Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996

Resource Conscious Design of Distributed Real-Time Systems
An End-to-End Approach*

Manas Saksena
Concordia University

Abstract

In this paper, we present a resource conscious ap-
proach to designing distributed real-time systems. This
work extends our original solution [6], which was lim-
ited to single processor systems. Starting from a given
task graph, and a set of end-to-end constraints, we sys-
tematically generate task attributes (e.g., periods and
deadlines) such that (i) the task set is schedulable,
and (ii) the end-to-end constrainis are satisfied. The
methodology presented in this paper can be mostly auto-
mated, and provides useful feedback to a designer when
it fauls to find a solution. We expect that the techniques
presented in this paper will help reduce the laborious
process of designing a real-time system, by bringing re-
source contention and schedulability aspects early into
the design process.

1 Introduction

Recent developments have resulted in the maturity
of real-time scheduling theory techniques, and shown
the viability of these techniques for industrial real-time
systems especially in the domain of distributed con-
trol systems [3, 9]. However, while this progress is ad-
mirable, most real-time scheduling techniques handle
timing constraints (i.e., task periods, deadlines, etc.)
that are artifacts of system design, and for a given sys-
tem may be chosen in many different ways to meet
the end user requirements. Consider, for example, a
robotic control system [15]. The control laws are gener-
ally implemented as multi-task programs, and may be
allocated to multiple processors on a distributed sys-
tem. The timing behavior of such a system must ensure
that end user requirements such as maximum value of
tracking errors are satisfied. Such properties intimately

*The work reported in this paper was supported in part by
NSERC Operating Grant OGP0170345, and by Engineering Re-
search Center for Advanced Control and Instrumentation (ERC-
ACI) under Grant 95-26.

Seongsoo Hong
Seoul National University

depend on factors such as sampling rates for inputs, up-
date rates for outputs, and end-to-end latencies from
sensor to actuators [8]. Through simulation or analy-
sis, a control engineer can specify requirements such as
maximum acceptable sampling rates for a given con-
trol loop, or maximum latency from a sensor input to
an actuator output, and these requirements constitute
what we call high-level end-to-end timing constraints
on system inputs and outputs.

The process of deriving task attributes from such
high level timing requirements is perhaps the most ad-
hoc of all steps in the development process of a real-
time system. In current engineering practice, task at-
tributes are often mandated by control engineers and
rarely take into account the resource constraints. As
systems become more complex, such ad-hoc methods
to derive feasible task parameters do not scale well due
to to the manual and labor-extensive process of trial
and error based on engineering intuition. In addition,
many of the synchronization requirements get tightly
coupled with the derived timing constraints. This loss
in traceability of requirements for a system under de-
velopment may result in significant redesigns when tim-
ing constraints are changed.

In this paper we address the problem of transform-
ing a high-level real-time system design into a set of
schedulable periodic tasks. The current work improves
and extends our original solution [6] for a single pro-
cessor system to a distributed system environment. We
model the problem as a constraint solving problem, in
which the original end-to-end timing constraints are ex-
pressed as a set of constraints on task attributes. The
constraints are then solved to derive a set of schedula-
ble task parameters. Figure 1 shows an overview of our
methodology. As shown in the figure, our objective is
to generate an implementable set of tasks from a task
graph design of the system. This involves (1) deriving
task periods, deadlines, phases, etc., and (2) synthesiz-
ing code for inter-task communication. In this paper,
we focus our attention on the constraint derivation and
constraint solving aspects of our design methodology.

The main contribution of our work is the develop-

Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996

End-to-End Task
Requirements Allocation

Task Kernel
Code Library

Task Graph
Design

Design-to-1 mplementation Mapping
(Period and Deadline Assignment)

Automatic
Code Generation

Task Task Task
Periods Deadlines Phases

Executable System

Per-Processor Scheduling

Figure 1. End-to-End Design Methodology

ment of a systematic methodology to transform a high-
level design into a schedulable system. The methodol-
ogy presented in this paper provides substantial ben-
efits: (1) It provides designers with a rapid prototyp-
ing tool which helps them build a running prototype
quickly, and to locate and isolate schedulability and
performance bottlenecks, and (2) It helps the design-
ers fix and optimize a faulty design for both correctness
and performance. This is possible not only because
the system traceability is maintained throughout the
approach, but also because the constraint solver itself
generates various performance metrics.

1.1 Redated Work

Real-time system design and scheduling have been
fertile areas of research in the last decade. We refer the
readers to [7] for an overview of design methods and
[3, 12] for an overview of real-time scheduling. There
has been relatively less effort in the integration of de-
sign and scheduling, and specifically the derivation of
task periods and deadlines from end-to-end constraints.
In [1] and [14] similar problems are addressed, but the
focus was more on schedulability analysis, and less on
the derivation of task parameters. There have also been
some studies on the decomposition of end-to-end dead-
lines into local task deadlines [16, 2, 5, 11]. Recently,
[13] reports a study on deriving task periods based on
control performance metrics.

2 Problem Formulation

In this section, we first present the system and net-
work model. Then, we formulate a system design
model in terms of a task graph and end-to-end tim-
ing constraints. We also present the implementation

model consisting of a set of periodic tasks and task
specific attributes. Finally, we summarize our problem
and give a solution overview.

2.1 System and Network Model

We consider a distributed system of processing
hosts, sensors, and actuators connected together by
a real-time communication network such as Fieldbus.
The sensors and actuators are either autonomous de-
vices directly connected to the communications net-
work, or may be attached to a host via the host’s local
bus. Each processing host is a single CPU system and
has a suitable real-time operating system which can be
used to implement periodic real-time tasks and perform
schedulability analysis on it. Likewise, we assume that
the communication network is capable of guaranteeing
bounded message transfers for periodic messages.

2.2 Design Modée

We use a simple producer-consumer model, similar
to models proposed by other researchers (e.g., [15]) to
represent a real-time system. The model incorporates
many essential features such as task sharing, simple
synchronization, software reusability, network trans-
parent communication, etc. In this model, a real-time
system is composed of a set of communicating tasks.
A task executes by reading data from all its input
ports, operating on the data, and finally writing data
to its output ports. Ports provide a network trans-
parent message passing abstraction, and have a sin-
gle writer restriction. The writes to a port are always
asynchronous and non-blocking. On the other hand,
the reads are synchronous, that is a process reading
from a port waits for data to be written.

Sensors and Actuators form the external interface
of the system with the environment. We assume that
each sensor is read by a special task, which reads the
data from the sensor and writes it to a port to be read
by computation tasks. Likewise, there is an actuator
task for each actuator which reads data from an input
port and sends commands to the actuator. When a
sensor or an actuator is an autonomous device, 1t is
treated as a special processor with a single sensor or
actuator task.

A real-time system designed as above may be rep-
resented as a finite, directed, acyclic graph where the
tasks and the ports form the nodes in the graph, and
the edges correspond to reads and writes to ports. In
such a design the path from a sensor to an actuator
forms a chain of producer-consumer pairs forming an
end-to-end computation. Timing constraints are often
defined on such end-to-end computations. We use the

Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996

term transaction for end-to-end computations, which
is defined as a relation between sensors and actuators.
Let T(S||.A) represent a transaction that takes inputs
from sensors in set §, and produces output for actua-
tors in set A. The transaction then consists of all the
tasks that fall on the path from any sensor in § to any
actuator in A.

End-to-End Timing Constraints. The following
types of timing constraints are allowed to be estab-
lished on the transactions.

(1) Mazimum Allowable Validity Time: This con-
straint ensures that a data sample 1s used before
it loses its freshness, and thus, it bounds the max-
imum end-to-end delay permissible between the
reading of a sensor and the delivery of the out-
put command to an actuator based on that read-
ing. We use the notation M (S||A) to represent this
maximum delay from sensor S to actuator A.

(2) Input Data Synchronization: This constraint en-
sures that when multiple sensors collaborate in
driving an actuator, then the maximum time-skew
between the sensor readings is bounded. We use
the notation Sync(S1, S2||]A) to denote the max-
imum time-skew between two sensors S; and Ss.
Let 1 and ¢ be the time points when two sensors
S1 and Sy are read to drive A, respectively. Then
we have

|t1 — t2| S Sync(51,52||A)

(3) Mazimum Transaction Period: This constraint
bounds the maximum activation period for an
end-to-end computation. We use the notation
MaxzP(S||A) to denote the maximum activation
period.

2.3 Implementation Model

We assume that the real-time system is implemented
as a set of periodic tasks. A periodic task 7; is repre-
sented by a b-tuple {(e;, T}, d;, ¢;,P;), where e; repre-
sents the task’s execution time, T; its activation pe-
riod, d; its deadline relative to the start of period, ¢;
its initial phase (denoting the initial activation time of
the periodic task) and P; the processor to which it is
allocated.

Data transfer over the communication network gen-
erates a set of periodic message streams. We label the
message streams as mj, Mg, ms, etc. Fach message
stream m; 1s treated just like a task, with the nota-
tions 17", e, di*, and ¢* denoting the period, the
maximum message size, the relative deadline, and the

initial phasing respectively. In our analysis, the net-
work is treated as a processor, and the periodic mes-
sage streams are considered as tasks. Therefore, in the
remainder of this paper, we do not make any distinc-
tion between computation tasks and message streams,
and whenever we refer to computation tasks, it also
applies to message streams.

24 A Walk-Through Example

Figure 2 shows the task graph for a simple real-time
system along with the allocation of tasks to hosts. The
system consists of two transactions, one driving actu-
ator A; and the other driving actuator As. There are
two sensors in the system S; and Ss which are read
by sensor tasks 71 and 7. Likewise, the actuators are
given commands by actuator tasks 77 and 7g. There
are four control tasks allocated on two processors. This
example, which we use throughout the paper, helps us
illustrate the key aspects of our methodology. The end-
to-end constraints postulated on the system are given
in Table 1. Task execution delays are also specified in
the table; we assume that the sensor and actuator tasks
take negligible execution delay.

I'(S1,82]A1)
Sync(S1, S2]|41) = 1ms

M(S1 s 52 ||A1) = 40ms
MaxzP(S1,52||A1) = 20ms

I'(SallA2)

M(SQ”AQ) = 60ms
Maxz P(5S2]|A2) = 50ms

es = Tms,
er = 0ms,

e1 = 0ms,
es = 9ms,

ex = 0ms,
e¢ = lbms,

ey = 8ms,
eg = Oms

Table 1. Timing constraints for example.

Figure 2. Task Graph Design of a Real-Time
System

Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996

2.5 Problem Description

Our objective is to derive implementation parame-
ters (i.e., the activation period, deadline, and phase)
for each task and message stream from a given task
graph design of a system, and the end-to-end timing
requirements specified for it. We model the problem as
a constraint solving problem in which the end-to-end
requirements are first expressed as a set of constraints
on task parameters. The intermediate constraints are
then solved to derive the task parameters. The deriva-
tion of intermediate constraints preserves timing cor-
rectness, i.e., if the final task set (which is a solution of
the constraints) is schedulable, then the original end-
to-end requirements will be satisfied. We do not specif-
ically address the schedulability analysis of the final
task set, instead we incorporate notions of schedula-
bility into our constraint solving process, so that the
solution generated is not trivially unschedulable.

Unfortunately, solving the system of constraints is
not an easy proposition due to several factors. First,
in a distributed system there may be many tasks, and
that will induce many variables. Second, the interme-
diate constraints are not always linear, as will become
clear in Section 3. Third, incorporating schedulabil-
ity into the constraint solving process adds significant
non-linearity to the problem. To tackle this complex-
ity, we decompose the constraint solving problem into
a sequence of sub-problems. The motivation behind
this approach is that each problem is more tractable,
and therefore more amenable to targeted heuristics and
providing useful feedback on failure. However, the
success of the overall approach depends critically on
whether the problem can be decomposed into well-
defined sub-problems. For our case, we decompose
the problem into two sub-problems Period Assignment,
and Phase and Deadline Assignment, which are out-
lined below.

(1) Period Assignment. The first sub-problem that
we solve is that of assigning activation periods to
tasks. Since no other task parameters have been
determined yet, we use overall utilization on a pro-
cessor as a crude schedulability measure, which
only depends on periods and execution times.

(2) Phase and Deadline Assignment. Once the periods
are determined, we proceed to determine the phase
and deadline of tasks. The main problem here is to
determine a set of individual task deadlines, such
that we can find some way to schedule each task
within its deadlines. The phases are determined
last, but we do not use any schedulability measure
with them — their main purpose is to maintain syn-
chronization and input correlation, and so any so-

lution consistent with the constraints is acceptable.

The order of solving the two sub-problems is critically
important, as it is very hard to obtain useful schedu-
lability criteria the other way round. We defer more
precise specifications of the sub-problems until later
after we have shown how the entire constraint problem
1s setup.

3 Intermediate Constraint Derivation

The first step in our methodology is to transform the
end-to-end constraints and synchronization require-
ments into a set of intermediate constraints on task
attributes. This is a three-step process which is illus-
trated in the following subsections.

3.1 Synchronization and Harmonicity

The producer/consumer model, which forms the ba-
sic communication semantics in our transaction model,
inherently incurs blocking synchronization for the con-
sumer. In the periodic task model, this induces cou-
pling between task periods which may results in unnec-
essarily high rates of execution for some tasks. Con-
sider, for example, a producer task 7, writing to a port
7, which is read synchronously by two consumer tasks
7., and 7.,. Due to blocking semantics, one would nor-
mally require equal rates of execution for consumer and
producer, ie., T, = T., = T,. Suppose that 7., and
T:, have maximum activation period requirements of
100ms and 350ms respectively. Due to synchroniza-
tion, all tasks would need to execute at a period of
100ms, resulting in an unnecessarily high rate for .,
which results in wasted CPU capacity, and may make
the system unschedulable. A better solution is to set
T, = T, = 100, and 7., = 300. With this solution,
we have less waste of processor capacity while preserv-
ing clean semantics for synchronization, i.e., Task 7,
synchronizes with every third execution of 7,.

The above strategy works only when the consumer’s
period is an integral multiple of the producer’s pe-
riod. We refer this relation as harmonic, and this
imposes a harmonicity constraint between any pro-
ducer/consumer pair. This is represented as T.|T,, sig-
nifying that 77 is exactly divisible by 7,. Given a task
graph for a system, the harmonicity constraints can be
represented in a harmonicity graph, in which the task
periods form the nodes, and the edges represent the
harmonicity constraints. That is, an edge 7; — T;
represents the constraint 7;|7;.

Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996

3.2 Precedence and End-to-End Delay

The producer/consumer synchronization imposes a
precedence requirement between producer task execu-
tion and consumer task execution. We achieve this
precedence using task phasings. This avoids run-time
synchronization overheads, and facilitates schedulabil-
ity analysis.

For a given producer/consumer pair (7, 7.), with
T. = k.1,, we require that the it? iteration of task
7. reads data produced by k *i'" iteration of task Tp
(assuming the iteration numbers start from 0). The
phase difference between the corresponding iterations
is then ¢. — ¢;, the initial phase difference. Thus, the
precedence is guaranteed if ¢. > ¢, + dp.

Figure 3 illustrates such synchronous data commu-
nication when 7, = 27},. Two successive data transfers
from the producer 7, to the consumer 7. using port «
are shown on the timeline. We are interested in finding
the maximum delay from the time 7, reads data from
its input ports, to the time 7. writes data to its output
ports. In the worst case, 7, will read its input data just
as 1t is invoked, while 7. will write to the output port at
its deadline. Therefore, the worst case delay becomes
¢.— ¢p +d.. By extending the same logic to a chain of
producer-consumer tasks, we can derive the end-to-end
delay from a sensor task 75 to an actuator task 7, as
$a — ¢s + dg. Thus, if M(S||A) is the corresponding
freshness requirement, then the following intermediate
constraint must be satisfied: ¢, — ¢ + dy < M(S||A).

-

T. = 2T,

R R ¢e > dp+d
TR T
0 |w 1y 27, |w
G b b s b
: : ¢c—¢p ¢cv7¢'p+dc w time

I
|
|
Actual Delay : |
|
I
|

Maximum Delay

Figure 3. Delay and Precedence in Communi-
cation

3.3 Phasing and I nput Synchronization

Consider an input synchronization requirement
Syne(Sy, Sa||4). Let 7 and 7o denote the sensor tasks
reading from sensors S; and S; respectively. Then the

worst skew occurs when one task reads the sensor at its
activation time, and the other at its deadline. This im-
plies that the synchronization requirement is satisfied
if: maX(¢2+d2 —¢)1, ¢1—|—d1 —¢2) S Synch(51 ; SQHA)
Due to harmonicity, this phase difference will be main-
tained for every pair of input that must be correlated
even when the actual periods are different. We reduce
this skew by setting ¢» = ¢1, and thereby simplify-
ing the constraint to: max(dy,d2) < Syne(Sy, Sa||A).
This easily generalizes to the case when we may have
to synchronize 3 (or more) inputs.

34 Constraintsfor Walk-Through Example

The above procedure results in a large number of
variables and constraints even for a simple system as
our example. Fortunately, many of these constraints
may be replaced by equalities, thereby reducing the
number of free variables. One simplification occurs
when a task produces data for a single consumer. In
this case the producer’s period can be set equal to
the consumer. Another simplification occurs when a
task has a single input port and, therefore, must wait
for only one producer. We can then set the phase of
the task to coincide with the deadline of the producer.
The following table shows the derived constraints for
our walk-through example as a result of applying these
rules.

Constraints on Periods
T5| Ty, Ts|Ta Ts € [9,20], Ty € [8,20], Ts € [15,50]
Constraints on Deadlines & Phases
¢5 > d3+10 ¢5+ds < 35
o5 > da+10 da+ds < 45

| Equalities |
7,13, T =T5 Ty =Ty, Tg = T
dladZad7ad8:0¢1a¢2:0
ps=¢1+d1+5¢s=¢da+d2+5¢s =¢a+ds+5
¢7=¢5+ds+5¢s=ds+ds +5

Table 2. Intermediate Constraints.

4 Solving the Intermediate Constraints

The solution of the intermediate constraints is done
in two steps: namely period assignment and phase and
deadline assignment. Each of these steps is further car-
ried out in several steps. Figure 4 depicts the procedure
for solving the constraints.

The period assignment component accepts the con-
straints on periods as input and generates task periods

Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996

with the objective of minimizing processor utilization.
This 1s not an easy problem as it involves nonlinear
integer programming due to the harmonicity require-
ments. To attack this problem, we convert the original
optimization problem into a decision problem through
the use of cut-off utilizations which are provided by the
user. Our approach to the period assignment problem,
then, is to perform a branch-and-bound search after
we reduce the search space of the problem as much
as possible. To reduce the search space, we use three
pruning algorithms, namely, Time Granularity Prun-
wng, Utilization Pruning, and Harmonicity Pruning.

Once the periods have been assigned, the deadline
and phase assignment component takes these results
and the constraints on phase and deadlines as input to
obtain phase and deadline values. This component is
subsequently composed of the Phase Variable Elimina-
tion, Deadline Decomposition, and Phase Assignment
steps. If any of these steps fails, we return to the period
assignment component to obtain a new period assign-
ment. We elaborate on each of these two components
and their respective steps in the following two subsec-
tions.

Harmonicity and Range Precedence and Delay
Constraints Constraints

‘ Time Granularity Pruning

7—>‘ Phase Variable Elimination

!
fail |

‘ Deadline Decomposition ‘

!
‘ fail [
t

‘ Utilization Pmmng

‘ Hurmomaty Pruning

‘ Phase Assignment ‘

Deadline, Phase Assignment

Branch- and Bound
Search

fail

Period Assignmen Task Periods, Deadlines, Phases

Figure 4. The intermediate constraint solving
procedure.

41 Period Assignment

As mentioned above, this component consists of the
pruning and search steps. These steps are illustrated
using the walk-through example. Recall that the re-
duced set of period constraints only involve Ty, Tk,

and Ts. The initial feasible range for the periods is
Ty € [8,20], Ts € [9,20], and Ts € [15,50] as shown in
Table 2.

1. Tvme Granularity Pruning: Our first pruning
takes place by choosing a coarser time granular-
ity. A coarser granularity results in smaller search

space, but may also eliminate feasible solutions.
Selecting the right value i1s problem specific, there-
fore, we begin with a large value and iteratively
reduce it if a solution is not found. For our exam-
ple, we choose a time granularity of 5, resulting in
the following feasible ranges for the periods: T5 €
{10,15,20}, T. € {10,15,20}, and T €
{15,20, 25, 30, 35,40,45,50}

2. Utilization Pruning: In this step, we use the cut-

off utilization for each host to tighten the lower
bound of the periods. For a set 7% of tasks al-
located on host P* the processor utilization Uk
must be less than the cut-off utilization UF,
Uk = ZT eTH T < U To obtain a lower bound
for the perlod of 7i, we solve the above by plug-
ging in the largest period values for r; € 7% —{r;}.
In our example, we use 0.9 as the cut-off utiliza-
tion for each host. This results in the follow-
ing feasible set of values: Ty € {15,20}, 7Ts €
{15,20}, and 75 € {35,40,45,50}.

3. Harmonicity Pruning: A final pruning method we
use is based on the harmonicity relationships. This
results in removal of any values from the range of
a variable for which we cannot find values for its
predecessor or successor tasks in the harmonicity
graph. For example, the values 35 and 50 for 7§
may be eliminated, since neither 15 nor 20 (the
valid values for T}) satisfies the harmonicity con-
straint Tg|T4. This pruning is repeated until no
further reduction is possible.

After the three pruning steps, we are left with a
reduced search space on which the search is performed
to find a feasible solution. A simple branch-and-bound
heuristic[6] is used to control the search. As a result,
we obtain the following period assignment.

T | Tw| T [Ts | UT U?
Solution || 20 20 [20 [40 [0.75 [0.825

4.2 Phaseand Deadline Assignment

Once the periods are known, we proceed to solve for
phase and deadline variables. This process is done in
several steps, as outlined below.

(1) Phase Variable Elimination. We begin by elimi-
nating the phase variables from the constraint set
using Fourier Variable Elimination [4]. Basically,
this involves rewriting the constraints as lower and
upper bound constraints on a variable to be elimi-
nated, and then combining each lower bound with
each upper bound. The elimination of variables is
done in a reverse topological sort order of the task

Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996

graph. For our example system, we have only one
free phase variable, which is eliminated as shown

below:
¢5 > ds+ 10
¢5 > da+10 és dy+ds < 25
by < 3—dy o tdsSB
dy+ds < 45 datds < 45

(2) Deadline Decomposition. At this stage, we have a
system of linear constraints on the deadlines, which
are of the following form:

diy +diy +---+d;, < D

z

Let C = C4,C5, ..., C, denote the set of such con-
straints, where each constraint Cj; reflects the end-
to-end constraint on some transaction I';. Con-
sider the periodic task set 7 = {m = (T}, e;,d;) =
1 <i < n}, for which the task periods and execu-
tion times are known. We use the notion of eritical
scaling factor [10] for this task set as our objective
function for solving the constraints. Let D = {d; ::
1 <7 < n} be any solution satisfying C. Then, we
define p*(D), as the largest value of p, such that the
task set T(p) = {m = (T3, pes,di) = 1 < i < n}.
is schedulable. The critical scaling factor p*(D)
of a solution thus refers to the capacity to accept
eip* (D) computation demand for each task in 7,
without sacrificing schedulability. As with period
assignment, we use a cut-off value p¥, and find any
solution D such that p*(D) > p&.

We present a heuristic solution strategy for this
problem in Section 4.2.1. For now, we just state
that the solution obtained from our heuristic solver
for the example system is dg = 15, da = 8, d5 = 9,
and dg = 36.

(3) Phase Assignment. Finally, when the deadlines
have been assigned, we proceed to determine values
for task phases. This is done by assigning values
to each of the phase variables eliminated in Step 1.
The values are assigned in the reverse order of elim-
ination, i.e., in a topological sort order. For each
phase variable, we assign the smallest value which
satisfies the constraints. For our system, we have
only one phase variable ¢5, which is assigned the
value 25. The values for remaining phase and dead-
line variables are automatically assigned through
the equalities derived in Section 3. The final task
set parameters for the example system are shown
below.

el ¢ | T | D e ¢ | T | D
|00 {200 (m™] 0|0 |20]0
3 | T 5 | 20] 15| m 5 120 | 8
5 | 9125120 9 || 7| 15| 18 | 40 | 36
|0 [39]20] 0 || 78 59 | 20| 0

4.2.1 Deadline Decomposition

Currently, we adopt an approximate heuristic strat-
egy to solve this problem. Our first approximation in-
volves using static priority scheduling model to check
for schedulability. While not optimal, it reduces the
search space, and also allows for easier response time
determination. Let T = {p; : 1 < i < n} be any
priority ordering, and let r;(II, p) denote the response
time of task 7; in the task set 7(p). Then, the criti-
cal scaling factor p*(II) is defined as the largest value
of p such that 7(p) is schedulable under the priority
ordering II. Our second approximation involves using
an approximate notion of critical scaling factor, which
we refer to as gain, and represent as p. The gain of
a priority ordering p(IT) is the defined as the largest
value of p, such that the set of deadlines d; = p* r; (1)
satisfies the constraint set C.

Starting from equal priority for all tasks, we perform
the search for a priority ordering through an iterative
refinement process. To help in the refinement process,
we define per-task gain, denoted as p;(II), as follows:
Let C(j) be the subset of constraints in C which involve
the variable d;. Then p;(II) is the largest value of p
such that the set of deadlines d; = p * r;(II) satisfies
the constraint set C(j). Clearly, (II) = min; g;. In
each step, given the priority ordering, we first compute
the response times of all tasks, as in [3], assuming that
a task 1s preemptable by all higher and equal priority
tasks. Then, based on response times, per task gains
are computed. If all gains are above the cut-off thresh-
old, then we stop. Otherwise, the priority of the lowest
gain task is elevated above all its equal priority tasks.
The procedure fails when the lowest gain task has no
equal priority task.

The refinement steps for our walk-through example
are illustrated in Table 3. Recall that the constraint
set 1s:

d3—|—d5 §25, d4—|—d5 §25, and d4—|—d6 §45
Since a feasible solution has been found, the final dead-
lines are determined as d; = |p; * 74]:

d3 == 15, d4 == 8,

d5 = 9, and d6 = 36

Proceedings, IEEE International Conference on Engineering of Complex Computer Systems, Oct. 1996

| Priorities | Response Times | Gains |

D3 = pa rs=15rs =15 | p3 = 0.64 ps = 0.64
Ps = Ds rs =24 16 =33 | ps = 0.64 ps = 0.94
P3 = pa rg=15r4 =15 | p3 =1.04 po = 0.94
P5 < Pg rs = 9rg = 33 ps = 1.04 ps = 0.94
P4<pP3 | m3=15ry3=8 | p3=1.04p,=1.04
Ps < Pps rs =916 =33 | ps = 1.04 pg = 1.10

Table 3. Deadline Decomposition

5 Conclusion

We have presented a resource conscious methodol-
ogy for designing distributed real-time systems. Specif-
ically, we show how a real-time system design specified
as a task graph with end-to-end timing constraints can
be systematically transformed into a schedulable set of
periodic tasks. This methodology enables developers to
streamline the end-to-end design of real-time systems
by way of a semi-automatic tool-based approach. We
believe that a tool developed using the 1deas developed
in the paper will be very useful for rapid prototyping
of designs, and in identifying and eliminating bottle-
necks. We have successfully done a case study of our
period-assignment algorithm for computerized numeric
control [8] in a single processor environment. We hope
to extend it for distributed systems using our deadline
decomposition strategy.

There exist many directions along which our ap-
proach can be extended. First, we have assumed allo-
cation of tasks to processors. We would like to include
that in the constraint solving process. Second, we want
to extend our design model to incorporate more elabo-
rate task structures, communication mechanisms, and
timing constraints. Finally, it would be nice to do some
sensitivity analysis; since our method works at design
time, the execution times are likely to be crude esti-
mates. Therefore, it is desirable that small changes in
execution times do not involve starting from scratch.

References

[1] N. Audsley, A. Burns, and A. Wellings. Data con-
sistency in hard real-time systems.
19(2):223-234, May 1995.

[2] R. Bettati and J. W.-S. Liu. End-to-end scheduling to
meet deadlines in distributed systems. In Proceedings,
IEEE Conference on Distributed Computing Systems,
pages 452-459, 1992.

[3] A. Burns. Preemptive priority based scheduling: An
appropriate engineering approach. In S. Son, editor,
Principles of Real-Time Systems. Prentice Hall, 1994.

Informatica,

[4] G. Dantzig and B. Eaves. Fourier-Motzkin Elimination
and its Dual. Journal of Combinatorial Theory (A),
14:288-297, 1973.

[5] J. Garcia and M. G. Harbour. Optimized priority as-
signment for tasks and messages in distributed hard
real-time system. In Proceedings, IEEF Workshop on
Parallel and Distributed Real-Time Systems, 1995.

[6] R. Gerber, S. Hong, and M. Saksena. Guaranteeing
real-time requirements with resource-based calibration
of periodic processes. IEFE Transactions on Software
Engineering, 21(7), July 1995.

[7] H. Gomaa. Software Design Methods for Concurrent
and Real-Time Systems. Addison-Wesley Publishing
Company, 1993.

[8] N. Kim, M. Yoo, S. Hong, M. Saksena, C. Choi, and
H. Shin. Visual assessment of a real-time system
design: A case study of period calibration method.
In Proceedings, IEFE Real-Time Systems Symposium,
1996.

[9] M. Klein, J. Lehoczky, and R. Rajkumar. Rate-
monotonic analysis for real-time industrial computing.
IFEE Computer, pages 24-33, Jan. 1994.

[10] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and av-
erage case behavior. In Proceedings of IFEE Real-
Time Systems Symposium, pages 166—171. IEEE Com-
puter Society Press, Dec. 1989.

[11] M. D. Natale and J. Stankovic. Dynamic end-to-end
guarantees in distributed real-time systems. In Pro-
ceedings, IEFE Real-Time Systems Symposium, pages
216-227, 1994.

[12] K. Ramamritham and J. A. Stankovic. Scheduling al-
gorithms and operating systems support for real-time
systems. Proceedings of the IEEE, 82(1):55-67, Jan-
uary 1994.

[13] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin.
On task schedulability in real-time control systems.
In Proceedings, IEFE Real-Time Systems Symposium,
1996.

[14] L. Sha and S. S. Sathaye. A systematic approach to
designing distributed real-time systems. [FEE Com-
puter, 26(9):68-78, September 1993.

[15] D. Simon, B. Espiau, E. Castillo, and K. Kapel-
los. Computer aided design of a generic robot con-
troller handling reactivity and real-time control issues.
IFEEE Transactions on Control Systems and Technol-
ogy, 1(4), Dec. 1993.

[16] J. Sun, R. Bettati, and J. W.-S. Liu. An end-to-end
approach to schedule tasks with shared resources in
multiprocessor systems. In Proceedings of the 11th
IEEE Workshop on Real-Time Operating Systems and
Software, Seattle, Washington, May 1994.

