
Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996Resource Conscious Design of Distributed Real-Time SystemsAn End-to-End Approach�Manas SaksenaConcordia University Seongsoo HongSeoul National UniversityAbstractIn this paper, we present a resource conscious ap-proach to designing distributed real-time systems. Thiswork extends our original solution [6], which was lim-ited to single processor systems. Starting from a giventask graph, and a set of end-to-end constraints, we sys-tematically generate task attributes (e.g., periods anddeadlines) such that (i) the task set is schedulable,and (ii) the end-to-end constraints are satis�ed. Themethodology presented in this paper can be mostly auto-mated, and provides useful feedback to a designer whenit fails to �nd a solution. We expect that the techniquespresented in this paper will help reduce the laboriousprocess of designing a real-time system, by bringing re-source contention and schedulability aspects early intothe design process.1 IntroductionRecent developments have resulted in the maturityof real-time scheduling theory techniques, and shownthe viability of these techniques for industrial real-timesystems especially in the domain of distributed con-trol systems [3, 9]. However, while this progress is ad-mirable, most real-time scheduling techniques handletiming constraints (i.e., task periods, deadlines, etc.)that are artifacts of system design, and for a given sys-tem may be chosen in many di�erent ways to meetthe end user requirements. Consider, for example, arobotic control system [15]. The control laws are gener-ally implemented as multi-task programs, and may beallocated to multiple processors on a distributed sys-tem. The timing behavior of such a system must ensurethat end user requirements such as maximum value oftracking errors are satis�ed. Such properties intimately�The work reported in this paper was supported in part byNSERC Operating Grant OGP0170345, and by Engineering Re-search Center for Advanced Control and Instrumentation (ERC-ACI) under Grant 95-26.

depend on factors such as sampling rates for inputs, up-date rates for outputs, and end-to-end latencies fromsensor to actuators [8]. Through simulation or analy-sis, a control engineer can specify requirements such asmaximum acceptable sampling rates for a given con-trol loop, or maximum latency from a sensor input toan actuator output, and these requirements constitutewhat we call high-level end-to-end timing constraintson system inputs and outputs.The process of deriving task attributes from suchhigh level timing requirements is perhaps the most ad-hoc of all steps in the development process of a real-time system. In current engineering practice, task at-tributes are often mandated by control engineers andrarely take into account the resource constraints. Assystems become more complex, such ad-hoc methodsto derive feasible task parameters do not scale well dueto to the manual and labor-extensive process of trialand error based on engineering intuition. In addition,many of the synchronization requirements get tightlycoupled with the derived timing constraints. This lossin traceability of requirements for a system under de-velopmentmay result in signi�cant redesigns when tim-ing constraints are changed.In this paper we address the problem of transform-ing a high-level real-time system design into a set ofschedulable periodic tasks. The current work improvesand extends our original solution [6] for a single pro-cessor system to a distributed system environment. Wemodel the problem as a constraint solving problem, inwhich the original end-to-end timing constraints are ex-pressed as a set of constraints on task attributes. Theconstraints are then solved to derive a set of schedula-ble task parameters. Figure 1 shows an overview of ourmethodology. As shown in the �gure, our objective isto generate an implementable set of tasks from a taskgraph design of the system. This involves (1) derivingtask periods, deadlines, phases, etc., and (2) synthesiz-ing code for inter-task communication. In this paper,we focus our attention on the constraint derivation andconstraint solving aspects of our design methodology.The main contribution of our work is the develop-



Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996
Allocation

End-to-End
Requirements

Task
Deadlines

Task
Periods

Task
Phases

Task
Code

Kernel
Library

Automatic

Code Generation

Task

Fail

Design-to-Implementation Mapping

(Period and Deadline Assignment)

Task Graph
Design

Redesign
Fail

Per-Processor Scheduling

Executable System

Figure 1. End-to-End Design Methodologyment of a systematic methodology to transform a high-level design into a schedulable system. The methodol-ogy presented in this paper provides substantial ben-e�ts: (1) It provides designers with a rapid prototyp-ing tool which helps them build a running prototypequickly, and to locate and isolate schedulability andperformance bottlenecks, and (2) It helps the design-ers �x and optimize a faulty design for both correctnessand performance. This is possible not only becausethe system traceability is maintained throughout theapproach, but also because the constraint solver itselfgenerates various performance metrics.
1.1 Related WorkReal-time system design and scheduling have beenfertile areas of research in the last decade. We refer thereaders to [7] for an overview of design methods and[3, 12] for an overview of real-time scheduling. Therehas been relatively less e�ort in the integration of de-sign and scheduling, and speci�cally the derivation oftask periods and deadlines from end-to-end constraints.In [1] and [14] similar problems are addressed, but thefocus was more on schedulability analysis, and less onthe derivation of task parameters. There have also beensome studies on the decomposition of end-to-end dead-lines into local task deadlines [16, 2, 5, 11]. Recently,[13] reports a study on deriving task periods based oncontrol performance metrics.2 Problem FormulationIn this section, we �rst present the system and net-work model. Then, we formulate a system designmodel in terms of a task graph and end-to-end tim-ing constraints. We also present the implementation

model consisting of a set of periodic tasks and taskspeci�c attributes. Finally, we summarize our problemand give a solution overview.
2.1 System and Network ModelWe consider a distributed system of processinghosts, sensors, and actuators connected together bya real-time communication network such as Fieldbus.The sensors and actuators are either autonomous de-vices directly connected to the communications net-work, or may be attached to a host via the host's localbus. Each processing host is a single CPU system andhas a suitable real-time operating system which can beused to implement periodic real-time tasks and performschedulability analysis on it. Likewise, we assume thatthe communication network is capable of guaranteeingbounded message transfers for periodic messages.
2.2 Design ModelWe use a simple producer-consumer model, similarto models proposed by other researchers (e.g., [15]) torepresent a real-time system. The model incorporatesmany essential features such as task sharing, simplesynchronization, software reusability, network trans-parent communication, etc. In this model, a real-timesystem is composed of a set of communicating tasks.A task executes by reading data from all its inputports, operating on the data, and �nally writing datato its output ports. Ports provide a network trans-parent message passing abstraction, and have a sin-gle writer restriction. The writes to a port are alwaysasynchronous and non-blocking. On the other hand,the reads are synchronous, that is a process readingfrom a port waits for data to be written.Sensors and Actuators form the external interfaceof the system with the environment. We assume thateach sensor is read by a special task, which reads thedata from the sensor and writes it to a port to be readby computation tasks. Likewise, there is an actuatortask for each actuator which reads data from an inputport and sends commands to the actuator. When asensor or an actuator is an autonomous device, it istreated as a special processor with a single sensor oractuator task.A real-time system designed as above may be rep-resented as a �nite, directed, acyclic graph where thetasks and the ports form the nodes in the graph, andthe edges correspond to reads and writes to ports. Insuch a design the path from a sensor to an actuatorforms a chain of producer-consumer pairs forming anend-to-end computation. Timing constraints are oftende�ned on such end-to-end computations. We use the



Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996term transaction for end-to-end computations, whichis de�ned as a relation between sensors and actuators.Let �(SkA) represent a transaction that takes inputsfrom sensors in set S, and produces output for actua-tors in set A. The transaction then consists of all thetasks that fall on the path from any sensor in S to anyactuator in A.End-to-End Timing Constraints. The followingtypes of timing constraints are allowed to be estab-lished on the transactions.(1) Maximum Allowable Validity Time: This con-straint ensures that a data sample is used beforeit loses its freshness, and thus, it bounds the max-imum end-to-end delay permissible between thereading of a sensor and the delivery of the out-put command to an actuator based on that read-ing. We use the notationM (SkA) to represent thismaximum delay from sensor S to actuator A.(2) Input Data Synchronization: This constraint en-sures that when multiple sensors collaborate indriving an actuator, then the maximum time-skewbetween the sensor readings is bounded. We usethe notation Sync(S1 ; S2kA) to denote the max-imum time-skew between two sensors S1 and S2.Let t1 and t2 be the time points when two sensorsS1 and S2 are read to drive A, respectively. Thenwe have jt1 � t2j � Sync(S1 ; S2kA):(3) Maximum Transaction Period: This constraintbounds the maximum activation period for anend-to-end computation. We use the notationMaxP (SkA) to denote the maximum activationperiod.
2.3 Implementation ModelWe assume that the real-time system is implementedas a set of periodic tasks. A periodic task �i is repre-sented by a 5-tuple hei; Ti; di; �i;Pii, where ei repre-sents the task's execution time, Ti its activation pe-riod, di its deadline relative to the start of period, �iits initial phase (denoting the initial activation time ofthe periodic task) and Pi the processor to which it isallocated.Data transfer over the communication network gen-erates a set of periodic message streams. We label themessage streams as m1;m2;m3; etc. Each messagestream mi is treated just like a task, with the nota-tions Tmi , emi , dmi , and �mi denoting the period, themaximum message size, the relative deadline, and the

initial phasing respectively. In our analysis, the net-work is treated as a processor, and the periodic mes-sage streams are considered as tasks. Therefore, in theremainder of this paper, we do not make any distinc-tion between computation tasks and message streams,and whenever we refer to computation tasks, it alsoapplies to message streams.
2.4 A Walk-Through ExampleFigure 2 shows the task graph for a simple real-timesystem along with the allocation of tasks to hosts. Thesystem consists of two transactions, one driving actu-ator A1 and the other driving actuator A2. There aretwo sensors in the system S1 and S2 which are readby sensor tasks �1 and �2. Likewise, the actuators aregiven commands by actuator tasks �7 and �8. Thereare four control tasks allocated on two processors. Thisexample, which we use throughout the paper, helps usillustrate the key aspects of our methodology. The end-to-end constraints postulated on the system are givenin Table 1. Task execution delays are also speci�ed inthe table; we assume that the sensor and actuator taskstake negligible execution delay.�(S1;S2kA1) �(S2kA2)Sync(S1; S2kA1) = 1msM(S1; S2kA1) = 40ms M(S2kA2) = 60msMaxP (S1; S2kA1) = 20ms MaxP (S2kA2) = 50mse1 = 0ms, e2 = 0ms, e3 = 7ms, e4 = 8ms,e5 = 9ms, e6 = 15ms, e7 = 0ms, e8 = 0ms

Table 1. Timing constraints for example.

Host 1 Host 2�4 �6 �8S1S2 �2�1 �2�1 �3�4 �3 �5 �7�5�6 A2A1
Figure 2. Task Graph Design of a Real-Time
System



Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996
2.5 Problem DescriptionOur objective is to derive implementation parame-ters (i.e., the activation period, deadline, and phase)for each task and message stream from a given taskgraph design of a system, and the end-to-end timingrequirements speci�ed for it. We model the problem asa constraint solving problem in which the end-to-endrequirements are �rst expressed as a set of constraintson task parameters. The intermediate constraints arethen solved to derive the task parameters. The deriva-tion of intermediate constraints preserves timing cor-rectness, i.e., if the �nal task set (which is a solution ofthe constraints) is schedulable, then the original end-to-end requirements will be satis�ed. We do not specif-ically address the schedulability analysis of the �naltask set, instead we incorporate notions of schedula-bility into our constraint solving process, so that thesolution generated is not trivially unschedulable.Unfortunately, solving the system of constraints isnot an easy proposition due to several factors. First,in a distributed system there may be many tasks, andthat will induce many variables. Second, the interme-diate constraints are not always linear, as will becomeclear in Section 3. Third, incorporating schedulabil-ity into the constraint solving process adds signi�cantnon-linearity to the problem. To tackle this complex-ity, we decompose the constraint solving problem intoa sequence of sub-problems. The motivation behindthis approach is that each problem is more tractable,and therefore more amenable to targeted heuristics andproviding useful feedback on failure. However, thesuccess of the overall approach depends critically onwhether the problem can be decomposed into well-de�ned sub-problems. For our case, we decomposethe problem into two sub-problems Period Assignment,and Phase and Deadline Assignment, which are out-lined below.(1) Period Assignment. The �rst sub-problem thatwe solve is that of assigning activation periods totasks. Since no other task parameters have beendetermined yet, we use overall utilization on a pro-cessor as a crude schedulability measure, whichonly depends on periods and execution times.(2) Phase and Deadline Assignment. Once the periodsare determined, we proceed to determine the phaseand deadline of tasks. The main problem here is todetermine a set of individual task deadlines, suchthat we can �nd some way to schedule each taskwithin its deadlines. The phases are determinedlast, but we do not use any schedulability measurewith them { their main purpose is to maintain syn-chronization and input correlation, and so any so-

lution consistent with the constraints is acceptable.The order of solving the two sub-problems is criticallyimportant, as it is very hard to obtain useful schedu-lability criteria the other way round. We defer moreprecise speci�cations of the sub-problems until laterafter we have shown how the entire constraint problemis setup.3 Intermediate Constraint DerivationThe �rst step in our methodology is to transform theend-to-end constraints and synchronization require-ments into a set of intermediate constraints on taskattributes. This is a three-step process which is illus-trated in the following subsections.
3.1 Synchronization and HarmonicityThe producer/consumer model, which forms the ba-sic communication semantics in our transaction model,inherently incurs blocking synchronization for the con-sumer. In the periodic task model, this induces cou-pling between task periods which may results in unnec-essarily high rates of execution for some tasks. Con-sider, for example, a producer task �p writing to a port�, which is read synchronously by two consumer tasks�c1 and �c2 . Due to blocking semantics, one would nor-mally require equal rates of execution for consumer andproducer, i.e., Tc1 = Tc2 = Tp. Suppose that �c1 and�c2 have maximum activation period requirements of100ms and 350ms respectively. Due to synchroniza-tion, all tasks would need to execute at a period of100ms, resulting in an unnecessarily high rate for �c2 ,which results in wasted CPU capacity, and may makethe system unschedulable. A better solution is to setTp = Tc1 = 100, and Tc2 = 300. With this solution,we have less waste of processor capacity while preserv-ing clean semantics for synchronization, i.e., Task �c2synchronizes with every third execution of �p.The above strategy works only when the consumer'speriod is an integral multiple of the producer's pe-riod. We refer this relation as harmonic, and thisimposes a harmonicity constraint between any pro-ducer/consumer pair. This is represented as TcjTp, sig-nifying that Tc is exactly divisible by Tp. Given a taskgraph for a system, the harmonicity constraints can berepresented in a harmonicity graph, in which the taskperiods form the nodes, and the edges represent theharmonicity constraints. That is, an edge Ti �! Tjrepresents the constraint Tj jTi.



Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996
3.2 Precedence and End-to-End DelayThe producer/consumer synchronization imposes aprecedence requirement between producer task execu-tion and consumer task execution. We achieve thisprecedence using task phasings. This avoids run-timesynchronization overheads, and facilitates schedulabil-ity analysis.For a given producer/consumer pair (�p; �c), withTc = k:Tp, we require that the ith iteration of task�c reads data produced by k � ith iteration of task �p(assuming the iteration numbers start from 0). Thephase di�erence between the corresponding iterationsis then �c � �p, the initial phase di�erence. Thus, theprecedence is guaranteed if �c � �p + dp.Figure 3 illustrates such synchronous data commu-nication when Tc = 2Tp. Two successive data transfersfrom the producer �p to the consumer �c using port �are shown on the timeline. We are interested in �ndingthe maximum delay from the time �p reads data fromits input ports, to the time �c writes data to its outputports. In the worst case, �p will read its input data justas it is invoked, while �c will write to the output port atits deadline. Therefore, the worst case delay becomes�c��p+dc. By extending the same logic to a chain ofproducer-consumer tasks, we can derive the end-to-enddelay from a sensor task �s to an actuator task �a as�a � �s + da. Thus, if M (SkA) is the correspondingfreshness requirement, then the following intermediateconstraint must be satis�ed: �a � �s + da �M (SkA).

 

time

Actual Delay

Maximum Delay

W

R

R

W

R

W

R

W

Tp 2Tp0 �c � �p �c � �p + dc Tc = 2Tp�c � �p + dp
Figure 3. Delay and Precedence in Communi-
cation

3.3 Phasing and Input SynchronizationConsider an input synchronization requirementSync(S1 ; S2kA). Let �1 and �2 denote the sensor tasksreading from sensors S1 and S2 respectively. Then the

worst skew occurs when one task reads the sensor at itsactivation time, and the other at its deadline. This im-plies that the synchronization requirement is satis�edif: max(�2+d2��1; �1+d1��2) � Synch(S1; S2kA).Due to harmonicity, this phase di�erence will be main-tained for every pair of input that must be correlatedeven when the actual periods are di�erent. We reducethis skew by setting �2 = �1, and thereby simplify-ing the constraint to: max(d1; d2) � Sync(S1 ; S2kA).This easily generalizes to the case when we may haveto synchronize 3 (or more) inputs.
3.4 Constraints for Walk-Through ExampleThe above procedure results in a large number ofvariables and constraints even for a simple system asour example. Fortunately, many of these constraintsmay be replaced by equalities, thereby reducing thenumber of free variables. One simpli�cation occurswhen a task produces data for a single consumer. Inthis case the producer's period can be set equal tothe consumer. Another simpli�cation occurs when atask has a single input port and, therefore, must waitfor only one producer. We can then set the phase ofthe task to coincide with the deadline of the producer.The following table shows the derived constraints forour walk-through example as a result of applying theserules. Constraints on PeriodsT5jT4; T6jT4 T5 2 [9; 20]; T4 2 [8; 20]; T6 2 [15; 50]Constraints on Deadlines & Phases�5 � d3 + 10 �5 + d5 � 35�5 � d4 + 10 d4 + d6 � 45EqualitiesT1; T3; T7 = T5 T2 = T4; T8 = T6d1; d2; d7; d8 = 0 �1; �2 = 0�3 = �1 + d1 + 5 �4 = �2 + d2 + 5 �6 = �4 + d4 + 5�7 = �5 + d5 + 5 �8 = �6 + d6 + 5

Table 2. Intermediate Constraints.4 Solving the Intermediate ConstraintsThe solution of the intermediate constraints is donein two steps: namely period assignment and phase anddeadline assignment. Each of these steps is further car-ried out in several steps. Figure 4 depicts the procedurefor solving the constraints.The period assignment component accepts the con-straints on periods as input and generates task periods



Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996with the objective of minimizing processor utilization.This is not an easy problem as it involves nonlinearinteger programming due to the harmonicity require-ments. To attack this problem, we convert the originaloptimization problem into a decision problem throughthe use of cut-o� utilizations which are provided by theuser. Our approach to the period assignment problem,then, is to perform a branch-and-bound search afterwe reduce the search space of the problem as muchas possible. To reduce the search space, we use threepruning algorithms, namely, Time Granularity Prun-ing, Utilization Pruning, and Harmonicity Pruning.Once the periods have been assigned, the deadlineand phase assignment component takes these resultsand the constraints on phase and deadlines as input toobtain phase and deadline values. This component issubsequently composed of the Phase Variable Elimina-tion, Deadline Decomposition, and Phase Assignmentsteps. If any of these steps fails, we return to the periodassignment component to obtain a new period assign-ment. We elaborate on each of these two componentsand their respective steps in the following two subsec-tions.
Constraints

Time Granularity Pruning

Utilization Pruning

Harmonicity Pruning

Branch-and-Bound

Search

Harmonicity and Range
Constraints

Precedence and Delay

Deadline Decomposition

Phase Variable Elimination

Phase Assignment

Task Periods, Deadlines, PhasesPeriod Assignment

Deadline, Phase Assignment

fail

fail

fail

Figure 4. The intermediate constraint solving
procedure.

4.1 Period AssignmentAs mentioned above, this component consists of thepruning and search steps. These steps are illustratedusing the walk-through example. Recall that the re-duced set of period constraints only involve T4; T5;and T6. The initial feasible range for the periods isT4 2 [8; 20], T5 2 [9; 20], and T6 2 [15; 50] as shown inTable 2.1. Time Granularity Pruning: Our �rst pruningtakes place by choosing a coarser time granular-ity. A coarser granularity results in smaller search

space, but may also eliminate feasible solutions.Selecting the right value is problem speci�c, there-fore, we begin with a large value and iterativelyreduce it if a solution is not found. For our exam-ple, we choose a time granularity of 5, resulting inthe following feasible ranges for the periods: T5 2f10; 15; 20g; T4 2 f10; 15; 20g; and T6 2f15; 20; 25; 30; 35; 40;45;50g2. Utilization Pruning: In this step, we use the cut-o� utilization for each host to tighten the lowerbound of the periods. For a set T k of tasks al-located on host Pk, the processor utilization Ukmust be less than the cut-o� utilization Ukc , i.e.,Uk =P�i2T k eiTi � Ukc . To obtain a lower boundfor the period of �i, we solve the above by plug-ging in the largest period values for �j 2 T k�f�ig.In our example, we use 0.9 as the cut-o� utiliza-tion for each host. This results in the follow-ing feasible set of values: T4 2 f15; 20g; T5 2f15; 20g; and T6 2 f35; 40; 45; 50g:3. Harmonicity Pruning: A �nal pruning method weuse is based on the harmonicity relationships. Thisresults in removal of any values from the range ofa variable for which we cannot �nd values for itspredecessor or successor tasks in the harmonicitygraph. For example, the values 35 and 50 for T6may be eliminated, since neither 15 nor 20 (thevalid values for T4) satis�es the harmonicity con-straint T6jT4. This pruning is repeated until nofurther reduction is possible.After the three pruning steps, we are left with areduced search space on which the search is performedto �nd a feasible solution. A simple branch-and-boundheuristic[6] is used to control the search. As a result,we obtain the following period assignment.T3 T4 T5 T6 U1 U2Solution 20 20 20 40 0:75 0:825
4.2 Phase and Deadline AssignmentOnce the periods are known, we proceed to solve forphase and deadline variables. This process is done inseveral steps, as outlined below.(1) Phase Variable Elimination. We begin by elimi-nating the phase variables from the constraint setusing Fourier Variable Elimination [4]. Basically,this involves rewriting the constraints as lower andupper bound constraints on a variable to be elimi-nated, and then combining each lower bound witheach upper bound. The elimination of variables isdone in a reverse topological sort order of the task



Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996graph. For our example system, we have only onefree phase variable, which is eliminated as shownbelow:�5 � d3 + 10�5 � d4 + 10�5 � 35� d5d4 + d6 � 45 �5=) d3 + d5 � 25d4 + d5 � 25d4 + d6 � 45(2) Deadline Decomposition. At this stage, we have asystem of linear constraints on the deadlines, whichare of the following form:di1 + di2 + � � �+ dini � DiLet C = C1; C2; : : : ; Cn denote the set of such con-straints, where each constraint Ci re
ects the end-to-end constraint on some transaction �i. Con-sider the periodic task set T = f�i = hTi; ei; dii ::1 � i � ng, for which the task periods and execu-tion times are known. We use the notion of criticalscaling factor [10] for this task set as our objectivefunction for solving the constraints. Let D = fdi ::1 � i � ng be any solution satisfying C. Then, wede�ne ��(D), as the largest value of �, such that thetask set T (�) = f�i = hTi; �ei; dii :: 1 � i � ng.is schedulable. The critical scaling factor ��(D)of a solution thus refers to the capacity to acceptei��(D) computation demand for each task in T ,without sacri�cing schedulability. As with periodassignment, we use a cut-o� value ��c , and �nd anysolution D such that ��(D) � ��c .We present a heuristic solution strategy for thisproblem in Section 4.2.1. For now, we just statethat the solution obtained from our heuristic solverfor the example system is d3 = 15, d4 = 8, d5 = 9,and d6 = 36.(3) Phase Assignment. Finally, when the deadlineshave been assigned, we proceed to determine valuesfor task phases. This is done by assigning valuesto each of the phase variables eliminated in Step 1.The values are assigned in the reverse order of elim-ination, i.e., in a topological sort order. For eachphase variable, we assign the smallest value whichsatis�es the constraints. For our system, we haveonly one phase variable �5, which is assigned thevalue 25. The values for remaining phase and dead-line variables are automatically assigned throughthe equalities derived in Section 3. The �nal taskset parameters for the example system are shownbelow.

e � T D e � T D�1 0 0 20 0 �2 0 0 20 0�3 7 5 20 15 �4 8 5 20 8�5 9 25 20 9 �6 15 18 40 36�7 0 39 20 0 �8 0 59 20 04.2.1 Deadline DecompositionCurrently, we adopt an approximate heuristic strat-egy to solve this problem. Our �rst approximation in-volves using static priority scheduling model to checkfor schedulability. While not optimal, it reduces thesearch space, and also allows for easier response timedetermination. Let � = fpi :: 1 � i � ng be anypriority ordering, and let ri(�; �) denote the responsetime of task �i in the task set T (�). Then, the criti-cal scaling factor ��(�) is de�ned as the largest valueof � such that T (�) is schedulable under the priorityordering �. Our second approximation involves usingan approximate notion of critical scaling factor, whichwe refer to as gain, and represent as �̂. The gain ofa priority ordering �̂(�) is the de�ned as the largestvalue of �, such that the set of deadlines di = � � ri(�)satis�es the constraint set C.Starting from equal priority for all tasks, we performthe search for a priority ordering through an iterativere�nement process. To help in the re�nement process,we de�ne per-task gain, denoted as �̂j(�), as follows:Let C(j) be the subset of constraints in C which involvethe variable dj. Then �̂j(�) is the largest value of �such that the set of deadlines di = � � ri(�) satis�esthe constraint set C(j). Clearly, �̂(�) = minj �̂j . Ineach step, given the priority ordering, we �rst computethe response times of all tasks, as in [3], assuming thata task is preemptable by all higher and equal prioritytasks. Then, based on response times, per task gainsare computed. If all gains are above the cut-o� thresh-old, then we stop. Otherwise, the priority of the lowestgain task is elevated above all its equal priority tasks.The procedure fails when the lowest gain task has noequal priority task.The re�nement steps for our walk-through exampleare illustrated in Table 3. Recall that the constraintset is:d3 + d5 � 25; d4 + d5 � 25; and d4 + d6 � 45Since a feasible solution has been found, the �nal dead-lines are determined as di = b�̂i � ric:d3 = 15; d4 = 8; d5 = 9; and d6 = 36



Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996Priorities Response Times Gainsp3 = p4 r3 = 15 r4 = 15 �̂3 = 0:64 �̂4 = 0:64p5 = p6 r5 = 24 r6 = 33 �̂5 = 0:64 �̂6 = 0:94p3 = p4 r3 = 15 r4 = 15 �̂3 = 1:04 �̂4 = 0:94p5 < p6 r5 = 9 r6 = 33 �̂5 = 1:04 �̂6 = 0:94p4 < p3 r3 = 15 r4 = 8 �̂3 = 1:04 �̂4 = 1:04p5 < p6 r5 = 9 r6 = 33 �̂5 = 1:04 �̂6 = 1:10
Table 3. Deadline Decomposition5 ConclusionWe have presented a resource conscious methodol-ogy for designing distributed real-time systems. Specif-ically, we show how a real-time system design speci�edas a task graph with end-to-end timing constraints canbe systematically transformed into a schedulable set ofperiodic tasks. This methodology enables developers tostreamline the end-to-end design of real-time systemsby way of a semi-automatic tool-based approach. Webelieve that a tool developed using the ideas developedin the paper will be very useful for rapid prototypingof designs, and in identifying and eliminating bottle-necks. We have successfully done a case study of ourperiod-assignment algorithm for computerized numericcontrol [8] in a single processor environment. We hopeto extend it for distributed systems using our deadlinedecomposition strategy.There exist many directions along which our ap-proach can be extended. First, we have assumed allo-cation of tasks to processors. We would like to includethat in the constraint solving process. Second, we wantto extend our design model to incorporate more elabo-rate task structures, communication mechanisms, andtiming constraints. Finally, it would be nice to do somesensitivity analysis; since our method works at designtime, the execution times are likely to be crude esti-mates. Therefore, it is desirable that small changes inexecution times do not involve starting from scratch.References[1] N. Audsley, A. Burns, and A. Wellings. Data con-sistency in hard real-time systems. Informatica,19(2):223{234, May 1995.[2] R. Bettati and J. W.-S. Liu. End-to-end scheduling tomeet deadlines in distributed systems. In Proceedings,IEEE Conference on Distributed Computing Systems,pages 452{459, 1992.[3] A. Burns. Preemptive priority based scheduling: Anappropriate engineering approach. In S. Son, editor,Principles of Real-Time Systems. Prentice Hall, 1994.

[4] G. Dantzig and B. Eaves. Fourier-Motzkin Eliminationand its Dual. Journal of Combinatorial Theory (A),14:288{297, 1973.[5] J. Garcia and M. G. Harbour. Optimized priority as-signment for tasks and messages in distributed hardreal-time system. In Proceedings, IEEE Workshop onParallel and Distributed Real-Time Systems, 1995.[6] R. Gerber, S. Hong, and M. Saksena. Guaranteeingreal-time requirements with resource-based calibrationof periodic processes. IEEE Transactions on SoftwareEngineering, 21(7), July 1995.[7] H. Gomaa. Software Design Methods for Concurrentand Real-Time Systems. Addison-Wesley PublishingCompany, 1993.[8] N. Kim, M. Yoo, S. Hong, M. Saksena, C. Choi, andH. Shin. Visual assessment of a real-time systemdesign: A case study of period calibration method.In Proceedings, IEEE Real-Time Systems Symposium,1996.[9] M. Klein, J. Lehoczky, and R. Rajkumar. Rate-monotonic analysis for real-time industrial computing.IEEE Computer, pages 24{33, Jan. 1994.[10] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonicscheduling algorithm: Exact characterization and av-erage case behavior. In Proceedings of IEEE Real-Time Systems Symposium, pages 166{171. IEEE Com-puter Society Press, Dec. 1989.[11] M. D. Natale and J. Stankovic. Dynamic end-to-endguarantees in distributed real-time systems. In Pro-ceedings, IEEE Real-Time Systems Symposium, pages216{227, 1994.[12] K. Ramamritham and J. A. Stankovic. Scheduling al-gorithms and operating systems support for real-timesystems. Proceedings of the IEEE, 82(1):55{67, Jan-uary 1994.[13] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin.On task schedulability in real-time control systems.In Proceedings, IEEE Real-Time Systems Symposium,1996.[14] L. Sha and S. S. Sathaye. A systematic approach todesigning distributed real-time systems. IEEE Com-puter, 26(9):68{78, September 1993.[15] D. Simon, B. Espiau, E. Castillo, and K. Kapel-los. Computer aided design of a generic robot con-troller handling reactivity and real-time control issues.IEEE Transactions on Control Systems and Technol-ogy, 1(4), Dec. 1993.[16] J. Sun, R. Bettati, and J. W.-S. Liu. An end-to-endapproach to schedule tasks with shared resources inmultiprocessor systems. In Proceedings of the 11thIEEE Workshop on Real-Time Operating Systems andSoftware, Seattle, Washington, May 1994.


