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1I IntroductionStatistical prediction of random processes has numerous practical applications such as stock priceprediction [54], �nancial asset pricing [26], physical time series modeling [40, 54], predictive speechcoding [60], and signal processing [58]. Here, we consider the problem of one-step ahead predictionof a real-valued, bounded, stationary random process fXig1i=�1. Probabilistically, the conditionalmean of X0 given the entire in�nite past X(�1;�1) � (� � � ; X�2; X�1), namely E[X0jX(�1;�1)], isthe best mean-square predictor of X0 (Masani and Wiener [31]). Geometrically, the conditionalmean E[X0jX(�1;�1)] is the L2 (nonlinear) projection of X0 onto the subspace generated by thein�nite past X(�1;�1). For 1 � p � 1, write a predictor function asmp(x) � E[X0jX(�p;�1) = x]; x 2 IRp; (1)whereX(�p;�1) � (X�p; X�p+1; � � � ; X�1). In this paper, given a sequence of observationsX1 X2 � � � XNdrawn form the process fXig1i=�1, we are interested in estimating the in�nite memory predictorfunction m1.We say that the predictor function m1 has a �nite memory, if for some integer q, 1 � q <1,m1(X(�1;�1)) = mq(X(�q;�1)) almost surely: (2)The condition (2) is satis�ed, for example, by Markov processes of order q, but is mathematicallyweaker than the Markov property since only the �rst order conditional moments are involved in(2). Under (2), the problem of estimating m1 reduces to that of estimating the predictor functionmq.We would like to estimate the predictor function m1 using an estimator, say m̂N , that issimultaneously \memory-universal" and \consistent" as described below.1. Suppose that the predictor function m1 has a �nite memory q, and that the estimator m̂Ndoes not know q. We say that m̂N is memory-universal, if (a) it is a consistent estimator ofm1(= mq); and (b) it delivers the same rate of convergence{in the integrated mean-squarederror sense{as that delivered by an estimator, say m̂(q;N), that knows q.2. Suppose that the predictor function m1 does not have a �nite memory. We say that the(same) estimator m̂N is consistent, if it converges to m1 in the sense of integrated mean-squared error.



2Our notion of memory-universality is inspired by a similar notion in the theory of universal cod-ing, see, for example, Ryabko [43, 44]. Roughly speaking, memory-universal estimators implicitly\discover" the true unknown memory q. As an important aside, we point out that our notion ofmemory-universality is distinct from the notion of \universal consistency" traditionally consideredin the nonparametric estimation literature where it means convergence under the weakest possibleregularity constraints on the underlying process, see, for example, Algoet [2, 3], Morvai, Yakowitz,and Gy�or� [36], Devroye, Gy�or�, and Lugosi [20], and Stone [48]. In this paper, we assume thatthe underlying random process is bounded and exponentially strongly mixing, hence our estimatorsare not universally consistent in the traditional sense.By the L2 martingale convergence theorem [22, p. 217], the predictor function m1 is a mean-square limit of the sequence of predictor functions fmpgp�1. Hence, we propose the followingtwo-step scheme for estimating m1 with the hope of attaining both memory-universality andconsistency.1. For each �xed memory p � 1, formulate an estimator m̂(p;N) of mp by minimizing a certaincomplexity regularized least-squares loss.2. Given the sequence fm̂(p;N)gp�1, select a memory ~p � ~pN by minimizing a certain complexityregularized least-squares loss, and use m̂N � m̂(~p;N) as the estimator of m1.Let's consider the �rst step for a �xed memory p. In general, the predictor function mp is nota member of any �nite-dimensional parametric family of functions, hence we estimate mp using asequence of parametric families of functions such as neural networks and Legendre polynomials.Statistical risk (measured by a certain integrated mean-squared error) in estimating mp using aparametric model has two additive components: approximation error and estimation error. Gen-erally speaking, a model with a larger dimension has a smaller approximation error but a largerestimation error, while a model with a smaller dimension has a smaller estimation error but a largerapproximation error. Consequently, to minimize the statistical risk in estimating mp from a list ofparametric models, a trade-o� between the approximation error and the estimation error must befound. The trade-o� can be achieved by judiciously selecting the dimension of the model used toestimatemp. Assuming that the underlying process is exponentially strongly mixing, a data-drivenscheme{which minimizes a certain complexity regularized least-squares loss{for selecting the modeldimension was developed, in a slightly di�erent context, in our previous work [34], which builton the results of Barron [8, 10], McCa�rey and Gallant [32], and Vapnik [51] for independent and



3identically distributed (i.i.d.) observations and the results of White [55] and White and Wooldridge[57] for strongly mixing observations. For other related work, in an i.i.d. setting, see Barron, Birg�e,and Massart [12], Barron and Cover [13], Farago and Lugosi [23], Lugosi and Nobel [28], Lugosiand Zeger [29, 30], and Yang and Barron [61]. For a general review of the methodology employedto estimate a function from a sequence of parametric families of functions, see Vapnik [52].Using the results of the �rst step as a building block, let's now consider the second step which isthe central concern of this paper. The statistical risk in estimating the predictor function m1 usingthe estimator m̂(p;N) has two additive components: the approximation error between m1 and mpand the statistical risk in estimating mp using m̂(p;N). It follows from L2 martingale convergencetheorem that the approximation error between m1 and mp is a decreasing function in the memoryp. On the other hand, since mp is a multivariate function from IRp to IR, the statistical risk inestimating mp is, generally speaking, an increasing function in the memory p. A trade-o� betweenthe approximation error between m1 and mp and the statistical risk in estimating mp can beachieved by judiciously selecting the memory p. Two conceptually distinct approaches for memoryselection appear plausible: (i) we may select the memory, say pN , to be a deterministic, increasingfunction of the number of observations N , and use m̂(pN ;N) as our estimator of m1; alternatively(ii) we may select the memory, say ~pN , in a data-driven fashion, and use m̂N = m̂(~pN ;N) asour estimator of m1. In this paper, we pursue a data-driven approach to memory selection,which, although computationally more expensive, is statistically more desirable than deterministicapproaches as explained below. Suppose that the predictor functionm1 has a �nite{but unknown{memory q, then any deterministic, increasing memory pN will asymptotically \over-estimate" thetrue memory q, and hence, in general, the corresponding estimator m̂(pN ;N) of mq will not deliver arate of convergence for the statistical risk comparable to that delivered by m̂(q;N). In other words,although m̂(pN ;N) may be consistent, it will not be memory-universal.In this paper, we select the memory ~pN , in a data-driven fashion, by minimizing a certaincomplexity regularized least-squares loss. As the main contribution of this paper, assuming thatthe underlying random process is bounded and exponentially strongly mixing, we establish thatthe estimator m̂N = m̂(~pN ;N) is memory-universal if the predictor function m1 has a �nite memory(Theorems 3.2 and 4.2, and Corollary 5.1), and is consistent even if the predictor function m1 doesnot have a �nite memory (Theorems 4.3 and 5.2, and Remark 6.3). These results are distinct fromthe case when the underlying memory is known, and require novel formulation and analysis whichhave no counterpart in [34].



4Previously, complexity regularization has been used, in an i.i.d. setting, to construct smoothness-universal or norm-universal estimators of a regression or density function (Barron [10, 11], Yang andBarron [61], and Barron, Birg�e, and Massart [12]). In this paper, we use complexity regularizationto construct memory-universal and consistent estimators of the (possibly) in�nite memory predictorfunction.For a further discussion of the relevant literature, see Remark 6.1.This paper is organized as follows. In Section II, we present some notation and our basicassumptions. In Section III, we construct an estimator m̂N , for m1, based on neural networks.Assuming that the predictor function m1 has a �nite memory, we establish memory-universalityof m̂N (compare Theorems 3.1 and 3.2). In Section IV, we construct an estimator m̂N , for m1,based on Legendre polynomials. Assuming that the predictor function m1 has a �nite memory, weestablish memory-universality of m̂N (compare Theorems 4.1 and 4.2). Furthermore, even if thepredictor functionm1 does not have a �nite memory, we establish consistency of m̂N (Theorem 4.3).In Section V, which is the conceptual and technical backbone of this paper, we present a scheme forconstructing the estimator m̂N using a sequence of abstract parametric families of functions. Theestimators considered in Sections III and IV are obtained by simply adapting the estimation schemepresented in Section V to neural networks and Legendre polynomials, respectively. Furthermore,in Section V, we establish abstract upper bounds, in terms of a certain deterministic index ofresolvability, on the statistical risk in estimating m1 using m̂N (Theorem 5.2). Theorem 5.2 playsa key role in establishing the memory-universality and consistency results stated in Sections IIIand IV. A discussion of our results is presented in Section VI, and the proofs of the main resultsare collected in Section VII.II PreliminariesLet fXig1i=�1 be a stationary random process on a probability space (
;F ; P ). For �1 < i <1,let F(i;1) and F(�1;i) denote the �-algebras of events generated by fXj; j � ig and fXj ; j � ig,respectively. The process fXig1i=�1 is called strongly mixing [42], ifsupA2F(�1;0) ;B2F(j;1) jP [AB] � P [A]P [B]j = �(j)! 0 as j !1: (3)�(j) is called the strong mixing coe�cient.



5Assumption 2.1 (exponentially strongly mixing property) Assume that the strong mixingcoe�cient satis�es �(j) � �� exp(�cj�); j � 1;for some �� > 0, � > 0, and c > 0, where the constants � and c are assumed to be known.Assumption 2.1 is satis�ed{with � = 1{by important classes of processes such as certain linear(Withers [59]) and certain aperiodic, Harris-recurrent Markov processes (Athreya and Pantula [4,Theorem A] and Davydov [19, Theorem 1]). The former class includes certain Gaussian and non-Gaussian ARMA processes, while the latter class includes certain bilinear, nonlinear ARX, andARCH processes (Doukhan [21] and Auestad and Tj�stheim [5]).For �1 < i � j <1, let X(i;j) = (Xi; Xi+1; � � � ; Xj) and X(�1;j) = (� � � ; Xj�1; Xj). De�ne thee�ective number of observations contained in the sequence of observations fX(i�p;i)gNi=p+1, where0 � p < N , drawn from a process satisfying Assumption 2.1, byNp = �(N � p)lf8(N � p)=cg1=(�+1)+ pm�1� ; (4)where buc (due) denotes the greatest (least) integer less (greater) than or equal to u. The conceptof e�ective number of observations stems from the Craig-Bernstein inequality for the observationsfX(i�p;i)gNi=p+1 (see Lemma 7.1); also, see [34].In the sequel, we will also need the following compactness assumption.Assumption 2.2 (compactness) Assume that X0 takes values in [�1; 1].We point out that Gaussian ARMA processes clearly do not satisfy the compactness conditionin Assumption 2.2. However, certain non-Gaussian ARMA, bilinear, nonlinear ARX, and ARCHprocesses could have compact support, and hence could satisfy Assumption 2.2.Let P(i;j) and P(�1;j) denote the marginal distributions1 of X(i;j) and X(�1;j), respectively.For 1 � p � 1, let L2(P(1;p)) denote the space of all Borel measurable functions g : [�1; 1]p ! IRthat are square-integrable with respect to P(1;p). For 1 � p1 � p2 � 1, let g1 2 L2(P(1;p1)) and letg2 2 L2(P(1;p2)); then, de�ne an integrated squared distance between the functions g1 and g2 asr(g2; g1) = r(g1; g2) = Z[�1;1]p2 [g1(x)� g2(x; y)]2dP(1;p2)(x; y); (5)where the dummy variables x and y take values in [�1; 1]p1 and [�1; 1](p2�p1), respectively.1Strictly speaking, we assume that the sample space 
 is the canonical sample space Q1�1[�1; 1]. Then, P(�1;j)is the restriction of the underlying probability measure P to the �-algebra of events F j�1.



6III Predictor Estimation using Neural NetworksA Neural NetworksWe now present a sequence of parametric families of functions based on neural networks using someresults of Barron [10]. We assume that � : IR! [0; 1] is a Lipschitz continuous sigmoidal functionsuch that its tails approach the tails of the unit step function at least polynomially fast.Assumption 3.1 ([10]) Assume that(a) �(u)! 1 as u!1 and �(u)! 0 as u! �1.(b) j�(u)j � 1 and j�(u) � �(v)j � D01ju � vj for all u; v 2 IR and for some D01 > 0. SetD1 = maxf1; D01g.(c) j�(u) � 1fu>0gj � D02=jujD3 for u 2 IR, u 6= 0, and for some D3 > 0 and D02 > 0. SetD2 = maxf1; D02g.Fix n � 1 and p � 1. We now proceed to de�ne a neural network with dimension (or \hiddenunits") n and memory (or \time delays" or \lags") p. Let(p; n) = n(p+ 2) + 1 (6)represent the number of real valued parameters parameterizing such a neural network. For 0 � i �n, let ci 2 IR; for 1 � i � n, let ai 2 IRp and let bi 2 IR. Let � = (a1; � � � ; an; b1; � � � ; bn; c0; � � � ; cn)represent a (p; n)-dimensional parameter vector. De�ne a neural network with dimension n andmemory p parameterized by � asf(p;(n;�))(x) = clip c0 + nXi=1 ci �(ai � x+ bi)! ; x 2 IRp; (7)where clip(t) = �1ft<�1g+t1f�1�t�1g+1f1<tg. The function \clip" is used in (7) with the hindsightthat the abstract estimation framework developed in Section V requires that the range of f(p;(n;�))be [�1; 1] (see Assumption 5.1). De�ne�n = 2(2D3+1)=D3 D1=D32 n(D3+1)=(2D3); (8)where D1, D2, and D3 are as in Assumption 3.1, and de�ne a compact subset of IR(p;n), namelyS(p;n) = f� : c0 2 [�1; 1]; nXi=1 jcij � C(p); max1�i�n jjaijj1 � �n; max1�i�n jbij � �ng; (9)where the constant C(p) is made concrete in the next sub-section.



7B Estimation Schemes and Memory-UniversalityAssumption 3.2 (�nite memory) For some integer q, 1 � q <1, assume thatm1(X(�1;�1)) = mq(X(�q;�1)) almost surely:Under Assumption 3.2, the problem of estimating the predictor function m1 reduces to that ofestimating the predictor function mq. We assume thatmq satis�es the following Fourier transform-type representation due to Barron [9].For w = (w1; : : : ; wq) and x = (x1; : : : ; xq) in IRq, let w � x =Pqi=1 wixi denote the usual innerproduct on IRq and let jjwjj1 =Pqi=1 jwij denote a norm on IRq.Assumption 3.3 (bounded spectral norm) Assume that there exists a complex valued function~mq on IRq such that for x 2 [�1; 1]q, we havemq(x)�mq(0) = ZIRq �eiw�x � 1� ~mq(w) dwand that RIRq jjwjj1j ~mq(w)j dw � C 0q <1 for some C 0q > 0. Set Cq = maxf1; C 0qg.For a detailed discussion of Assumption 3.3, we refer the interested reader to Barron [9]. Also,see Hornik et al. [25] and Yukich, Stinchcombe, and White [62].For the sake of brevity and simplicity, we assume that the constant Cq is known. If, in fact, Cqis unknown, it may be possible to modify our estimators using the ideas in Barron [10, (31)-(32)].Speci�cally, we can replace the index n in Section V by a multi-index (n; C), which is like insertingan additional minimization step (between steps 1 and 2) in Figure 1.Suppose that the memory q in Assumption 3.2 is known. In this case, by using the knowledgeof the memory q, we construct an estimator m̂(q;N) by invoking the estimation scheme presentedin Figure 1 with the following speci�c input values:� let k1 = q, p = q, and k2(q) � k2(q;N) � �pNq�;� let � > 20=3; for 1 � n � k2(q), let L(q;n) = [n(q + 2) + 1] ln�32�neD1Cq(Nq)D4�, whereD4 � 1=2, �n is as in (8), D1 is as in Assumption 3.1, and Cq is as in Assumption 3.3;� for 1 � n � k2(q), let S(q;n) be obtained from (9) by substituting p = q and C(q) = Cq;� for 1 � n � k2(q) and for � 2 S(q;n), let f(q;(n;�)) be obtained from (7).



8The input values presented above are selected, with hindsight, to establish Theorem 3.1.Throughout this section, we assume that the least-squares estimation step in Figure 1 deliversthe global minimum. From a strict mathematical perspective, �nding the global minimum of anonlinear least-squares regression problem is computationally hard, see, for example, Farago andLugosi [23] and Jones [27]. In practice, however, the backpropagation algorithms described in Backand Tsoi [7] and in Wan [53] started from a number of initial weights usually yield reasonablyacceptable results. Furthermore, various specialized hardware is now available to considerablyspeed up training of neural networks, see, for example, Means et. al. [33] and Sackinger and Graf[45].Theorem 3.1 (memory q is known) Suppose that Assumptions 2.1, 2.2, 3.1, and 3.3 hold.Then, for all Nq � 2, E[r(m̂(q;N); mq)] = O� lnNN �12 ��+1 ;where Nq is obtained from (4), � is as in Assumption 2.1, and r is as in (5).The proof uses abstract upper bounds presented in Section V (namely Theorem 5.1), and isbriey outlined in Sub-section VII.C.Now, suppose that the memory q in Assumption 3.2 is unknown. In this case, without theknowledge of the memory q, we construct an estimator m̂N by invoking the estimation schemepresented in Figure 2 with the following speci�c input values:� let k1 � k1(N) = o(N) be a function increasing to 1 as N ! 1, for example, k1 = logN ;for 1 � p � k1, let k2(p) � k2(p;N) � �pNk1�;� let � > 20=3; for 1 � p � k1 and for 1 � n � k2(p), let L(p;n) = [n(p+2)+1] ln�32�neD1Cq(Nk1)D4�,where D4 � 1=2, �n is as in (8), D1 is as in Assumption 3.1, and Cq is as in Assumption 3.3;� for 1 � p � k1 and for 1 � n � k2(p), let S(p;n) be obtained from (9) by substitutingC(p) = Cq; (10)� for 1 � p � k1, for 1 � n � k2(q), and for � 2 S(p;n), let f(p;(n;�)) be as in (7).The input values presented above are selected, with hindsight, to establish the following result.



9Inputs: Natural numbers p, where p < N , k1, where p � k1 < N , and k2(p);real numbers � and fL(p;n)gk2(p)n=1 ;sets fS(p;n)gk2(p)n=1 ;parametric functions fff(p;(n;�))g�2S(p;n)gk2(p)n=1 .Estimation Scheme:1. (least-squares estimation) For each dimension 1 � n � k2(p), compute�̂(p; n) = arg min�2S(p;n) ( 1N � k1 NXi=k1+1[Xi � f(p;(n;�))(X(i�p;i�1))]2) :2. (dimension selection criterion) Computen̂p = arg min1�n�k2(p)( 1N � k1 NXi=k1+1[Xi � f(p;(n;�̂(p;n)))(X(i�p;i�1))]2 + �L(p;n) + 2 ln(n+ 1)Nk1 ) :Outputs: Write �̂(p) = (n̂p; �̂(p; n̂p)), and de�ne the estimator parameterized by �̂(p) as m̂(p;N) = f(p;�̂(p)).Figure 1: Scheme for computing the estimator m̂(p;N).Inputs: Natural numbers k1, where k1 < N , and fk2(p)gk1p=1;real numbers � and ffL(p;n)gk2(p)n=1 gk1p=1;sets ffS(p;n)gk2(p)n=1 gk1p=1;parametric functions ffff(p;(n;�))g�2S(p;n)gk2(p)n=1 gk1p=1.Estimation Scheme:1. For each memory 1 � p � k1, compute the parameter �̂(p) = (n̂p; �̂(p; n̂p)) and the estimator m̂(p;N)by using the estimation scheme in Figure 1.2. (memory selection criterion) Compute ~p =arg min1�p�k1 ( 1N � k1 NXi=k1+1[Xi � f(p;�̂(p))(X(i�p;i�1))]2 + �L(p;n̂p) + 2 ln(n̂p + 1) + 2 ln(p+ 1)Nk1 ) :Output: Write the estimator parameterized by the memory ~p as m̂N = m̂(~p;N).Figure 2: Scheme for computing the estimator m̂N .



10Theorem 3.2 (memory q is unknown) Suppose that Assumptions 2.1, and 2.2, 3.1, 3.2, and3.3 hold. Then, for k1 � q and for Nk1 � 2,E[r(m̂N ; mq)] = O� lnNN �12 ��+1 ;where Nk1 is obtained from (4), � is as in Assumption 2.1, and r is as in (5).The proof uses abstract upper bounds presented in Section V (namely Corollary 5.1), and canbe found in Sub-section VII.C.Remark 3.1 (memory-universality) Comparing Theorems 3.1 and 3.2, we �nd that the inte-grated mean-squared error in estimating mq{when the memory q is unknown{has the same rateof convergence, in terms of upper bounds, as the corresponding error in estimating mq{when q isknown.The dependence of our estimators on the parameter � is discussed in Remark 6.7.By combining results of Barron [10, p. 129] and Barron, Birg�e, and Massart [12, Proposition 6]with the generalized approximation results of Hornik et al. [25] and Yukich, Stinchcombe, andWhite [62], it is possible to relax Assumption 3.1 and the compactness restriction on the set ofparameters S(p;n). We do not pursue these extensions here, since our principal focus is on memory-universal prediction of stationary random processes and not on the richness of the class of parametricfunctions employed to achieve this goal.As an important aside, observe that in Theorems 3.1 and 3.2 the exponents ofN in the respectiverates of convergence do not depend on the memory q, that is, neural networks mitigate the curseof dimensionality in estimating the predictor function mq which satis�es Assumption 3.3. This factwas �rst observed by Barron [10] in the context of regression estimation for i.i.d. observations.IV Predictor Estimation using Legendre PolynomialsTo prevent a notational overload, in this section, we recycle the notations used in Section III.A Legendre PolynomialsLet f'(i)gi�1 denote the normalized Legendre polynomials [49] which are orthogonal with respect tothe Lebesgue measure on [�1; 1], where '(i) is a polynomial of degree (i�1). Let IN = f1; 2; 3; � � �g.



11For p � 1, we now de�ne a tensor product Legendre polynomial on [�1; 1]p, indexed by a multi-integer j = (j1; j2; � � � ; jp) 2 INp, as'(p;j)(x) = '(j1)(x1) '(j2)(x2) � � � '(jp)(xp); (11)where x = (x1; x2; � � � ; xp) 2 IRp.Fix p � 1 and n � 1. Let (p; n) = np: (12)Let 1 = (1; 1; � � � ; 1) 2 INp and n = (n; n; � � � ; n) 2 INp. We adopt the convention that theinequalities between multi-integers are to be interpreted component-wise. For 1 � j � n, letaj 2 IR. Let � = (a1; � � � ; an) represent a (p; n)-dimensional parameter vector. De�ne a tensorproduct Legendre polynomial with dimension (or the largest coordinate-wise degree) (n � 1) andmemory (or time delays) p parameterized by � asf(p;(n;�))(x) = clip0@ nXj=1 aj'(p;j)(x)1A ; x 2 IRp; (13)where clip(t) = �1ft<�1g + t1f�1�t�1g + 1f1<tg and '(p; j)(x) is as in (11). We restrict attention toa compact subset of IR(p;n), namelyS(p;n) = 8<:� : nXj=1 a2j � 2p9=; : (14)B Estimation Schemes and Memory-UniversalityIn this sub-section, we suppose that Assumption 3.2 holds, that is, the predictor function m1 hasa �nite memory q. We assume that mq satis�es the following di�erentiability condition.Assumption 4.1 (di�erentiability) For some unknown smoothness order s � 1, assume thatall partial derivatives of total order s of the function mq exist, are measurable, and are square-integrable.In this section, we approximate the predictor functionmq using Legendre polynomials. We notethat various other families of approximants such as trigonometric series, splines, neural networks,or wavelets would su�ce as well.In the sequel, we need the following technical condition.Assumption 4.2 Assume that the marginal distribution of X(1;q), namely P(1;q), has a uniformlybounded probability density.



12Suppose that the memory q in Assumption 3.2 is known. In this case, by using the knowledgeof the memory q, we construct an estimator m̂(q;N) by invoking the estimation scheme presentedin Figure 1 (see Section III) with the following speci�c input values:� let k1 = q, p = q, and k2(q) � k2(q;N) � d(Nq)1=qe;� let � > 20=3; for 1 � n � k2(q), let L(q;n) = nq ln�2(q+4)=2pnq(2n� 1)q(Nq)D4�, whereD4 � 1;� for 1 � n � k2(q), let S(q;n) be obtained from (14);� for 1 � n � k2(q) and for � 2 S(q;n), let f(q;(n;�)) be obtained from (13).Note that the estimator m̂(q;N) makes no use of the smoothness order s. The input values presentedabove are selected, with hindsight, to establish the following result.Theorem 4.1 (memory q is known) Suppose that Assumptions 2.1, 2.2, 4.1, and 4.2 hold.Then, for all Nq � 2, E[r(m̂(q;N); mq)] = O� lnNN � 2s2s+q ��+1 ;where Nq is obtained from (4), � is as in Assumption 2.1, and r is as in (5).The proof uses abstract upper bounds presented in Section V (namely Theorem 5.1), and isbriey outlined in Sub-section VII.D.Now, suppose that the memory q in Assumption 3.2 is unknown. In this case, without theknowledge of the memory q, we construct an estimator m̂N by invoking the estimation schemepresented in Figure 2 (see Section III) with the following speci�c input values:� let k1 � k1(N) = o(N) be a function increasing to 1 as N ! 1, for example, k1 = logN ;for 1 � p � k1, let k2(p) � k2(p;N) � d(Nk1)1=pe;� let � > 20=3; for 1 � p � k1 and for 1 � n � k2(p), let L(p;n) = np ln �2(p+4)=2pnp(2n� 1)p(Nk1)D4�,where D4 � 1;� for 1 � p � k1 and for 1 � n � k2(p), S(p;n) be as in (14);� for 1 � p � k1, for 1 � n � k2(p), and for � 2 S(p;n), let f(p;(n;�)) be as in (13).Note that the estimator m̂N makes no use of the smoothness order s. The input values presentedabove are selected, with hindsight, to establish the following result.



13Theorem 4.2 (memory q is unknown) Suppose that Assumptions 2.1, 2.2, 3.2, 4.1, and 4.2hold. Then, for k1 � q and for Nk1 � 2,E[r(m̂N; mq)] = O� lnNN � 2s2s+q ��+1 ;where Nk1 is obtained from (4), � is as in Assumption 2.1, and r is as in (5).The proof uses abstract upper bounds presented in Section V (namely Corollary 5.1), and canbe found in Sub-section VII.D.Observe that Remark 3.1, when properly translated, continues to hold in the current contextas well. The dependence of our estimators on the parameter � is discussed in Remark 6.7.By modifying our estimators using the ideas in Barron [11], it is possible to eliminate thelogarithmic factor in Theorems 4.1 and 4.2. However, for the sake of simplicity, and also since theresulting estimators are computationally more expensive, we do not pursue that direction here.C Consistent Estimation of m1In this sub-section, unlike the previous sub-section, we do not assume that the predictor functionm1 has a �nite memory. Nonetheless, we continue to estimate the predictor functionm1 using theestimator m̂N constructed in the previous sub-section. To establish consistency of m̂N , we requirethe following technical condition.Assumption 4.3 For each memory 1 � p < 1, assume that the marginal distribution of X(1;p),namely P(1;p), has a uniformly bounded probability density.Theorem 4.3 (consistency) Suppose that Assumptions 2.1, 2.2, and 4.3 hold. Then,limN!1E[r(m̂N ; m1)] = 0; (15)where r is as in (5).The proof uses abstract upper bounds presented in Section V (namely Theorem 5.2), and canbe found in Sub-section VII.D.To obtain a rate of convergence for E[r(m̂N ; m1)] in Theorem 4.3, we �rst need to obtain arate of convergence for the \approximation error" r(mp; m1) under Assumption 2.1. To the bestof our knowledge, no such results are currently known.



14Since the same estimator m̂N is considered in Theorems 4.2 and 4.3, we have that if the predictorfunction m1 has a �nite memory, then m̂N delivers memory-universality, and even if the predictorfunction does not have a �nite memory, m̂N delivers consistency. Also, observe that in Theorem 4.3no smoothness assumptions are imposed on the predictor function m1.V Abstract Estimation FrameworkIn this section, given a sequence of abstract parametric families of functions, we propose an estima-tor, say m̂N , for the predictor function m1, and upper bound the integrated mean-squared error ofthe estimator in terms of certain indices of resolvability. The bene�t of abstraction is that we areable to capture the statistics behind the proposed estimation scheme in the most general case, in aclean, economical fashion, without worrying about the cumbersome details of the speci�c cases ofinterest.Throughout this section, �x the number of observations N � 1.A Parameter Spaces and ComplexitiesThe development in this sub-section closely follows that in [34, Sub-section 3.A].Throughout this sub-section, �x a memory 1 � p < 1. For each integer n � 1, let (p; n)denote a model dimension (for example, see (6) and (12)), and let S(p;n) denote a compact subset ofIR(p;n). The set S(p;n) will serve as a collection of parameters associated with the model dimension(p; n) (for example, see (9) and (14)). By introducing a prior density on the set S(p;n) as in Barron[10, p. 129], it is possible to relax the compactness assumption.For every � 2 S(p;n), let f(p;(n;�)) denote a real-valued function on [�1; 1]p parameterized by(n; �) (for example, see (7) and (13)). The following condition is required to be able to invoke theCraig-Bernstein inequalities in Lemma 7.1.Assumption 5.1 For each integer n � 1 and for every � 2 S(p;n), assume that f(p;(n;�)) takesvalues in [�1; 1].Owing to the \clip" function in (7) and (13), Assumption 5.1 is satis�ed for both neural networksand Legendre polynomials.Let �(p;n) denote a metric on IR(p;n). For " 2 (0; 1], let T(p;n)(") denote an ("; �(p;n))-netof the set S(p;n); in other words, for every �1 2 S(p;n) there exists a �2 2 T(p;n)(") such that



15�(p;n)(�1; �2) � ". Assume that T(p;n)(") � S(p;n). Let L(p;n)(") be such thatln#(T(p;n)(")) � L(p;n)("); (16)where ln = loge and # denotes the cardinality operator.Example 5.1 (neural networks) Let notations be as in Section III. Let %(p;n) denote a metricon IR(p;n) de�ned as in Barron [10, (19)], but by replacing d there by p. It follows from [10,Lemma 2] by using (8) that for every 0 < " � 1 and for every C(p) � 1, there exists a ("; %(p;n))-netof S(p;n), namely T(p;n)("), such thatln#(T(p;n)(")) � [n(p+ 2) + 1] ln 4�ne"=2 � L(p;n)("): (17)Example 5.2 (Legendre polynomials) Let notations be as in Section IV. Let %(p;n) be simplythe l1 metric on IR(p;n). The hypersphere S(p;n) is contained in the hypercube [�2p=2�"; 2p=2+"]np ,which has volume [2(2p=2 + ")]np. Furthermore, the set [�2p=2 � "; 2p=2 + "]np can be covered by(small) hypercubes (with respect to the metric %(p;n)) with side length (2"=pnp). Since by assumption0 < " � 1, there exists a ("; %(p;n))-net of S(p;n), namely T(p;n)("), such thatln#(T(p;n)(")) � np ln 2(p+2)=2pnp"=2 � L(p;n)("): (18)Assumption 5.2 For every n � 1, there exists a strictly increasing function (in ") $(p;n)(�) :(0; 1] ! (0;1) such that for all " 2 (0; 1] and for all �1 2 S(p;n) and �2 2 T(p;n)(") with�(p;n)(�1; �2) � "; we have supx2[�1;1]p jf(p;(n;�1))(x)� f(p;(n;�2))(x)j � $(p;n)("):Assumption 5.2 implies that the function $(p;n) is invertible; let $�1(p;n) denote the inverse. Observethat the inverse $�1(p;n)(�) is de�ned for all 0 < � � $(p;n)(1) < 1 and takes values in the range(0; 1].Assumption 5.2 says that the class of parametric functions �(p; n) � ff(p;(n;�)) : � 2 S(p;n)g canbe covered in the supremum norm over [�1; 1]p by a �nite class of functions. In other words, welimit attention to classes of parametric functions where upper bounds on the sup-norm coveringnumbers of �(p; n) are available; also, see [8, 32, 34]. This class is su�cient to demonstrate our maincontribution on memory-universal prediction of stationary random processes. We note in passingthat more general classes of parametric functions have been considered, for instance, by Barron,Birg�e, and Massart [12], Lugosi and Nobel [28], and Lugosi and Zeger [29, 30] in the context offunction estimation in an i.i.d. setting.



16Example 5.1 (continued) It follows from [10, Lemma 1], by invoking Assumption 2.2 and Part(b) of Assumption 3.1, that Assumption 5.2 holds with $(p;n)(") = 4D1C(p)". For all 0 < � �$(p;n)(1) = 4D1C(p), the inverse of $(p;n) can be written as$�1(p;n)(�) = �=(4D1C(p)): (19)Example 5.2 (continued) Let � = (a1; � � � ; an) 2 IR(p;n) and let � 0 = (a0j; � � � ; a0n) 2 IR(p;n)be such that %(p;n)(�; � 0) � ". The following calculation shows that Assumption 5.2 holds with$(p;n)(") = (p2n� 1)p".supx2[�1;1]p jf(p;(n;�1))(x)� f(p;(n;�2))(x)j (a)� supx2[�1;1]p j nXj=1(aj � a0j)'j(x)j�  supx2[�1;1]p j'n(x)j! j nXj=1(aj � a0j)j� (p2n� 1)p%(p;n)(�; � 0)� (p2n� 1)p";where (a) follows from (13). For all 0 < � � $(p;n)(1) = (p2n� 1)p, the inverse of $(p;n) can bewritten as $�1(p;n)(�) = �=(p2n� 1)p: (20)Let k2(p) denote a natural number (for example, k2(p) � �pNp � for neural networks andk2(p) � d(Np)1=pe for Legendre polynomials). Let �(p;k2(p)) denote a collection of parameters ofdi�erent dimensions, with the maximum dimension less than or equal to k2(p), such that each ofthe parameters comes packaged with the index of its dimension; formally, we write�(p;k2(p)) = k2(p)[n=1 f(n; �) : � 2 S(p;n)g: (21)It follows from (21) that every � 2 �(p;k2(p)) must be of the form � = (n; �) for some 1 � n � k2(p)and for some � 2 S(p;n); then, de�ne f(p;�) = f(p;(n;�)); (22)and for every 0 < � � $(p;n)(1) de�ne the \description complexity" of the parameter � asL(p)(�; �) = 2 ln(n+ 1) + L(p;n)($�1(p;n)(�)); (23)where $(p;n) is as in Assumption 5.2 and L(p;n)($�1(p;n)(�)) is obtained from (16) by substituting" = $�1(p;n)(�).



17B An Abstract Scheme for Computing m̂(p;N)In this sub-section, as a building block for the estimation scheme presented in the next sub-section,we outline a scheme to construct the estimator m̂(p;N). The estimation scheme presented in thissub-section is conceptually the same as that presented in [34, (25)-(26)], but is di�erent in details.For any natural number p, where p < N , for any natural number k1, where p � k1 < N , forany natural number k2(p), for any real number �, where2 0 < � � min1�n�k2(p)$(p;n)(1), and forany real number �, write�̂(p) = arg min�2�(p;k2(p))8<: 1N � k1 NXi=k1+1[Xi � f(p;�)(X(i�p;i�1))]2 + �L(p)(�; �)Nk1 9=; ; (24)where �(p;k2(p)) is as in (21), f(p;�) is as in (22), L(p)(�; �) is as in (23), and Nk1 is obtained from(4). Now, de�ne the estimator parameterized by �̂(p) asm̂(p;N) = f(p;�̂(p)): (25)We may now interpret the estimation scheme presented in Figure 1 (see Section III) as a computa-tionally convenient version of (24) and (25), which are analytically more convenient. For the sakeof simplicity, in Figure 1, we write L(p;n) instead of the complete expression L(p;n)($�1(p;n)(�)) andwe implicitly set � = �(N) = (Nq)�D4 .De�ne the p-index of resolvability corresponding to the estimator m̂(p;N) asR(p;N)(mp; k1) = min�2�(p;k2(p))(r(f(p;�); mp) + �L(p)(�; �)Nk1 ) ; (26)where �(p;k2(p)) is as in (21), L(p)(�; �) is as in (23), Nk1 is obtained from (4), and r(f(p;�); mp) isobtained from (5) by substituting g1 = f(p;�) and g2 = mp.Remark 5.1 The index of resolvability was �rst introduced by Barron and Cover [13] in thecontext of density estimation for i.i.d. observations, and by Barron [8] in the context of regressionestimation for i.i.d. observations.Theorem 5.1 Let p be a natural number such that p < N . Set k1 = p. Suppose that Assump-tions 2.1 and 2.2 hold, and that Assumptions 5.1 and 5.2 hold. Then, for all natural numbers k2(p),for all real numbers 0 < � � min1�n�k2(p)$(p;n)(1), for all � > 20=3, and for all Np � 2,E hr(m̂(p;N); mp)i < ��R(p;N)(mp; p) + 12��0 + 4~���0Np ; (27)2If we let 0 < � � $(p;n)(1), then $�1(p;n)(�) is well de�ned. Thus, if we let 0 < � � min1�n�k2(p)$(p;n)(1), then$�1(p;n)(�) is well de�ned for each 1 � n � k2(p).



18where � = 4=(�� 8=3), �0 = (1� �), �� = (1 + �)=(1� �), and ~� = (1 + 4e�2 ��).The proof is briey outlined in Sub-section VII.B.C An Abstract Scheme for Computing m̂NFor any natural number k1, where k1 < N , for any natural numbers fk2(p)gk1p=1, for any real number�, where 0 < � � min1�p�k1fmin1�n�k2(p)$(p;n)(1)g, and for any real number �, write~p = arg min1�p�k1 8<: 1N � k1 NXi=k1+1[Xi � f(p;�̂(p))(X(i�p;i�1))]2 + �L(p)(�̂(p); �) + 2 ln(p+ 1)Nk1 9=; ; (28)where �̂(p) is as in (24) and L(p)(�̂(p); �) is obtained from (23) by substituting � = �̂(p). Roughlyspeaking, the adaptive memory ~p is an estimator of the memory of the underlying predictor functionm1. We now write the estimator m̂N asm̂N = m̂(~p;N) = f(~p;�̂(~p)): (29)We may now interpret the estimation scheme presented in Figure 2 (see Section III) as a computa-tionally convenient version of (28) and (29), which are analytically more convenient. For the sakeof simplicity, in Figure 2, we write L(p;n̂p) instead of the complete expression L(p;n̂p)($�1(p;n̂p)(�)) andwe implicitly set � = �(N) = (Nk1)�D4 .Theorem 5.2 Let k1 be a natural number such that k1 < N . Suppose that Assumptions 2.1 and2.2 hold, and that Assumptions 5.1 and 5.2 hold for each 1 � p � k1. Then, for all natural numbersfk2(p)gk1p=1, for all real numbers 0 < � � min1�p�k1fmin1�n�k2(p)$(p;n)(1)g, for all � > 20=3, forall Nk1 � 2, and for all 1 � p � k1,E [r(m̂N ; m1)] < ��R(p;N)(mp; k1) + ��r(mp; m1) + ���2 ln(p+ 1)Nk1 + 12��0 + 4~���0Nk1 ;where � = 4=(�� 8=3), �0 = (1� �), �� = (1 + �)=(1� �), ~� = (1 + 4e�2 ��), and R(p;N)(mp; k1) isas in (26).The proof can be found in Sub-section VII.B.Remark 5.2 Observe from the proofs of Theorems 5.1 and 5.2 that the bounds stated in thetheorems continue to hold even when the parameters k1, k2(p), and � are functions of N .



19Remark 5.3 Observe that the index of resolvability (which consists of an approximation errorterm and an estimation error term) in Theorems 5.1 and 5.2 is multiplied by a constant �� > 1.This implies that, for each �xed N , the upper bounds established in Theorems 5.1 and 5.2 maynot be the best possible{in the sense of constant multipliers. In a concept learning (or patternrecognition) setting, Lugosi and Zeger [30] avoid the problem of constant multipliers larger than1 by using a Vapnik-Chervonenkis framework. However, in a mean-squared regression setting, adirect application of their method of analysis leads to a slower overall rate of convergence which isless desirable.Corollary 5.1 Suppose all hypotheses of Theorem 5.2 hold. In addition, suppose that Assump-tion 3.2 holds and that q � k1. Then,E [r(m̂N ; mq)] < ��R(q;N)(mq; k1) + ���2 ln(q + 1)Nk1 + 12��0 + 4~���0Nk1 ; (30)where R(q;N)(mq; k1) is obtained from (26) by substituting p = q.Proof: The corollary follows by applying Theorem 5.2 with p = q (since q � k1) and m1 = mq(since Assumption 3.2 holds). 2VI DiscussionRemark 6.1 (related works) We now discuss the relevant literature to establish a broader con-text for our results.� Suppose that the process fXig1i=�1 is binary-valued. In this case, estimating the predictorfunction m1 is essentially the same as estimating the corresponding conditional distributionof X0 given the entire in�nite historyX(�1;�1). The latter problem, owing to its applicationsin data compression, has received wide attention, for example, see Algoet [2], Cover [18],Rissanen [37, 38], and Ryabko [43, 44]. Our work fundamentally di�ers from the existingbody of work for binary-valued processes, in that, for binary-valued processes each elementof the sequence fmpgp�1 is �nitely parameterized, while for real-valued processes consideredhere the elements of the sequence are not �nitely parameterized.� Suppose that the process fXig1i=�1 is real-valued, stationary, Gaussian ARMA. In this case,estimation of the predictor function m1 has been widely studied, for example, see Akaike[1], Bhansali [14], and Rissanen [39]. Our work fundamentally di�ers from the existing body



20of work for Gaussian ARMA processes, in that, for Gaussian ARMA processes each elementof the sequence fmpgp�1 is linear (in the observations) and �nitely parameterized, while forstationary random processes considered here the elements of the sequence are neither linearnor �nitely parameterized.� Recently, supposing that the process fXig1i=�1 is real-valued, stationary, and ergodic, Algoet[2, 3], Morvai, Yakowitz, and Gy�or� [36], and Morvai, Yakowitz, and Algoet [35] proposedseveral nonparametric estimators of the predictor function m1, and established universalconsistency of their estimators. This is distinct from memory-universality{which is the mainfocus of this paper.� Recently, supposing that the process fXig1i=�1 is real-valued, stationary mixingale, Sin andWhite [47] proposed model selection criteria with the goal of selecting the best (in the sense ofthe smallest approximation error) of two abstract parametric models of the predictor function3m1, and exempli�ed their model selection criteria for ARMAX-GARCH and STAR models.Although we consider a smaller class of processes, our estimators are applicable to sequencesof parametric families of functions, minimize the overall statistical risk (that is, approximationerror + estimation error), and are memory-universal and consistent.� Supposing that the process fXig1i=�1 is real-valued, exponentially strongly mixing, and thatthe predictor function m1 has a �nite memory q (see (2)), Auestad and Tj�stheim [5, 6](also see Tj�stheim [50]) and Cheng and Tong [17] proposed two-step schemes (based on thenonparametric kernel approach) to estimate the predictor functionmq, without the knowledgeof the memory q. However, no analytical results are yet available for the estimators consideredby Auestad and Tj�stheim, and although Cheng and Tong established the order consistencyof their scheme, they did not establish, like we do, rates of convergence for the statistical risk.Remark 6.2 (general regression estimation problem) Although so far we con�ned our at-tention to the simple and intuitively appealing problem of one-step ahead prediction of stationaryrandom processes our results easily extend to a larger class of estimation problems as shown below.Let fXi; Yig1i=�1 be a stationary random process such that X0 takes values in [�1; 1] and Y0 takesvalues in IR. Let  be a measurable function such that Ej (Y0)j2 < 1. For 1 � p � 1 and for3Note that although, for the sake of coherence, we have paraphrased the contribution of the literature dealingwith Gaussian ARMA processes [1, 14, 39] and that of Sin and White [47] as estimating the predictor function m1,they did not phrase their work as such.



21d � 0, de�ne the regression function asmp(x) � E[ (Yd)jX(�p;�1) = x]; x 2 IRp:Given a sequence of observations fXi; YigN+di=1 , we are interested in estimating the regression functionm1. If we suppose that the process fXi; Yig1i=�1 satis�es Assumption 2.1, suppose that  (Y0) takesvalues in [�1; 1], and replace Xi in Figures 1 and 2 (equivalently in (24) and (28)) by  (Yd+i), thenwe can use the resulting m̂N as our estimator of m1. Furthermore, all our results in Sections III,IV, and V continue to hold in toto. Also, observe that by selecting various values for the function , we can obtain a number of interesting special cases as follows.� ((d+1)-step ahead prediction) If we set  (y) = y, and assume that Y0 takes values in [�1; 1],then we can estimate E[YdjX(�1;�1)].� (conditional moments estimation) If we set  (y) = yt, where t � 1, and assume that Y0 takesvalues in [�1; 1], then we can estimate E[(Yd)tjX(�1;�1)].� (conditional distribution estimation) If we set  (y) = 1fy�zg, where z is a �xed real number,then we can estimate PfYd � zjX(�1;�1)g.Remark 6.3 (consistent estimation of m1 using neural networks) Observe that we did notestablish a result analogous to Theorem 4.3 for the estimator m̂N based on neural networks. Nowconsider the following relatively strong condition.Assumption 6.1 For each p � 1, assume that there exists a complex valued function ~mp on IRpsuch that for x 2 [�1; 1]p, we havemp(x)�mp(0) = ZIRp �eiw�x � 1� ~mp(w) dwand that RIRp jjwjj1j ~mp(w)j dw � C 0p <1 for some known C 0p > 0. Set Cp = maxf1; C 0pg.Suppose that Assumptions 2.1, 2.2, and 6.1 hold, and let m̂N be as in Section III, where we replace(10) by C(p) = Cp. Then, it is possible to show, by proceeding as in the proof of Theorem 4.3, thatm̂N ! m1 as N !1;where convergence is in the sense of integrated mean squared error. However, owing to the stringentnature of the Assumption 6.1, such a result appears unappealing.



22Remark 6.4 (compact parameter spaces) Throughout this paper, we restricted attention tosequences of parametric families with compact parameter spaces. This assumption is su�cient totreat the examples presented here. However, if the predictor function mq is such that one must usea sequence of parametric families with non-compact parameter spaces to obtain the best boundson the approximation error, then the current framework may prove wanting. It may be possibleto extend our framework to more general sequences of parametric families along the directionsconsidered, for instance, by Barron, Birg�e, and Massart [12], Lugosi and Nobel [28], and Lugosiand Zeger [29, 30].Remark 6.5 (order consistency and price of memory-universality) In Theorems 3.1 and3.2 (see also Theorems 4.1 and 4.2), we established the memory-universality of the estimator m̂N .However, it should be noted that m̂N is, roughly speaking, k1 (= o(N)) times more expensive tocompute than the corresponding estimator m̂(q;N) that does know the memory q. It is currentlyunknown whether the adaptive memory ~p converges to q in some sense; nevertheless m̂N doesconverge to the predictor function mq.Remark 6.6 (conditional density and conditional quantiles) Assuming that the predictorfunction m1 has a �nite memory, we formulated memory-universal and consistent estimators form1. It may also be possible to apply our estimation methodology and proof techniques along withthe results of Barron and Cover [13], Barron [8], Barron, Birg�e, and Massart [12], and White [56]to establish memory-universality and consistency of suitable estimators of the conditional densityand of various conditional quantiles of X0 given X(�1;�1).Remark 6.7 (dependence of our estimators on �) The complexity term in (24) and (28) ismotivated solely by the statistical risk bounds we are able to obtain and not by other information-theoretic or Bayesian considerations. As a consequence, the complexity term depends explicitly onthe parameter � in Assumption 2.1. In practice, one may set � = 1, since important classes ofprocesses satisfy Assumption 2.1 with that value [59]. Note, however, that if the true underlying� is larger than the value of � used in our estimators, then the resulting estimators will deliver aslower rate than that obtainable with the knowledge of the true �. On the other hand, if the valueof � used in our estimators is larger than the true underlying �, then we are unable to quantify thestatistical performance of the resulting estimators. Unfortunately, unlike the parameters \smooth-ness", \norm", model dimension, or model memory, it does not appear possible to select � in a



23data-driven fashion using complexity regularization. Furthermore, we are currently unaware of anyalgorithm for testing the exponentially strongly mixing condition.Remark 6.8 (comparison with nonparametric prediction) We have from Theorem 3.1 thatE Z[�1:1]q [m̂(q;N)(x)�mq(x)]2 dP(1;q)(x) = O� lnNN � 2s2s+q ��+1 : (31)Now, suppose that the strong mixing coe�cient decays algebraically, and that the predictor func-tion mq has continuous and bounded partial derivatives of total order s. Let ~m(q;N) denote anonparametric kernel estimator [15, 40, 41] which uses a kernel of order s, then it is known thatwith an optimal deterministic choice of the corresponding bandwidth parameterE[ ~m(q;N)(x)�mq(x)]2 � N� 2s2s+q ; x 2 IRq: (32)Directly comparing (31) and (32), we �nd that rate of convergence for our estimator m̂(q;N) decreasesby the factor �=(� + 1). However, the above comparison may be inherently unfair, since ourestimator m̂(q;N) selects the model dimension in a data-driven fashion whereas the kernel estimator~m(q;N) does not select its bandwidth parameter in a data-driven fashion. A fair comparison wouldinvolve a kernel estimator which selects its bandwidth parameter in a data-driven fashion (using,say, cross-validation). Unfortunately, to our knowledge, obtaining rates of convergence results forkernel estimators with data-driven bandwidth selection, in the context of dependent observations,is currently an open problem.VII DerivationsA A Sequence of Craig-Bernstein InequalitiesTo furnish the key technical tool required in the proof of Theorem 5.2, we now extend the Craig-Bernstein inequality in [34, Theorem 4.3]. Speci�cally, in proof of Theorem 5.2, we need to analyzeempirical means of the form 1N � p NXi=p+1 (X(i�p;i)); (33)where N > p � 0 and  is a Borel measuarable function from IRp+1 to IR, using a Craig-Bernstein-type inequality. The following lemma supplies the needed sequence of inequalities for each p � 0(the Craig-Bernstein inequality in [34, Theorem 4.3] corresponds to the case p = 0).



24Lemma 7.1 ((N; p)-Craig-Bernstein Inequality) Suppose that Assumption 2.1 holds. Let inte-gers N and p be such that N > p � 0. Let  : IRp+1 ! IR be a Borel measurable function. Foreach �1 < i <1, let Ui =  (X(i�p;i)). Assume that jU0j � d1 a.s. and that E[U0] = 0. Let Np beas in (4). Then, for all Np � 2, for all � 2 IR, and for all 0 < � < 1=d1,P 8<: 1N � p NXi=p+1Ui � �3�Np + 3�EjU1j22(1� �d1)9=; � (1 + 4e�2 ��)e�� :Proof: The proof closely follows the proof of Theorem 4.3 in [34], here we merely point outthe main points of departure. Since in our case Ui =  (X(i�p;i)), the sigma-algebras of events�fUj+(a�1)k; a = 1; 2; : : : ; q� 1g and �fUj+(q�1)kg, in item (b) in the proof of [34, Lemma 4.2], arenow measurable with respect to �fX(j+(a�1)k�p;j+(a�1)k); a = 1; 2; : : : ; q�1g and �fX(j+(q�1)k�p;j+(q�1)k)g,respectively. Thus, the distance between the two sigma-algebras now becomes (j + (q � 1)k� p)�(j+(q� 2)k) = k� p. Consequently, in [34, Lemma 4.2], we now must apply the mixing inequalityin Hall and Heyde [24, Theorem A.5] with �(k � p) instead of �(k). In other words, throughout[34, Lemma 4.2], we should replace �(k) by �(k � p), and should replace the constraint k > 0 byk > p. Also, throughout [34, Theorem 4.3], we replace k� by (k � p)� and replace N by N � p.Finally, note that the \number of blocks" k in [34, (44)] now becomesk = df8(N � p)=cg1=(�+1)+ pe;and hence the \block size" or the e�ective number of observations in [34, (39)] now becomesNp = b(N � p)=kc = �(N � p)lf8(N � p)=cg1=(�+1) + pm�1� ;which is exactly the prescribed value in (4). 2B Proofs of Theorems 5.1 and 5.2To establish a perspective for the method of analysis used in establishing Theorems 5.1 and 5.2, werecall a technique used by Barron [8]. Let fXi; Yig1i=�1 be a sequence of i.i.d. random variables.De�ne the regression function by f?(x) = E[Y0jX0 = x]. Given N observations fXi; YigNi=1, Barronproposed a certain estimator, say ~fN , of f? based on an abstract sequence of parametric models,and established upper bounds on the integrated mean-squared error E[r( ~fN ; f?)] by analyzingNXi=1 �[Yi � f(n;�)(Xi)]2 � [Yi � f?(Xi)]2� ; (34)



25for each parameter � with dimension 1 � n � N , using the classical Craig-Bernstein inequality. In[34], assuming that the process fXi; Yig1i=�1 is exponentially strongly mixing, we analyzed (34)using the Craig-Bernstein inequality established there.Proof of Theorem 5.1: Motivated by the above discussion, we can upper bound the integratedmean-squared error E[r(m̂(p;N); mp)] by analyzingW ((p; (n; �));N)� NXi=p+1 �[Xi � f(p;(n;�))(Xi�p;i�1)]2 � [Xi �mp(Xi�p;i�1)]2� ; (35)for each parameter � with a �xed memory 1 � p < N and dimension 1 � n � k2(p;N). With thisinsight, the theorem follows by proceeding essentially as in [34, Proof of Theorem 3.1], but by usingthe (N; p)-Craig-Bernstein inequality in Lemma 7.1. 2Proof of Theorem 5.2: Here, we seek upper bounds on the integrated mean-squared errorE[r(m̂N ; m1)]. To motivate our method of proof, we �rst explain two approaches that do notwork. As a �rst try, motivated by (34) and (35), one may attempt to directly analyzeNXi=p+1 �[Xi � f(p;(n;�))(X(i�p;i�1))]2 � [Xi �m1(X(�1;i�1))]2� ; (36)for each parameter � with memory 1 � p � k1(N) and dimension 1 � n � k2(p;N). But, sinceeach term in the second sum in (36) depends on an in�nite past, no meaningful Craig-Bernsteininequalities appear possible for the empirical mean (36).As a second try, one may attempt to analyze (35) for each parameter � with memory 1 �p � k1(N) and dimension 1 � n � k2(p;N) by using the (N; p)-Craig-Bernstein inequality inLemma 7.1. This would lead to the desired upper bounds on E[r(m̂N ; m1)], if we select thememory as ~p = arg min1�p�k1 ( 1N � pW ((p; (n; �)); N)+ �L(p)(�̂(p); �) + 2 ln(p+ 1)Nk1 ) ; (37)where �̂(p) and L(p)(�̂(p); �) are as in (28). Since W ((p; (n; �)); N) in (37) depends on the predictorfunctionmp (see (35)), implementing (37) would require the knowledge of the sequence of predictorsfmpgk1p=1{which is not available.As a key technical insight, here, we analyze the empirical processNXi=k1+1�[Xi � f(p;n)(X(i�p;i�1))]2 � [Xi �mk1(X(i�k1;i�1))]2� (38)



26for each parameter � with memory 1 � p � k1 and dimension 1 � n � k2(p;N), using the (N; k1)-Craig-Bernstein inequality, and consequently obtain upper bounds on E[r(m̂N; mk1)]. Note that thesecond sum in (38) has a �nite memory k1 and does not depend on p. Next, by simple probabilisticmanipulations, we observe that (see Lemma 7.6)E[r(m̂N ; m1)] = E[r(m̂N ; mk1)] + r(mk1 ; m1): (39)Equation (39) combined with the upper bounds on E[r(m̂N ; mk1)] leads to the desired upper boundson E[r(m̂N ; m1)]. In other words, instead of estimating m1, we estimate mk1 for a growingmemory k1 (as N " 1). Then, by virtue of the L2-martingale convergence theorem, we areautomatically doing a good job in estimating m1.To make the lengths of various equations manageable, throughout this proof, we write � =4=(�� 8=3), �00 = (1 + �), �0 = (1� �), �� = �00=�0, and ~� = (1 + 4e�2 ��).Let k1 be a natural number such that k1 < N . For each �xed 1 � p � k1, for each �xed�1 < i <1, and for each �xed � 2 �(p;k2(p)), writeV(p;i;�) = [Xi � f(p;�)(X(i�p;i�1))]2 � [Xi �mk1(X(i�k1;i�1))]2; (40)r̂(f(p;�); mk1) = 1N � k1 NXi=k1+1V(p;i;�): (41)We now proceed with a series of lemmas.Lemma 7.2 Let p and k1 be natural numbers such that p � k1 < N . Suppose that Assumptions 5.1,5.2, 2.1, and 2.2 hold. Then, for all 0 < � � min1�n�k2(p)$(p;n)(1), for all � 2 �(p;k2(p)), for all� > 20=3, for all ~� > 0, and for all Nk1 � 2,P (�0r(f(p;�); mk1) � r̂(f(p;�); mk1) + �L(p)(�; �) + 2 ln(p+ 1) + ln 1=~�Nk1 ) � ~�~�e�L(p)(�;�) e�2 ln(p+1):Proof: For �1 < i <1, write U(p;i;�) = �V(p;i;�) + E[V(p;i;�)]; (42)where V(p;i;�) is as in (40), and observe that fU(p;i;�)g1i=�1 are identically distributed. By invokingAssumptions 5.1 and 2.2, and by proceeding as in [8], we have that E[V(p;0;�)] = r(f(p;�); mk1),E[U(p;0;�)] = 0, EjU(p;0;�)j2 � 8r(f(p;�); mk1), and jU(p;0;�)j � 8. Also, it follows from (42) and (41)that 1N � k1 NXi=k1+1U(p;i;�) = �r̂(f(p;�); mk1) + r(f(p;�); mk1): (43)



27Since Assumption 2.1 holds and since fU(p;i;�)g1i=�1 are identically distributed, the lemma followsby applying the (N; k1)-Craig-Bernstein inequality in Lemma 7.1 to (43) (with d1 = 8, 3� = 1=�,and � = L(p)(�; �) + 2 ln(p+ 1) + ln 1=~�) just as the (N; 0)-Craig-Bernstein inequality was appliedin [34, Lemma 3.1] to (29) there. 2Lemma 7.3 Let k1 be a natural number such that k1 < N . Suppose that Assumptions 5.1 and 5.2hold for each 1 � p � k1, and that Assumptions 2.1 and 2.2 hold. Then, for all � > 20=3, for all~� > 0, for all Nk1 � 2, and for all 0 < � � min1�p�k1fmin1�n�k2(p)$(p;n)(1)g,P (�0r(m̂N ; mk1) � r̂(m̂N ; mk1) + �L(~p)(�̂(~p; �); �)+ 2 ln(~p+ 1) + ln 1=~�Nk1 + 12�) < ~�~�: (44)Proof: Observe that m̂N = f(~p;�̂(~p)) and that m̂(p;N) = f(p;�̂(p)). Thus, to establish (44), one can�rst establishP (�0r(m̂(p;N); mk1) � r̂(m̂(p;N); mk1) + �L(p)(�̂(p; �); �)+ 2 ln(p+ 1) + ln 1=~�Nk1 + 12�) < ~�~�e�2 ln(p+1)(45)for each �xed 1 � p � k1. Since the sets ff~p = pggk1p=1 are disjoint, we can then pass from (45) to(44) using an union bound argument. But, we can establish (45) by invoking Lemma 7.2 and byproceeding essentially as in [34, Lemma 3.2]. We omit the details. 2Let �?(p) be the element of the set �(p;k2(p)), which attains the p-index of resolvability,R(p;N)(mp; k1),in (26); formally, we write�?(p) = arg min�2�(p;k2(p)) (r(f(p;�); mp) + �L(p)(�; �)Nk1 ) : (46)Lemma 7.4 Suppose all hypotheses of Lemma 7.3 hold. Then, for each 1 � p � k1, we haveP (�0r(m̂N ; mk1) � r̂(f(p;�?(p)); mk1) + �L(p)(�?(p); �) + 2 ln(p+ 1) + ln 1=~�Nk1 + 12�) < ~�~�:Proof: Recall the de�nition of r̂ in (41) and (40).r̂(m̂N ; mk1) + �L(~p)(�̂(~p); �) + 2 ln(~p+ 1)Nk1= r̂(f(~p;�̂(~p)); mk1) + �L(~p)(�̂(~p); �) + 2 ln(~p+ 1)Nk1(a)� r̂(f(p;�̂(p)); mk1) + �L(p)(�̂(p); �) + 2 ln(p+ 1)Nk1(b)� r̂(f(p;�?(p)); mk1) + �L(p)(�?(p); �) + 2 ln(p+ 1)Nk1 ; (47)where (a) follows from (28); and (b) follows from (24). The lemma now follows from Lemma 7.3and (47). 2



28Lemma 7.5 Let p and k1 be natural numbers such that p � k1 < N . Suppose that Assumptions 5.1,2.1, and 2.2 hold. Then, for all � > 20=3, for all ~� > 0, and for all Nk1 � 2,P (r̂(f(p;�?(p)); mk1) � �00r(f(p;�?(p)); mk1) + � ln 1=~�Nk1 ) � ~�~�:Proof: Let V(p;i;�?(p)) be obtained from (40) by substituting � = �?(p). For i = k1+1; k1+2; : : : ; N ,write U(i;p;�?(p)) = V(p;i;�?(p)) � E[V(p;i;�?(p))]. The lemma follows by applying the (N; k1)-Craig-Bernstein inequality in Lemma 7.1 to the sum1N � k1 NXi=k1+1U(i;p;�?(p)) = r̂(f(p;�?(p)); mk1)� r(f(p;�?(p)); mk1)with d1 = 8, 3� = 1=�, and � = ln 1=~� and by simplifying as in [34, Lemma 3.1]. 2Lemma 7.6 Let 0 � p0 � p00 � p000 � 1 and let g 2 L2(P(1;p0)), thenr(g;mp00) + r(mp00 ; mp000) = r(g;mp000):Proof:r(g;mp00) + r(mp00 ; mp000)= E[g(X(1;p0))�mp00(X(1;p00))]2 + E[mp00(X(1;p00))�mp000(X(1;p000))]2= E[X0 � g(X(1;p0))]2 �E[X0 �mp00(X(1;p00))]2 + E[X0�mp00(X(1;p00))]2 � E[X0�mp000(X(1;p000))]2= E[g(X(1;p0))�mp000(X(1;p000))]2= r(g;mp000): 2Lemma 7.7 Suppose all hypotheses of Theorem 5.2 hold. Then, for each 1 � p � k1, we haveE [r(m̂N ; mk1)] < ���R(p;N)(mp; k1) + r(mp; mk1) + �2 ln(p+ 1)Nk1 �+ 12��0 + 4~���0Nk1 :Proof: Combining Lemma 7.5 and Lemma 7.4, we haveP (�0r(m̂N ; mk1) � �00r(f(p;�?(p)); mk1) + �L(p)(�?(p); �) + 2 ln(p+ 1)Nk1 + �2 ln 1=~�Nk1 + 12�) < 2~�~�:(48)Applying Lemma 7.6 with g = f(p;�?(p)), p0 = p00 = p, and p000 = k1, we haver(f(p;�?(p)); mk1) = r(f(p;�?(p)); mp) + r(mp; mk1): (49)



29Now, ignoring the term ��� �L(p)(�?(p); �) + 2 ln(p+ 1)� =(Nk1), we from (48), (49), (46), and (26)thatP (�0r(m̂N ; mk1) � �00R(p;N)(mp; k1) + �00r(mp; mk1) + �00�2 ln(p+ 1)Nk1 + 12� + 2� ln 1=~�Nk1 ) < 2~�~�:By writingW = �0r(m̂N ; mk1)� �00R(p;N)(mp; k1)� �00r(mp; mk1)� �00�(2 ln(p+1))=Nk1� 12�, andfor t > 0 setting ~� = exp(�Nk1t=(2�)), we have thatP fW � tg < 2~� exp��Nk1t2� � : (50)It is easy to see that jW j < 1, and hence EjW j <1. The lemma now follows from (50) and [34,Lemma A.6]. 2The following upper bounds complete the proof of Theorem 5.2.E [r(m̂N ; m1)](a)= E [r(m̂N ; mk1)] + r(mk1 ; m1)(b)� ���R(p;N)(mp; k1) + r(mp; mk1) + �2 ln(p+ 1)Nk1 �+ 12��0 + 4~���0Nk1 + r(mk1 ; m1)(c)� ��R(p;N)(mp; k1) + ��r(mp; m1) + ���2 ln(p+ 1)Nk1 + 12��0 + 4~���0Nk1 ;where (a) follows by applying Lemma 7.6 (with g = m̂N , p0 = ~p, p00 = k1, and p000 = 1) on arealization-by-realization basis; (b) follows from Lemma 7.7 for each 1 � p � k1; and (c) followsby applying Lemma 7.6 (with g = mp, p0 = p, p00 = k1, and p000 =1) and since �� > 1. 2C Proofs of Theorems 3.1 and 3.2First, in Lemma 7.8 below, we establish an upper bound on a certain index of resolvability. We willthen establish Theorem 3.1 (respectively, Theorem 3.2) by combining Lemma 7.8 and Theorem 5.1(respectively, Corollary 5.1).Lemma 7.8 (a bound on index of resolvability) Suppose that Assumptions 2.2 and 3.3 hold.Let k3 be a natural number such that k3 � q. Then, for all k2(q) � �pNk3�, for all � = (Nk3)�D4,where D4 � 0, and for all Nk3 � 2, we haveR(q;N)(mq; k3) = O� lnNk3Nk3 �1=2 ;where R(q;N)(mq; k3) is obtained from (26) and Nk3 is obtained from (4).



30Proof: The proof follows by proceeding as in [34, Lemma 2.2]. We omit the details. 2Proof of Theorem 3.1: Theorem 3.1 follows by combining Theorem 5.1 (for p = q) andLemma 7.8 (for k3 = q) in the manner of Theorem 3.2; we omit the details. 2Proof of Theorem 3.2: It follows from our hypotheses that Assumptions 2.1, 2.2, 3.2 hold,and from Example 5.1 that Assumptions 5.1 and 5.2 hold for all 1 � p � k1. Consequently, allhypotheses of Corollary 5.1 hold, and we have for all 0 < �(N) � (4D1Cq), for all � > 20=3, forq � k1, and for all Nk1 � 2,E [r(m̂N ; mq)] = O(R(q;N)(mq; k1)) +O(�(N)) + O(N�1k1 )(a)= O� lnNk1Nk1 �1=2 +O� 1(Nk1)D4�(b)= O� lnNN � 12 ��+1 ;where (a) follows by applying Lemma 7.8 with k3 = k1, k2(q) � �pNk1�, and �(N) = (Nk1)�D4 ,where D4 � 0; and (b) follows if we let D4 � 1=2, and from (4) by simple algebraic manipulationssince k1 = o(N). 2D Proofs of Theorems 4.1, 4.2, and 4.3First, in Lemma 7.9 below, we establish an upper bound on a certain index of resolvability. We willthen establish Theorem 4.1 (respectively, Theorem 4.2) by combining Lemma 7.9 and Theorem 5.1(respectively, Corollary 5.1).Lemma 7.9 (a bound on the index of resolvability) Suppose that Assumptions 2.2, 4.1, 4.2hold. Let k3 be a natural number such that k3 � q. Then, for all k2(q) � d(Nk3)1=qe, � = (Nk3)�D4,where D4 � 0, and for all Nk3 � 2, we haveR(q;N)(mq; k3) = O� lnNk3Nk3 �2s=(2s+q) ;where R(q;N)(mq; k3) is obtained from (26) and Nk3 is obtained from (4).Proof:R(q;N)(mq; k3) (a)= min1�n�k2(q)8<: min�2S(q;n) hr(f(q;(n;�)); mq)i+ �L(q;n)($�1(q;n)(�)) + 2 ln(n+ 1)Nk3 9=;



31(b)� min1�n�k2(q)8<:K1n2s + �L(q;n)($�1(q;n)(�)) + 2 ln(n+ 1)Nk3 9=;(c)� min1�n�d(Nk3 )1=qe8<:K1n2s + � nqNk3 ln K2nq=2($�1(q;n)(�)) + �2 ln(n+ 1)Nk3 9=;(d)� min1�nd(Nk3 )1=qe�K1n2s + � nqNk3 lnK2nq=2(2n� 1)q=2(Nk3)D4 + �2 ln(n+ 1)Nk3 �(e)� min1�n�d(Nk3 )1=qe�K1n2s + � nqNk3 lnK3(Nk3)K4 + �2 ln(2Nk3)Nk3 �(f)� min1�nd(Nk3 )1=qe�K1n2s +K5 nqNk3 lnK6Nk3�(g)� min1�n�d(Nk3 )1=qe�K1n2s +K7 nqNk3 lnNk3�(h)� (K1 + 2K7)�lnNk3Nk3 � 2s2s+q ;where (a) follows from (26), (21), and (23), where S(q;n) is obtained from (14), f(q;(n;�) is obtainedfrom (13), L(q;n) is obtained from (18), and $�1(q;n) is obtained from (20); (b) It follows fromAssumption 4.2 that there exists a �nite uniform bound Mq > 0 on the probability density of themarginal distribution P(1;q). Hence,min�2S(q;n) hr(f(q;(n;�)); mq)i = min�2S(q;n) "Z[�1;1]q [f(q;(n;�))(x)�mq(x)]2 dP(1;q)(x)#� min�2S(q;n) "Mq Z[�1;1]q [f(q;(n;�))(x)�mq(x)]2 dx#� Mq Xj2f1�i�ngc�INq(b(q; j))2; (51)where b(q; j) = Z[�1;1]q mq(x)'(q; j)(x) dxand the polynomial '(q; j) is obtained from (11). Now, obtaining upper bounds on the tail term in(51) is a standard exercise in multivariate approximation theory. Speci�cally, under Assumption 4.1,it can be shown that Xj2f1�i�ngc�INq(b(q;j))2 � K 01n2s ;see, for example, Canuto and Quarteroni [16] or Sheu [46, Theorem 4.2]. Finally, set K1 =MqK 01;(c) follows from (18) by setting K2 = 2(q+2)=2, and also since k2(q) � d(Nk3)1=qe; (d) followsby setting � = (Nk3)�D4 for some D4 � 0; (e) since n � d(Nk3)1=qe, follows by setting K3 =K2 23q=2 and K4 = (D4 + 1); (f) follows by setting K5 = maxfK4�; 2�g and by setting K6 =



32maxfK1=K43 ; 2g; (g) follows by setting K7 = 2K5(maxflnK6; 1g); (h) follows by setting n =l(Nk3=(lnNk3))1=(2s+q)m, which takes values in the set f1; 2; � � � ; d(Nk3)1=qeg for Nk3 � 2. 2Proof of Theorem 4.1: Theorem 4.1 follows by combining Theorem 5.1 (for p = q) andLemma 7.9 (for k3 = q) in the manner of Theorem 4.2; we omit the details. 2Proof of Theorem 4.2: It follows from our hypotheses that Assumptions 2.1, 2.2, 3.2 hold,and from Example 5.1 that Assumptions 5.1 and 5.2 hold for all 1 � p � k1. Consequently, allhypotheses of Corollary 5.1 hold, and we have for all 0 < �(N) � p3, for all � > 20=3, for q � k1,and for all Nk1 � 2,E [r(m̂N ; mq)] = O(R(q;N)(mq; k1)) +O(�(N)) + O(N�1k1 )(a)= O� lnNk1Nk1 � 2s2s+q +O� 1(Nk1)D4�(b)= O� lnNN � 2s2s+q ��+1where (a) follows by applying Lemma 7.9 with k3 = k1, k2(q) � d(Nk1)1=qe, and �(N) = (Nk1)�D4 ,where D4 � 0; and (b) follows if we let D4 � 1, and from (4) by simple algebraic manipulationssince k1 = o(N). 2Proof of Theorem 4.3: Choose a small � > 0. We know by the L2 martingale convergencetheorem that r(mp; m1) monotonically decreases to 0 as p !1. Hence, there exists an integer �psuch that r(m�p; m1) � �=(2��); (52)where constant �� is as in the hypothesis of Theorem 5.2.For j 2 IN�p, de�ne b(�p; j) = Z[�1;1]�pm�p(x)'(�p; j)(x) dx; (53)where the polynomial '(�p; j)(x) is obtained from (11). Write�n = (b(�p;1); � � � ; b(�p;n)); (54)where 1 = (1; 1; � � � ; 1) 2 IN�p and n = (n; n; � � � ; n) 2 IN�p. It follows from Parseval's identity thatXj2IN�p(b(�p; j))2 = Z[�1;1]�p(m�p(x))2 dx � 2�p; (55)



33where the last inequality follows since the range of m�p is [�1; 1]. Since the polynomial systemf'(�p; j)gj2IN�p is complete and orthonormal for the space of measurable, square-integrable (withrespect to the Lebesgue measure) functions on [�1; 1]�p, there exists a dimension �n such thatZ[�1;1]�p 24 �nXj=1 b(�p; j)'(�p; j)(x)�m�p(x)352 dx � �=(2��M�p); (56)where �n = (�n; �n; � � � ; �n) 2 IN�p andM�p denotes the uniform bound, which is �nite by Assumption 4.3,on the probability density of the marginal distribution P(1;�p). Since clip is continuous, we have from(13) that Z[�1;1]�p [f(�p;(�n;��n))(x)�m�p(x)]2 dx � Z[�1;1]�p 24 �nXj=1 b(�p; j)'(�p; j)(x)�m�p(x)352 dx: (57)We have from Assumption 4.3, (56), and (57) thatr(f(�p;(�n;��n)); m�p) �M�p Z[�1;1]�p [f(�p;(�n;��n))(x)�m�p(x)]2 dx � �=(2��): (58)The following sequence of upper bounds essentially completes the proof.E [r(m̂N ; m1)](a)< ��R(�p;N)(m�p; k1) + ��r(m�p; m1) + O(�(N)) +O(1=Nk1)(b)< ��R(�p;N)(m�p; k1) + �=2 + O(1=Nk1)(c)= �� min1�n�k2(�p)8<: min�2S(�p;n) hr(f(�p;(n;�)); m�p)i+ �L(�p;n)($�1(�p;n)(�(N))) + 2 ln(n + 1)Nk1 9=;+ �=2 + O(1=Nk1)(d)� �� min�2S(�p;�n) hr(f(�p;(�n;�)); m�p)i+ ���L(�p;�n)($�1(�p;�n)(�(N))) + 2 ln(�n+ 1)Nk1 + �=2 + O(1=Nk1)(e)� ��r(f(�p;(�n;��n)); m�p) + ���L(�p;�n)($�1(�p;�n)(�(N))) + 2 ln(�n+ 1)Nk1 + �=2 +O(1=Nk1)(f)� � + ��� �n�p ln h2(�p+2)=2�n�p=2(2�n+ 1)�p=2(Nk1)D4i+ 2 ln(�n+ 1)Nk1 +O(1=Nk1)(g)� � + O� lnNk1Nk1 � (59)where (a) follows by invoking Theorem 5.2 for all 0 < �(N) � p3, for all � > 20=3, for all k2(p;N),for all Nk1 � 2, and for all large N such that k1(N) � �p; (b) follows from (52) and by setting�(N) = (Nk1)�D4 , where D4 � 1; (c) follows from (26), (21), and (23), where S(�p;n) is obtainedfrom (14), f(�p;(�n;��n)) is obtained from (13), L(�p;�n) is obtained from (18), and $�1(�p;�n) is obtained from



34(20); (d) holds for all large N such that k1(N) � �p and k2(�p;N) � �n; (e) follows since we havefrom (54), (55), and (14) that ��n 2 S(�p;�n); (f) follows from (58) and from (18) and (20); and (g)follows by simple algebraic manipulations.Since we may choose � as small as desired, and since Nk1 !1 (since k1 = o(N)), the theoremfollows from (59). 2
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