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Abstract. The allocation of resources to tasks in an efficient manner is
a key problem in computer science. One important application domain
for solutions to this class of problem is the allocation of sensor resources
for environmental monitoring, surveillance, or similar sensing tasks. In
real-world problem domains, the problem is compounded by the fact
that the number of tasks and resources change over time, the number of
available resources is limited and tasks compete for resources. Thus, it
is necessary for a practical allocation mechanism to have the flexibility
to cope with dynamic environments, and to ensure that unfair advan-
tages are not given to a subset of the tasks (say, because they arrived
first). Typical contemporary approaches use agents to manage individ-
ual resources, and the allocation problem is modelled as a coordination
problem. In existing approaches, however, the successful allocation of
resources to a new task is strongly dependent upon the allocation of re-
sources to existing tasks. In this paper we propose a novel negotiation
mechanism for exchanging resources to accommodate the arrival of new
tasks, dynamically re-arranging the resource allocation. We have shown,
via a set of experiments, that our approach offers significantly better
results when compared with an agent-based approach without resource
re-allocation through concurrent negotiation.

1 Introduction

When a sensor network is deployed it is typically required to support multiple
simultaneous tasks. A given sensor can provide different amounts of information
to each individual task. Tasks are broken down as sub-tasks and can appear
at any time placing varying demands on sensor resources. In such multiple-
sensor and multiple-task problems in dynamic environments, conflicts between
sub-tasks may occur for the use of the same sensor resource. Thus, efficient
mechanisms to allocate individual sensors to appropriate sub-tasks on the basis
of information need are necessary.

The resource-task allocation problem is at least as hard as the Knapsack
problem which is NP-Complete [5]. In the current state of the art, there is no
generally adopted approach to solve this class of problems, and researchers have
made many assumptions in order to be able to provide a solution to a subset of
the generic problem (e.g. considering only systems where sensors are identical,



sub-tasks are of the same type, or systems where sub-tasks require the exclu-
sive use of sensor resources). In an attempt to relax such assumptions, we have
focused on resource allocation problems in heterogeneous and dynamic sensor
networks. Specifically, we employ an agent-based approach allowing sensors to
be shared between sub-tasks. In so doing, however, the success of a sub-task
strongly depends on the allocation of earlier sub-tasks. Moreover, in practical
scenarios not all sub-tasks will operate in a cooperative manner (i.e. the agents
coordinating the sub-tasks might not be willing to participate in the reassign-
ment of sensors without compensation).

Negotiation techniques have long been used in multi-agent systems to resolve
disagreements between agents to enable them to come to agreements that all
parties can live with [10]. It is, therefore, appropriate to investigate the use
of negotiation mechanisms for reassigning sensor resources. In doing this, we
introduce another objective for agents: maximising profit. A task (represented
by a buyer agent) in need of a particular sensor might be willing to give up
part of its profit to a potential seller (representing another task) in exchange for
the service of that sensor. If the seller can find an alternative sensor to replace
that particular sensor, it will be beneficial to do the exchange if it is able to
obtain additional profit from the buyer. For the buyer, it will have a chance of
completing its allocation, thus achieving the objective and also obtaining a profit
that is unavailable otherwise. We further demonstrate that it is advantageous
for the buyer to have a number of such negotiations concurrently because this
increases its chance of being successful.

In this paper, we make the following contributions to the state of the art.
First, we enhance sensor-task allocation mechanisms by employing an adaptive
negotiation mechanism in the allocation process. This makes our approach more
applicable in realistic situations where sub-tasks compete for resources. Addi-
tionally, to the best of our knowledge, this presents the first model introducing
negotiation as a post-processing step to improve the actual allocation process.
Through simulations, we empirically demonstrate that our extended model pro-
vides an improvement in the number of completed tasks.

The remainder of this paper is organized as follows: Section 2 formulates
the sensor-task allocation problem. Section 3 presents our agent-based approach
and Section 4 extends this model by incorporating a novel negotiation mecha-
nism specifically for resource exchange between self-interested task-agents. We
present an in-depth analysis of our experimental results in Section 5, followed
by Section 6 where we relate our model to existing research in this area, discuss
the shortcomings of our model and point towards avenues for future research.
Finally, Section 7 concludes.

2 Sensor-Task Allocation Problem

The problem considered in this paper involves allocating a collection of sensors
to a number of tasks in order to satisfy the information requirements of those
tasks.



A sensor s; is defined as a tuple (v;,1;, r;, ¢, u;) where v; € I' specifies s;’s
type (I is the set of all sensor types); I; and r; are the location and sensing range
of s;; ¢; is the cost of using s;; and u; is the maximum utility s; can provide in
a single time unit.

Tasks may arrive at any time and may last for any duration. A task M
is defined by a specific geographic location, starting time and duration. M is
composed by a set of sub-tasks 7. Each sub-task t; € T" has a specific type and
is defined as a tuple (I;,7;,d;,p;,b;) where [; and r; specifies t;’s location and
operational range; d; is the sensing demand that ¢; requires; p; is the profit ¢;
will achieve if successfully allocated; and lastly, b; is the overall budget for the
sub-task. The active time for ¢; is within the duration of task M. We denote u;;
as the utility that s; can provide to t;, which is defined as a percentage of u;
calculated by the ratio between the overlap of the ranges of s; and t; and the
range of s;. If the operational areas of s; and ¢; do not intersect, the value of u;;
will be 0.

Given a set of available sensors S = {s1, s2, ..., 5, } for t; at ¢;’s starting time,
we formulate the allocation for ¢; as a mathematical programming problem.
Specifically, an allocation to t; is defined as the matrix A; = (2;j)nx1 where
z;; = {0,1} and z;; = 1 denotes that sensor s; is allocated to sub-task t;. The
utility that ¢; achieves is calculated as: U;; = Z?:l u;zj X ;. The cost of t;’s
allocation is calculated as: Ctj = 2?21 Ci X Tgj.

An allocation A; is valid if, and only if:

1. the total cost of an allocation must be within budget: C, < b;

2. the utility achieved must greater than or equal to the sensing demand (within
a threshold &) for t;: Uy, > € x dj,

3. the set of sensor types of the sensors allocated to t; must cover its information
requirements: for all required type vx3s; : 35 = 1,7 =

4. sensors cannot be allocated to more than one type of sub-task at the same
time (i.e. the only permit sensors to be shared between sub-tasks of the same
type): > o7 iy < 1 for all set T of sub-tasks with different types.

If A; is valid, the profit that ¢; will receive is calculated as P;; = min(Uy, /d;, 1)
xp;. Task M will have a successful allocation if all of its sub-tasks are satisfied
(A; is valid Vt; € T'). The profit that M receives in this case is Py = th er Py,
th eT.

Formally, the allocation problem is defined as:

max: count(M), X Py
st AjisvalidVt; €T

In other words, we aim to utilize the set of sensors to maximize the number
of successful tasks as well as obtain as much profit as possible for such tasks
(emphasizing the number of successful tasks).
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Fig. 1. Our proposed approach as a flowchart.

3 Agent-Based Sensor-Task Allocation

In this section, we present an approach to continuous resource allocation problem
for sensor network management that offers significant efficiency improvements
over existing solutions, while generating high quality solutions.

We assume that sensors of different types are deployed in an environment in a
uniformly random manner, have varying sensing ranges and each sensor provides
different utilities to different sub-tasks. The utility each sensor can contribute is
computed by a predefined function for each task and depends on various factors
such as sensor type, range, location and so on.

By a task, we mean a sensing task that requires information of a certain
type, which may be contributed by one or more sensor types. Tasks can arrive
at any time, and there may be more than one task active at any given time.
Tasks may consist of a set of sub-tasks and each sub-task is defined by a specific
location, operational range and type. Moreover, each task has a profit represent-
ing its importance, and this profit can only be achieved if the task is successfully
allocated. Tasks also require different numbers of sensing resources (i.e. it has
a sensing demand) and these requirements may not be met by a single sensor
type. In such cases, different sensor types should be allocated together to meet
the requirements of a sub-task. We use the term Deployable Configuration (DC)
to refer to the set of resource types that an atomic task requires.

We propose a multi-agent system where each task is represented by a task
agent. The task agent is responsible for the task. If a task is composed of sub-
tasks, then that task’s agent delegates those subtasks to other task agents. If
a task agent represents an atomic task (i.e. the task have no sub-tasks), then
the agent is only responsible for the determination and allocation of resources
required to execute the task. In summary, agents of tasks are responsible for the
delegation of subtasks to other agents while the agents of sub-tasks are respon-
sible for the determination and allocation of resources.



Resource determination and allocation for each atomic task is managed by the
agent of that task. Hence, for a composite task, overall resource determination
and allocation is achieved in a decentralized manner by the agents representing
atomic tasks within the composite task. The agents of the atomic tasks first
determine the necessary resource types and then interact with the resources
(sensors) on the area of their interest to allocate the necessary resources. In our
approach, each sensor is represented by a sensor agent, knowledgeable about the
location, range, type, battery life and utility of its sensor. Therefore, in order to
allocate sensors for a specific atomic task, the agent of this task should interact
with the sensor agents considering its requirements and constraints. Here, we
assume that task agents compete for resources while sensor agents are purely
cooperative.

As mentioned earlier, a task can arrive at any time and there may be more
than one task active at any given time. When a new task T arrives, T is delegated
to a task agent Ar (the sensor agent closest to the central of T's range). Ar is
responsible for controlling the process of finding an allocation for T' as follows
(see Figure 1):

1. Establish the execution order for sub-tasks. Basically, two tasks ¢; and t;
belong to the same execution set (they can be executed at the same time) if
their operational ranges do not intersect or their sensor type requirements
do not overlap. However, if two tasks have the same type, both will be in the
same execution set. Initially, the execution set containing to will be processed
first and followed by the set containing the next unprocessed task until all
the tasks have been handled. _

2. Delegate the sub-tasks (e.g., t;) to task agents (e.g.,A%.).

A%« is knowledgeable about the constraints and requirements of the sub-task
t;. A%} computes the set of deployable configurations (DCs) for t;. These DCs
are determined by a semantic matchmaking process [13] and then used as the
input for the actual allocation process. The key benefit in doing so is that the
search space for finding the allocation solution can be greatly reduced (A7 only
has an interest in sensors of a specific type if the deployable configurations of its
sub-task contains this sensor type).

When a DC has been selected for ¢, the actual allocation steps are as follows:

The task agent AjT identifies candidate sensors within the operational range
of t;. A call for bids is issued to appropriate sensors. The call for bids includes
information regarding its type, location, etc. Each sensor agent then makes an
independent decision on whether and what to bid based on its type and workload.
A response to a call will include the utility that can be provided and the cost
associated with the use of this sensor.

Once bids are received, the coordinator agent attempts to allocate sensors to
the sub-task using a multi-round allocation algorithm (MRA). MRA operates
in the similar way to GAP-E algorithm [8]; typically, it is in the nature of this
allocation algorithm that the various agent-based techniques differ. If A7. fails
to satisfy its information requirements, it reports failure to the agent responsible



for Ar, and if the sub-task is critical to the overall task, all other task agents
coordinating dependent tasks/sub-tasks will be requested to abort and release
their resources. All sensor agents from which bids were received are informed of
whether they are required.

In the MRA algorithm, sensors of various types are allocated to the sub-
task in a number of rounds, one for each sensor type the sub-task requires.
The first step is to set the order of selection of potential sensors using their
priority. In this way, all sensors of the highest priority are considered first. Also,
MRA introduces a budget (a constraint that governs the number of sensors that
can be allocated to the atomic task) as part of its specification. From the bids
received the allocation algorithm also has the costs associated with using specific
sensors and the utilities they provide. The Fully Polynomial Time Approximation
Scheme (FPTAS) algorithm which offers an approximation guarantee of 2 + € is
then run with this as input along with an allocation from the remaining budget
and utilities that sensors can provide to the task. This algorithm returns a revised
allocation. If this allocation does not contain at least one sensor of the type being
considered, the atomic task fails. Otherwise, the algorithm then reassesses the
priority among sensor types (given the fact that sensors have been allocated)
and proceeds to the next round if additional resources are required.

4 Negotiation for (Re-)Allocation of Resources

In this section, we detail our novel negotiation mechanism which can be used
during the post-processing step in each round of the allocation algorithm out-
lined in the previous section. As has been argued, the problem inherent in a
decentralised (or agent-based) approaches to the sensor-task allocation problem
is that the order of task arrival (or, strictly, allocation by agents in the system)
can significantly affect the quality of the global solution, and hence the number
of tasks that are satisfied. The aim of concurrent negotiation is to alleviate the
impact that task arrival has on solution quality. Specifically, it is of benefit if:

1. there are selfish coordinating agents which are not willing to cooperate with-
out reward, and

2. asub-task t; of task M cannot find an available sensor of a particular type ;,
t; fails and, consequently, M fails. In many cases, t; cannot satisfy its sensing
requirement ¢; for sensor type -y; not because there is no such sensor within
t;’s range, but because there are sensors of type ; within its range that are
allocated to other sub-tasks. If one such sub-tasks can find a replacement,
that sensor can be allocated to t; and, thus, ¢; will succeed.

The negotiation mechanism detailed in this section allows an agent (buyer)
representing a task to negotiate concurrently with other task-agents (sellers) to
obtain a resource of type -y that is currently allocated to one of these other tasks
in exchange for a fraction of its profit. Obviously, the buyer will only be interested
in instances of resource type 7 that it can make use of (i.e. utility of the resource



instance to the buyer is not 0). The buyer will negotiate simultaneously with all
the sellers that currently employ a resource of type 7.

The buyer and the sellers work to different negotiation deadlines, each repre-
senting availability in terms of both resource and processing power. They follow
a Sequential Alternating Protocol where at each step an agent can either accept
the offer from the opponent, propose a counter-offer, renege from its commit-
ment or opt out of the negotiation (typically if its deadline is reached). At each
negotiation time period, the interest of each agent is represented by a proposal
¢, which refers to the profit that will be paid to the seller by the buyer.

The buyer agent (B) consists of two main components: a coordinator and a
number of negotiation threads. The negotiation threads deal directly with the
sellers (one per seller ) and are responsible for deciding what counter-offers to
send and what proposals to accept. Each thread inherits the preferences from the
main buyer agent, including the acceptable ranges of values for the profit, the
deadline of the negotiation and the current reservation value (the highest profit
value that the buyer is willing to pay). The coordinator decides the negotiation
strategies for each thread. If a thread reaches a deal with a particular seller,
it terminates and notifies the coordinator. The coordinator will then notify all
other negotiation threads of the new reservation value.

In this way, the buyer, B, will engage in simultaneous negotiations with all
the sellers that currently possess a resource of type b. In our model, the buyer
can either choose to terminate all negotiation threads once an agreement has
been reached (simple negotiation mode) or it can wait until all the negotiations
have been finished and then select the agreement that is most valuable (extended
negotiation mode) either with the smallest profit to pay or with the highest utility
achieved.

For each seller, if the negotiation succeeds, it will have to give up one of
its resources to the buyer. As a result, it is necessary for the seller to obtain a
replacement resource before it can enter the negotiation. If there is an available
and appropriate alternative resource (i.e. a resource that achieves the require-
ments of the task — validates the allocation — without the original resource), it
can replace the previously allocated resource with the alternative. We label this
situation as 1-sequence negotiation. However, there exists a more complicated
case (2-sequence) in which the seller needs to negotiate with another seller for
a replacement resource before it can negotiate with the buyer (i.e. buyer B and
seller S are negotiating about a resource b but S needs to negotiate with seller
C about resource b’ which is the replacement for b). If the seller cannot manage
to find the replacement resource, it will not enter the negotiation.

The agents bargain about the profit that will be paid for the resource that
the seller is currently holding (the price being a share of the profit that the buyer
acquires in completing its task). The buyer and sellers use different negotiation
strategies that are based on the set of linear strategies as specified in [9]. This
strategy family is employed because it represents the neutral stances of both the
buyer and the seller, not favouring anyone in particular and allows a solution to
be found that is beneficial for both parties rather than having only one better



off. Furthermore, by doing so, it will increase the chance for more agents to
participate and in turn, improve the global goal of maximizing the number of
successful task allocations.

Specifically, a strategy is a sequence of decisions that an individual agent
will make during negotiation. These decisions could be either to send an initial
offer to the opponent, select an offer to propose, accept the offer proposed by
the opponent or withdraw from the negotiation. Here, the value of the profit
is between the minimum and the maximum limit of each agent. For the buyer,
the proposed profit will increase in value over time and conversely, the seller’s
value will decrease. For each seller, the reservation value or the minimum profit
(minpg) it will accept is the difference between the profit it received by having
the resource s and that received with the replacement resource s’. For example,
if s receives a profit of 1.5 with s and a profit of 1.2 with s’, the minimum profit
it will accept from B is 0.3. The maximum profit (mazpg) it can expect from
the buyer is the difference between the profit with s’ and the maximum profit it
can obtain. This is the incentive for the seller agents to enter into negotiation.
For a seller S, at any time t between 0 and its negotiation deadline tg  , the
value of the proposal it will send to B is: ¢(S — B) = maxps — (mazps —
minps) X (ts'ria;z
function.

1.00
) Ps where g is the parameter that defines the shape of the

On the other hand, the buyer will attempt to give up as little of its profit
as possible. Thus, its minimum profit (minpp) it is willing to pay is 0. The
reservation value (maxpp) it is willing to pay is set at half of potential profit it
can obtain if s is allocated. If it is higher, the buyer might not get any profit at
all and it might not be tempted to enter the bargaining process. Thus, at any
time t between 0 and deadline ¢p,,,,, the value of the proposal B will send to

100 ]
) 5 where Bp is the

S is: ¢(B — S) = minpp + (maxrpp — minpp) X (tst
parameter that defines the shape of the function.

When an offer proposed by a party is between the minimum and the maxi-
mum acceptable profit of the other party, it will be accepted and a provisional
agreement (or deal) is created. If the negotiation is in the simple mode, the
buyer will terminate all other negotiation threads and select the resource in the
deal reached with the winning seller. If, however, it is in the extended mode,
the buyer will attempt to establish as many deals as possible, and then commit
to the best (based on its selection criteria), declining all others. The selection
criteria that the buyer has in this model are (i) the deal with the least amount
of profit, and (ii) the deal that can provide the highest utility value. The final
agreement and the final allocated resource plays an important role in determin-
ing the success rate of subsequent tasks and this is reflected in the results of our
empirical evaluation presented in Section 5.



5 Evaluation

Having defined our negotiation mechanism, we now present a detailed discus-
sion of our empirical evaluation aimed at assessing the benefit of employing our
concurrent negotiation mechanism in sensor-task allocation.

The sensors and tasks are deployed in uniformly random locations in a 400m
x 400m environment. Each sensor range (r;) is randomized between 20m and
40m and their maximum utility is calculated as (r;/40)2, which ensures that
their the values lie between 0.25 and 1. The operational ranges of the sub-tasks
are set to be randomized between 40m and 80m. The values for S and (g are
selected randomly between 0.95 and 1.05. The threshold ¢ is set at 0.75.

The task arrival rates are controlled by the task_per_hour parameter, which
ranges from 2 to 8, and number_of_days parameter, which is kept at 2 days. Each
task can last for an arbitrary amount of time, ranging from 5 minutes to 4 hours.
There are total_sensor_types different sensor types, which will vary between 4 and
8 and, for each sensor type, there will be total_sensors_per_type sensors. For each
task, the number of sub-tasks will be varied between 4 and 5. Each sub-task
type will require a number of different sensor types, which varies between 1 and
4. These individual sensor type requirements are generated randomly and have
the value between 1 and total_sensor_types.

To evaluate the negotiation mechanism, we benchmark our model with 3 dif-
ferent settings: 4tph 4st, 4tph 8st and 8tph 8st where tph stands for task_per_hour
and st stands for total_sensor_types. With each setting, we vary total_sensors_per
_type between 30 and 250 to create additional 12 environments, each then carries
further 500 experiments with randomized data sets. The results are averaged and
put through a regression test to ensure that all differences are significant at the
99% confidence level.

We measure the number of successful tasks, the average profit achieved and
the running time. We also measure the performance of the different negotia-
tion modes: simple mode (terminate whenever an agreement is reached); and
extended mode with either smallest profit or highest utility selection criterion.
It would be reasonable to expect that the different ratios between the number
of tasks and sensors leads to different improvements in the number of success-
ful tasks between negotiation-enabled and non-negotiation models. For example,
when the number of tasks remain unchanged, the more sensors there are, fewer
negotiations are required and thus, any improvement due to negotiation might
decrease. Hence, we explored variations in these values.

We now turn to the specific results.

Hypothesis 1 By negotiating, agents will have a better chance of finding a
successful allocation as well as increasing the total profit achieved. Moreover, the
running time of the algorithm is still acceptable

To evaluate this hypothesis, we measure the number of successful allocated
tasks and the total amount of profit achieved for the model with the 1-sequence
negotiation featured in extended utility mode and the one without the negotia-
tion feature. The differences are shown in Figure 2.
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Fig. 3. The differences of the running time of the algorithm between 1 sequence con-
current negotiation (simple negotiation mode) vs no negotiation.

As can be seen, negotiation allows the number of successful tasks to increase
in all cases, varying between 2% and 12%. This can be explained by the fact that,
in many situations, a sub-task in the standard model fails because it cannot find a
sensor of a particular type to satisfy its requirement. This same sub-task in the
negotiation-enabled model can now bargain with another sub-task to acquire
a sensor that is unavailable otherwise and this helps it to obtain a successful
allocation and, eventually in some cases, lead to a successfully allocated task. As
the number of successful tasks increases, the overall profit achieved also increases.

We detail the differences between the running time of our model with and
without negotiation in Figure 3. This is the actual amount of time that the
machine took to solve the allocation problem. As can be seen from the graph, the
negotiation-enabled model takes longer than its counterpart when the number
of sensors is roughly between 5% and 22% which, we believe, is still acceptable
given the more beneficial outcomes achieved. However, as the number of sensors
increases, the time it took decreases such that there is a negligible impact on
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running time. By far, the greatest impact on running time is the number of tasks
and sensors involved in a problem.

Hypothesis 2 The overall utility achieved through the use of negotiation is
higher than that without.

The differences between the averaged utility achieved by using model with
and without negotiation feature are displayed in Figure 4. As can be seen from
hypothesis 1, negotiation enabled model allows higher number of successfully
allocated tasks in all situations. Consequently, the utility achieved by successful
tasks is increased, leading to an increase in the averaged utility obtained by a
task. Also similar to hypothesis 1, the more sensors there are, the lower this
increase will be.

Hypothesis 3 There is no clear advantage of selecting the extended negotiation
mode.
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To evaluate this hypothesis, we show the difference between the performance
of 1-sequence lowest profit agreement and 1-sequence highest utility agreement
vs simple negotiation mode in Figure 5.

As can be seen, the difference between extended negotiation mode and the
simple negotiation mode are negligible with the highest value less than 1%.
There is no decisive pattern of which negotiation mode provides a more desirable
outcome. Obviously, the extended negotiation mode strongly favours the buyer
sub-task (see Section 4) whereas the simple negotiation mode treats all agents
equally. Consequently, it is rational to select the simple mode as the negotiation
method since the sellers will be more willing to participate (they do not have to
wait for the buyer to finalize their agreements). Moreover, it will be faster for
an agreement to be reached.

Hypothesis 4 Allowing 2-sequence megotiation in the model provides higher
number of successful allocated tasks than 1-sequence negotiation enabled model.

2-sequence negotiation allows a sub-task agent to have a slightly better
chance of finding a replacement sensor (see Section 4). For most sellers, instead
of only finding free sensors, they can now negotiate with other potential seller
for a replacement sensor, having both the roles of buyer and seller at the same
time. By doing so, the chance of finding a replacement sensor for any seller is
increased and that results in a higher number of negotiations for the original
buyer and, consequently, a higher number of successful negotiations, eventually
leading to an increase in the number of successful negotiations compared to its
1-sequence counterpart. The results are clearly demonstrated in Figure 7.

Hypothesis 5 The running time of 2-sequence megotiation enabled model is
considerably longer than that of 1-sequence counterpart.

Even though 2-sequence negotiation mode provides better outcomes than 1-
sequence mode, the running time of the algorithm is much higher (see Figure 8).
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In the worst case, it is nearly 2.5 times worse and even in the best case, it takes
nearly 50% longer than its counterpart.

Now that the sellers can negotiate with other potential sellers, their chances of
finding a replacement is increased but also the number of negotiations carried out
is also increased. There is no way of knowing which negotiation will be beneficial
and thus, all the negotiations will need to be carried out. As a result, there will
be many unnecessary bargaining processes, leading to a dramatic increase in the
running time of our model.

As can be seen, even though the number of successful tasks increases with
2-sequence negotiation, the time it takes to complete is considerably longer than
that of 1-sequence counterpart. Thus, it will not be beneficial to support more
than 2-sequence negotiation in our model since the trade-off between the suc-
cessful task and the running time will be undesirable.



6 Discussion and Related Work

There are only a small number of sensor-task allocation studies that have consid-
ered the heterogeneous sensor, heterogeneous task case [11, 5] and our work falls
in this class, which can be considered the most generic version of the sensor-task
allocation problem. In addition, the problem we are considering can be viewed
as a more general problem of resource allocation such as scheduling jobs on un-
related parallel machines [16] (the feasible constraint is that a job may need to
be performed by a set of families of machines) or the Bin Covering problem (our
problem is a generalization of this problem when the item may take a different
amount of space in different bins). Our MRA algorithm presented in Section 3
is an adaptation of the MRGAP algorithm proposed in [5] in which the idea is
to consider tasks as knapsacks that together form an instance of the Generalized
Assignment Problem (GAP).

Resource allocation models in multi agent systems have two major branches:
centralised and decentralised [1,4]. Centralised systems make use of a single
agent to assign resources to all tasks and optimal outcomes might be achieved
because that single agent has a global view of the situation. The most successful
centralised models are auctions and it comes in various form including regular
or combinatorial auctions [6]. Agents may submit the “best” bid(s) serving their
own interests and wait for the final allocation decided by the auctioneer. In
addition, advantage of such models is that the communication protocols required
are normally simpler than that of decentralised approaches [1]. Nonetheless, the
central agent creates a bottleneck and generally, these solutions do not scale well.
Decentralised systems are typically preferred in practical situations [4] and peer-
to-peer negotiation has long been a popular technique for agent coordination in
such system.

In sensor networks, various forms of negotiation have been explored. For
example, Sujit et al. [15] employ an auction-based negotiation model for dis-
tributing UAVs (Unmanned Aerial Vehicles) to search and attack some targets
in the environment. Similarly, Shima et al. [14] use an auction-based negotiation
model to establish information regarding other neighbouring nodes and estimate
costs for other members to assign to different targets in order to find an efficient
solution for all the participating nodes. The DISTINCT algorithm [12] uses nego-
tiation to distribute tasks among robots. The disadvantage of these approaches
is that they cannot guarantee all the negotiations will terminate after a finite
number of cycles.

Another model introduced by Howard et al. [3] uses a market-based approach
and the contract net protocol to allocate a group of robots to a number of tasks.
Each task is announced and all the robots bid for tasks. If a robot has already
been allocated to another task then the robot will select the better task and
broadcast the other. The major issue with this model is that there are a great
deal of duplicate allocations, resulting unnecessary time and resource consumed.

In [2, 7], Kulik et al introduce four SPIN (Sensor Protocols for Information via
Negotiation) protocols for exchanging information in wireless sensor networks.
They are all negotiation based and can be applied in either point-to-point or



broadcast modes. In either mode, the sensor nodes use some variation of the
three-stage handshake protocol to negotiate for newly discovered data. Basi-
cally, whenever a sensor discovers new data, it will broadcast its findings (ADV
message) to its neighbouring sensors. These sensors, in turn, will decide whether
or not to ask for the actual data to be sent to them (REQ message) based on
their constraints. Finally the initiator will response to the REQ message with
a DATA message containing the actual data. Even though the communication
between sensors can be reduced by using these protocols, the sensors need to be
equipped with large buffers to store previous requests/data to avoid duplication.
Moreover, these protocols only provide best results when the topology of the
network is fixed.

As can be seen, using negotiation as the sole means to allocate resources
might not be beneficial. However, it is useful if negotiation is used to enhance
existing allocation algorithms. There are a number of negotiation models that
can be employed such as auctions, double auctions or bilateral negotiations.
However in this work, we consider the application of the multiple concurrent
bilateral negotiation model introduced by Nguyen et al. [10] since it allows the
agents to engage in real time and the results obtained are close to optimum
[10,9]. There are a number of shortcomings with our model, however. First,
the strategies employed by the agents are linear and constant throughout each
encounter. Ideally, they should adapt to their opponents so that the participating
agents might be able to obtain better outcomes. Second, we consider profit to be
exchangeable between tasks so that it can be used as the base for the negotiations
to happen. This is not always an appropriate assumption and this issue requires
further investigation.

7 Conclusion

In this paper, we have proposed a decentralised agent-based approach for han-
dling the sensor-task allocation problem in dynamic environments where the
tasks and resources can appear/disappear any time. Moreover, our model allows
various tasks to compete for the same resources in a graceful manner. In particu-
lar, we have incorporated a negotiation mechanism as a post-processing stage of
agent-based allocation models. The mechanism allows resources to be exchanged
between self-interested agents. Specifically, a task negotiates concurrently with
other tasks to obtain a resource that is currently allocated to one of these tasks
in exchange for a fraction of its profit which it will receive if it can obtain a valid
alternative allocation. Via empirical evaluation, we have demonstrated that this
offers significantly better results when compared with an agent-based allocation
model without resource re-allocation.
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