
Building the Blocks of Protocol Design and Analysis –– 
Challenges and Lessons Learned from Case Studies on 
Mobile Ad hoc Routing and Micro-Mobility Protocols 

 
Fan Bai, Ganesha Bhaskara, Ahmed Helmy, 

Department of Electrical Engineering, 
University of Southern California 
{fbai,bhaskara,helmy}@usc.edu 

 

ABSTRACT 

With the emergence of new application specific sensor and Ad-hoc networks, increasingly 
complex and custom protocols will be designed and deployed.  Our work aims to propose a 
framework to systematically evaluate and design networking protocols based on the building 
block approach. In this approach, each protocol is broken down into a set of parameterized 
modules called "building blocks", each having its own specific functionality. The properties of the 
building blocks and their interaction, define the overall behavior of the protocol. In this paper, 
we ask several challenging questions about the building block approach. By addressing some of 
those questions, we attempt to point out a potential direction to analyze and understand the 
behavior of protocol based on the building block approach. As a case study, we focus on 
analyzing protocols that support IP mobility and Ad-hoc wireless network routing protocol in a 
systematic manner. 

I  Introduction, Motivation and Challenges 
Sensor and wireless Ad-hoc networks are emerging as a new field of networking due to the ubiquity of 
small, inexpensive wireless communicating devices. These networks are application specific, often 
requiring custom network stacks and protocol components to achieve their objective effectively. Traditional 
protocols including Internet protocols were designed based on experience and feedback from implemented 
systems, rendering the design and evaluation of networking protocols both time-consuming and costly. 
Further, designers will not have this type of feedback in the new application specific networks. Moreover, 
most of these systems cannot be easily upgraded or modified once deployed. Hence changing the software 
or hardware for correcting design errors or improving performance is either not possible or very expensive. 
The lack of systematic design, evaluation and test methodologies is becoming a major concern for protocol 
designers with the increase in protocol complexity.  A systematic methodology or tool to analyze and 
synthesize protocols from reusable components as well as tune the parameters of component to meet 
performance requirements would be ideally suited to the new networking paradigms. The same 
methodology may be extended to the design and evaluation of Internet protocols. 

Developing systematic methodologies for designing, testing, evaluating and possibly implementing 
protocols will be an invaluable aid tool at the hands of the protocol designers. One simple approach may be 
to provide a library of protocol mechanisms that can be re-used. Even if these protocol mechanisms are 
relatively well understood and simple in isolation, reusing the libraries (as in software code) may prove to 
be difficult due to the complex interaction between the various mechanisms in a distributed fashion, which 
is also dependent on the environment in which they are deployed. Effective reuse of library components 
requires a systematic way in which the protocol composed of such modules can be designed, tested and 
evaluated across the scenarios under which they are expected to operate. This requires explicit modeling of 
(a) the protocol mechanisms, (b) their interactions and (c) the effects of the environment, including the 
physical phenomena sensed, mobility, wireless channels, among others. 

 

 1



Note that this library-based approach may be used to address several problems. We identify two main 
problems in the science of protocol design: (a) protocol synthesis and (b) protocol analysis. In protocol 
synthesis, one may define a high level functional requirement that should be achieved using a combination 
of library mechanisms. Although this problem is quite challenging and interesting, we plan to consider it in 
our future work but we do not address the synthesis problem in this paper. In protocol analysis, on the other 
hand, an (initial) protocol is given and the goal is to develop deep, micro-level, understanding of its 
performance and limitations over a vast array of operating conditions. The insight developed through this 
understanding helps in refining existing protocols through an iterative process. This protocol analysis 
problem is the focus of this paper. 

As an attempt to address the above problem, we propose a building block based framework in which we 
break down the functionalities of the protocol into functionally separated modules such that the modules 
along with their interaction produces the required protocol properties. By decomposing the protocol into a 
set of mechanistic building blocks, we hope to convert the complex problem of modeling the overall 
protocol into a set of sub-problems of modeling the simple building blocks and the interaction between 
building blocks. By modeling both the components and their interaction, we may be able to develop library 
based protocol design and composition tool by which can not only be used to design protocols, but also 
evaluate and analyze them systematically. 

In addition, we also propose to consider the effects of the environment as consisting of building blocks. 
This facilitates traversal of various dimensions of the spaces of operational conditions, to provide rich, 
meaningful, evaluation scenarios. 

In order to be able to evaluate suitability of the building block based approach for protocol design, 
evaluation and analysis, we need to understand the following challenges of the building block approach: 

- How to specify and define the building blocks & the interaction between building blocks so that they are 
amenable to the required study? 
- How to break down the protocol into components? & How to organize a set of components into a 
protocol? 
- How to model the underlying environments where the protocol is expected to be deployed in a systematic 
manner? 
- How to use the building block approach for design, analysis and refinement of various protocols under a 
given environment? 

In this paper, we seek to specify the building blocks and interaction, two major elements of our building 
block framework, in a formal way by capturing their unique functionalities and key characteristics. Based 
on these fundamental concepts, a hierarchical building block framework to model the protocol at different 
levels of abstraction is proposed. In such a hierarchical structure, the building blocks at each level may be 
refined using more detailed building blocks successively. Considering the underlying environment usually 
plays an important role in affecting the protocol behavior, we also present a scheme to model the 
environment in a systematic way. 

To demonstrate the utility of building block approach for protocol evaluation and analysis, we present two 
case studies on analyzing wireless networking protocols. In the first we study classes of ad hoc routing 
protocols and in the second we study classes of micro-mobility protocols. We show that by using the 
building block approach, we gain a deep insight into the interplay between the protocol mechanism 
together with its parameters and the underlying environments. Several interesting lessons about both the 
design choices of protocol mechanism and the generation of evaluation scenarios are learnt. For example, 
in MANET reactive routing protocol, in both AODV and DSR, flooding and caching seem to have a great 
effect on performance, while salvaging in DSR barely seems to have an effect on the protocol performance. 

The purpose of this paper is not to provide a complete solution. Rather, it is to discuss the various problems 
faced in designing new networking protocols for wireless networks, and to identify and clearly define a set 
of problems and research questions that need to be addressed in order to realize a more comprehensive 
solution. In that sense, this paper attempts to address the challenges in building the blocks of protocol 
design and analysis and discuss the potential directions. 
The remaining part of this paper is organized as follow. The related works and their difference with our 
work are discussed in Section II. Section III describes the hierarchical building block approach together 

 2



with the modeling of building blocks and channels. A clue about the methodology to model the underlying 
environment in a systematic manner is given in Section IV. In section V, the method to design, analyze and 
refine the protocols through hierarchical building block approach is briefly discussed. Two case studies, 
Mobile Ad hoc Network routing protocol and micro mobility protocol, and the lesson learnt from them are 
discussed in Section VI and Section VII. Finally, we discuss some open questions in Section VIII and 
conclude this paper in Section IX.  

II Related works 
The building block methodology itself is not a new concept in the field of distributed systems. The Internet 
is the most obvious example of a system based on layered building blocks.  The layers of the protocol 
stacks make up the building blocks of the Internet. All applications, including the ones that control the 
Internet itself are based on it. Each layer has well defined functions and interfaces and one layer makes no 
assumption about the other. This enables one layer to perform seamlessly over the other as long as their 
interfaces match. The only noticeable difference may be in performance of the protocols. However this 
seamlessness comes at the cost of duplication of functions at various levels. Further, the individual layers 
themselves are not designed or implemented with any explicit layering or components. Thus the design of 
each of the layers itself is complex. One of the reasons for the seamless performance of the various layers is 
that the Internet protocol stack has enjoyed unprecedented success and has been used by millions over 
decades thus flushing out bugs in both designs and implementations by shear brute force. However the new 
application specific stacks, protocols and applications will not have this luxury and hence a systematic 
methodology is needed to design, develop, test and evaluate such systems. 

The design of each layer affects the overall performance of the protocol stack. Fig.1 shows the effects of 
each layer on the higher layers. For example, fading at the physical layer will manifest itself as higher bit 
errors which in turn will show up as packet loss at the MAC layer. However, introducing additional 
mechanisms like channel coding or ARQ at the MAC layer to counter these effects, may lead to decreased 
effective bandwidth or increased packet delay. We need a systematic way in which we can capture the 
inter-layer effects so that we can evaluate their effects on the performance of higher layers. With such a 
methodology in place, we can easily refine existing designs to get the required performance. This example 
of building block based design presents an insight into the methodology we intend to use. However, generic 
network protocol for sensor or Ad-hoc networks requires attention to additional details like interaction 
between building blocks to achieve our objective.  

Figure 1: The Effect of Environment on Building Blocks 

Another idea behind this work, hierarchical building block structure, is mainly inspired from the field of 
VLSI CAD domain[16]. Here the system is modeled at different levels of abstractions and the model at 
each level is refined using finer and more detailed models (Behavioral  structural  Physical). We wish 

 3



to use similar techniques for design of network protocols. Unlike in VLSI in which any Boolean function 
can be represented by a universal representation like NAND or NOR gate, there exists nothing similar in 
the field of network protocols. The hierarchical techniques work extremely well in VLSI CAD as the 
characteristics of the universal representations are very well understood and modeled. Due to the small set 
of the universal building blocks, specifying them and testing for correctness is well understood as 
compared to a field which lacks a universal representation. We aim to study the feasibility of a similar 
hierarchical technique based on successive refinement for systematic protocol design and analysis. 

Significant work has been done in the field of protocol composition from components [1],[2],[3],[4],[5]. 
The Ensemble and the Horus projects [1] stand out as they are able to do both formal proofs of protocol 
stacks as well as code generation. This is a system based of a library of micro protocols which are rather 
coarse grained and whose properties have already been verified. The components are drawn from the 
library and the required protocol is built in a strict vertical fashion from the specification. The emphasis 
here is on protocol correctness and code generation. Since the coarse grained library of building block acts 
as black boxes, extending protocols is not easy in this framework. BAST is another system that uses an 
object oriented library of reliable distributed protocols. As in the previous case implementation and code 
generation is the emphasis. [3] is also based in Ensemble, however it focuses on optimization of the design 
within the Ensemble framework. This mainly deals with implementation optimizations rather than protocol 
design optimization. In [4] and [5] category theory is used to provide guidelines to build functional 
primitives or building blocks. They also address the issue of interaction between building blocks. Though 
this list of references is not extensive, most of them are concerned with correctness of protocols and also 
with implementation or code generation. Few have methodologies using which we can analyze protocol 
performance and almost none of them model performance based on the building block approach. Further, 
they do not address the issue of systematically analyzing protocol performance in a given environment or 
generating scenarios which can be used to provide a good insight into protocol performance. 

III The Hierarchical Building Block Framework 
The purpose of network protocols is to achieve the objectives with which they were designed for, providing 
the service for the applications. For example, Mobile Ad Hoc Network routing protocol, one case study in 
this paper, aims to provide the IP routing protocol functionality suitable for the wireless applications within 
both static and dynamic topology; The micro-mobility protocol, another case being studied in this paper, is 
used to maintain the network connectivity of a mobile node to its current IP subnet while it moves within 
its micro-mobility domain. The network protocols with same objectives and similar mechanisms are often 
classified into the same category.   

A common practice in the current research society is to evaluate and study the protocol as a sole entity 
through simulation or intuitive analysis. The analysis and evaluation of network protocols are done in a 
heuristic fashion. Unlike traditional methods, in our proposed hierarchical building block approach, the 
protocol could be decomposed into a set of parameterized mechanistic components called 'building blocks', 
each of which is in charge of a specific well-defined functionality used in the protocol. Then, these building 
blocks are glued together so that they interact with each other over 'channels' in the required fashion. For 
the different protocol instances falling into the same category, the organization and exact parameter setting 
of building blocks are different in each protocol instance. The actions of the building blocks themselves and 
the interaction between building blocks via channel determine the behavior of the protocol under a given 
environment.  

Two basic elements of building block approach, building blocks and channels, are introduced in the section 
3.1 and section 3.2, respectively. In section 3.3, the dynamic behavior of building blocks and the interaction 
between building blocks in run time scenarios are illustrated. The hierarchical structure of building block 
approach as the basis for analysis, design and synthesis of protocols are discussed in section 3.4.  

3.1  Building Blocks 
The building blocks, the bricks used to construct the network protocol, are a set of separated modular 
components that are common to a broad class of network protocols attempting to accomplish the similar 
goal. Thus, each building block is a constituent of protocol that addresses one or several, conditional on its 

 4



granularity, particular functionalities which are part of overall protocol mechanisms. Their functionalities 
vary from building block to building block, depending on the detailed objective it aims to complete. 
Conceptually, each building block is specified in terms of a number of variables to be stored and modified 
by the building block as well as a series of actions conducted over those variables. The variables are those 
entities the protocol operates, such as the routing tables, packets, timers etc. As a sequence, these variables 
also indirectly indicate the state of building blocks, correspondingly, the state of the protocol. The actions 
define how the individual building block behaves in the face of different conditions. Once the building 
block is called upon, it follows its specification and conducts the appropriate actions over the variables, 
based on the particular circumstance at that time. Hence, the general trend of building block behavior could 
be determined as long as the input event for building block is known.  

However, in practice, we observe that the behavior of network protocols may differ considerably, even 
though they are consisted of the same set of building blocks in a similar way of organization. One plausible 
explanation for this discrepancy might be because the building blocks are parameterized. The set of actions 
specified in building block only defines how the building block reacts to various input event in general 
trend. However, some detailed aspects of mechanisms of building block are influenced by its parameter 
settings. Therefore, different values for the parameters of building block may vary the protocol behavior 
and protocol performance, more or less, across protocols belonging to same category.  

In order to distinguish and represent the building blocks with different functionalities and parameter 
settings, it is essential to capture the inherent characteristics and properties of building blocks. Based on the 
above discussion, formally, we describe the building block as tuple  

[V(ariables), E(vent)  E(ffect), P(arameters)]  
where  

(1) The V(ariables) describe the variables kept at each building block, used to model the state status of 
building block;  

(2) The E(vent)  E(ffect) includes a set of rules regulating the transitions from the incoming event to the 
outgoing effect generated by the building block. In effect, it defines the functionality of the building 
block under various input conditions. The E(vent) describes the phenomenon which incurs this 
building block, including procedure call, message passing or packet transmission etc. After the event 
happens, the building block conducts the specific actions over the variable and creates resulting event. 
The E(ffect) describes the resulted phenomenon, including procedure call, message passing or packet 
transmission etc;  

(3) The P(arameter) defines parameters used for the mechanisms for building block reflecting the 
implementation details, such as how the functionality could be achieved, associated with the range of 
values. The parameters are used to adjust the performance of building block.  

Thus, the architecture of building block is composed of three significant elements: variables kept in 
building block, the actions taken by building blocks and the parameters of building block mechanisms.  

As an example in Mobile Ad Hoc network routing protocol, the task of maintaining the caching table is 
considered as a single building block. In addition to a number of caching table entries (i.e., variables) used 
to maintain the routing information within the network, the building block also includes the basic 
operations in terms of set of transition rules between events(i.e., actions), including caching table initiation, 
caching table insertion, caching table elimination and caching table lookup. Several parameters in this 
building block are number of caching entries, routing entries expiration timers etc, which is expected to 
affect the detailed behavior and performance of this caching table maintenance building block. In the case 
study shown in section VI, we are conducting a detailed investigation on this building block.  

3.2 Channels 
Each individual building block is responsible for one specific function, which is only part of whole protocol 
mechanisms. Therefore, various building blocks with different functionalities are organized together in 
certain fashion to realize the protocol mechanism as a whole. Specifically, the building blocks are 
connected with each other via their interfaces on the well-defined channel.  

 5



Channel is introduced to model the connection between building blocks. Typically, interface calls between 
building blocks in a local node can be modeled by a channel which delivers the interface call reliably and 
instantaneously. However when the building blocks are located in different nodes, such interface calls may 
be lost, duplicated, reordered, delayed etc. The channels simulate these effects by applying the required 
effect, depending on the type (localized or distributed) of interaction. The concept of channels enables us to 
model and represent the different type of connections between the building blocks in a uniform way. 

It is not a trivial task to determine whether a channel exists between two building blocks. However, by 
comparing the overall functionalities of protocol mechanism and the functionalities of two building blocks 
being examined, we are able to gain some clues whether one building block would interact with another 
through interface calls. In other words, each of the building blocks is linked to other building blocks via the 
channels if and only if there is an interface call happening between these two building blocks. To be in 
detail, if the function of one building block is called upon by another building block, or if some messages 
are passed, or some packets are transmitted between them, a channel seems to exist between these two 
building blocks. Only in this way, the logical transition between building blocks conforms to the 
requirement of protocol mechanisms. 

The building blocks may interact with each other within the same node, or the building blocks between 
different nodes are also able to interact with each other. In our observation, most of the intra-node building 
block interactions are the interface calls with message passing or without, while the inter-node building 
block interactions often involve the process of packet transmission.  

It is also essential to capture the inherent properties of the channel between building blocks, we describe 
the channel as a tuple  

[I(nport) O(utport), C(haracteristics), M(essages)]  
where  

(1) The I(nport) designates the input interface of building block on one end of channel, the O(utport) 
designates the output interface of another building block on the other end of channel. By specifying 
pair of input port and output port of two building blocks, we are able to determine the channel position 
(between the building blocks). In effect, it also defines the potential interaction between building 
blocks.  

(2) The C(haracteristics) describes the properties of the channel, including the characteristics of delay,  
loss experienced  by the packets. 

(3) The M(essages) describes the type of the messages, if any, transferred over channel between the two 
building blocks. 

Therefore, we are able to define the channels between building blocks used in the network protocol, by 
capturing two main elements: placement of channel and the characteristics of channel.  

3.3  Dynamic Behavior of Building Blocks and Channels 
Once the building blocks and the channels are determined, the network protocol could be represented as a 
graph consisted of building blocks and channels, where the parameterized building blocks are the vertices 
while channels connecting the building blocks are the edges. Conducting the operations of individual 
building blocks in an appropriate order, we are able to implement the protocol mechanisms. This reflects 
the static aspect of protocol mechanism. 

The network protocol is deployed and operated under a variety of different environments, which generates 
a sequence of events causing the protocol to act. Those events are of various types, including the link 
breakage caused by the node mobility and the radio propagation effect, service interruption caused by node 
failure, the service requests placed by the applications and users etc. Thus, if the protocol mechanism 
consisted of building blocks and channels could be thought as a system, the sequence of events generated 
by the environment are the input stimulus to the system. Upon receiving the input stimulus, the building 
blocks react to the incoming events, conducting the proper operations and interacting with each other, in 
accordance with the transition rule sets regulated by the functionality of building blocks and channels.   

 6



The tuples defined for building blocks and channels in section 3.1 and section 3.2 only reflect their static 
aspects, including their functionalities and their inherent characteristics. However, the dynamic behavior of 
building blocks and channels under certain scenarios at run time remains unknown. Since the 
functionalities of building blocks are deterministic, hence, their dynamic behavior could be estimated if the 
sequence of input events is known. To be exact, we could describe the dynamic behavior of building block 
as  

{[V(ariables), E(vent)  E(ffect), P(arameters)], E(vent)} 
where tuple [V(ariables), E(vent)  E(ffect), P(arameters)] identifies the functionality of building block 
and E(vent) specifies the sequence of events injected into building block. Similarly, the interaction between 
building blocks could be estimated if the events occurring over channel are known. We also describe the 
dynamic behavior of interaction between building blocks as   

{[I(nport) O(utport), C(haracteristics), M(essages)], E(vent)} 
where tuple [I(nport) O(utport), C(haracteristics),M(essages)] identifies the key properties of interface 
call conducted over the channel and E(vent) describes the sequence of events happening in the channel. 

The performance of building blocks with different parameter settings may vary under various 
environments. To analyze the trend of its performance, building block could be modeled as a mechanistic 
‘black box’ with certain parameter settings. The performance for building block could be formally 
described as 

    Performancei = fi( Pi, E ) 
Where Pi are the values of parameter settings for building block i, and E represents the underlying 
environments, Performancei is the certain performance metric of the building block i. Function fi( ) reflects 
the mechanism of building block i, may or may not be written in close form.  

One example is the remote cache lookup building block in Dynamic Source Routing (DSR) protocol in 
MANET under mobility scenarios. In this building block, the cache, in effect the routing table, is looked up 
once some existing route is broken. One of metric capturing the mobility environment is the frequency of 
link breakages. One of its performance metrics is the overall overhead to conduct this lookup. By adjusting 
the size of cache table and how the cache tables are updated, we may achieve different performances under 
the same mobility scenarios.   

The individual building block with specific parameter setting achieves certain performance under some 
environment. However, those building blocks may interact with each other in a complex fashion. How 
these building blocks and their interaction coordinate together to affect the overall performance is of our 
interests. Through careful examination of interaction between building blocks, we are able to gain an 
insight into how some building blocks affects others’ behavior. By appropriately addressing this issue, the 
interaction between the performances of various building blocks could be learnt. In this way, we are able to 
synthesize the small models of several interacted building blocks into the model for the high-level building 
blocks consisting of those small building blocks.  

As an example, the performance of a high-level building block consisted of three low-level building blocks 
can be described as follow 

 Performance = G(f1( P1, E ), f2( P2, E ), f3( P3, E ), h12( ), h13( ), h23()) 
Where f1( P1, E ), f2( P2, E ), f3( P3, E ) describe the performance model of the three low-level building 
blocks respectively, and h12( ) ,h13( ), h23() describe the interactions between those building blocks. 

3.4  The Hierarchical Organization of Protocols in terms of Building Blocks 
The whole network protocol is initially broken into set of building blocks with different functionalities. 
These building blocks interact with each other via the channel between them, based on the rule sets of 
building blocks. Each building block has its own behaviors under different environment. The overall 
behaviors of network protocol under environment are a combination of the behaviors of different building 
blocks.  

 7



 
Figure 2:  The Protocol Design, Analysis and Refinement Framework Through Building Block Approach 

Sometimes, analyzing and modeling these building blocks is still not a simple task. A natural thought is to 
decompose these building blocks further. That is, the functionality of high-level building block could be 
further decomposed into a number of low-level building blocks, each implements part of the functionality 
of the high-level building block. The division of building blocks is done successively, until at the level 
where the resulting low-level building blocks are simple enough to be modeled in complete along with their 
definition of functionality and parameters as well the interaction between them. Since the decomposition of 
protocol is done in a hierarchical manner, we call it as Hierarchical Building Block framework. Fig.2 
illustrates a hierarchical building block approach for a specific network protocol.  

In decomposition, the set of low-level building blocks with their interaction should be equivalent to the 
original high-level building block. To be in detail, several rules should be satisfied during the 
decomposition process, including 
(1) The set of low-level building blocks in concert accomplish the same functionality of high-level building 
block; 
(2) The abstracted structure of low-level building blocks together with their interactions between them 
agree with the structure of high level building block.  
(3) The interfaces of the set of low-level building blocks conform to the requirement of applications, 
defined in a similar way of interfaces of its high-level counterpart;  
(4) The set of low-level building blocks achieve the same behavior of high-level building block under 
various network scenarios; 

As long as above rules are observed, the decomposition of high-level building block into set of low-level 
building blocks could be done in different ways, depending on the designer’s preference.  

IV The Modeling of the Environment 
Network protocols are deployed in various kinds of environments where complex and unexpected events or 
phenomenon may happen. For example, the intra-domain routing protocols will be deployed in variety of 
subnets with different topologies; mobile Ad hoc networks could be used in different kinds of scenarios 
where the node mobility patterns, communication traffic patterns may vary widely; wireless sensor 
networks, which collect and monitor the physical phenomenon, are used for a mixture of applications 
ranging from habitual environment monitoring to tactical object tracking. However, the designed protocols 
may or may not be able to accomplish the objectives with which the protocols designed for and achieve the 
desirable performance, when deployed in those realistic environments. For the designers and researchers, 
how the protocols perform under various practical environments is a challenging question should be 
addressed.  

 8



It is essential to evaluate and analyze the performance of designed protocol in a variety of environments 
before the deployment, in a systematic way. Thus, we are able to gain a deeper understanding into how the 
protocols, and its composite building blocks, behave under different test cases. Furthermore, through 
examining the effect of building block parameters, those parameters could be adjusted to achieve the 
desirable performance under a given scenario. This is suitable for the cases where the functionality and 
requirement of network protocol is application based, such as, the design of wireless sensor network.  

Modeling the underlying environment in a systematic and faithful way plays an important role in the 
evaluating, analyzing and refining the network protocol. The environment is thought as an n-dimensional 
evaluation space, with each dimension to represent a particular factor of environment. Each factor 
represents a certain class of events with common properties occurring to the protocols. For example, the 
underlying environments to test the mobile ad hoc network and sensor network potentially include several 
factors, such as node mobility pattern, communication traffic pattern, node failure pattern and power 
consumption pattern etc. Moreover, each factor of the environment is also an m-dimensional subspace, 
consisted of several small elements with different characteristics. For instance, the mobility space includes 
several dimensions like relative velocity between nodes, spatial dependence of velocity between nodes, 
temporal dependence of velocity between time etc.; The communication traffic space includes the 
dimensions such as duration of communication traffic, location of communication traffic and type of 
communication traffic etc.  Fig. 2 illustrates an example for the evaluation space of environment spanning 
over several dimensions.   

To thoroughly study the effect of environment on protocol performance, we seek to evaluate the protocols 
over a rich set of models that span the design space of the environment. To do so, the first step is to 
determine the dimensions of evaluation space and its composite subspaces. Once these are determined, we 
are able to define certain metrics to quantitatively measure their key characteristics. By taking the 
characteristics of each environment space dimension into consideration, a set of parameterized environment 
models could be articulately designed and created, resulting in a good coverage of the proposed 
environment metric space by producing a rich set of environment models. This set of environment models 
is used as an underlying ‘‘test-suite’’ to evaluate and analyze the protocol and its mechanistic building 
blocks in future research.  

V Design, Performance Analysis and Refinement of Protocol 

5.1 Design 
Protocol design usually starts with a high level functional description which is later refined into additional 
functional requirements based of the correctness and performance requirement in a given environment. 
This type of monolithic design is extremely complex when the protocol requires many functional 
components that interact in distributed fashion. So we advocate a modular and hierarchical design approach 
in which the functional requirement of the protocol is achieved by having coarse-grained Building blocks 
that interact with each other to produce the required functionality. Once the functional requirements of the 
building blocks and their interaction are known, the interfaces, states, variables and parameters can be 
defined. Based on the interaction between the building blocks and the environmental conditions in which 
they are expected to perform, they can be connected by appropriate channels. Depending on the channel 
characteristics, additional mechanisms may need to be added to each of the building blocks so as to meet 
the functional requirements of the building blocks under various channel characteristics. This process can 
be repeated continuously till we reach the required granularity.  

An important thing to note here is that there may be many ways in which the protocol can be split into 
building blocks and each combination may have the same of different performance. Implementability of the 
functions of the building blocks, complexity of implementation and extensibility of the protocol are some 
of the things that need to be kept in mind while using the building blocks approach. 

5.2 Performance Analysis and Refinement 
The ability to analyze performance of a protocol based on the building blocks approach is essential during 
design of new protocols or when the existing protocols need to be refined. While designing new protocols, 

 9



there may be many ways in which the protocol can be divided into functional components. Performance is 
one of the criteria used to select one type of functional division over the other. Since we already know the 
functional building block and their interaction, we can evaluate the performance under the given operating 
environment as described in Section IV. 

Refinement of existing protocols or newly designed protocols essentially involves either tuning the 
parameters of the building blocks or adding / deleting building blocks from the original design. With the 
operating environment represented as n-dimension evaluation space, we need to translate the parameters of 
the environment into interface calls of the building blocks that directly take inputs from the environment. 
For example, fading, a physical layer effect caused by environmental changes translates to some 
distribution of BER, which is the input to the physical layer building blocks. Once we translate these 
environmental changes to interface calls with the required properties (temporal, probabilistic, stochastic 
etc), they can be used to understand and analyze the effects on the environment on protocol performance 
based on the performance metrics of building blocks and channels that link them together. 

Performance tuning involves optimal or near optimal setting of parameters of building blocks so that the 
best possible performance is obtained in the gives set of environmental conditions. The building blocks 
approach allows us to understand how the protocol building blocks performance affects the overall 
performance and hence performance tuning can be done in a systematic manner. When entire building 
blocks or a set of building blocks are replaced as in the case of protocol re-design or refinement. It is much 
easier to understand the effect of the new building blocks and its interaction with the other building blocks, 
consequently on the performance of the overall protocol. 

VI Performance Analysis of Building Blocks for MANET Reactive 
Routing Protocols 

    Mobile Ad hoc Network is a collection of mobile nodes forming a temporal network without any 
existing infrastructure. Previous study [8] observes that the mobility factor plays a significant role in 
affecting the MANET routing protocols. Therefore, one of the main challenges in mobile ad hoc networks 
research is understanding the effect of mobility on the performance of routing protocols. In this case study, 
we carry out a preliminary building block based analysis for the impact of mobility on two reactive routing 
protocols, DSR and AODV, after identifying the basic building blocks of MANET reactive routing 
protocols and their parameter setting. Thus we can extract the relative merits of different parameter settings 
and achieve a better understanding of various building blocks of MANET routing protocols, which will 
serve as a solid cornerstone for development of more efficient MANET routing protocols.  

The part(a) and part(b) of Fig.3 show the building block architecture for DSR and AODV respectively, 
the part(c) of Fig.3 shows a generalized building block architecture for reactive MANET protocols. 

 
Figure 3:  Diagram of Building Block Approach for MANET Reactive Protocol 

 10



6.1  Building Blocks for DSR and AODV 
First we discuss the functionality, organization and design choices (parameter settings) of the identified 

building blocks of reactive MANET routing protocols and specific parameter settings for DSR and 
AODV1. We pose some questions about the utility of the various design choices made by these protocols. 
In section 6.2, we attempt to answer these questions.  

The mechanism of reactive MANET routing protocols such as DSR and AODV is composed of two 
major phases: Route discovery phase and Route maintenance phase. Route Discovery is initiated if there is 
no cached route available to the destination. This mechanism consists of the following building blocks: 

Flooding building block: The flooding building block takes responsibility to distribute the route request 
messages within the network. Here, the key parameter is the range of flooding, generally described by TTL 
field in the IP header. For the range of flooding, DSR conducts a non-propagating direct-neighborhood 
inquiry(TTL=1) before the global flooding(TTL=D, D is network diameter). Similarly, AODV uses the 
expanding ring search(TTL=1,3,5,7) before the global flooding is initiated. Here, we want to answer the 
following question: How useful are non-propagating route requests? 

Caching building block: The caching building block helps to efficiently and promptly provide the route 
to the destination without referring to the destination every time. One key parameter of this block is 
whether aggressive caching is allowed, i.e. whether multiple cache entries are allowed for the same 
destination and whether a node can cache the route information it overhears? As we know, DSR uses 
aggressive caching, while AODV does not. For caching, we are interested in the following questions: How 
useful is caching? and Is aggressive caching better than non-aggressive caching? 

Route Maintenance phase takes the responsibility of detecting broken links and repairing the 
corresponding routes. This phase is made up of the following building blocks: 

Error Detection building block: It is used to monitor the status of the link of a node with its immediate 
neighbors. Here, the parameter is the mode of error detection used. Since both DSR and AODV can use 
similar choice, we do not investigate this building block in our analysis.    

Error Handling building block: It finds alternative routes to replace an invalid route after a broken link 
is detected. One of the parameters to this block is what recovery scheme should be used. In DSR, on 
detecting a broken link, the upstream node will first search its cache to replace the invalid route(this 
scheme is called salvaging), although the found alternative route may also be invalid in some scenarios. 
While in AODV, the upstream node detecting the broken link will initiate a localized flooding to find the 
route to the destination. For this building block, we are interested in the following question: Which is a 
better scheme for localized error handling: cache lookup or localized flooding? 

Error Notification building block: It is used to notify the nodes in the network about invalid routes. 
The key parameter to this building block is the recipient of the error message. Either only the source is 
notified or the entire network is notified. Since both DSR and AODV only notify the error to the source, so 
we do not investigate this building block in our analysis.    

Besides these three questions about the design choices, we are also interested at the explanation for the 
observation we made in Ref.[8]: DSR outperforms AODV in most mobility scenarios except the Freeway 
and Manhattan model with high mobility. 

6.2 Experiments to Evaluate and Analyze the Building Blocks  
    We identified parts of the network simulator (ns-2) code[13] which implement these building blocks and 
profiled them during our simulations. Following the methodology of modeling the environment introduced 
in Section III, the mobility scenarios are generated to include a set of random waypoint, RPGM, Freeway 
and Manhattan models whose maximum velocity varying from 5m/s to 60m/s, which is believed to span the 
whole evaluation space for mobility factors. The performance of building blocks under those mobility 
scenarios is discussed as follow and several questions asked above are answered. 

                         
1 The process of protocol decomposition for both protocols, which follows the methodology introduced in this paper, is omitted 
because of the limited space. Please check the Ref.[6] for the details. 

 11



Flooding: We measure the likelihood of finding a route to the destination from the source's neighborhood. 
Through simulations, we find that non-propagating route request is frequently used (more than 30% for 
DSR and more than 10% for AODV in most scenarios). However, the ratio for DSR is almost twice as 
large as that for AODV across all mobility models. A possible reason for this comes from the fact that DSR 
uses aggressive caching as compared to AODV. When such a caching scheme is coupled with the 
mechanism of non propagating route requests, it translates to low routing overhead and high throughput as 
was shown in our study and several other comparative studies. Thus, it seems that caching has a significant 
impact on the performance of DSR and AODV. Hence we study it next. 

Caching:  To measure the effectiveness of caching, we evaluate the ratio of the number of route replies 
coming from the cache to the total number of route replies. Fig.4(a) and Fig.4(b) show that this ratio is high 
for Random Waypoint, Manhattan and Freeway models, which implies that most of the route replies for 
these mobility models come from the cache(more than 80% in most mobility scenarios). 

    The difference in the ratio for DSR and AODV is greater than 20% for all mobility models. DSR uses 
aggressive caching as compared to AODV. Thus, the likelihood of a route reply coming from a cache is 
higher in DSR than in AODV. Therefore, fewer route requests will be needed and thus the routing overhead 
of DSR is lower than AODV as we observed in Ref.[8]. Thus, aggressive caching seems to be a good 
design choice.  

    To completely evaluate the caching strategy, we also need to examine the validity of the cache entries. 
We evaluate the ratio of invalid cache entries to the total number of cache entries for DSR. In experiments, 
we find the invalid cache ratio increases from RPGM (around 10%) to Random Waypoint to Freeway 
(around 60%) to Manhattan (around 80%) mobility models. It means that caching may have adverse effects 
in mobility models with a high relative speed and it may lead to cache invalidation. Packets may be sent on 
invalid routes which might lead to packets being dropped and route request retries. This leads to a lower 
throughput and higher overhead for DSR for the Freeway and Manhattan models as was shown in our 
study. 

On the other hand, in mobility models with very high relative speed like Manhattan and Freeway, AODV 
seems to achieve as good a throughput as DSR (and sometimes better). AODV does not use aggressive 
caching, thus the ratio of the number of route replies coming from the cache to the total number of route 
replies is lesser for AODV than DSR. Thus, the likelihood of getting invalid routes from the cache is lesser 
for AODV than for DSR. This may explain why AODV outperforms DSR in Freeway and Manhattan 
models with high mobility.  

 
   Figure 4: Ratio of Route Reply from the Cache 

Moreover, at high relative speeds, the number of routes broken is greater. Thus, a protocol which has a 
better error handling mechanism at higher relative speeds might perform better in such situations. This line 
of reasoning leads us to evaluate the next building block of interest - Error Handling. 

Error Handling: To study the effectiveness of error handling, we focus on localized error handling. We 
evaluate the ratio of the number of localized error handling to the total number of route errors for both DSR 
and AODV. For DSR, we notice that salvaging accounts for less than 2% of the total number of route 
errors. Moreover, if we take invalid cache entries into account, the effect of salvaging on the protocol 
performance is further lowered. On the other hand, in AODV, a route request is initiated by the upstream 

 12



node which detects the broken link if it is closer to the destination. In AODV, the frequency of initiating 
localized flooding is between 40% and 50% for Freeway and Manhattan models. Moreover the routes 
obtained by this mechanism are more up to date than those from the cache salvaging in DSR. This is 
another factor which explains the better performance of AODV as compared to DSR in the Freeway and 
Manhattan models.    

6.3 Discussion for Refinement of Building Blocks 
The above study of the building blocks has given us greater insight into the design of the reactive 

routing protocols for MANETs. Decomposing a protocol into building blocks and evaluating these building 
blocks have shown us scenarios in which the chosen parameters can give a better performance. From the 
above study, we learnt the following principles of protocol design:  
1. Caching helps reduce the protocol overhead. However, whether aggressive caching should be used 

depends on the scenarios in which the protocol will be deployed. For low mobility scenarios, aggressive 
caching might be useful, while for higher mobility scenarios, the more stale cache entries incurred by 
aggressive caching might affect the protocol throughput adversely.  

2. Non Propagating route requests, when combined with caching also reduce the protocol overhead. If 
caching is widely done in the network, it may be more advantageous to do non propagating route 
requests (or expanding ring search) than globally flooding the route request. In DSR, due to aggressive 
caching, it may be more useful to do expanding ring search (from the source) on a route error than doing 
a global flooding (from the source).  

3. The nature of localized error handling also has a significant impact on protocol performance. Re-
initiating a route request from an intermediate node can be more advantageous than doing a local cache 
lookup in high mobility scenarios, while a cache lookup might be more advantageous for low mobility 
scenarios. 

Thus, no particular parameter setting of these building blocks is the most optimal for all scenarios. This 
further strengthens our conclusion that there is no clear winner among the protocols across all mobility 
scenarios. 

VII Building Block Analysis for Micro Mobility Protocol 
Mobile IP supports mobility of the IP hosts. However frequent handover leads to frequent registration 

with the home agent, leading to increased packet loss and delay. Micro-mobility protocols reduce this delay 
and loss by hiding mobility of the host from the Home agent as long as the mobile node (MN) is with the 
same domain. Extensive research in the field of micro mobility has led to the development of a large 
number of protocols like HAWAII [12], CIP[10] and M&M[11]. Most of these protocols use a combination 
of customized mechanisms for routing and handoff. Micro mobility protocols need to work in a wide 
variety of scenarios, such as varied underlying infrastructure support, mobility patterns, MAC and physical 
layer. To explore the design and evaluation space, we partition the functionality of micro mobility protocols 
the following common mechanistic building blocks: (1) addressing, (2) routing and packet forwarding, (3) 
association and de-association detection (mobility detection), (4) buffering, (5) handoff optimization and 
signaling, (6) paging and (7) authentication, authorization and accounting (AAA). In addition, we recognize 
the need for additional mechanisms: (1) address mapping, and address map distribution and (2) distribution 
tree root selection and announcement. Different versions of different micro mobility protocols have 
different instances (appropriate subset) of the building blocks. Fig. 5 depicts the building blocks (except 
AAA) and the relationship between them. The dotted lines indicate the information required by different 
building blocks whereas the solid lines indicate one building block utilizing / triggering mechanisms of the 
other building blocks. 

To get a better understanding of the building blocks in different micro mobility protocols, the next part 
of this section describes where each building block is used in different micro mobility protocols and how 
packets arriving at the BR are delivered to the MN (in a foreign domain).  

    When an MN moves from one domain to another, it incurs MIP handoff. The MN acquires a unicast 
address, which it retains as long as it remains within that domain. In M&M, the unicast address is also used 
to generate a unique multicast address using an algorithmic mapping. In contrast, CIP and HAWAII do not 
use any kind of mapping mechanism. In these protocols, when a border router(BR) of the foreign domain 

 13



within which the MN resides receives packets destined to the MN, it either looks for a forwarding entry in 
its routing table or a tunnel to the next agent in the hierarchy. If neither is found, it can optionally buffer 
packets and/or page the MN. For the BR to recognize that the packet is destined to an MN (so that BR 
initiates paging for packet destined only to MN), there must be a mechanism by which BR can recognize 
the association. Therefore mechanisms that map and announce the association of the MN's address are 
required. The MN (or its serving access router or base station(BS)) responds to paging and initiates route 
setup. To initiate the creation of the delivery tree, the initiator must know where to send the route update 
messages (usually towards the root of the delivery tree). Thus there must be a mechanism by which the root 
of the delivery tree can be selected (statically or dynamically) and announced2. 

Figure 5:  Building Blocks for Micro Mobility Protocol                                                  

7.1 Analysis using Building Block Approach 
Packet delivery performance of a micro-mobility protocol is a strong function of the type of handoff 

optimization mechanism being used. Typically, handoff delay and jitter are a function of association/de-
association detection (mobility detection), AAA, route setup/repair and handoff optimization delays.  

Thandoff =  f (TmobilityDetection , TAAA  , TrouteRepair , ThandoffOpt, Tgap), 
where TmobilityDetection is the time it takes for the MN to detect that it has entered into the coverage of a new 
BS (association), or for the old BS to realize that the MN has moved out of its coverage (de-association), 
TAAA is the time taken to complete AAA functions at the micro mobility level, TrouteRepair is the time it takes 
for the routing entries to be installed on the route to the MN after it has moved, ThandoffOpt is the time 
required to setup buffering and forwarding functionality (not necessarily in that order) and Tgap is the time 
for which the MN is not in the  radio coverage of any BSs.  

Association and de-association detection building block is responsible for triggering route repair and 
handoff optimization mechanisms. As the granularity of the TmobilityDetection becomes coarse, handoff jitter 
tends to increase. When this approaches the order of magnitude of link delays, Thandoff increases. However, 
scenarios in which the MN can simultaneously communicate with more than one BS, the granularity of 
TmobilityDetection is not an issue as long as there is sufficient overlap in the radio coverage. 

The time taken for route repair is a function of the delay of the path on which the update messages 
traverse. TrouteRepair in bi-cast and CAR-set handoff optimization schemes is of the order of link delays 
from the new BS to the fork router. In buffer and forward schemes like HAWAII MSF, it is twice as much 
since route update message travels from the new BS to the old BS (typically this is twice the magnitude of 
the delays from BS to fork router). In buffer and forward schemes like MSF, the time required to forward 
packets is of the order of link delays from the old BS to the new BS, whereas in forward and buffer 
schemes like triggered CAR-set, the forwarding time is of the order of the wireless link delay. 

7.2  Evaluation Scenarios 

 14

                         
2 For the detailed discussion about the functionality of building blocks in the micro mobility protocols, please check Ref.[7]. 



With an understanding of the effect of the building blocks on performance metrics, we can generate 
parameterized scenarios to stress the building blocks. Following parameters can be used to generate a rich 
set of evaluation scenarios: Radio technologies (reactive and non-reactive handoff), Uniformity of radio 
coverage (varying gaps in radio coverage), Link delays (wired and wireless), Topology (tree of varying 
depths, non-tree), MN mobility patterns and Granularity of association and de-association detection. To 
target the handoff related building blocks, we generated scenarios with varied radio technologies (MN 
having the ability to simultaneously communicate with two or more BSs, MN with the ability to 
communicate with only one BS at a time), radio coverage (different overlaps, gaps in radio coverage), 
different link delays and tree depths. In scenarios where there were no gaps in wireless coverage, and MN 
was able to simultaneously communicate with more than one BS, bi-casting yields negligible loss and zero 
handoff delay (for both CIP and M&M), but at the cost of increased packet duplication. In this scenario, the 
MN continues to receive packets from the old BS while the mobility detection and route repair occurs (as 
long as it is in the coverage of both the BS, Toverlap). As long as the following condition is satisfied, bi-cast 
handoff optimization mechanism does not incur packet loss. 

Toverlap > TmobilityDetection + TAAA + 2 * TrouteRepair  
However, bi-cast handoff scheme incurs high packet loss in scenarios in which the MN cannot 

simultaneously communicate with more than one BS (reactive handoff scenarios). Fig. 6 shows the handoff 
delay and jitter performance of CIP and M&M with bi-cast in reactive scenarios. Here, Toverlap is effectively 
zero and the handoff delay for bi-cast given by the following formula 

Thandoff = TmobilityDetection + TAAA + 2 * TrouteRepair. 

Since packets are not buffered, all packets during handoff are lost when bi-cast handoff optimization is 
used in reactive handoff scenarios. Though HAWAII incurs handoff delay, it does not suffer any packet 
loss as it buffers packets. For the buffer and forward scheme like MSF  handoff delay is given by  

Thandoff = TmobilityDetection + TAAA + ThandoffOpt. 

In MSF, the ThandoffOpt is effectively the RRT between the new BS and the old BS. Since this is typically 
twice that of  TrouteRepair , MSF suffers from higher handoff delay and jitter. Fig. 7 shows the packet loss 
performance of HAWAII with MSF, M&M with pro-active CAR-set and CIP with bi-cast, handoff 
optimization mechanisms in reactive handoff scenarios. In the pro-active CAR-set scheme, packets are 
simultaneously transmitted to all the BS adjacent to the BS to which the MN is associated with. Therefore, 
the handoff delay is  given by 

Thandoff = TmobilityDetect + TAAA. 

Figure 6:  Handoff Delay and Jitter                                 Figure 7:   Packet loss during reactive handoff  

TrouteRepair is zero since the BS to which the MN hands-off will already be receiving packets. This 
scheme does not use buffering. Here, the CAR-set handoff optimization mechanism trades off extra 
bandwidth to reduce packet loss, handoff delay and reordering. Non buffering schemes like bi-cast and pro-
active CAR-set do not perform very well in scenarios in which there are gaps is radio coverage.  
Mechanisms using buffering perform better in scenarios where there are gaps in radio coverage. In this 
scenario, M&M uses triggered CAR-set handoff mechanism. Here, the old BS senses that the MN is out of 

 15



range and triggers packet delivery to the BSs in the CAR-set. Packets are buffered at each BS and 
forwarded to the MN when the MN moves into its coverage. Packets are lost from the point at which the 
old BS realizes that the MN is out of range until the BSs in the CAR-set start receiving packets (after 
initiating route repair).  This is typically the time it takes to perform signaling between the old BS and the 
CAR-set BS and the time it takes to perform route repair from the new BS. Handoff duration for triggered 
CAR-set is given by  

Thandoff = Tgap + TmobilityDetect +  TAAA. 

However, for buffer and forward schemes like MSF, the time take to handoff is given by  

Thandoff = Tgap + TmobilityDetect +  TAAA  + ThandoffOpt 

Therefore, the MSF scheme incurs slightly higher handoff delay along with packet reordering. The 
triggered CAR-set handoff optimization mechanism trades off a little packet loss to reduce bandwidth 
utilization, handoff delay and packet reordering. Fig. 8 illustrates the packet loss performance of M&M 
(with triggered CAR-set), HAWAII (with MSF) and CIP (with bi-cast). 

To target the routing building block, we evaluated the protocols on different topologies (tree and non-
tree with varying link delay and tree depth). Routing in both CIP and M&M establishes the shortest path 
from the root of the delivery tree to the MN. This is because both protocols send route repair messages 
towards the root of the delivery tree. HAWAII (MSF) establishes the shortest routes only in tree topologies. 
In non-tree topologies, HAWAII establishes sub-optimal routes due to the tight coupling between the 
handoff optimization and the routing building blocks. In HAWAII MSF, after association detection, the 
MN sends a route update message from the new BS towards the old BS. As long as the fork router is in the 
path between the old and new BS, this scheme establishes shortest routes. However, if fork router does not 
lie in the shortest path from the old BS to the new BS, forwarding paths are established from the old BS . 
This not only leads to sub-optimal routes, but also to increased bandwidth utilization and increased mobile 
specific states in the network.  

Figure 8:  Packet loss in scenarios with non-uniform radio coverage 

7.3 Observations 
    Depending on the performance requirement and the scenarios in which we expect the protocol to 
perform, a single handoff optimization mechanism may not be sufficient. A protocol that can adapt or 
select an appropriate handoff optimization mechanism to the scenario at hand will invariably perform better 
than an instance of the protocol that cannot adapt.   

Using the building block approach we were able to clearly identify and isolate the factors that influence 
the protocol performance. Further, the approach also enabled us to understand the effects of different 
building blocks in different scenarios. In our experience, using the building block approach facilitates the 
systematic study (by generating scenarios targeting specific building block) of the effects of various 
handoff mechanisms (bi-casting, buffering) on packet delivery performance (packet loss, handoff delay, 
packet duplication) and route setup on route optimality and scaling behavior. This gives us an important 

 16



insight into the design of micro-mobility protocols, enabling us to target specific building blocks to achieve 
the required performance in various scenarios. 

VIII Discussions  
    This work represents the first step in our effort to evaluate, analyze, model and design the network 
protocol in a systematic way through the building block approach. The fundamental idea and generic 
framework of building block approach are described and several key concepts are introduced in this 
challenges paper. However, we should acknowledge that a number of open questions in this framework 
remain unsolved until now and bear further research. 

    One open question is the formal methodology to break down the protocol into building blocks by which 
the decomposition of protocol into building blocks and interactions could be automated. Our current 
solution is still a heuristic method where the procedure of decomposition, organization, generalization and 
parameterization of building blocks are conducted manually based on the designer’s experience [6]. It is a 
well-known fact that the bad modular design, which caused by the human-introduced factor, could result in 
the unnecessarily complex and inefficient systems made of functionality modules. For example, improper 
abstraction of mechanistic building blocks based on functionality may give rise to the complicated pattern 
of interactions between building blocks, which is contradicted to our original objective of reducing the 
complexity of protocol evaluation and analysis through building block approach. To break down the 
protocol into set of building blocks in a meaningful way could be done in numerous ways. Currently we are 
looking forward to investigating a minimum-interaction decomposition scheme resulting in the 
functionality independent building blocks based on the graph theory.   

    The protocols of a given class are normally consisted of similar set of building blocks with particular 
functionality. The functionality of building block is similar while their parameter setting and 
implementation details across protocols may vary. To utilize this commonality, a frequently used method in 
industry is to establish the library of off-the-shell building blocks for a given type of protocols attempting 
to achieve the same objective. Thus, the task of protocol designers and researchers is to pick up the proper 
set of building blocks and adjust the parameter settings based on the deployed environments. For example, 
IETF reliable multicast transmission(rmt) charter suggests a set of building blocks including data reliability 
building block, congestion control building block, security building block, group management building 
block, session management building block[14,15] should be used to compose a protocol for the purpose of 
reliable multicast transmission. Thus, one challenging question for the research communities is to come up 
with the list of fundamental building blocks used in their specific research areas. This effort to standardize 
the building blocks for different purpose, which is time-consuming and costly at the initial stage, may 
ultimately facilitate the design and analysis of network protocols.  

IX Conclusions  
    The emergence of progressively more complex protocols, such as a variety of application-specific 
mobile ad hoc network and wireless sensor network, demands a systematic methodology or tool to 
evaluate, analyze and model the protocol performance under various environments. In this work, we 
propose a hierarchical building block approach to decompose protocol mechanism into a set of building 
blocks with particular functionality, connecting with each other via channels. The overall behavior of 
network protocol under a given environment is determined by the building blocks as well as the interaction 
between them. As a consequence, the sophistic problem of evaluating and analyzing the protocol 
performance is reduced to a set of sub-problem of evaluating and modeling building blocks in this fashion. 
By looking at the impact of parameter settings of each building block and the interaction between building 
blocks on protocol performance, we are able to gain a deeper insight into the design choice of building 
block, and hence the protocol mechanism, under different environments. This insight could be used to tune 
the parameters of protocol or refine the protocol design in order to improve the protocol performance, 
under the given network environments required by the target applications. As the illustrations of this 
building block based framework, two case studies, Mobile Ad hoc Network reactive routing protocols and 
the micro-mobility protocol, are decomposed into a set of building blocks connecting with each other via 

 17



 18

well-defined interfaces on the channels. Through evaluating and investigating the protocols, several lessons 
about the design for protocol mechanism as well as the underlying test case are learnt.  

    By this work, we attempt to point out a potential direction to analyze and understand the behavior of 
protocol based on the building block approach, as part of numerous efforts in the research community to 
transfer the network design from the ‘art’ in a heuristic fashion to the ‘science’ in a systematic manner.   
 

Reference 
 
[1] Birman, Kenneth, Robert L. Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Robbert van Renesse, Ohad 
Rodeh, and Werner Vogels,“The Horus and Ensemble Projects: Accomplishments and Limitations”, Proceedings of 
DARPA Information Survivability Conference and Exhibition (DISCEX '00) 
[2] B. Garbinato and R. Guerraoui,Flexible Protocol Composition in Bast, Proceedings of the 18th International 
Conference on Distributed Computing Systems (ICDCS-18), IEEE Computer Society Press, Amsterdam, The 
Netherlands,1998. 
[3] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey, et al. Building Reliable, High-Performance 
Communication Systems From Components, Symposium on Operating Systems Principles, 1999 
[4] Purnendu Sinha, Neeraj Suri: On Simplifying Modular Specification and Verification of Distributed Protocols. 
HASE 2001: 173-181 
[5] P. Sinha, N. Suri "Modular Composition of Redundancy Management Protocols in Distributed Systems: An 
Outlook on Simplifying Protocol Level Formal Specification and Validation," Proc. of ICDCS-21, Phoenix, pp. 255-
263, April 2001. 
[6] F. Bai, N. Sadagopan, A. Helmy, "BRICS: A Building-block approach for analyzing RoutIng protoCols in Ad Hoc 
Networks - A Case Study of Reactive Routing Protocols", IEEE International Conference on Communications (ICC), 
June 2004.  
[7] G. Bhaskara, A. Helmy, S. Gupta, "Micro Mobility Protocol Design and Evaluation: A Parameterized Building 
Block Approach", IEEE Vehicular Technology Conference (VTC), October 2003.  
[8] F. Bai, N. Sadagopan, A. Helmy, " IMPORTANT: A framework to systematically analyze the Impact of Mobility 
on Performance of RouTing protocols for Adhoc NeTworks", IEEE INFOCOM (The 22nd Annual Joint Conference of 
the IEEE Computer and Communications Societies), pp. 825-835, March/April 2003, San Francisco. 
[9] A. Helmy, S. Gupta, D. Estrin, 'The STRESS Method for Boundary-point Performance Analysis of End-to-end 
Multicast Timer-Suppression Mechanisms', IEEE/ACM Transactions on Networking (ToN). February 2004. 
[10] A. T. Campbell and J. Gomez,,  "IP   Micro – Mobility Protocols",  ACM SIGMOBILE Mobile Computer and 
Communication Review (MC2R), 2001. 
[11] A. Helmy,  M. Jaseemuddin, G. Bhaskara, "Efficient  Micro - Mobility  using  Intra - domain Multicast-based 
Mechanisms (M&M)", ACM SIGCOMM Computer Communications Review CCR, October 2002. 
[12] Ramachandran Ramjee, Thomas La Porta, Sandy Thuel, Kannan Varadhan, and Shie-Yuan Wang, “HAWAII: A 
Domain-based approach for Supporting Mobility in Wide-area Wireless Networks”, IEEE/ACM Transactions on 
Networking , Vol 6., No. 2, June 2002. 
[13] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, H. 
Yu, "Advances in Network Simulation", IEEE Computer, vol. 33, No. 5, p. 59-67, May 2000. 
[14] B. Whetten, L. Vicisano, R. Kermode, M. Handley, S. Floyd, M. Luby, Reliable Multicast Transport Building 
Blocks for One-to-Many Bulk-Data Transfer (RFC 3048). 
[15] R. Kermode, L. Vicisano, Author Guidelines for RMT Building Blocks and Protocol Instantiation documents 
(RFC 3269). 
[16] M. Abramovici, M. Breuer, and A. Friedman, Digital System Testing and Testable Design, AT&T Labs., 1990  
 

 

http://www.nuprl.org/documents/constable/00discex-horus.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/hase/hase2001.html
ftp://ftp.usc.edu/pub/csinfo/tech-reports/papers/02-775.pdf
ftp://ftp.usc.edu/pub/csinfo/tech-reports/papers/02-775.pdf
http://nile.usc.edu/~helmy/mnm/vtc-draft5.pdf
http://nile.usc.edu/~helmy/mnm/vtc-draft5.pdf
http://nile.usc.edu/~helmy/e2e-journal-5-nu-3.ps
http://nile.usc.edu/~helmy/e2e-journal-5-nu-3.ps
http://ceng.usc.edu/~helmy/vint-computer-mag-article.pdf
http://www.ietf.org/proceedings/03jul/rfc/rfc3048.txt
http://www.ietf.org/proceedings/03jul/rfc/rfc3048.txt
http://www.ietf.org/proceedings/03jul/rfc/rfc3269.txt
http://www.ietf.org/proceedings/03jul/rfc/rfc3269.txt

	ABSTRACT
	I Introduction, Motivation and Challenges
	IIIThe Hierarchical Building Block Framework
	IVThe Modeling of the Environment
	VDesign, Performance Analysis and Refinement of Protocol
	VIIBuilding Block Analysis for Micro Mobility Protocol
	IXConclusions


