationary mixingale, Sin and
White [47] proposed model selection criteria with the goal of selecting the best (in the sense of
the smallest approximation error) of two abstract parametric models of the predictor function®
Moo, and exemplified their model selection criteria for ARMAX-GARCH and STAR models.
Although we consider a smaller class of processes, our estimators are applicable to sequences
of parametric families of functions, minimize the overall statistical risk (that is, approximation

error + estimation error), and are memory-universal and consistent.

[ee)

e Supposing that the process {X,;}°

72 _ . is real-valued, exponentially strongly mixing, and that

the predictor function me, has a finite memory ¢ (see (2)), Auestad and Tjgstheim [5, 6]
(also see Tjpstheim [50]) and Cheng and Tong [17] proposed two-step schemes (based on the
nonparametric kernel approach) to estimate the predictor function m,, without the knowledge
of the memory ¢. However, no analytical results are yet available for the estimators considered
by Auestad and Tjgstheim, and although Cheng and Tong established the order consistency

of their scheme, they did not establish, like we do, rates of convergence for the statistical risk.

REMARK 6.2 (general regression estimation problem) Although so far we confined our at-
tention to the simple and intuitively appealing problem of one-step ahead prediction of stationary
random processes our results easily extend to a larger class of estimation problems as shown below.
Let {X;,Y:}2___ be astationary random process such that X¢ takes values in [—1, 1] and Y, takes

values in IR. Let ¢ be a measurable function such that F|(Yp)|? < co. For 1 < p < oo and for

?Note that although, for the sake of coherence, we have paraphrased the contribution of the literature dealing
with Gaussian ARMA processes [1, 14, 39] and that of Sin and White [47] as estimating the predictor function me.,
they did not phrase their work as such.
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d > 0, define the regression function as
mp(x) = E[¢(Yd)|X(_p7_1) = x],x c IR?.

Given a sequence of observations { X, Yi}f\;‘il'd, we are interested in estimating the regression function

Meo. If we suppose that the process { X, Y;}52_ __ satisfies Assumption 2.1, suppose that 1(Yp) takes
values in [—1, 1], and replace X; in Figures 1 and 2 (equivalently in (24) and (28)) by (Yy4:), then
we can use the resulting iy as our estimator of m.,. Furthermore, all our results in Sections III,

IV, and V continue to hold in toto. Also, observe that by selecting various values for the function

1, we can obtain a number of interesting special cases as follows.

e ((d+1)-step ahead prediction) If we set ¢)(y) = y, and assume that Yy takes values in [-1,1],

then we can estimate E[Yy|X(_oo _1))-

e (conditional moments estimation) If we set ¥(y) = y’, where ¢ > 1, and assume that Y, takes

values in [—1,1], then we can estimate E[(Yy)"|X (o0 —1)]-

¢ (conditional distribution estimation) If we set 1(y) = 14 <.y, where z is a fixed real number,

then we can estimate P{Yy < 2[X(_oo 1)}

REMARK 6.3 (consistent estimation of m., using neural networks) Observe that we did not
establish a result analogous to Theorem 4.3 for the estimator 7 based on neural networks. Now

consider the following relatively strong condition.

ASSUMPTION 6.1 For each p > 1, assume that there exvists a complex valued function m, on IR”

such that for x € [—1,1]P, we have

my() = my(0) = [

. (em'x — 1) myp(w) dw

and that [y [|wl|i|m,(w)| dw < C) < oo for some known €}, > 0. Set €, = max{1,C}}.

Suppose that Assumptions 2.1, 2.2, and 6.1 hold, and let my be as in Section III, where we replace

(10) by cl) = C'p. Then, it is possible to show, by proceeding as in the proof of Theorem 4.3, that
MN — Meo a8 N — o0,

where convergence is in the sense of integrated mean squared error. However, owing to the stringent

nature of the Assumption 6.1, such a result appears unappealing.
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REMARK 6.4 (compact parameter spaces) Throughout this paper, we restricted attention to
sequences of parametric families with compact parameter spaces. This assumption is sufficient to
treat the examples presented here. However, if the predictor function m, is such that one must use
a sequence of parametric families with non-compact parameter spaces to obtain the best bounds
on the approximation error, then the current framework may prove wanting. It may be possible
to extend our framework to more general sequences of parametric families along the directions
considered, for instance, by Barron, Birgé, and Massart [12], Lugosi and Nobel [28], and Lugosi
and Zeger [29, 30].

REMARK 6.5 (order consistency and price of memory-universality) In Theorems 3.1 and
3.2 (see also Theorems 4.1 and 4.2), we established the memory-universality of the estimator /.
However, it should be noted that 7y is, roughly speaking, k1 (= o(N)) times more expensive to
compute than the corresponding estimator 1, ny that does know the memory ¢. It is currently
unknown whether the adaptive memory p converges to ¢ in some sense; nevertheless my does

converge to the predictor function my.

REMARK 6.6 (conditional density and conditional quantiles) Assuming that the predictor
function m., has a finite memory, we formulated memory-universal and consistent estimators for
Meo. 1t may also be possible to apply our estimation methodology and proof techniques along with
the results of Barron and Cover [13], Barron [8], Barron, Birgé, and Massart [12], and White [56]
to establish memory-universality and consistency of suitable estimators of the conditional density

and of various conditional quantiles of X given X(_ _1).

REMARK 6.7 (dependence of our estimators on 3) The complexity term in (24) and (28) is
motivated solely by the statistical risk bounds we are able to obtain and not by other information-
theoretic or Bayesian considerations. As a consequence, the complexity term depends explicitly on
the parameter § in Assumption 2.1. In practice, one may set 4 = 1, since important classes of
processes satisfy Assumption 2.1 with that value [59]. Note, however, that if the true underlying
[ is larger than the value of 3 used in our estimators, then the resulting estimators will deliver a
slower rate than that obtainable with the knowledge of the true 3. On the other hand, if the value
of 3 used in our estimators is larger than the true underlying 3, then we are unable to quantify the
statistical performance of the resulting estimators. Unfortunately, unlike the parameters “smooth-

ness”, “norm”, model dimension, or model memory, it does not appear possible to select 5 in a
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data-driven fashion using complexity regularization. Furthermore, we are currently unaware of any

algorithm for testing the exponentially strongly mixing condition.

REMARK 6.8 (comparison with nonparametric prediction) We have from Theorem 3.1 that

2s &l
In N) 2s+q B+1

B I = @ dR g =0 (% (1)

Now, suppose that the strong mixing coefficient decays algebraically, and that the predictor func-
tion m, has continuous and bounded partial derivatives of total order s. Let 1y, y) denote a
nonparametric kernel estimator [15, 40, 41] which uses a kernel of order s, then it is known that

with an optimal deterministic choice of the corresponding bandwidth parameter
2s
Elingg,n)(w) = mg(2)] ~ N™7%, 0 € R, (32)

Directly comparing (31) and (32), we find that rate of convergence for our estimator 7, ny decreases
by the factor §/(3 + 1). However, the above comparison may be inherently unfair, since our
estimator 1y, ny selects the model dimension in a data-driven fashion whereas the kernel estimator
m(g,n) does not select its bandwidth parameter in a data-driven fashion. A fair comparison would
involve a kernel estimator which selects its bandwidth parameter in a data-driven fashion (using,
say, cross-validation). Unfortunately, to our knowledge, obtaining rates of convergence results for
kernel estimators with data-driven bandwidth selection, in the context of dependent observations,

is currently an open problem.

VII Derivations

A A Sequence of Craig-Bernstein Inequalities

To furnish the key technical tool required in the proof of Theorem 5.2, we now extend the Craig-
Bernstein inequality in [34, Theorem 4.3]. Specifically, in proof of Theorem 5.2, we need to analyze

empirical means of the form
1

N
N> > V(X (impi)); (33)

i=p+1

where N > p > 0 and ¢ is a Borel measuarable function from IR?*! to IR, using a Craig-Bernstein-
type inequality. The following lemma supplies the needed sequence of inequalities for each p > 0

(the Craig-Bernstein inequality in [34, Theorem 4.3] corresponds to the case p = 0).
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LEmma 7.1 ((N,p)-Craig-Bernstein Inequality) Suppose that Assumption 2.1 holds. Let inte-
gers N and p be such that N > p > 0. Let v : IRPTY — TR be a Borel measurable function. For
each —oo < &t < 00, let U; = ¢(X(i—p,z’))- Assume that |Up| < dy a.s. and that E[Uy) = 0. Let N, be
as in (4). Then, for all N, > 2, for all T € IR, and for all 0 < ( < 1/d4,

T 3CE|U1|2
P = 3CN 2(1 — (dy)

} < (1 +4e2a)e".

Proor: The proof closely follows the proof of Theorem 4.3 in [34], here we merely point out

the main points of departure. Since in our case U; = ¢(X(i—p,i))a the sigma-algebras of events
oVt a—yks@=1,2,...,q— 1} and o{U;4(,_1)x}, in item (b) in the proof of [34, Lemma 4.2], are

now measurable with respect to o{ X (;(a—1)k=p,j4(a=1)k)» @ = 1,2, ..., q=1} and o{ X ;4 (4= 1)k—p,j+(q=1)k) } >

respectively. Thus, the distance between the two sigma-algebras now becomes (j+ (¢ — 1)k — p) —

(j+(¢—2)k) = k—p. Consequently, in [34, Lemma 4.2], we now must apply the mixing inequality

in Hall and Heyde [24, Theorem A.5] with a(k — p) instead of a(k). In other words, throughout

[34, Lemma 4.2], we should replace a(k) by a(k — p), and should replace the constraint £ > 0 by

k > p. Also, throughout [34, Theorem 4.3], we replace k” by (k — p)”® and replace N by N — p.

Finally, note that the “number of blocks” k in [34, (44)] now becomes

= [{8(N = p)/e}/FD 4],

and hence the “block size” or the effective number of observations in [34, (39)] now becomes

N, = ¥ = /b = | = p)[8(¥ = el /740 5]

which is exactly the prescribed value in (4). O

B Proofs of Theorems 5.1 and 5.2

To establish a perspective for the method of analysis used in establishing Theorems 5.1 and 5.2, we

recall a technique used by Barron [8]. Let {X;,Y;}52 _ be a sequence of i.i.d. random variables.

1=—00
Define the regression function by f*(z) = E[Yo|Xo = z]. Given N observations {X;, Y;}I¥,, Barron
proposed a certain estimator, say fy, of f* based on an abstract sequence of parametric models,

and established upper bounds on the integrated mean-squared error E[r(fN, )] by analyzing

N

S (1Y = Sy (Y0P = Vi = f1XP) (34

=1



25

for each parameter v with dimension 1 < n < N, using the classical Craig-Bernstein inequality. In

[34], assuming that the process {X,;,Y;} is exponentially strongly mixing, we analyzed (34)

o)
1=—00

using the Craig-Bernstein inequality established there.

Proor oF THEOREM 5.1: Motivated by the above discussion, we can upper bound the integrated
mean-squared error F[r(r, n), m,)] by analyzing

N
W((p, (n0), V)= S ([X = fp oy Ximpic)]2 = [Xi = mp(Xipi ), (35)

i=p+1
for each parameter v with a fixed memory 1 < p < N and dimension 1 < n < ko(p, N). With this
insight, the theorem follows by proceeding essentially as in [34, Proof of Theorem 3.1], but by using

the (N, p)-Craig-Bernstein inequality in Lemma 7.1. O

Proor orF THEOREM 5.2: Here, we seek upper bounds on the integrated mean-squared error
E[r(my, ms)]. To motivate our method of proof, we first explain two approaches that do not

work. As a first try, motivated by (34) and (35), one may attempt to directly analyze

N
> (X = Sy (Koo = X = Mool X)) (36)

i=p+1
for each parameter v with memory 1 < p < k¢(N) and dimension 1 < n < ko(p, N). But, since
each term in the second sum in (36) depends on an infinite past, no meaningful Craig-Bernstein
inequalities appear possible for the empirical mean (36).

As a second try, one may attempt to analyze (35) for each parameter v with memory 1 <
p < ki(N) and dimension 1 < n < kqo(p, N) by using the (N, p)-Craig-Bernstein inequality in
Lemma 7.1. This would lead to the desired upper bounds on FE[r(7/y,ms )], if we select the

memory as

W (s ), ) AL ) & 21 1)} ’ (37)

p = arg min
{ -p N,

1<p<ky
where 8(p) and L®)((p), 6) are as in (28). Since W((p,(n,r)), N)in (37) depends on the predictor
function m, (see (35)), implementing (37) would require the knowledge of the sequence of predictors
{mp};jl:lfwhich is not available.

As a key technical insight, here, we analyze the empirical process

N
> ([Xi — fiony(X(impizn))]* = [ X5 — mkl(X(i—kl,i—l))]z) (38)

1=k1+1
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for each parameter v with memory 1 < p < ky and dimension 1 < n < ko(p, N), using the (N, k1)-
Craig-Bernstein inequality, and consequently obtain upper bounds on E[r(ry, my, )]. Note that the
second sum in (38) has a finite memory k; and does not depend on p. Next, by simple probabilistic

manipulations, we observe that (see Lemma 7.6)
E[T(vamOO)] = E[T(vamlﬂ)] + T(mkmmoo)' (39)

Equation (39) combined with the upper bounds on E[r(7y, my, )] leads to the desired upper bounds
on E[r(my,ms)]. In other words, instead of estimating m.,, we estimate my, for a growing
memory ki (as N | oo). Then, by virtue of the L?-martingale convergence theorem, we are
automatically doing a good job in estimating m...

To make the lengths of various equations manageable, throughout this proof, we write n =
JA=8/3), " = (14 1), 0 = (1= ), 7= /o, and & = (1 + de~a0).

Let k1 be a natural number such that &4 < N. For each fixed 1 < p < kq, for each fixed

—00 < i < 00, and for each fixed 8 € A, r,(p)), write

Vipioy = [Xi (X (ipim))? = [Xs = (X iogy o)) (40)
N

f‘(f(pﬁ)’mkl) Z (p,i,0) (41)
i=k1+

We now proceed with a series of lemmas.

LEMMA 7.2 Let p and ki be natural numbers such that p < ky < N. Suppose that Assumptions 5.1,
5.2, 2.1, and 2.2 hold. Then, for all 0 < & < mMiny<p<p,(p) P(pn)(l), for all 0 € O ), Jor all

A > 20/3, for all § > 0, and for all Ny, > 2,

LP)(6,8) 4+ 2In(p+ 1) +1n 1/5} < GEe-TPN05) =2 (1),

pika2 (p

Ny,

1

P {nlr(f(pﬁ)v mkl) > f(f(p,@)v mkl) + A
Proor: For —o0 <1 < o0, write
Uiy = —Vipio) T ElVipio) (42)

where V(,,; 5 is as in (40), and observe that {U,; 4)}; are identically distributed. By invoking

Assumptions 5.1 and 2.2, and by proceeding as in [8], we have that E[V(,06] = r(f(.6), 7k )
E[U(pp’g)] =0, E|U(p7079)|2 < 87‘(f(p79),mk1), and |U(p7079)| < 8. Also, it follows from (42) and (41)

that
1 N
Yo 2 Vein == e me) + 10 me ). (43)
1=k1+1
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Since Assumption 2.1 holds and since {U(p,iﬁ)}?i—oo are identically distributed, the lemma follows
by applying the (N, ky)-Craig-Bernstein inequality in Lemma 7.1 to (43) (with dq = 8, 3¢ = 1/A,
and 7 = L(p)(O, ) +2In(p+1)+1In 1/5) just as the (N,0)-Craig-Bernstein inequality was applied

in [34, Lemma 3.1] to (29) there. O

LEMMA 7.3 Let k1 be a natural number such that ky < N. Suppose that Assumptions 5.1 and 5.2
hold for each 1 < p < ky, and that Assumptions 2.1 and 2.2 hold. Then, for all X > 20/3, for all

6 >0, for all Ngy > 2, and for all 0 < 6 < ming<p<r, {Miny<p<hy (p) T(pn) (1)},

L@ (0(5,8),8)+ 2n(p + 1)+ 1n1/3
Ny,

P {n’r(ﬁw,mkl) > Py, my, ) + A + 125} <ab. (44

1

Proor: Observe that my = f(;; 65)) and that my, n) = f(p i) Thus, to establish (44), one can
first establish

L®)(@(p,6),8)+2In(p+ 1) +1n1/é

N 1126 % < @be2n(p+1)

P {n’r(m(pw), My ) > f(m(pw), M, ) + A
1 (15)
for each fixed 1 < p < ky. Since the sets {{p = p}};jl:l are disjoint, we can then pass from (45) to
(44) using an union bound argument. But, we can establish (45) by invoking Lemma 7.2 and by
proceeding essentially as in [34, Lemma 3.2]. We omit the details. O

Let 0*(p) be the element of the set ©, 1, (,)), which attains the p-index of resolvability, R, ny(m, k1),

n (26); formally, we write

. JAQIUN)
6*(p) = arg min {r(f(pﬁ), my) + /\#} . (46)
0€O(p ks (p)) kx

LEMMA 7.4 Suppose all hypotheses of Lemma 7.3 hold. Then, for each 1 < p < ki, we have

P {n’r(mN,mkl) > H(f(p,04(p)) k1) + AL(p)(e*(p)’é) +]2Vin(p t1)+In1/s + 125} < ad.
Proor: Recall the definition of # in (41) and (40).
3, mpy) + AL O@) 6J)v:1 2n(p+ 1)
= f‘(f(@g(];)),mkl) + /\L(ﬁ)(é(ﬁ)’éj)\f: 2In(p+1)
<§> F sy i) + /\L(p)(é(p),éj)vz— 2In(p + 1)
2) (o021 k1) + W), (2: 2+ D) (47)

where (a) follows from (28); and (b) follows from (24). The lemma now follows from Lemma 7.3

and (47). O
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LEMMA 7.5 Let p and ki be natural numbers such that p < ky < N. Suppose that Assumptions 5.1,
2.1, and 2.2 hold. Then, for all X\ > 20/3, for all 6 >0, and for all Ny, > 2,

. In1/é =
P {T(fw*(p))vmkl) > 0" (fp o)) Mk ) + A / } < aé.

ProOF: Let V{, ; gx(p)) be obtained from (40) by substituting 6 = 6*(p). Fori = k1 +1,k1+2,..., N,
write Ui po+p)) = Vipior)) = FlVip,i6+pyl- The lemma follows by applying the (N, k;)-Craig-
Bernstein inequality in Lemma 7.1 to the sum

N

Y Ulpo)) = Sy M) = 7(fp,6%(p))» 101
Lick 41

1
N -k

with d; = 8, 3¢ = 1/A, and 7 = In 1/8 and by simplifying as in [34, Lemma 3.1]. O
LEMMA 7.6 Let 0 < p/ < p" < p" < oo and let g € L*(Py ), then

(g, M) + v (mpns mpm) = (g, mpm).
Proor:

r(g,mypr) + (M, mym)
= Elg(X 1) = mpn(X1pm) 4 Elmpn(X 1 ) = mpm (X g pm )]
= E[Xo— g(X(p)]* = E[Xo — mpn (X1 pm)]* + E[Xo — mpn (X1 pm)]* = E[Xo — mym (X pm)]?
= Blg(X1p0) — mpm( X pm)]?

= T(g,mp///). O

LEMMA 7.7 Suppose all hypotheses of Theorem 5.2 hold. Then, for each 1 < p < ky, we have

21n(p—|—1)) 126 4aA

N, '

Elr(imn, mg, )] <7 (R(p,N)(mpv k1) + r(my, mg, ) + A 7 0N, :

1

Proor: Combining Lemma 7.5 and Lemma 7.4, we have

L®)(6*(p), )+ 21n(p + 1) L2 1/6
Ny, Ny

P {n’r(ﬁw,mkl) > 0" (fip,05(p))s ks ) + A + 125} < 2a8.

1

(48)
Applying Lemma 7.6 with g = f(, 6+(p))» P = p" = p, and p" = ky, we have

T(fp.00(0))s k1) = T(f(p,6%(p))> Mp) + T(Mp, Mgy ). (49)
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Now, ignoring the term —nA (L(p)(H*(p), 6)+21In(p + 1)) /(N ), we from (48), (49), (46), and (26)
that

21 1 Inl/é -
2in(p+ 1) o0 oy 0t/ }<2d6.

P {n'r(ﬁwa me,) > 0" R Ny, k) + 0 (mp, me, ) 4+ 7" A Ne N

By writing W = n'r(rhn, mg, ) — 0" Rip ny(mp, k1) = 0"'r(mp, my, ) = n"A(21In(p+ 1)) /Ng, — 126, and
for t > 0 setting & = exp(— Ny, t/(2))), we have that

P{WZt}<2deXp{—]\;§t}. (50)

It is easy to see that [W| < oo, and hence F|W| < co. The lemma now follows from (50) and [34,
Lemma A.6]. O

The following upper bounds complete the proof of Theorem 5.2.

E[r(imn, moo)]

W B (o, mi )] + (i mo)

b) 2In(p + 1 126 4aA

< 9 (R(p,N)(mpv kl) + T(mpv mk1) + A E\fk )) + 7 7' Ny, + T(mkl’moo)
1 1

© . _2ln(p+1) 126 4aA

< RGNy, Fy) (e, meo) + ”A% o N
1 1

where (a) follows by applying Lemma 7.6 (with ¢ = 7y, p’ = p, p”" = ki1, and p"” = o) on a
realization-by-realization basis; (b) follows from Lemma 7.7 for each 1 < p < kq; and (c) follows

by applying Lemma 7.6 (with ¢ = m,, p’ = p, p” = k1, and p" = 00) and since 7 > 1. O

C Proofs of Theorems 3.1 and 3.2

First, in Lemma 7.8 below, we establish an upper bound on a certain index of resolvability. We will
then establish Theorem 3.1 (respectively, Theorem 3.2) by combining Lemma 7.8 and Theorem 5.1
(respectively, Corollary 5.1).

LEMMA 7.8 (a bound on index of resolvability) Suppose that Assumptions 2.2 and 3.3 hold.
Let k3 be a natural number such that k3 > q. Then, for all ky(q) > [\/N,|, for all § = (Ny, )P4,

where Dy > 0, and for all Ny, > 2, we have

lnNkS)l/2

Rialma ks) = 0 ( 7

where R, ny(my, ks) is obtained from (26) and Ng, is obtained from (4).
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Proor: The proof follows by proceeding as in [34, Lemma 2.2]. We omit the details. O

Proor or THEOREM 3.1: Theorem 3.1 follows by combining Theorem 5.1 (for p = ¢) and

Lemma 7.8 (for k3 = ¢) in the manner of Theorem 3.2; we omit the details. O

Proor or THEOREM 3.2: It follows from our hypotheses that Assumptions 2.1, 2.2, 3.2 hold,
and from Example 5.1 that Assumptions 5.1 and 5.2 hold for all 1 < p < k;. Consequently, all
hypotheses of Corollary 5.1 hold, and we have for all 0 < 6(N) < (4D1Cy), for all A > 20/3, for
g < kq, and for all Ng, > 2,

Efr(mn,mg)] = O(Ryny(mg, k1)) + O(8(N)) + O(N )
In Ny, \ '/ 1
© ( N, ) 0 ((Nkl)D4)

b O(lnN) AT
Yoo (52 :

—_
o
Na

[T

—_
Nl

where (a) follows by applying Lemma 7.8 with k3 = ky, ka(q) > [/Ng, |, and §(N) = (Ng, )P4,
where Dy > 0; and (b) follows if we let Dy > 1/2, and from (4) by simple algebraic manipulations

since ky = o(N). O

D Proofs of Theorems 4.1, 4.2, and 4.3

First, in Lemma 7.9 below, we establish an upper bound on a certain index of resolvability. We will
then establish Theorem 4.1 (respectively, Theorem 4.2) by combining Lemma 7.9 and Theorem 5.1
(respectively, Corollary 5.1).

LEMMA 7.9 (a bound on the index of resolvability) Suppose that Assumptions 2.2, 4.1, 4.2
hold. Let ks be a natural number such that ks > q. Then, for all ky(q) > [(Np, )], 6 = (N, )P4,

where Dy > 0, and for all Ny, > 2, we have

b

hl ng ) 25/(25+q)

Bia (i, k) = 0 ( Vi,

where R, ny(my, k3) is obtained from (26) and Ny, is obtained from (4).

PROOF:

—

a

Bia.ma, ks) = 1<£r£lg(q) {ve%l;ln) [T(f(q’(”’”))’mq)] +A

Nabg

L(q,n)(w(_;n)((s)) +2In(n+1)
N

3
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O K, AL@,n)(w(;}n)(é)) +2ln(n + 1)
T 1<n<ka(q) n2s ng,
(2) ) K4 Y nd | Kont/? N /\21n(n +1)
min n

T oaegiNi) ) | 0P N (m L (9)) N,
(d) K4 nd 2In(n + 1)
< i A——1In Kon?/?(2n — 1)72( Ny, )P4 /\7}
S {n25 AR Ko (2n = 1)¥5(Np, )74 + Vi,
(c) < q !
< min {]‘215 +A n In I(S(ng )I\4 1+ /\M}

1<n< (N, )1 /9] L Ni, N,
(®) K a
< min { L4 Ks——In I(6Nk3}

1<n[(Ngy )1 /0] L n=e N,
() Ky nd
< i “l i K— N
= lsnsﬁl}\};g)l/q-| { n25 —I_ X7Nk3 n kS}

26
(;) (K1 +2K7) (11}27;3 ) 2ot ,
where (a) follows from (26), (21), and (23), where S(, .,y is obtained from (14), f(; (n,.) is obtained
from (13), L, ) is obtained from (18), and w(_;n) is obtained from (20); (b) It follows from
Assumption 4.2 that there exists a finite uniform bound M, > 0 on the probability density of the

marginal distribution Fy; ;). Hence,

min [r(f(q7(n7l,)), mq)] =  min l/[—l l]q[f(q,(n,u))(x) - mq(yc)]2 dP(Lq)(ac)]

VES(g,n) vES(g,n)
< i M — 24
- llerg(l(?n) [ q/[—1,1]q[f(q’(n’y))($) mq(x)] w]
<MY eyt (51)
je{1<i<n}ccIN?

where
b = [ gy P
and the polynomial ¢, j) is obtained from (11). Now, obtaining upper bounds on the tail term in
(51)is a standard exercise in multivariate approximation theory. Specifically, under Assumption 4.1,
it can be shown that
K1

Z (b(q,.i))2 < n2s’

je{1<i<n}ccIN?

see, for example, Canuto and Quarteroni [16] or Sheu [46, Theorem 4.2]. Finally, set K1 = M,K7;
(c) follows from (18) by setting Ky = 20+2/2 and also since ky(q) > [(Ni,)9]; (d) follows

2
by setting & = (Ny,)~P* for some Dy > 0; (e) since n < [(Ny,)'/9], follows by setting K5 =
Ky 2312 and K4 = (D4 + 1); (f) follows by setting K5 = max{K4\,2A} and by setting K¢ =
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maX{K;/K‘*,Q}; (g) follows by setting K7 = 2Ks(max{ln Ks,1}); (h) follows by setting n =
[(ng/(ln Nks))l/(%-"q)w, which takes values in the set {1,2,---, [(Ng,)/9]} for Ny, > 2. O

Proor or THEOREM 4.1: Theorem 4.1 follows by combining Theorem 5.1 (for p = ¢) and
Lemma 7.9 (for ks = ¢) in the manner of Theorem 4.2; we omit the details. O

Proor or THEOREM 4.2: It follows from our hypotheses that Assumptions 2.1, 2.2, 3.2 hold,
and from Example 5.1 that Assumptions 5.1 and 5.2 hold for all 1 < p < k;. Consequently, all
hypotheses of Corollary 5.1 hold, and we have for all 0 < §(N) < V3, for all A > 20/3, for ¢ < ky,
and for all Ny, > 2,

Efr(mn,mg)] = O(Rgny(mg, k1)) + O(8(N)) + O(N 1)
In Ny, rete 1
© ( N, ) o ((Nkl)D4)

v, (mN)rzf—iqﬁ%
- N

—_
o
Na

—_
Nl

where (a) follows by applying Lemma 7.9 with ks = ky, ka(q) > [(Ng,)"/], and §(N) = (Ng, )~ P,
where Dy > 0; and (b) follows if we let Dy > 1, and from (4) by simple algebraic manipulations

since ky = o(N). O

PrOOF OF THEOREM 4.3: Choose a small £ > 0. We know by the L? martingale convergence
theorem that r(m,, m.,) monotonically decreases to 0 as p — co. Hence, there exists an integer p

such that
T(mﬁv mOO) < 5/(2ﬁ)7 (52)

where constant 7 is as in the hypothesis of Theorem 5.2.

For j € IN?, define
b = /[—1,1]p mp(2)P(p,) (%) d, (53)
where the polynomial ¢ ;)(2) is obtained from (11). Write
Vp = (b(]?,l)v Tty b(ﬁ,n))v (54)

where 1 = (1,1,---,1) € IN” and n = (n,n,---,n) € IN’. It follows from Parseval’s identity that

2 (b)) = /[_1 1]ﬁ(mﬁ(w))z dv <27, (55)

jeIN?
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where the last inequality follows since the range of mj; is [—1,1]. Since the polynomial system
{c,o(@j)}jemp is complete and orthonormal for the space of measurable, square-integrable (with

respect to the Lebesgue measure) functions on [—1,1]P, there exists a dimension 7 such that

/[ " LZ bis,5)%(,3)(%) = mp(w)] de < £/(20My), (56)
| &

where n = (7,7, --,n) € IN” and M; denotes the uniform bound, which is finite by Assumption 4.3,

on the probability density of the marginal distribution Py 5. Since clip is continuous, we have from

(13) that

/[—1,1]p[f(p’(”v”n))($) - mﬁ(ﬂv)]Q dz < /

[—1,1]

We have from Assumption 4.3, (56), and (57) that

r(f > mp) < Mp /[_1 e (2) = mp(@)]” de < £/(2) (58)

The following sequence of upper bounds essentially completes the proof.

Er(my, meso)]
(a) ~
< RNy (mp, k1) + qr(mg, me) + O(6(N)) + O(1/ Ny, )
(b _
< RNy (mp, k1) + /2 + O(1/Ny,)
Lism(@ ™t (6(N))) + 2In(n + 1)
(i) 3 3 _ _ (pvn) (p,n)
2 5, i ., [ o]+ i +EJ2+001/)
@ Ly (@ (6(N)) + 21n(n + 1)
< 7, min Sy mp)] + 1A Nr +&/2+ O(1/Ny,)
(&) B L(fﬁ)(w_}ﬁ (6(N)))+2In(rn+1)
< i (fp(rm)) M) + TA— () N, +&/2+ O(1/Ny,)
(f) 7P In [2(75“)/276?5/2(2% + 1)73/2(Nk1)D4] +2In(n+1)
< £49A v + O(1/Ny,)
(8) In Nk
< oM
< £+0 ( Vi, ) (59)

where (a) follows by invoking Theorem 5.2 for all 0 < 6(N) < +/3, for all A > 20/3, for all ky(p, N),
for all Ny, > 2, and for all large N such that k1(N) > p; (b) follows from (52) and by setting

6(N) = (Ng,)~P+, where Dy > 1; (c) follows from (26), (21), and (23), where S(pm) is obtained

]5777/

from (14), f(5,(n,vn)) is obtained from (13), L(; ) is obtained from (18), and w(_ﬁlﬁ) is obtained from
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(20); (d) holds for all large N such that k(N ) > p and ka(p, N) > n; (e) follows since we have
from (54), (55), and (14) that v; € S(;5); (f) follows from (58) and from (18) and (20); and (g)
follows by simple algebraic manipulations.

Since we may choose £ as small as desired, and since Ni, — oo (since ky = o(N)), the theorem

follows from (59). O
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