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Robust Video Fingerprinting for Content-Based Video Identification
Sunil Lee, Member, IEEE, and Chang D. Yoo, Member, IEEE

Abstract—Video fingerprints are feature vectors that uniquely
characterize one video clip from another. The goal of video fin-
gerprinting is to identify a given video query in a database (DB)
by measuring the distance between the query fingerprint and the
fingerprints in the DB. The performance of a video fingerprinting
system, which is usually measured in terms of pairwise indepen-
dence and robustness, is directly related to the fingerprint that the
system uses. In this paper, a novel video fingerprinting method
based on the centroid of gradient orientations is proposed. The
centroid of gradient orientations is chosen due to its pairwise inde-
pendence and robustness against common video processing steps
that include lossy compression, resizing, frame rate change, etc. A
threshold used to reliably determine a fingerprint match is theoret-
ically derived by modeling the proposed fingerprint as a stationary
ergodic process, and the validity of the model is experimentally
verified. The performance of the proposed fingerprint is experi-
mentally evaluated and compared with that of other widely-used
features. The experimental results show that the proposed finger-
print outperforms the considered features in the context of video
fingerprinting.

Index Terms—Content-based video identification, perceptual
video hashing, video fingerprinting.

I. INTRODUCTION

N THE LAST decade, the amount of video contents dig-
Iitally produced, stored, distributed, and broadcasted has
grown enormously. The proliferation of digital videos has made
accessibility of video contents much easier and cheaper while
being the source of many problems, e.g., the illegal distribution
of copyrighted movies via file sharing services on the Internet.
The problems associated with digital videos require an efficient
method for protecting, managing, and indexing video contents.
Among various solutions to these problems, fingerprinting,
which is also known as perceptual hashing or content-based
media identification, is receiving increased attention [1].
Fingerprints are perceptual features or short summaries of a
multimedia object, and the goal of fingerprinting is to provide
fast and reliable methods for content identification [1], [2].
Specifically, video fingerprints are feature vectors that uniquely
characterize one video clip from another [3], and the goal
of video fingerprinting is to identify a given video query in a
database (DB) by measuring the distance between the query fin-
gerprint and the fingerprints in the DB. Promising applications
of video fingerprinting are filtering for file-sharing services,
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Fig. 1. Overall structure of the proposed video fingerprinting method.

broadcast monitoring, automated indexing of large-scale video
archives, etc.

Video fingerprints should be carefully chosen since they di-
rectly affect the performance of the entire video fingerprinting
system. In general, the video fingerprints need to satisfy the fol-
lowing properties [1]-[3].

* Robustness (invariance under perceptual similarity): Fin-
gerprints extracted from a video clip subjected to con-
tent-preserving distortions should be similar to the finger-
prints extracted from the original video clip.

» Pairwise independence (collision free): If two video clips
are perceptually different, the fingerprints extracted from
them should be considerably different.

» Database search efficiency: For applications with a large-
scale DB, fingerprints should be conducive to efficient DB
search.

Fig. 1 shows the overall structure of the proposed video fin-
gerprinting method which consists of three parts: 1) fingerprint
extraction; 2) DB search; and 3) fingerprint matching. In the fin-
gerprint extraction, video fingerprints based on the centroid of
gradient orientations are extracted from an unknown video clip
to be identified. In the DB search, a range search is performed
to find the candidate fingerprints for matching. The DB includes
fingerprints from a large library of video clips and the corre-
sponding metadata such as the video title. To retrieve candidates
quickly, an efficient indexing structure such as k-d-tree [4] needs
to be employed. However, since the focus of this paper is on the
fingerprint extraction and matching, DB search algorithms are
not explained in detail. Finally, in the fingerprint matching, the
query fingerprints are exhaustively searched among the candi-
dates found in the DB search, and the metadata associated with
the candidate closest to the query fingerprints is declared as the
fingerprinting result. A threshold used to reliably determine a
fingerprint match is theoretically derived by modelling the pro-
posed fingerprint as a stationary ergodic process, and the va-
lidity of the model is experimentally verified.

The rest of the paper is organized as follows. Sections II and III
describe the fingerprint extraction and the fingerprint matching
parts of the proposed video fingerprinting method, respectively.
Section IV evaluates the performance of the proposed finger-
printing method. Finally, Section V concludes the paper.

1051-8215/$25.00 © 2008 IEEE
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Fig. 2. Overall procedure of the proposed video fingerprint extraction.

II. FINGERPRINT EXTRACTION
A. Overall Procedure of Fingerprint Extraction

Fig. 2 shows the overall procedure of the proposed video fin-
gerprint extraction. In the first step, an input video is resampled
at a fixed frame rate S frames per second (fps) to cope with
frame rate change. In the second step, each resampled frame
is converted to grayscale to make the proposed fingerprinting
method robust against the color variation and applicable not
only to color video clips but also to classic black-and-white
films. In the third step, each grayscale frame is resized so that its
width and height are normalized to the fixed values X and Y, re-
spectively. This step makes the proposed fingerprinting method
robust against resizing of an arbitrary factor. In the fourth step,
each resized frame is partitioned into a grid of N rows and M
columns, resulting in N x M blocks. Finally, the centroid of
gradient orientations is calculated for each of these blocks, and
an (N M)-D fingerprint vector is obtained for each frame.

B. Centroid of Gradient Orientations

Let f[z,y, k] be the luminance value at location (z, y) in the
kth frame. The gradient of f at coordinates (z, y) is defined as
the vector

Vf =[G, Gy]:[g_i %] (D

The gradient vector points in the direction of maximum rate of
change of f at coordinates (x,y) [5]. In the proposed method,
the partial derivatives GG, and G are approximated as follows:

Gy:f[ﬂ?y‘FLk]_f[»T?/—lk] (3)

The gradient vector V{ can also be represented as its magnitude
r[x,y, k] and orientation #[x, y, k] which are given by

rle,y k] =4/ G+ G “4)

Olz,y, k] = tan ! <—J) . 5)

In the proposed fingerprinting method, the following value
called the centroid of gradient orientations is obtained from
each block:

> rlr,y, k0w, y, k]

(z,9)EBn,m .k

> ey

(z,Y)€Brp m k

(6)

cfn,m, k] =

where B, ,, 1 is the block in the nth row and the mth column
of the kth frame and c[n, m, k] is the centroid obtained from the
block By i (1 < n < N, 1 < m < M). Due to the nor-
malization by the sum of gradient magnitudes, the centroid has
a value between —(7/2) and (7 /2). The (N M)-D fingerprint
vector ¢y, of the kth frame is obtained by

ck, =[c[1,1,k] ¢[1,2,k] ¢[N, M, k]]. (7)

The gradients from which the proposed fingerprint is obtained
are closely related to the distribution of edges which provide rel-
evant information about visual content of video frames, e.g., ob-
jectboundaries [6]. Since the gradients are based not on the pixel
values but on the pixel differences, the proposed fingerprint is
automatically robust against global change in pixel intensities
such as brightness, color, and contrast. Although nonlinear op-
erations such as gamma correction are known to cause a large
change in relative magnitudes for some gradients, the proposed
fingerprint is still robust against nonlinear operations since they
are less likely to affect the gradient orientations [7].

The gradient-based features have been used as a descriptor
which represents local image regions [7] and also as a video fin-
gerprint [8]. Lowe used the histogram of gradient orientations
as a local descriptor which characterizes a region around the
detected interest points [7]. The comparative test in [9] shows
that Lowe’s local descriptor based on gradients outperforms
other local descriptors. However, the high dimensionality of
Lowe’s descriptor renders the histogram of gradient orienta-
tions unsuitable for video fingerprinting. Hampapur and Bolle
used the centroid of gradient magnitudes as a video fingerprint
along with dominant color [8]. Since they extract the finger-
prints only from chosen key-frames, the high-D fingerprint had
to be used to maintain pairwise independence. However when
the fingerprints are extracted from every resampled frame as
in the proposed method, the fingerprint with lower dimension
must be used. The proposed video fingerprint based on the cen-
troid of gradient orientations achieves good robustness and pair-
wise independence at reasonably low dimension. The perfor-
mance of the proposed fingerprint and that of the gradient-based
features explained above are compared in Section IV-D, and
the comparison results show that the proposed fingerprint out-
performs other gradient-based features in the context of video
fingerprinting.

III. FINGERPRINT MATCHING

In the DB search, given K fingerprints from the query video
clip, the candidate fingerprints for the matching are found by
performing a range search on the DB. However, a single finger-
print with low dimension is not sufficient for a reliable matching.
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To alleviate this problem, in the proposed method, a finger-
print sequence is generated by concatenating the fingerprints
extracted from K consecutive frames. For example, suppose
that ¢, , the £’th fingerprint of a video clip v in the DB, is
retrieved as a nearest-neighbor of ¢ of the query video. Then,
the (N M K )-D candidate fingerprint sequence ¢’ is generated
by ,

¢’ = [cy (k—k+1)

Co k! Cokr+i—k) |- (8)

For all the candidate fingerprints retrieved in the DB search, the
corresponding fingerprint sequences are generated as in (8), and
they are matched to the query fingerprint sequence ¢ given by

c=[c1 co cK - ©)

We note that the range search in the DB search part is based
on an individual fingerprint, while the fingerprint sequence is
used only in the fingerprint matching part. Since the dimension
of the fingerprint is low, e.g., 8—12, DB search can be efficiently
performed and does not suffer from the curse of dimensionality.

In the fingerprint matching, two video clips are declared sim-
ilar if the distance between their fingerprint sequences is below
a certain threshold 7'. In determining 7', the false alarm rate Pga
and the false rejection rate Ppg are considered. The false alarm
rate Ppa is the probability to declare different videos as sim-
ilar, while the false rejection rate Prpg is the probability to de-
clare the videos from the same video as dissimilar. For a good
match, one would like to simultaneously minimize both Pga
and Prr. However, it is not possible since as Ppa decreases,
Prr tends to increase, and conversely as Ppr decreases, Pra
increases [10]. Furthermore, Prg is difficult to analyze in prac-
tice since there are plenty of video processing steps of which
the exact characteristics are unknown. Thus, it is common to de-
termine a threshold 7" such that Ppr is minimized subject to a
fixed Pra [2], [3]. This approach is equivalent to the well-known
Neyman—Pearson criterion [10].

A. Fingerprint Modelling

The problem of fingerprint matching is approached by as-
suming the proposed fingerprint sequence as a realization of
a stationary ergodic process. We note that similar analysis has
been performed for watermark detection [11], and matching
of audio [2] and video [3] fingerprints. First, the centroids
{e[n,m,k] |1 <n < N,1<m<M1<k<K}ofa
fingerprint sequence are further normalized by its mean p. and
the standard deviation o as follows:

c[n7 m, k] — He

pln,m, k] = (10)

Oc

where 1 < n < N,1 <m < M,and1 < k < K. The
normalized fingerprint sequence p is a random process with zero
mean and unit variance. Let R and () be the autocorrelations of
p which are given by

R[7-177—277—3] :E[p[n7m7k]p[n + T, M + T27k + T3]] (11)
Qlr1, 72, 73] = E[p°[n, m, klp*[n + 71, m + 12,k + 73]] (12)

where 0 <y < N-1,0<1m < M-1,and0 < 13 <
K — 1. Based on the ergodic assumption, the autocorrelations R

and @ can be estimated from the time-averaged autocorrelation
of actual fingerprint sequences, and they are used to derive the
probability of false alarm given a certain threshold.

B. Determination of Threshold T

Fast and mathematically tractable fingerprint matching can
be achieved by using the squared Euclidean distance as follows:

X%%?E:E:E:@WW%H—QWJWHV

n=1m=1 k=1
(13)

where p and q are the fingerprint sequences which are extracted
from different video clips. By the central limit theorem, the
distance D has a normal distribution if (N M K) is sufficiently
large and the contributions in the sums are sufficiently inde-
pendent [11]. Let up and op be the mean and the standard
deviation of the distance D, respectively. Based on the normal
assumption, the distance D follows the normal distribution
N (u D, o%) , and then the probability of false alarm Ppa can
be obtained as follows:

D(p,q) =

T 2
1 —(x — pup) }
Pra = exp dx
A /_OO V2mop ! [ 202D

(20
= —erfc .

2 V20p
The remaining problem is to obtain the mean pp and the vari-
ance 0% of the distance D. Assuming that the two fingerprint

sequences p and q are independent, the mean ypp of the distance
D is given as

(14)

pp = E[D]
=2. (15)
The variance 0% of the distance D is obtained as

op = E[D?] - (E[D])?
=E[D* -4
N M K N M K

A2

n=lm=1k=1n'=1m'=1k'=1

X{Mm—ﬂHm—mmM—WD
+aRmn—ﬂHm—mmw—MD}—2(m)

where R and () are the autocorrelations of p as defined in (11)
and (12), respectively.! As explained in Section III-A, R and Q)
in (16) can be estimated from the time-averaged autocorrelation
of actual fingerprint sequences for given NV, M, and K. Now,
for a certain value of Pga, the threshold 7' can be determined
from (14). For example, we can expect the false alarm rate to be
as low as 4.6365 x10~7 when N = 2, M = 4, K = 100, and
T = 0.4.

I'The detailed derivation of (15) and (16) is available at http://mmp.kaist.ac.kr/
~sunillee/vf_tcsvt.html.
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Fig. 3. Comparison of theoretically derived normal distribution (dotted line) and empirically obtained distribution (histogram) of the distance (solid line) when

the fingerprint dimension per frame is (a) 4, (b) 8, (c) 12, and (d) 16.

IV. PERFORMANCE EVALUATION

The performance of the proposed video fingerprinting
method is evaluated using the fingerprint DB generated from
300 movies belonging to various genres. The total length of the
movies in the DB is approximately 590 hours. Unless stated
explicitly, the parameters used for the experiments are S = 10,
X =320, =240, M = 4, N = 2, and K = 100 which
corresponds to 10 seconds. As a performance measure, the re-
ceiver operating characteristics (ROC) curve [12], which plots
false rejection rate versus false alarm rate at various operating
points (thresholds), is mainly used.

A. Pairwise Independence

The model derived in Section III shows that fingerprints from
different video clips are considerably different, and this leads
to the assumption that the proposed fingerprint is pairwisely in-
dependent. The validity of the model is evaluated as follows.
First, the fingerprint DB with different dimensions are gener-
ated from the aforementioned movies. The fingerprint dimen-
sions of the generated DB are 4 (N = M = 2),8 (N = 2,
M=4),12(N =3, M = 4),and 16 (N = M = 4). The
other parameters S, X, Y, and K are set to the default values.
Next, 554,197,443 (> 10®) pairs of fingerprint sequences from
perceptually different 10-seconds-long video excerpts are gen-
erated from each DB. Then, the squared Euclidean distance D
between fingerprint sequences in each pair is calculated, and its
distribution (histogram) is compared with the normal distribu-
tion NV (u D, a%) whose mean and standard deviation are de-
rived using the parameters of each fingerprint DB. Fig. 3 com-
pares the theoretically derived distribution of the distances and
the histogram of the distances measured from the pairs. The re-
sults in Fig. 3 show that the proposed fingerprint follows the sto-
chastic model assumption and the normal approximation fairly

TABLE 1
PROBABILITY OF FALSE REJECTION ( Prg ) FOR DIFFERENT KINDS OF VIDEO
PROCESSING STEPS WITH THRESHOLD 1" = 0.4

Processing Prr
Lossy compression (DivX 256kbps [14]) 0.0098
Resizing to CIF 0.0031
Frame rate change from 24 to 15 fps 0.0219
Gaussian blurring with radius 1 pixel 0.0026
Global change green color (+20%) 0.0019
Global change in brightness (+30%) 0.0054
Global change in gamma correction (+30%) 0.0014
AWGN (Standard deviation: 1, 5, 15, 25) 0.0971
Rotation (1, 2, 3 degrees) + Inside-box cropping | 0.0463
Frame cropping (70, 80, 90%) 0.0509
Random frame drop (10, 30, 50, 70, 90%) 0.0170
Resizing to CIF + DivX 256kbps 0.0388
+ Frame rate change from 24 to 15 fps ’

well for all the considered dimensions. This leads to the belief
that the proposed fingerprint is pairwisely independent, and the
threshold T" obtained from (14) can be used in practice with rea-
sonable accuracy.

B. Robustness

To evaluate the robustness of the proposed video finger-
printing method, various sets of distorted video clips are
generated. Due to the limit of storage space and processing
time, only 50 movies are chosen from the DB and used for the
evaluation. The distortions applied to the original video clips
are summarized in Table L.

Fig. 4 shows the ROC curves for various distortions, and
Table I summarizes the measured false rejection rate ( Prg ) for
the considered distortions with threshold 7' = 0.4. Note that
the underlined parameters, e.g., 70% in random frame drop,
are those used to obtain the false rejection rate in the table. As
shown in the figures and the table, the proposed fingerprint is
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Fig. 4. ROC curves for various distortions: (a) Resizing to CIF and Gaussian blurring with radius 1 pixel. (b) Lossy compression (DivX 256kbps) and global
change in gamma (+30%). (c) Frame rate change from 24 to 15 fps and global change in brightness (+30%). (d) Global change in green color (+20%) and
combined distortion (resizing to CIF + Frame change from 24 to 15 fps + DivX 256kbps). (e) Rotation at angles of 1, 2, and 3 degrees followed by inside-box
cropping, (f) AWGN with standard deviation 1, 5, 15, and 25. (g) Frame cropping (70, 80, and 90%). (h) Random frame drop with drop rate from 10 to 90%.

highly robust against nongeometric distortions including lossy
compression, global change in color, brightness, and gamma,
resizing, Gaussian blurring, additive noise, and combined dis-
tortion. The proposed fingerprint is also robust against the tem-
poral distortions such as frame rate change and random frame
drop, even when 70% of frames are lost.

The performance of the proposed fingerprint degrades when
video clips are distorted by geometric transformations such as
frame rotation and cropping. The vulnerability against general
geometric transformations is a common problem of the video
fingerprinting methods which use global features of a frame as
a fingerprint. However, as shown in Fig. 4(e) and (g), the pro-
posed fingerprint is robust against minor geometric transforma-
tions, e.g., frame rotation up to 1 degree and frame cropping
which retains more than 80% of central portion of a frame. This
result shows that the proposed fingerprint can match an original
video clip and its geometrically distorted version as long as the
geometric transformation does not severely degrade the percep-
tual similarity between them.

C. Effects of Parameters on Performance

Fig. 5 shows the effect of the parameters (frame size, fin-
gerprint dimension, query length, and frame rate) on the per-
formance. As shown in Fig. 5(a), the performance was similar
for all the considered frame size, however, the performance was
slightly better when the frame size was QVGA (320 x 240), es-
pecially in terms of the false alarm rate. Fig. 5(b) shows that the
performance is improved as the fingerprint dimension increases,
however, the amount of the improvement decreases as the di-
mension increases and becomes marginal when the dimension
exceeds 12. Since the increase of the fingerprint dimension de-
grades the DB search efficiency, the appropriate dimension has
to be chosen. The experimental results show that the dimension
between 8 and 12 would be a reasonable choice. Fig. 5(c) shows
that the performance is improved as the query length increases.
However, since the query length is limited in practice, it should

—#— Dimension = 1

—+—160 X 120

—o— Dimension =4
——176 X 144 —+—Dimension=8 | !
—+—320 X 240 —+—Dimension=12| |
o | 352X 288 ——Dimension=16 |
105 o 4
10 10 10

10| —=—1second

©—5 seconds
——10 seconds
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-2 0 2 0
10* Py 10 10 10 10 10° P, 10

Fig. 5. Effects of parameters on the performance of the proposed video finger-
printing method. (a) Width and height from 160 x 120 to 352 x 288. (b) Finger-
print dimension from 1 to 16. (c) Query length from 1 to 60 seconds. (d) Frame
rate from 1 to 15 fps.

be carefully determined considering the requirements of the
applications. The ROC curves in Fig. 5(a)-(c) are obtained
using the video clips distorted by the combined distortion as
in Fig. 4(d). We note that the effects of the parameters on the
performance are similar for other distortions. Fig. 5(d) shows
the effect of the frame rate S which is closely related to the
random start distortion introduced by the misalignment of
the resampled frames. As shown in the figure, the robustness
against the random start is improved as the frame rate increases
and starts to saturate when the frame rate exceeds 10 fps. This
results suggest that the frame rate around 10 fps would be a
reasonable choice for S.
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Fig. 6. ROC curves of proposed fingerprint, differential block luminance [13],
gradient orientation histogram [7], and centroid of gradient magnitudes [8] for:
(a) distortion set 1, (b) distortion set 2, (¢), distortion set 3, and (d) distortion
set 4.

D. Comparison of Proposed Method With Other Features

The performance of the proposed fingerprint is compared
with that of other widely-used features, differential block lu-
minance [13], gradient orientation histogram [7], and centroid
of gradient magnitudes [8]. For a fair comparison, an input
video clip is resampled, converted to grayscale, and resized
as in the proposed method prior to the feature extraction, and
the dimensions of all the features are set to the same value,
8 per frame. The differential block luminance is obtained by
first partitioning a frame into 2 X 5 blocks, and then by taking
the difference of the mean luminances of blocks adjacent
in both spatial and temporal domain as in [13]. Although
Oostveen et al. take signs of differences and form binary
fingerprints, the values of the differences are directly used as
fingerprints in this comparative test. The gradient orientation
histogram is widely used as a local descriptor in the literature
[7]. However, in this comparative test, the histogram of an
entire frame is obtained and used as a fingerprint. The number
of bins in the gradient orientation histogram is also determined
as 8 for a fair comparison. The centroid of gradient magnitudes
[8] is obtained by first partitioning a frame into 2 x 2 blocks,
and then by calculating the centroid of gradient magnitudes for
each block. Since the centroid of gradient magnitude is given
as (x,y) location in each block, 8-D fingerprint is obtained for
each frame. As a distance measure, squared Euclidean distance
metric is used for all the features.

The comparative test is performed using 50 movies chosen
from the DB. First, the four sets of distorted video clips are
generated by applying the following sets of distortions.

¢ Set 1: Resizing to CIF, Frame rate change from 24 to

15 fps, and Lossy compression (DivX 256 kbps) [14].

e Set2: Luminance histogram equalization, Resizing to CIF,

and Lossy compression (DivX 256 kbps).

* Set 3: Brightness +15%, Frame rate change from 24 to

15 fps, Resizing to QVGA, and Lossy compression (DivX
256 kbps).

e Set 4: Color variation (Red 4+20%, Green —10%, Blue
+5%), Frame rate change from 24 to 20 fps, Contrast
+30%, Resizing to CIF, and Lossy compression (DivX
256 kbps).

Each distortion set is a combination of various distortions
common in practical applications. Fig. 6 shows the ROC curves
of the considered features and the proposed fingerprint for
the four distortion sets. As shown in the figure, the proposed
fingerprint achieves the lowest false rejection rate for a given
false alarm rate (vice versa). This means that the proposed
fingerprint outperforms the considered features in the context
of video fingerprinting.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel video fingerprinting method based
on the centroid of gradient orientations is proposed. The
proposed video fingerprinting method is not only pairwisely
independent but also robust against common video processing
steps including lossy compression, resizing, frame rate change,
global change in brightness, color, gamma, etc. The problem
of reliable fingerprint matching is approached by assuming the
fingerprint as a realization of a stationary ergodic process. The
matching threshold is theoretically derived for a given false
alarm rate using the assumed stochastic model, and its validity
is experimentally verified. The experimental results show that
the proposed fingerprint outperforms other features in the
context of video fingerprinting. The future work is to propose
a secure video fingerprinting method robust against general
geometric transformations, e.g., rotation, shift, cropping, etc.
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