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Block Partitioning Structure in the HEVC Standard
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Abstract—High Efficiency Video Coding (HEVC) is the latest
joint standardization effort of ITU-T WP 3/16 and ISO/IEC
JTC 1/SC 29/WG 11. The resultant standard will be published
as twin text by ITU-T and ISO/IEC; in the latter case, it will
also be known as MPEG-H Part 2. This paper describes the
block partitioning structure of the draft HEVC standard and
presents the results of an analysis of coding efficiency and
complexity. Of the many new technical aspects of HEVC, the
block partitioning structure has been identified as representing
one of the most significant changes relative to previous video
coding standards. In contrast to the fixed size 16×16 macroblock
structure of H.264/AVC, HEVC defines three different units
according to their functionalities. The coding unit defines a
region sharing the same prediction mode, e.g., intra and inter,
and it is represented by the leaf node of a quadtree structure.
The prediction unit defines a region sharing the same prediction
information. The transform unit, specified by another quadtree,
defines a region sharing the same transformation. This paper
introduces technical details of the block partitioning structure
of HEVC with an emphasis on the method of designing a
consistent framework by combining the three different units
together. Experimental results are provided to justify the role
of each component of the block partitioning structure and a
comparison with the H.264/AVC design is performed.

Index Terms—Advanced video coding (AVC), H.264, High
Efficiency Video Coding (HEVC), Joint Collaborative Team on
Video Coding (JCT-VC), standards, video.

I. Introduction

DUE TO THE ever-increasing demand for bit rate to
support higher resolution video, there is a requirement to

develop video compression technologies which would provide
significantly higher coding efficiency than the current genera-
tion of video coding standards. The Joint Collaborative Team
on Video Coding (JCT-VC), a joint activity of ITU-T WP 3/16
and ISO/IEC JTC 1/SC 29/WG 11, was set up in April 2010 to
address these requirements for a next generation video coding
standard. The resultant standard, called High Efficiency Video
Coding (HEVC), is expected to be completed in January 2013.

Over the past decades, video coding standards such as
MPEG-1 Video [1], MPEG-2 Video [2], MPEG-4 Visual
[3], and H.264/advanced video coding (AVC) [4] played
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an important role in enabling multimedia applications. The
basic ingredients of these standards are block-based motion
compensation and spatial transforms. The current state-of-the-
art, H.264/AVC provides approximately double the coding
efficiency of the earlier MPEG-2 standard, using more flexi-
ble macroblock and submacroblock partitioning and variable
transforms sizes of 4 × 4 and 8 × 8. However, due to some
restrictions in the design, e.g., the fixed size of macroblock,
limited depth of block partitioning and limited adaptivity be-
tween inter and intra prediction schemes, the coding efficiency
is still not sufficient to cope with the ever increasing demands
for storage and transmission of video content.

To overcome these problems, several papers tried to inves-
tigate the effect of relaxing the restrictions and using more
flexible block partitioning. One direction was to add larger
size blocks on top of the existing block structure [6]–[10],
including 16 × 16, 16 × 8, and 8 × 16 transforms. Another
direction utilized the more general quadtree structure for block
partitioning [11]–[17] in addition to enlarging the size of
blocks. In these approaches, up to 128 × 128 block size was
allowed and more flexible motion and transform block (TB)
partitioning structures were utilized.

The emerging HEVC standard represents one of the more
advanced versions of the second approach. In the main profile
of HEVC, a slice is partitioned into multiple coding tree units
(CTU) which are allowed to have sizes from 8×8 up to 64×64.
For comparison, prior video coding standards typically support
a maximum block size of 16×16. Inside the CTU, a quadtree
structure is built to allow more flexibility for partitioning of the
CTU while maintaining consistent design, even when the CTU
size is larger than 16 × 16. Each leaf node of the coding tree
is called a coding unit (CU); this specifies how the prediction
should be done between spatial and temporal schemes. The
CU can have multiple prediction units (PU) and transform
units (TU); these define regions sharing the same prediction-
related information and the same transformation, respectively.
The shape of the PU is specified by the splitting type, as
in H.264/AVC whereas that of TU is represented by another
quadtree, called the transform tree.

This paper explains the issues with H.264/AVC motivat-
ing HEVC development in Section II. Technical details of
the block partitioning structure of HEVC are presented in
Section III. Section IV provides the experimental results and
Section V concludes this paper.

II. H.264/AVC Block Partitioning Structure

The block partitioning structure of the H.264/AVC is
designed to provide more flexibility compared with the prior
standards such as MPEG-2 or MPEG-4 Visual. However,
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TABLE I

Relative Area of Blocks Which Have Size of 16 × 16 and 64 × 64

According to Various Video Resolutions

Video resolution
Relative area of Relative area of

16 × 16 block (%) 64 × 64 block (%)
CIF (352 × 288) 0.253 4.040
SD (720 × 480) 0.074 1.185
720p (1280 × 720) 0.028 0.444
1080p (1920 × 1080) 0.012 0.198
2K (2560 × 1440) 0.007 0.111
4K (3840 × 2160) 0.003 0.049

there still remain several issues that could be addressed
to improve the coding efficiency further. This section
summarizes those issues which have been tackled during the
HEVC standardization.

A. Size of Macroblock

The basic building units of H.264/AVC are macroblocks,
which consist of 16 × 16 of luma samples and two corre-
sponding blocks of chroma samples. The size of 16 × 16 has
been considered to give a reasonable tradeoff between memory
requirements and coding efficiency since the development of
MPEG-1. More recently, it was found that the use of larger
block sizes could increase coding efficiency significantly for
high-resolution video, since the size of 16×16 is not sufficient
to capture the increased spatial correlation coming from the
higher resolution content [6]–[9]. Table I shows the relative
area of blocks which have sizes of 16 × 16 and 64 × 64
according to several video resolutions. As shown in the table,
the relative area of a macroblock in 4K resolution is decreased
to about 1/82 of that of a macroblock in CIF resolution.

B. Limited Depth of Block Partitioning

In inter prediction of H.264/AVC, each macroblock can be
processed in the following two-stage hierarchical process. A
macroblock can be predicted either as one 16 × 16 partition,
two 16 × 8 partitions, two 8 × 16 partitions, or four 8 × 8
partitions. If the 8 × 8 partition mode is selected, each of four
8 × 8 submacroblocks in the macroblock can be predicted
either as one 8 × 8 partition, two 8 × 4 partitions, two 4 × 8
partitions, or four 4 × 4 partitions. Unlike inter prediction,
only same sizes of partitions, which can be either 4×4, 8×8,
or 16 × 16 partitions, are allowed in a macroblock for intra
prediction. Fig. 1 shows the block partitioning structure for
prediction and transform in H.264/AVC. Although there are
several nonsquare partitions, the block partitioning structure
of H.264/AVC can be roughly related to a three-level quadtree
structure which supports nodes from 4 × 4 to 16 × 16.

In H.264/AVC, mb−type is a collective syntax element to
specify whether the macroblock of size 16 × 16 should be
split and how the prediction should be done. Additionally,
sub−mb−type specifies whether submacroblock of size 8 × 8
should be split more. However, this kind of split and prediction
combination would be inefficient in HEVC due to the large
number of combinations, so a unified and consistent syntax is
adopted across all sizes.

Fig. 1. Block partitioning structure for prediction and transform in
H.264/AVC.

C. Adaptivity Between Inter and Intra Prediction Schemes

In H.264/AVC, it is possible to specify which spatial or tem-
poral prediction scheme should be used for each macroblock.
However, H.264/AVC does not allow adaptation between pre-
diction schemes for partitions smaller than the 16 × 16 area.

D. Dependency Between Prediction and Transform

Two sizes of TB, 4 × 4 and 8 × 8, are supported in
H.264/AVC as shown in Fig. 1. Two transform sizes can
be adaptively used for each macroblock with an additional
syntax element transform−size−8x8−flag; however, it is highly
dependent on how the block is split.

When the inter prediction scheme is used, 4 × 4 transform
should be used for all blocks in the macroblock if at least one
block is smaller than 8×8. Even in the other case, all transform
sizes should be the same within one macroblock. When the
intra prediction scheme is used, the size of the transform
should be equal to the block size except in Intra−16×16 mode.
In Intra−16×16 mode, a Hadamard transform of 4×4 size is
applied to DC values after applying sixteen 4×4 transforms to
the 16 × 16 area. This strong dependency between prediction
mode and transform size and the dependency on block size
make the overall design more complex to implement, espe-
cially if were to be applied to a design such as HEVC that
allows more variety of block sizes.

III. Block Partitioning Structure in HEVC

The draft HEVC standard has adopted a highly flexible
and efficient block partitioning structure by introducing four
different block concepts: CTU, CU, PU, and TU, which are
defined to have clearly separated roles. The terms coding
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tree block (CTB), coding block (CB), prediction block (PB),
and TB are also defined to specify the 2-D sample array of
one color component associated with the CTU, CU, PU, and
TU, respectively. Thus, a CTU consists of one luma CTB,
two chroma CTBs, and associated syntax elements. A similar
relationship is valid for CU, PU, and TU.

Although use of a quadtree structure in video compression
is not a new concept [19]–[22], the coding tree approach in
HEVC can bring additional coding efficiency benefits by incor-
porating PU and TU quadtree concepts for video compression.

Leaf nodes of a tree can be merged or combined [22] in
a general quadtree structured video coding scheme. After the
final quadtree is formed, motion information is transmitted
at the leaf nodes of the tree. L-shaped or rectangular-shaped
motion partition is possible through merging and combination
of nodes. However, in order to make such shapes, the merge
process should be followed using smaller blocks after further
splitting is occurred. In the HEVC block partitioning structure,
such cases are taken care of by the PU [15]. Instead of splitting
one depth more for merging and combination, predefined
partition modes such as PART−2N×2N, PART−2N×N, and
PART−N×2N are tested and the optimal partition mode is se-
lected at the leaf nodes of the tree. It is worthwhile mentioning
that PUs still can share motion information through merging
mode in HEVC. Although a general quadtree structure without
PU concept was investigated by removing the symmetric rect-
angular partition modes (PART−2N×N and PART−N×2N)
from the syntax and replaced by corresponding merge flags
[23], both coding efficiency and complexity was proved infe-
rior to the current design.

Another difference is the transform tree. Even though vari-
able block size transforms were used for quadtree structured
motion compensation, their usage was rather restricted. For
example, transform size was strictly combined with motion
compensation block size. Even though multiple transform size
could be utilized, it was usual to use same size transform in
a motion compensated block. In HEVC, the motion compen-
sated residual can be transformed with a quadtree structure,
and the actual transform is performed at leaf nodes. Since the
transform tree is rooted from the leaf nodes of coding tree, this
creates a nested quadtree. This kind of nested quadtree exists
since the transform tree is started from the CU regardless of
partition modes, i.e., PU shapes [16]. This is a way to construct
a nested quadtree even though we have PU concepts that differ
from a general quadtree structure.

Another noticeable aspect is the full utilization of depth
information for entropy coding. For example, entropy cod-
ing of HEVC is highly reliant on the depth information
of quadtree. For syntax elements such as inter−pred−idc,
split−transform−flag, cbf−luma, cbf−cb and cbf−cr, depth
dependent context derivation is heavily used for coding ef-
ficiency. It has been demonstrated that this can break the
dependency with neighboring blocks with less line buffer
requirement in hardware implementations because information
of above CTU does not need to be stored.

In the following sections, the block partitioning structures
in the HEVC standard are presented in conjunction with a
detailed explanation of those unit definitions.

Fig. 2. Example of CTU partitioning and processing order when size of
CTU is equal to 64 × 64 and minimum CU size is equal to 8 × 8. (a) CTU
partitioning. (b) Corresponding coding tree structure.

A. Coding Tree Unit

A slice contains an integer multiple of CTU, which is an
analogous term to the macroblock in H.264/AVC. Inside a
slice, a raster scan method is used for processing the CTU.

In main profile, the minimum and the maximum sizes of
CTU are specified by the syntax elements in the sequence
parameter set (SPS) among the sizes of 8×8, 16×16, 32×32,
and 64×64. Due to this flexibility of the CTU, HEVC provides
a way to adapt according to various application needs such as
encoder/decoder pipeline delay constraints or on-chip memory
requirements in a hardware design. In addition, the support of
large sizes up to 64 × 64 allows the coding structure to match
the characteristics of the high definition video content better
than previous standards; this was one of the main sources of
the coding efficiency improvements seen with HEVC.

B. Coding Unit

The CTU is further partitioned into multiple CU to adapt to
various local characteristics. A quadtree denoted as the coding
tree is used to partition the CTU into multiple CUs.

1) Recursive Partitioning from CTU: Let CTU size be
2N×2N where N is one of the values of 32, 16, or 8. The
CTU can be a single CU or can be split into four smaller units
of equal sizes of N×N, which are nodes of coding tree. If the
units are leaf nodes of coding tree, the units become CUs.
Otherwise, it can be split again into four smaller units when
the split size is equal or larger than the minimum CU size
specified in the SPS. This representation results in a recursive
structure specified by a coding tree.

Fig. 2 illustrates an example of CTU partitioning and the
processing order of CUs when the size of CTU is equal to
64 × 64 and the minimum CU size is equal to 8 × 8. Each
square block in Fig. 2(a) represents CU. In this example,
a CTU is split into 16 CUs which have different sizes and
positions. Fig. 2(b) shows corresponding coding tree structure
representing the structure of the CTU partitioning in Fig. 2(a).
Numbers on the tree represent whether the CU is further split.
In Fig. 2(a), CUs are processed by following the dotted line.
This processing order of CUs can be interpreted as a depth-
first traversing in the coding tree structure [24]. If CTU size
of 16 × 16 and the minimum CU size of 8 × 8 are used, the
resultant structure is roughly similar to that of H.264/AVC.

HEVC utilizes CU as a unit to specify which prediction
scheme is used for intra and inter predictions. Since the
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Fig. 3. Rate-distortion curves of several combinations of size of CTU and
maximum coding tree depth for Traffic sequences (2560 × 1600). The size
of CTU is represented by character “s” and maximum coding tree depth is
represented by character “h.” Each curve shows the result when s64h4, s16h2,
and s64h2 are used, respectively.

TABLE II

Simplified Form of Coding Tree Syntax Table

coding−tree( x0, y0, log2CbSize, cbDepth ) {
split−coding−unit−flag[ x0 ][ y0 ]
if(split−coding−unit−flag[ x0 ][ y0 ] ) {

coding−tree(x0, y0, log2CbSize − 1, cbDepth + 1 )
coding−tree(x1, y0, log2CbSize − 1, cuDepth + 1 )
coding−tree(x0, y1, log2CbSize − 1, cbDepth + 1 )
coding−tree(x1, y1, log2CbSize − 1, cbDepth + 1 )

} else {
coding−unit( x0, y0, log2CbSize )

}
}

minimum CU size can be 8 × 8, the minimum granularity
for switching different prediction schemes is 8 × 8, which is
smaller than the macroblock size of H.264/AVC.

2) Benefits of Flexible CU Partitioning Structure: This
kind of flexible and recursive representation provides several
major benefits. The first benefit comes from the support of
CU sizes greater than the conventional 16×16 size. When the
region is homogeneous, a large CU can represent the region
by using a smaller number of symbols than is the case using
several small blocks.

Fig. 3 shows rate-distortion curves of several combinations
of size of CTU and maximum coding tree depth for Traffic
2560×1600@30 Hz sequence which is specified in [31]. The
results are obtained using HM-6.0 Main profile using low
delay constraint of the common test condition of HEVC. The
size of CTU is represented by character “s” and maximum
coding tree depth is represented by character “h” in the figure.
Each curve shows the result when s64h4, s16h2, and s64h2
are used, respectively. There is a big gap of coding efficiency
about 13.7% in Bjøntegaard delta bitrate [29], [30] between
s64h4 and s16h2. This result illustrates that adding large size
CU is an effective means to increase coding efficiency for
higher resolution content.

Fig. 4. Example of CTU size and various CU sizes for various resolutions.
The figure is taken from JCTVC-A124 [13].

Coding efficiency difference between s64h4 and s64h2 is
about 19.5% and it is also noticeable that coding efficiency
difference between s64h2 and s16h2 is similar at low bit
rate, but s16h2 shows better coding efficiency at high bit
rate because smaller size blocks cannot be utilized for s64h2,
where minimum CU size is 32 × 32. These results can be
interpreted as showing that large size CU is important to
increase coding efficiency in general but still small size CU
should be used together to cover regions which large CU
cannot be applied to successfully.

Furthermore, supporting arbitrary sizes of CTU enables the
codec to be readily optimized for various content, applications,
and devices. Compared to the use of fixed size macroblock,
support of various sizes of CTU is one of the strong points
of HEVC in terms of coding efficiency and adaptability for
contents and applications. This ability is especially useful
for low-resolution video services, which are still commonly
used in the market. By choosing an appropriate size of CTU
and maximum hierarchical depth, the hierarchical block par-
titioning structure can be optimized to the target application.
Fig. 4 shows examples of various CTU sizes and CU sizes
suitable for different resolutions and types of content. For
example, for an application using 1080p content that is known
to include only simple global motion activities, a CTU size
of 64 and depth of 2 may be an appropriate choice. For
more general 1080p content, which may also include complex
motion activities of small regions, a CTU size of 64 and
maximum depth of 4 would be preferable.

Finally, by eliminating the distinction between macroblock
and submacroblock and using only CU, the multilevel hier-
archical quadtree structure can be specified in a very simple
and elegant way. Together with the size-independent syntax
representation, syntax items of one general size may be
specified for the remaining coding tools.

Table II shows the recursive part of the coding tree syntax
in simplified form [5]. For a detailed explanation about the
notations used in the syntax table, please refer to [5]. As shown
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Fig. 5. Illustration of PU splitting types in HEVC.

in the table, the splitting process of coding tree can be specified
recursively and all other syntax elements can be represented
in the same way regardless of the size of CU. This kind of
recursive representation is very useful in terms of reducing
parsing complexity and improving clarity when the quadtree
depth is large.

C. Prediction Unit

One or more PUs are specified for each CU, which is
a leaf node of coding tree. Coupled with the CU, the PU
works as a basic representative block for sharing the prediction
information. Inside one PU, the same prediction process is
applied and the relevant information is transmitted to the
decoder on a PU basis.

A CU can be split into one, two or four PUs according to
the PU splitting type. HEVC defines two splitting shapes for
the intra coded CU and eight splitting shapes for inter coded
CU. Unlike the CU, the PU may only be split once.

1) PU Splitting Type: Similar to prior standards, each CU
in HEVC can be classified into three categories: skipped CU,
inter coded CU, and intra coded CU. An inter coded CU uses
motion compensation scheme for the prediction of the current
block, while an intra coded CU uses neighboring reconstructed
samples for the prediction. A skipped CU is a special form of
inter coded CU where both the motion vector difference and
the residual energy are equal to zero.

For each category, PU splitting type is specified differently
as shown in Fig. 5 when the CU size is equal to 2N×2N. As
shown in the figure, only PART−2N×2N PU splitting type is
allowed for the skipped CU. For the intra coded CU, two pos-
sible PU splitting types of PART−2N×2N and PART−N×N

are supported. Finally, total eight PU splitting types are defined
as two square shapes (PART−2N×2N, PART−N×N), two
rectangular shapes (PART−2N×N and PART−N×2N), and
four asymmetric shapes (PART−2N×nU, PART−2N×nD,
PART−nL×2N, and PART−nR×2N) for inter coded CU.

Although more sophisticated partitioning was considered as
in [18], but current PU splitting types were chosen as a good
tradeoff between encoding complexity and coding efficiency.

Note that all information related to the prediction scheme
is specified on a PU basis. For instance, the most probable
mode index and intra prediction mode for intra coded CU or
merge flag, merge index, inter prediction flag, motion vector
prediction index, reference index, and motion vector difference
for inter coded CU are unique per PU.

For most cases, PU partitioning of chroma block shares the
same splitting of luma component; however, when the CU size
is equal to 8×8 and PART−N×N is used for the PU splitting
type, PART−2N×2N is used for the chroma block to prevent
the block size from being less than 4 × 4.

2) Constraints According to CU Size: In PART−N×N,
CU is split into four equal-sizes PUs, which is conceptually
similar with the case of four equal-size CUs when the CU size
is not equal to the minimum CU size. Thus, HEVC disallows
the use of PART−N×N except when the CU size is equal to
the minimum CU size. It was observed that this design choice
can reduce the encoding complexity significantly while the
coding efficiency loss is marginal [25].

To reduce the worst-case complexity, HEVC further restricts
the use of PART−N×N and asymmetric shapes. In case of
inter coded CU, the use of PART−N×N is disabled when the
CU size is equal to 8 × 8. Moreover, asymmetric shapes for
inter coded CU are only allowed when the CU size is not
equal to the minimum CU size.

D. Transform Unit

Similar with the PU, one or more TUs are specified for the
CU. HEVC allows a residual block to be split into multiple
units recursively to form another quadtree which is analogous
to the coding tree for the CU [14], [16], [26]. The TU is a basic
representative block having residual or transform coefficients
for applying the integer transform and quantization. For each
TU, one integer transform having the same size to the TU is
applied to obtain residual coefficients. These coefficients are
transmitted to the decoder after quantization on a TU basis.

1) Residual Quadtree: After obtaining the residual block
by prediction process based on PU splitting type, it is split into
multiple TUs according to a quadtree structure. For each TU,
an integer transform is applied. The tree is called transform
tree or residual quadtree (RQT) since the residual block is
partitioned by a quadtree structure and a transform is applied
for each leaf node of the quadtree.

Similar to the coding tree, which is represented by a series
of split−coding−unit−flag, RQT is also structured by succes-
sive signalling of the syntax element split−transform−flag in a
recursive manner. RQT can be classified into two cases having
square shape and nonsquare shape, and they are denoted
as square residual quadtree (SRQT) and nonsquare residual
quadtree (NSRQT), respectively. The NSRQT was adopted
temporarily, but excluded in the final draft text specification
[5]. In this paper, NSRQT is investigated for better understat-
ing of current HEVC block structure design. Table III shows
a syntax table for the recursive structure of RQT [5].
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TABLE III

Simplified Form of Transform Tree Syntax Table

transform−tree( trafoDepth, blkIdx ) {
no−residual−data−flag
if( !no−residuual−data−flag ) {

split−transform−flag[ x0 ][ y0 ][ trafoDepth ]
if( split−transform−flag[ x0 ][ y0 ][ trafoDepth ] ) {

transform −tree( trafoDepth+1, 0 )
transform −tree( trafoDepth+1, 1 )
transform −tree( trafoDepth+1, 2)
transform −tree( trafoDepth+1, 3)

} else {
transform −unit( trafoDepth )

}
}

}

Fig. 6. Examples of transform tree and block partitioning. (a) Transform
tree. (b) TU splitting for square-shaped PU. (c) TU splitting for rectangular
or asymmetric shaped PU.

2) Nonsquare Partitioning: SRQT is constructed when PU
splitting type is square shape while NSRQT is utilized for
rectangular and asymmetric shapes. For NSRQT, transform
shape is horizontal when the choice of the partition mode
is horizontal type such as PART−2N×N, PART−2N×nU,
and PART−2N×nD. The same rule is applied to the ver-
tical type case such as PART−N×2N, PART−nL×2N, and
PART−nR×2N. Although the syntax of SRQT and NSRQT
is the same, as depicted in Table III, the shapes of TUs at
each transform tree depth are defined differently for SRQT
and NSRQT. Fig. 6 illustrates an example of transform tree
and corresponding TU splitting. Fig. 6(a) represents transform
tree. Fig. 6(b) shows TU splitting when the PU shape is square.
Fig. 6(c) shows TU splitting when the PU shape is rectangular
or asymmetric. Although they share the same transform tree,
the actual TU splitting is different depending on the PU
splitting type.

3) Transform Across Boundary: In HEVC, both the PU
size and the TU size can reach the same size of the corre-
sponding CU. This leads to the fact that the size of TU may be
larger than that of the PU in the same CU, i.e., residuals from
different PUs in the same CU can be transformed together.
For example, when the TU size is equal to the CU size, the
transform is applied to the residual block covering the whole
CU regardless of the PU splitting type. Note that this case
exists only for inter coded CU, since the prediction is always
coupled with the TU splitting for intra coded CU.

4) Maximum Depth of Transform Tree: The maximum
depth of transform tree is closely related to the encoding
complexity. To provide the flexibility on this feature, HEVC
specifies two syntax elements in the SPS which control the
maximum depth of transform tree for intra coded CU and
inter coded CU, respectively.

The case when the maximum depth of transform tree is
equal to 1 is denoted as implicit TU splitting since there
is no need to transmit any information on whether the TU
is split. In this case, the transform size is automatically
adjusted to be fit inside the PU rather than allowing transform
across the boundary. The coding efficiency loss of implicit TU
partitioning is about from 0.7% to 1% compared to the cases
RQT depth is equal to 2 [27], [28]. More quantitative results
about the effectiveness of this approach will be provided in
Section IV-D.

IV. Experimental Results

A. Test Condition

To investigate the performance of various test cases follow-
ing test conditions were used. Unless additional conditions
are given, all tests were performed by setting different con-
figurations in HM 6.0 reference software with the JCT-VC
common test conditions [31]. Test conditions are summarized
as follows.

1) HEVC main profile was used.
2) Four quantization parameters were used: 22, 27, 32, and

37.
3) All intra, random access, low-delay B configurations

were used.
4) Bjøntegaard delta bitrate is computed using piece-wise

cubic interpolation [29], [30].
5) Encoding and decoding runtime is measured on a Linux-

based clustering system having CPUs with same capa-
bility.

6) A total of 20 video sequences in five classes were evalu-
ated. These sequences cover a wide range of resolutions
and image patterns. Video resolutions are 2560 × 1600,
1920 × 1080, 832 × 480, 416 × 240, and 1280 × 720,
designated as class A, B, C, D and E, respectively. Class
E contains video conferencing sequences.

7) CTU size, minimum CU size, maximum TU size, min-
imum TU size and both maximum depths of transform
trees of intra coded CU and inter coded CU are set equal
to 64 × 64, 8 × 8, 32 × 32, 4 × 4, 3 and 3, respectively.
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TABLE IV

Coding Efficiency Loss According to Decreased CTU Sizes

Class
All intra Random access Low delay B

32 × 32 16 × 16 32 × 32 16 × 16 32 × 32 16 × 16
Class A 0.7% 4.8% 4.1% 21.9% – –
Class B 0.8% 4.0% 2.9% 15.5% 3.4% 17.3%
Class C 0.5% 1.8% 1.0% 6.2% 1.5% 7.8%
Class D 0.3% 1.0% 0.5% 3.5% 0.9% 4.2%
Class E 1.2% 5.6% – – 6.8% 31.8%
Average 0.7% 3.4% 2.2% 12.0% 2.9% 14.4%
Enc. time 86% 70% 79% 56% 78% 57%
Dec. time 104% 114% 108% 126% 105% 122%

B. Experimental Results Related to CTU and CU

1) Results of Various CTU Sizes: Performances with
various CTU sizes of 64 × 64, 32 × 32, and 16 × 16 were
evaluated as in Table IV. The results of HM 6.0 using the
common test condition have been used as a reference. The
minimum CU size was kept unchanged to 8 × 8. When the
CTU size is equal to 32 × 32, the average coding efficiency
loss is about 0.7% in intraonly case whereas the loss is about
2.2% and 2.9% in random access and low-delay B cases. If
CTU size is reduced to 16 × 16, equivalent to that in previous
standards, the average coding efficiency loss is increased to
3.4% in intra-only case and 12.0% and 14.4% in random
access and low-delay B cases. From these results, it can be
concluded that the CTU size of 32 × 32 leads to significant
coding efficiency improvements while the CTU size of 64×64
provides a marginal further coding efficiency improvement.
Additional observations from these results are as follows.

1) The benefits from the use of larger CTU size become
significant when the high-resolution video sequences
such as Class A (2560 × 1600), Class B (1920 × 1080),
and Class E (1280 × 720) are used.

2) The benefits from the use of large size CTU become
significant for random access and low-delay B cases
where the inter prediction scheme is applied rather than
intra-only case.

3) Video conferencing sequences in Class E have sig-
nificant coding efficiency loss when CTU sizes are
reduced. It indicates that the large size CTU is especially
useful for these kinds of sequences which have a lot of
homogeneous regions with small motion activities.

4) When smaller CTU sizes are used, encoding time is
significantly reduced, but the decoding time is increased.
In particular, when a CTU size of 16 × 16 is used,
the decoding time is increased by up to 26%. Although
definitive conclusions should not be drawn from results
using nonfully optimized reference software, it appears
that the use of larger CTU sizes does not increase
the decoding time, presumably because the number of
bits to be parsed is reduced due to the higher coding
efficiency. In addition, the lower memory bandwidth
than for smaller blocks may contribute to a reduction
of decoding time.

Fig. 7 shows decoded images of the CTU sizes of 64 × 64
and 16 × 16 for test sequence Kimono of Class B. The image
of the CTU size 16 × 16 was captured from video encoded

Fig. 7. Coding results for Kimono, left: 16×16, right: 64×64 of CTU size.

TABLE V

Coding Efficiency Loss According to Increased

Minimum CU Sizes

Class
All intra Random access Low delay B

16 × 16 32 × 32 16 × 16 32 × 32 16 × 16 32 × 32
Class A 3.6% 9.3% 4.3% 15.9% – –
Class B 5.0% 15.1% 5.7% 19.1% 5.1% 18.8%
Class C 10.1% 26.0% 10.4% 36.0% 9.2% 34.9%
Class D 11.5% 29.0% 12.4% 44.2% 11.0% 44.7%
Class E 9.5% 26.6% – – 5.8% 21.8%
Average 7.7% 20.6% 8.0% 28.2% 7.7% 29.9%
Enc. time 59% 36% 68% 41% 69% 41%
Dec. time 83% 73% 90% 84% 88% 82%

at 817 kbit/s resulting in a PSNR of 35.5 dB. A CTU size
of 64 × 64 results in a bit-rate of 814 kbit/s and a PSNR
of 36.5 dB. This demonstrates a gain in PSNR of 1.0 dB,
which also corresponds to improved subjective visual quality
at the same bitrate. Visual differences were observed around
the eyes, nose, and coat string.

2) Results of Various Minimum CU Sizes: Performance
of various minimum CU sizes of 16 × 16 and 32 × 32 was
investigated as in Table V while keeping a CTU size of
64 × 64. When the minimum CU size is increased from 8 × 8
to 16 × 16, the average coding losses are 7.7%, 8.0% and
7.7% for intra-only, random access and low-delay B cases.
Furthermore, the use of 32 × 32 for the minimum CU size
results in significant coding efficiency loss from 20.0% to
29.9% in the configurations tested. It can be observed that the
coding efficiency loss from the use of increased minimum CU
size becomes significant for lower resolution video sequences.

3) Results of Optimized Block Partitioning Parameters: Al-
though the use of 64 × 64 CTU size and 8 × 8 minimum
CU size appear to provide the best coding efficiency, there
are some examples which justify the decision of allowing
flexible specification of those two parameters. Table VI shows
some examples when the CTU size and the minimum CU
size are adjusted to obtain better tradeoffs between the coding
efficiency and the computational complexity.

When the CTU size is reduced from 64 × 64 to 32 × 32
in PeopleOnStreet sequence, the coding efficiency loss is



1704 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

TABLE VI

Performance of Several Sequences by Optimizing Block

Partitioning Parameters

Sequence
CTU Minimum BD Enc.
size CU size rate (%) time (%)

PeopleOnStreet (2560 × 1600) 32 × 32 8 × 8 0.5 73
Nebuta (2560 × 1600) 64 × 64 16 × 16 0.9 60
RaceHorses (832 × 480) 32 × 32 8 × 8 0.6 79

TABLE VII

Coding Efficiency Loss When the Adaption Between Prediction

Schemes Is Not Allowed for 8 × 8 CU

Class Random access Low-delay B
Class A 0.7% –
Class B 3.4% 3.5%
Class C 1.7% 2.0%
Class D 1.6% 1.5%
Class E – 0.5%
Average 1.9% 2.1%

TABLE VIII

Coding Efficiency Improvement of Rectangular PU Shape

and Asymmetric PU Shape

Class
Random access Low delay B

Rectangular
Rectangular +

Rectangular
Rectangular +

asymmetric asymmetric
Class A −2.0% −2.5% – –
Class B −2.0% −2.6% −2.1% −2.9%
Class C −3.3% −4.2% −3.6% −4.5%
Class D −4.1% −4.9% −4.8% −5.7%
Class E − − −3.2% −4.5%
Average −2.8% −3.5% −3.2% −4.3%

only 0.5% while the encoding time is reduced by 27%.
Similarly, the encoding times for Nebuta and RaceHorses
sequences can be reduced by 40% and 21%, respectively, with
less than 1.0% coding efficiency loss by adjusting the block
partitioning parameters suitably. These results imply that the
smart HEVC encoder may find better tradeoffs between the
coding efficiency and computational complexity by controlling
the block partitioning parameters according to the resolution
and the characteristics of input video sequences. Although this
property can be obtained by controlling the encoder to bypass
mode estimation at certain sizes while keeping the CTU size
of 64 × 64, the processing latency between CTUs and the
required line buffer memory cannot be reduced by this way.

4) Results of Inter and Intra Prediction Adaptivity: Table
VII shows the coding efficiency loss when the adaptation
between inter and intra prediction schemes is only allowed for
the CU sizes of 16 × 16 or above. That means minimum CU
size for skipping is 16 × 16. Note that this would correspond
to the case of H.264/AVC, which allows the inter and intra
prediction adaptivity at macroblock level (size of 16 × 16).
As shown in the table, average coding efficiency losses from
disabling the inter and intra prediction adaptivity at 8 × 8 CU
are about 1.9% and 2.1% for random access and low-delay B
cases, respectively. Note that more than 3% coding efficiency
loss is observed for Class B sequences while the loss becomes
smaller for other classes.

TABLE IX

Coding Efficiency Loss When Maximum TU Size is Reduced

Class
All intra Random access Low delay B

16 × 16 8 × 8 16 × 16 8 × 8 16 × 16 8 × 8
Class A 2.7% 9.7% 4.1% 12.1% – –
Class B 1.7% 5.9% 2.4% 8.1% 2.8% 8.9%
Class C 0.2% 1.4% 0.5% 3.0% 1.0% 4.0%
Class D 0.1% 0.8% −0.1% 0.5% 0.0% 1.1%
Class E 1.8% 6.9% − − 1.6% 7.2%
Average 1.3% 4.9% 1.7% 6.1% 1.4% 5.4%

TABLE X

Coding Efficiency Loss When Maximum Transform

Tree Depth is Decreased

Class
All intra Random access Low delay B

2 1 2 1 2 1
Class A 0.1% 0.3% 0.3% 0.8% – –
Class B 0.1% 0.4% 0.3% 1.0% 0.3% 1.1%
Class C 0.1% 0.4% 0.2% 0.9% 0.3% 1.1%
Class D 0.1% 0.3% 0.1% 0.8% 0.2% 1.1%
Class E 0.1% 0.5% – – 0.2% 0.6%
Average 0.1% 0.4% 0.2% 0.9% 0.2% 1.0%

C. Experimental Results on PU

PU shapes can be classified into three categories: square,
rectangular, and asymmetric. To verify the benefits of each
category, rectangular PU shapes and asymmetric PU shapes
were tested against the modified HM 6.0 without both PU
shapes. For mode selection for PU shapes in encoder, we
followed the behavior implemented in HM 6.0. Table VIII
summarizes the experimental results.

As shown in table, the average coding efficiency improve-
ments from rectangular PU shapes are about 2.8% and 3.2%
for random access and low-delay B, respectively. By using the
asymmetric PU shapes together, the average coding efficiency
improvements reach to 3.5% and 4.3% for random access and
low-delay B cases.

D. Experimental Results on TU

1) Results of Maximum TU Size: Maximum TU size can be
adjusted by the syntax element specified in the SPS. When the
maximum TU size is smaller than the CU size, the transform
tree is automatically split until the tree node is fit to the
maximum TU size. Table IX summarizes the average coding
efficiency loss when the maximum TU sizes are adjusted to
16 × 16 and 8 × 8 rather than the default size of 32 × 32. The
results show that restricting the maximum TU size results in
a significant coding efficiency loss for the higher resolution
video sequences.

E. Results of Maximum Transform Tree Depth

Maximum transform tree depth is another controllable pa-
rameter to be specified in the SPS. The main purpose of
using different maximum transform tree depth is to provide
more freedom to the encoder in terms of encoding complexity.
Table X shows coding efficiency loss when the maximum
transform tree depth is reduced from 3 to 2 and from 3 to
1. It can be seen that the coding efficiency loss due reducing
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TABLE XI

Coding Efficiency Improvement of NSRQT and NSRQT With

Asymmetric PU Shape

Class Random access Low delay B

NSRQT
NSRQT +

NSRQT
NSRQT +

Asymmetric PU Asymmetric PU
Class A −0.1% −0.8% – –
Class B −0.4% −1.2% −0.9% −1.9%
Class C −0.3% −1.4% −0.7% −1.9%
Class D −0.3% −1.2% −0.6% −1.9%
Class E – – −1.2% −2.8%
Average −0.3% −1.2% −0.8% −2.1%

the maximum transform tree depth is generally less severe than
that due to reducing the maximum TU size.

The coding efficiency impact of transform over prediction
boundaries can be estimated by disabling the TU when the TU
has the size equal to CU size and PU shape is not PART−2N×
2N. split−transform−flag is skipped for this case. Base on this
experiment, the average coding efficiency improvement due
to transform over prediction boundaries is about 0.3% and
0.4% for class B for random access and low-delay B cases,
respectively.

1) Results of NSRQT: Coding efficiency improvement
from NSRQT is summarized in Table XI. Since NSRQT is
closely related to the asymmetric PU shape, two experimental
results for NSRQT on top of HM 6.0 with and without
asymmetric PU shape were conducted. As shown in the table,
the average coding efficiency improvements from NSRQT are
about 0.3% and 0.8% for random access and low-delay B
cases, respectively. When NSRQT is used with asymmetric PU
shapes, the average coding efficiency improvement is increased
to 1.2% and 2.1%. By comparing the results of Table VIII, it
can be seen that the benefits from NSRQT and asymmetric
PU shape are not overlapped and are even synergistic.

It should be noted that the flexibility of HEVC block
partitioning design allows us to simulate the block structure of
H.264/AVC very closely. For example, CTU size of 16 × 16,
8×8 maximum TU size restriction, no inter/intra adaptivity at
8×8 CU level, no NSRQT and no asymmetric motion partition
can be used for simulating the block structure specified in the
H.264/AVC. Among them, disabling of inter/intra adaptivity
at the 8 × 8 CU level cannot be achieved unless the relevant
HEVC specification is changed.

V. Conclusion

This paper described the details of the block partitioning
scheme of the draft HEVC standard, which is specified using
the newly introduced CTU, CU, PU, and TU concepts. Along
with the technical details, extensive experimental results were
provided to highlight various aspects of the block partitioning
scheme of HEVC.

Experimental results reveal that the proposed flexible block
partitioning structure plays a major role in the substantial
performance gains exhibited by HEVC relative to previous
video coding standards. In addition to coding efficiency, the
hierarchical structure provides elegant and efficient ways to

optimize design to the expected resolutions and image pat-
terns of specific applications. These flexible features provide
essential functionalities to support the increasing demand for
improved video quality across a wide range of applications.
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