Cuanta: Quantifying Effects of Shared On-chip Resource
Interference for Consolidated Virtual Machines

Sriram Govindan?, Jie Liuf, Aman Kansal, and, Anand Sivasubramaniam?
{CSE Dept., The Pennsylvania State University, ‘Microsoft Research, Redmond.

sgovinda@cse.psu.edu, {Jie.Liu,kansal}@microsoft.com, anand@cse.psu.edu

ABSTRACT

Workload consolidation is very attractive for cloud platforms due
to several reasons including reduced infrastructure costs, lower en-
ergy consumption, and ease of management. Advances in virtu-
alization hardware and software continue to improve resource iso-
lation among consolidated workloads but a particular form of re-
source interference is yet to see a commercially widely adopted
solution - the interference due to shared processor caches. Exist-
ing solutions for handling cache interference require new hardware
features, extensive software changes, or reduce the achieved overall
throughput. A crucial requirement for effective consolidation is to
be able to predict the impact of cache interference among consol-
idated workloads. In this paper, we present a practical technique
for predicting performance interference due to shared processor
cache which works on current processor architectures and requires
minimal software changes. While performance degradation can be
empirically measured for a given placement of consolidated work-
loads, the number of possible placements grows exponentially with
the number of workloads and actual measurement of degradation is
thus not practical for every possible placement. Our technique pre-
dicts the degradation for any possible placement using only a linear
number of measurements, and can be used to select the most effi-
cient consolidation pattern, for required performance and resource
constraints. An average prediction error of less than 4% is achieved
across a wide variety of benchmark workloads, using Xen VMM on
Intel Core 2 Duo and Nehalem quad-core processor platforms. We
also illustrate the usefulness of our prediction technique in realiz-
ing better workload placement decisions for given performance and
resource cost objectives.

1. INTRODUCTION

Multicore processors have become mainstream today—commodity
processors already have 4-12 cores and are moving towards 10s-
100s of cores [17]. The increased number of cores not only pro-
vides additional computational capacity to accelerate the perfor-
mance of a single application, but also allows placing several ap-
plications within a processor. Cloud computing (CC) platforms [1,
41] exploit the latter capability to consolidate multiple applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

120

100 mlbm

@mcf
80
Obzip2

Opovray

Performance degradation (%)
@
3

Vs Ibm Vsmcf Vsbzip2 Vs povray

Figure 1: Performance degradation when a pair of SPEC-CPU appli-
cations are run on a Core-2-Duo processor. Each application is run on
a dedicated core, with static partitioning of memory/disk space.

within a server, resulting in reduced infrastructure costs and amor-
tize server idle power costs. Server virtualization solutions such
as Xen, Hyper-V and Vmware have also kept pace to accommo-
date high degrees of consolidation with support for heterogeneity
of software stacks, fault isolation, and, dynamic resource scaling.

Successful consolidation in cloud platforms crucially depends
on the ability to provide performance isolation among co-located
applications. Current Virtual Machine Monitors (VMMs) or Hy-
pervisors [39, 3] provide isolation guarantees on some of the server
resources through strict CPU reservations and static partitioning of
memory and disk space. Significant research has been dedicated
towards providing isolation guarantees for other resources such as
disk bandwidth [28, 44] and network bandwidth [15]. However,
some resources are very hard to isolate. Examples include on-chip
shared resources including cache space, interconnection network,
and, memory bandwidth. System software has very little control
over such resources and they are almost entirely managed by the
hardware in a best effort fashion. As a result, co-located virtual
machines (VMs) do suffer from interference, which leads to de-
graded performance compared to the performance achieved when
running on a dedicated server, with the same resource reservation
from the hypervisor. The extent of performance degradation de-
pends on the application, context, and hardware making it hard to
characterize [6, 38, 19, 46, 21, 5].

1.1 Performance Interference

In this paper, we focus on the performance impact of consoli-
dated applications due to shared on-chip resources such as the last-
level cache space and memory bandwidth. To illustrate the extent
of performance degradation that could result from on-chip shared
resource contention, we run a set of SPEC-CPU 2006 benchmarks
co-located on a server with Intel Core-2-Duo processor (Figure 1).

We use Xen hypervisor and encapsulate each SPEC-CPU applica-
tion within a linux virtual machine (VM). Each VM is assigned
a dedicated core with its own statically partitioned memory and
disk space. Performance degradation is measured by recording
the increase in task finish time of the benchmark compared to its
finish time when running alone with the same resource allocation
(remaining core and memory left unused). With this definition,
a 100% performance degradation means that the benchmark takes
twice as long to finish when running consolidated compared to run-
ning alone. Since the applications have dedicated cores (eliminat-
ing private cache contention) and are not I/O intensive, it is reason-
able to associate the reported performance degradation as a conse-
quence of shared last-level cache and memory bandwidth. It can be
seen from Figure 1 that on the Core-2-Duo processor, the perfor-
mance degradation ranges from 2% (povray with povray) to 120%
(Ibm with Ibm).

The extent of degradation clearly depends on the exact combi-
nation of applications that are co-located. For an effective consol-
idation policy, the level of interference among applications/VMs
must be quantified. For instance, based on the above measure-
ments, we can predict that given two dual core processors, the
placement [Ibm, povray] on one processor and [lbm, povray] on the
other will give far better performance than [Ilbm, Ibm] and [povray,
povray], for the same resource use. Naively, performance interfer-
ence due to consolidation can be computed by exhaustively mea-
suring all possible VM placements. In this approach, a hosting
platform consolidating M VMs with N VMs per server, needs to
perform M!/N!(M — N)! measurements. For a cloud computing
platform provider, this can be prohibitively expensive.

Existing approaches to address on-chip performance interference
largely falls into two categories: (i) Architecture-level solutions that
propose hardware changes to expose cache usage information and
provide isolation/QoS guarantees among threads [34, 37, 23, 46,
35, 27, 29, 43], (ii) System-level solutions that are primarily based
on page-coloring techniques for enforcing cache partitioning across
applications [7, 36, 45, 2]. While the architectural solutions are
at the mercy of processor vendors to see applicability in practice,
existing system-levels solutions are found to have very high im-
plementation overheads (requiring changes at several layers of the
software stack) [45] and cause inefficiency in the use of cache re-
sources [42, 26, 9]. More importantly, these cache partitioning
approaches only control the application miss rate but not the miss
latency. Miss latency is due to contention for memory-bandwidth
between the co-located applications (traffic between the last-level
cache and DRAM memory banks) and is known to significantly im-
pact overall application performance [22, 5, 20]. While analytical
models [24] and simulation techniques can estimate the penalty due
to memory bandwidth contention, applying such models across a
variety of processor architectures and integrating their effects with
application cache usage is non-trivial.

In this paper, we propose a novel and practical approach called
Cuanta that uses active probing to precisely quantify the impact of
shared cache interference and memory bandwidth contention for
consolidated applications.

1.2 Proposed Approach

Problem Statement: Consider a cloud hosting service that con-
solidates M applications (VMs) on a set of servers with N-core
processors, with at most one application per core'. The N appli-

"For simplicity, we do not consider time-sharing of applications
within a core. Time-sharing may have additional interference such
as the private-cache (L1) contention and scheduler related issues
which we plan to address as part of our future work.

cations that could potentially be co-located on a processor share
the last-level cache (LLC) space and the memory bandwidth. Our
goal is to estimate the performance degradation in each application
due to shared chip-level resources (cache space and memory band-
width) resulting from the remaining N — 1 applications co-located
on the processor.

Proposed Solution: Our approach, Cuanta, implements a unique
way of estimating the cache usage behavior of applications through
active probing and uses it to predict the performance degradation
of applications upon consolidation with other applications. The
key contribution of Cuanta is the design of a synthetic cache loader
benchmark which can be tuned to generate fine-grained cache ac-
cess patterns at the granularity of the available sets and ways of
modern set-associative caches. Cuanta uses the synthetic cache
loader benchmark to create a cache clone for each application en-
tering the hosting platform. The purpose of an application’s cache
clone is to mimic its cache “pressure,” which includes both the
cache space and the memory bandwidth occupancy of the appli-
cation. The cache clones are later used as a proxy for the actual
applications when predicting performance degradation for differ-
ent application co-location scenarios.

During the profiling phase, Cuanta generates the full interference
vector for an application, ¢ (that is, ¢’s performance degradation
when executed with any set of N — 1 applications co-located on the
other cores) by conducting a set of experiments co-locating ¢ with
just the cache clones. The number of such experiments required
during this phase is only (IV — 1) x [, where [is the number of
unique clone applications’.

A key aspect of Cuanta design is that the number of experiments
required for profiling an application does not depend on the ac-
tual number of applications, M, hosted in the cloud, where M
can be arbitrarily large. Other salient features of Cuanta include:
(i) Cuanta works on existing processors and does not rely on the
presence of cache-related hardware counters which are restricted in
current hardware [40] (none of the existing processors expose cache
usage information [46]) and therefore is easily portable across widely
varying processor platforms; (ii) Cuanta does not require appli-
cation instrumentation and unlike page-coloring based techniques
does not require any changes to the software stack of the host-
ing platforms; (iii) Cuanta provides fine grained cache interfer-
ence estimation at cache set and way granularity; and (iv) per-
formance estimation does not require running the actual (poten-
tially unbounded) applications among each other. The measure-
ment overhead is linear in the number of cores sharing the LLC.

We evaluate Cuanta using the SPEC-CPU 2006 benchmark suite
on Intel Core-2-Duo (2 cores) and Nehalem Quad-core (4 cores)
processors, and predict application performance for a variety of co-
location scenarios within 4% of the measured performance. The
predicted performance degradation using Cuanta allows making in-
telligent consolidation decisions — such as whether to consolidate
and which VMs are better to co-locate for tolerable performance
degradation. We also present a use case that illustrates how the
interference prediction results from Cuanta can guide VM consoli-
dation. Using Cuanta, we predict the performance for various pos-
sible placements, and select the one that yields the appropriate en-
ergy efficiency and performance trade-off. Our technique is com-
plementary to existing solutions for cache partitioning and can pro-
vide useful information about cache contention (at finer granularity
of cache sets/ways) at runtime to OS paging and page coloring al-
gorithms to provide better performance isolation guarantees.

%] is a tunable parameter of our cache loader benchmark and can
be varied to tradeoff prediction accuracy with the time required to
characterize applications.

The remainder of the paper is organized as follows. We describe
our cache usage characterization and mapping of applications to
their corresponding cache clones in section 2. We develop pre-
diction techniques for estimating the performance degradation of
applications upon co-location in section 3. In section 4, we present
mapping and prediction results for the SPEC-CPU 2006 benchmark
suite. In section 5, we illustrate the applicability of this prediction
for making intelligent consolidation decisions. Related work is dis-
cussed in section 6. Finally, we conclude and discuss directions for
future work in section 7.

2. CHARACTERIZING INTERFERENCE

In this section, we give a brief overview of the processor cache
hierarchy and describe Cuanta’s methodology of characterizing the
performance impact of consolidated applications due to chip-level
shared resource interference.

2.1 Background on Cache Hierarchy

Today’s multi-core processors have a hierarchy of caches, typi-
cally one or more caches private to each core and a single last-level
cache (LLC) shared across all cores. As an example, Figure 2(a)
shows a three-level cache hierarchy of the Intel Nehalem Quad-core
processor. As shown in the figure, the processor has four cores,
each with private 64 KB L1 and 256 KB L2 caches and a shared 8
MB last-level (L3) cache. Also shown in the figure is the software
stack which includes the Xen [3] virtual machine monitor (VMM)
or hypervisor hosting a set of applications, each contained within a
guest virtual machine (VM). The guest VMs run their own operat-
ing system images and are provided guarantees on CPU cycles and
memory size (statically allocated) by the VMM.

Figure 2(b) illustrates the mapping between applications’ virtual
memory to the processor cache for the software stack shown in Fig-
ure 2(a). Each application’s virtual address space is mapped on to
the corresponding guest VM’s memory using the guest VM kernel’s
memory management software. The guest VM’s memory is in turn
mapped to the physical memory by the VMM. Finally, the physical
pages are mapped to the processor cache structure by hardware. As
we can see, several layers of software and hardware are involved in
the mapping between applications’ virtual memory to underlying
cache structure, making it a difficult resources to manage.

Application n VMM Hardware

Guest Linux | .., | Guest Linux
VM 1 VM n

| Xen Hypervisor |

>
7] Setn

| 8MBL3Cache | appction s Lol
Virtual Memory Cache
Memory Pages
7 Setm
Core 1 Core 2 Core 3 Core 4
Intel Nehalem Quad-core
(a) Hardware/Software Stack (b) Cache Mapping

Figure 2: (a) Intel Nehalem Quad-core processor with core-private
L1 and L2 caches and a shared 8MB L3 cache. (b) Mapping of ap-
plication’s virtual memory pages to the cache structure via physical
memory. Though the mapping between virtual memory and physical
memory is managed by software, the mapping of data from physical
memory to cache structure is entirely done by hardware.

Data is inserted and evicted from the cache hierarchy at the gran-
ularity of a cache line (64 bytes for most processors). The LLC is
typically arranged in a set-associative fashion with certain number

of cache sets and ways (8192 sets and 16 ways for the Intel Ne-
halem Quad-core processor in Figure 2(a)). Each memory address
is direct-mapped to a set (typically data is mapped to a cache set us-
ing simple MOD arithmetic on the memory address) and then one
of the ways within the set is associated with the memory address
based on availability. Thus, placement of data in physical memory
pages can be used to guide the eventual placement of data in the
cache structure. This relationship between physical memory ad-
dresses and the cache structure is currently being used by system
software techniques such as page coloring for partitioning cache
space among applications. Cuanta exploits the above relationship
to control fine-grain access to the cache structure and use it to infer
application cache usage.

2.2 Synthetic Cache Loader (sci)

Cuanta uses a synthetic cache loader to profile an application’s
cache usage behavior and the extent of cache pressure it would ex-
ert on co-located applications. The synthetic loader is a tunable
cache intensive workload that can access a specified region of the
last-level cache (LLC) at the granularity of sets and ways. The
loader, referred to as scl, accesses the memory pages allocated to
itself in order to control the cache sets accessed by it. As explained
in Section 2.1, controlling the memory addresses allows controlling
the cache sets accessed. We use scl(s,w) to denote this synthetic
cache loader workload tuned to access s sets and w ways in the
LLC.

Implementation Issues: We implement our sc/ within a sep-
arate Linux VM. Implementing sc/ on a realistic guest kernel and
VMM poses certain challenges because of the nature of fine grained
memory access control involved, which is often abstracted out by
the processor cache management and system memory management
stacks. First, scl requires access to physical memory addresses (re-
fer Section 2.1) to ensure access to specified number of cache sets
and ways. In modern operating systems, user-level processes have
access to only virtual memory addresses. Therefore we develop a
kernel module inside the VM running the sc/ workload and use
the Linux kernel function ‘alloc_pages ()’ for gaining ac-
cess to physical memory pages from within the guest virtual ma-
chine. However, in a virtualized environment, a guest kernel’s no-
tion of physical memory is further abstracted from the real physical
memory pages which are only controlled by the VMM. Therefore,
we use a hypercall (*HYPERVISOR_MEMORY_OP () ’) from in-
side sc/ VM kernel module to gain access to real physical memory
pages.

Second, the cache space occupied by scl can be evicted by the
cache manager. Hence, the scl(s,w) workload must continuously
perform a read followed by a write on the specified s sets and w
ways, keeping the cache hot and preventing these pages from get-
ting evicted. Finally, the private cache hierarchy above the LLC
also interferes with the cache accesses to LLC. Since the goal of
scl is to create cache contention at only the shared cache, it avoids
accessing data loaded or pre-fetched in the private caches by intro-
ducing an offset between consecutive accesses such that they miss
on the private caches and access data only from the shared LLC.

Note that, all the functionalities of the sc/ workload are imple-
mented within a separate VM and it does not require any modifi-
cation to the VMs that actually host the applications (applications
and their VMs are considered as a black-box in our approach).

2.3 Application Clones

In this section, we describe how the scl workload is used to infer
the cache pressure exerted by an application. The procedure con-
sists of tabulating an interference matrix for sc/ at different settings,

profiling the application against sc/ to obtain its interference vec-
tor, and then selecting the sc/ settings that clones the behavior of
the application. Each of these three phases is described below.

2.3.1 Interference Matrix

The interference matrix records the performance degradation in
scl at certain parameter settings when co-located with another in-
stance of scl, at the same or other parameter settings. This is an off
line process, and needs to be performed only once for each proces-
sor architecture. In a cloud setting this process would be performed
once when servers with a new processor family are added to the
hosting infrastructure. This process requires only a few minutes.
The interference matrix is generated as described below.

Performance for scl is measured as number of bytes accessed per
unit time (throughput metric). This can be measured every few mil-
liseconds (over any duration long enough to cover a few repetitions
of the cache access pattern used). Performance measurement for
scl at each parameter setting thus requires a few milliseconds only
and is not very time consuming.

To generate the scl interference matrix, we perform a set of mea-
surements to record the performance degradation of a pair of sc/
(s,w) instances with different (s, w) settings. Suppose the set-
associative LLC for the processor has m sets and n ways, then
(s, w) can take any of m x n values. Since this can be very large,
we use a subset of these values, periodically spaced in the entire
range. For instance, for the Core-2-Duo, we use s € {128, ..., k
128,...,4096} and w € {3,...,k * 3,...,24} while for the Ne-
halem Quad-core, we use s € {1024, ..., k % 1024, ...,8192} and
w € {l,...,kx1,..,16}. Let Spmae and wmas denote the discrete
number of sets and ways, respectively. Then smaz X Wmaz denote
the number of unique settings for each sc/ instance. Applying these
to both scl instances, a total of (smaz X wmaI)2 measurements are
required, yielding a two dimensional matrix of performance degra-
dations.

These discrete [sets, ways] pairs capture the entire spectrum of
cache accesses with reasonable accuracy and are chosen based on
insights gained from our empirical measurements. We tabulate

Core 2 Duo Nehalem Quad-core
(2 cores) (4 cores)
Core-private L1 (64 KB) L1 (64 KB)
caches L2 (256 KB)
Shared last-level L2 (6 MB) L3 (8 MB)
cache 4096 sets, 24 ways 8192 sets, 16 ways
scl access granularity 128 sets, 3 ways 1024 sets, 1 way
Discrete combinations 256 discrete 128 discrete
(Smaz X Wmaz) [sets, ways] pairs [sets, ways] pairs

Table 1: Salient details of our evaluation platform: Core-2-Duo and
Nehalem Quad-core processors.

these details for the two hardware platforms evaluated in this pa-
per, Intel Core-2-Duo and Intel Nehalem Quad-core processors,
in Table 1. As shown, the Core-2-duo and Nehalem Quad-core
processors need 256 and 128 unique experiments respectively. At
10ms per measurement, we need about 11 minutes to perform the
pairwise measurements ((Smqz X ’UJm,a:L‘)Q).

Interference vector: The above measurements are used to de-
fine an interference vector for each scl setting. Suppose on the pro-
cessor of interest, the degradation in performance of scl (s;, w;)
when running co-located with scl (s, w) is denoted A* (4, j). Then
the interference vector, which is a succinct representation of degra-
dation caused by scl (s,w) in the performance of other sc/ in-
stances, is defined as:

Iswy = [A"(1,1), ..., A" (Smazs Wmac)] 1)

2.3.2 Application Profile

Similar to measuring the degradation for sc/ when running with
other instances of scl, we also measure the performance degrada-
tion of scl at various settings when running with the application.
This profiling step needs to be performed once for each applica-
tion and is independent of the number of other applications in the
hosting platform. The performance degradation of sc/ is measured,
which as mentioned before, requires only a few milliseconds and
all settings can thus be covered in a few seconds.

After the above measurement is finished, we tabulate the ob-
tained data for each application «, in the form of an interference
vector, denoted I, :

I, = [A(1,1), ..., A(Smazs Wmaz)])

where A(%, j) denotes the performance degradation for scl (s;, w;)
when co-located with application a.

2.3.3 Clone Selection

The interference vector for each application, /., acts as a cache
pressure signature or degradation footprint and we use it to find
an equivalent scl (s,w) workload that has a similar footprint. This
essentially involves mapping the interference vector of an applica-
tion to one of the interference vectors of sc/ in the interference ma-
trix generated previously for the processor architecture. We used
Euclidean distance to determine the closest match. Denoting the
representative scl settings for application o with R, this may be
stated as:

R, = arg min Dist(Ia,I(s,w)) 3)

(s,w)

This R, acts as the application clone.

2.3.4 An Example

As an illustrative example, we plot the interference vector of two
SPEC CPU applications, 1bm and bzip, alongside the interfer-
ence vector of the sc/ clones with the least Euclidean distance in
Figure 3. Note that for clarity, only a few selected s and w val-
ues are shown for the representative vectors, instead of all elements
(256 for Core-2-Duo and 128 for Nehalem Quad-core). The fig-
ure shows that the cache interference behavior of the applications
is very similar to that of the mapped sc/ workloads.

2.4 Variations in Cache Pressure

Temporal Variations: The technique for inferring application cache
pressure described above assumes that an application does not change
its cache behavior over time. But in reality, applications do exhibit
temporal variance in their behavior [18], with time scales varying
from finer granularity of seconds or minutes to coarser granularity
of hours or days. We capture such temporal variations by recording
the interference vector shown in equation (2) not once but several
times over the execution phases of the application (say, periodically
every few seconds). We evaluate the efficacy of our temporal cache
pressure inference in Section 4.

Spatial Variations: It is important to note that the exact cache
sets (and not just the number of cache sets) allocated to co-located
applications determines the degree of overlap in the cache sets and
hence the degree of cache interference. Our synthetic cache loader
scl(s,w) only indicates the number of cache sets occupied by the
workload and there exists a combinatorial choice in selecting those
s sets among the total number of cache sets. We measured the ef-
fect of selection of specific s sets by using a rolling window in our
scl(s,w) workload and accessing all possible contiguous s sets. In
most cases, the interference observed using the rolling window of

Boe
o N
-
~

mlbm m4096 Sets,15 Ways

EIIIIIiJJ

> &
'~b . ‘b o \
&9 be Q’\/ ¢,\ QQ Qb 0’\/ <,’N

W bzip2 m 3584 Sets,6 Ways

o LT
@0; o“‘ @, %x S

-
S}

scl Factor Perf. Degr.

(Normalized to default)
scl Factor Perf. Degr.
o N b~ O

(Normalized to default)

scl (sets, ways)

1bm = scl(4096, 15)
(a) Core-2-Duo:

scl (sets, ways)

bzip = scl(3584, 6)
(b) Core-2-Duo:

IS
IS

m|bm m 8192 sets, 16 ways

OIIIIIIIJ

o vw%
Q;» @, @ ,19“ Q;» @ S &

M bzip ® 4096 sets, 4 ways

ollllllll
N

wu q,'»v o
N ‘,@ o“ & o“

N} w

-

scl Factor Perf. Degr.
(Normalized to default)
N

scl Factor Perf. Degr.
(Normalized to default)

scl (sets, ways) scl (sets, ways)

bzip = scl(4096, 4)
(d) Nehalem Quad-core:

1bm=scl(8192, 16)
(c) Nehalem Quad-core:

Figure 3: Interference vector mapping of SPEC CPU workloads, Ibm
(high cache pressure) and bzip2 (moderate cache pressure), on Core-
2-Duo and Nehalem Quad-core processors. The interference vectors of
Ibm (I;3,,) and bzip (I;.;,) and the corresponding mapped sc/ work-
loads with the smallest Euclidean distance are shown. Performance
degradation is normalized to performance when run alone.

cache sets showed low variance. Based on this observation, we ac-
count for spatial variation by taking the average interference across
all rolling windows.

3. PREDICTING PERFORMANCE

In this section, we describe the use of interference characteri-
zation developed above for predicting performance degradation of
consolidated applications. The procedure consists of characteriz-
ing the aggregate cache pressure of multiple co-located applications
and using it to develop a performance degradation lookup table for
each application when it enters the system.

3.1 Degradation Table

Consider a processor with n cores. Suppose n applications are
to be consolidated on this processor. We wish to predict the perfor-
mance degradations due to interference before actually performing
the consolidation placement. To predict the performance degrada-
tion in any one of the n applications, we effectively need to model
the effect of interference from the remaining (n — 1) applications.

Let «; denote the i-th application, for ¢ € {0, ...,n — 1}. First,
note that using the cache clones developed earlier, the interfer-
ence on g from <ai, aa, ..., an—1> can be estimated by mea-
suring the performance of ao when co-located with <R.,, Ra,,
we» Ra(, > where R, is the representative scl clone® for oy
defined in Equation 3. Note that application performance is being
measured rather than sc/ performance and application performance

3By actually running the scl clones as a proxy for the mimicked
applications, our performance measurement not only capture the
application cache miss rate, but also the latency due to memory-
bandwidth contention from other clones/applications.

can be obtained in hosting platforms using readily available perfor-
mance counters such as Instructions Per Cycle (IPC).

If this measurement is performed for all scl settings (covering all
possible R clones) and store the results as a lookup table, then we
can predict the degradation for o for any placement combination.
This is a reduced number of measurements compared to measuring
with each possible application since the number of scl settings is
bounded while the number of applications in the hosting platform
can grow unbounded. However, the number of measurements as
described above is still exponential in n since all possible scl set-
tings are to be covered for each of the (n — 1) scl instances, which
is (Smaz X Wmaz)™~ number of measurements.

3.1.1 Reduction of Measurements

We address the above issue by using a technique to map the ag-
gregate cache pressure generated by multiple combinations of sc/
workload to a much smaller number of combinations, that results
in reducing the number of measurements from exponential to lin-
ear in n. The key insight is that, the cache pressure exerted by
any two scl workloads can in turn be mapped to that of a single
scl workload (at higher parameter values) or to a combination of
one sc/ at maximum parameter settings and another sc/ workload
with variable settings. In effect, Smaz X Wmaz Number of vari-
able settings are required to be measured for only one sc/ instance,
instead of (Smaz X Wmax)> settings for the two scl instances. Sup-
pose I(s1,w1)+(s2,w2) denote the interference vector for a pair of scl
instances parametrized by (s1,w1) and (s2, w2), running simulta-
neously. The above insight can be stated as:

OBSERVATION 3.1. The cache pressure generated by two scl
workloads parametrized by (s:1,wj1) and (si2, wj2) can always
be mapped as either:

scl(s;1, wj1) + scl(siz, wio) — scl(si3, wjs) “)
where,
(8i3, w53) = arg (I?LI}) DiSt(I(Sil”wjl)“r(smij?)’](Saw))
or:

SCl(Sﬂ, wﬂ) + SCI(SZ'Q, ’wjz) — SCl(SmaI, wmaz)

+SCI(S¢4, wj4) 5)

where,

(814, wja) =

arg gﬂiﬂ) Dist(L(s;y,w51)+(si2,w52)» L(smawswman)+(s,w))

In other words, for a 3 core processor, one of which hosts g
and the remaining two cores host 2 other applications, instead of
measuring performance degradation with all sc/ settings for the re-
maining two cores, we only need to measure performance with (i)
all possible settings of sc/ on one core (which effectively covers
also the scl pairs satisfying the conditions for Equation (4)) and,
(1) scl (Smaz, Wmaz) Oon one core and all settings of scl/ on the
3rd core (covering the combinations satisfying Equation (5)). The
above reduction easily extends to more than 3 cores by recursively
applying Equations 4 and 5.

Let 0 (scli(si1, wj1), ..oy SCln—1(Si(n—1), Wj(n—1))) denote the
degradation measured for application o when running with a com-
bination of (n — 1) scl instances at settings (s;x, w;x) for k €
{1,...,n — 1}. Then, the degradation lookup table for application
a, denoted D, is the set of entries represented by:

Da = [5a(scll (s“,wﬂ), ,..,SCln71(Si(n,1), w]-(n,l)))]

VSZ', wy

50

X _140 g —_ W Measured (Vs Ibm)
= 2120 W Measured (Vs Ibm) £3 0 u Predicted (Vs scl(8192, 16))
¥ 100 ® Predicted (Vs scl(4096,15)) o &
83 S35
t o 80 te
a a o
gg 60 < §20
S84 %210
EEx | 5§ i
28 o ol EEFEL 20 - k
«- P < s 5
= Eesgigsepesy Efezgsggsesfs
SrTeg8ssEgiv BEfg28EtE"
Ba32s8E TE ®RFEe
o ° 2 o
Vs 1bm Vs 1bm

(a) Core-2-Duo: (b) Nehalem Quad-core:

scl Factor Perf. Degr.

w
o
=
~

= m Vs (6144,4) < m Measured (Vs Bzip+Bzi
5,5 Vs ((4096,4)+(4096,4)) < =00 (Vs Baip2ip)
"S 5 g m Predicted (Vs (6144,4))
2 € o6
T 15 g £
o a -
N @4
210 § &
©
; s ballo b
05 $8o ki L. L.
<o o — 5
S IR R f8g9dtgeE"
LIRS C R R AR R SR @ e ?E g
O A &° g

scl (sets, ways)

2-bzip Reduction Mapping
(c) Nehalem Quad-core:

Vs 2-bzip
(d) Nehalem Quad-core:

Figure 4: Predicted and measured performance degradations for workloads (along x-axis) when co-located with 1bm on Core-2-Duo and Nehalem
Quad-core processors, is shown in (a) and (b), respectively. Prediction is based on running the workloads (along x-axis) with the corresponding
mapped scl clone workload for 1bm in Figure 3. Figures (c) compares the interference vector of the original and reduced mapping when 2 instances
of bzip application are co-located on the Quad-core processor. Figure (d) shows the measured and predicted performance degradations for workloads
listed along the x-axis when co-located with the 2 instances of bzip application, where prediction is based on the reduced mapping (see Table 2).

which has (Smaz X wm,u)(”fl) entries corresponding to different
scl settings. Using the above observation this reduces to:

Do = [0a(schi(Smaz, Wmaz)s -y SClm (Simy Wim))]

Vsi,w; and Vm € {l,...,n—1}

(6

which requires only (1 — 1)(Smaz X Wmaz) Measurements, based
on (Smaz X Wmag) settings of scl for each m.

Thus, instead of measuring performance degradation of an ap-
plication for all possible co-location scenarios, the performance
degradation for each application is measured for a bounded number
of scl combinations. The number of measurements can be further
reduced somewhat by using only those scl settings that comprise
the already hosted applications on the cloud (rather than all sc/ set-
tings). However, in that case, when a new application comes in
and gets mapped to a new R, degradation tables for previously
profiled applications also need to be updated with one more mea-
surement for each.

3.1.2 Reduction Table

For the above reduction, we do need a mapping that relates the
aggregate cache pressure of two scl instances to that correspond-
ing to a single scl instance or the other scl instance required with
scl (Smaz, Wmae). This mapping is obtained as follows: we run 3
copies of the scl workload (each run on a dedicated core) and use
one scl workload to probe the cache pressure generated by the re-
maining two scl workloads. Let us denote the degradation in perfor-
mance of scl/ (s;, w;) when running co-located with scl (s;1, w;1)
and scl (ss2, wj2) as Aa(4,). Then the interference vector, which
represents the degradation caused by the aggregate cache pressure
generated by scl (s;1, w;1) and scl (s;2, w;2) in the performance of
other scl instances, becomes:

@)

For eagh Is,, wj1)+(si2,w52) WE _ﬁnd the nearest I(_s,w) from among
all the interference vectors in the interference matrix of Section 2.3.1

I(sil,wj1)+(5i2,wj2) - [AQ(ly 1)7 ceey A2 (sma17 wmaz)]

(i.e., the setting (s:3, w;3) in equation (4)) and the J¢s . w0 4 (s,0)

vectors from the list of these recorded measurements themselves
(i.e., the setting (s;4,w;4) in equation (5)).

The above measurements require a total of (8,42 X Wimaz)> ex-
periments for the three sc/ instances. At 10ms per measurement, we
need about 46.6 hours (or 2 days) to construct the complete reduc-
tion table (assuming (Smaz X Wmaz)=256). Though this may seem
like a heavy overhead, this is a constant one time overhead which

is done offline for each processor architecture and is not dependent
on the number of processor cores. The above mapping is suffi-
cient to map any number of sc/ instances with arbitrary settings to
a set of scl (Smaz, Wmaz) instances and just one scl instance with
variable settings. For example, suppose we had a 6 core proces-
sor, to model the effect of 5 remaining VMs on a, we wanted to
lookup the degradation entry at < Ra,, Ras, Rag, Ray, Ras >.
Suppose the parameter settings for the clones R; are the scl in-
stances, < scly, scla, sclz, scla, scls >, using shorthand sc/; to de-
note scl (s;, w;). Then using the reduction table above, we can
map scly, scla to sclmaz, scli2, assuming the mapping was of the
form of equation (5) without loss of generality. We can now use
the same table to map scli2, scls to sclpmaz, scli23. Proceeding in
this fashion, the lookup required for < scli, scla, sclz, scla, scls >
becomes equivalent to a lookup required for < sclmaz, SClmazs
SClmaz, SClmaz, scli23a5 >. This is already tabulated in the degra-
dation table listed in equation (6).

3.2 Algorithm

The actual performance prediction for an application « placed
with (n — 1) other applications, a1, ..., &(,—1) boils down to look-
ing up the entry from the degradation table corresponding to < R,
s--s Ray,) >. The complete procedure for identifying the appli-
cation clones and the degradation tables may be summarized as
Algorithm 1, shown in Figure 5. The computational complexity is
O(1) for Step 1 and is independent of the number of cores or ap-
plications. Each of Steps 2 and 3 has O(n) complexity where n
is the number of cores, and is independent of the number of ap-
plications in the cloud. Step 4 has O(n) complexity for each ap-
plication’s performance lookup. This is the key efficiency gain of
Cuanta, requiring only O(n) measurements per application, instead
of exponential in n as would be the case for explicitly measuring
the degradations for each placement.

3.2.1 Ilustrations

As an illustration of the observation used for reducing the num-
ber of measurements required, Table 2 shows the mapping results
for some combinations of the 1bm and bzip SPEC CPU work-
loads in the quad-core processor.

To illustrate the use of degradation tables and reduction tables
generated above for interference prediction, Figures 4(a) and (b)
compares the predicted and measured performance degradation of
several SPEC CPU applications when consolidated with 1bm on

Algorithm 1. Predicting performance degradation using Cuanta.

1. Initialize. For the processor architecture in use, generate the:

(a) Interference Matrix: Tabulate interference vectors
I(s,w) fors € {1,..., Smaz} and w € {1,..., Wmaz}
(Section 2.3.1).

(b) Reduction Table: Tabulate interference vectors
I(S'ilij1)+(si21wj2) for si1, si2 € {]_-7~-~75ma1} z.md
wj1, w;2 € {1, ..., Wmas } and determine the reduction
mappings (Section 3.1.2).

2. Identify Clones. For each workload « that enters the hosting
infrastructure:

(a) Record interference vector, I,: Run workload and
measure performance degradation of scl (s, w) for se-
lected s € {1, ..., Smax} and w € {1, ..., Wmaz } (cap-
ture temporal variations if any).

(b) Determine R,: Find the interference vector(s) I .,
that is (are) closest to I,. For workloads mapping to
different interference vectors during different temporal
phases, multiple /(, ,,y may comprise R,.

3. Characterize. For each workload « record its degradation
table, D, defined in Equation (6), by measuring perfor-
mance degradation of « with required sc/ (s, w) combina-
tions.

4. Predict. For every combination [ao, a1, ..., n—1)] that is
determined to be a viable candidate placement by the con-
solidation system, lookup the degradation tables of «;Vi €
{0, ...n — 1} at equivalent clone sc! settings found from the
reduction table.

Figure 5: Algorithm for performance prediction.

Core-2-Duo and the Nehalem Quad-core processors, respectively.
The predicted results are obtained by measuring the performance
degradation of the SPEC CPU workloads co-located with the equiv-
alent cache clones for 1bm identified in Figure 3. Only two cores of
the quad-core processor are used for this experiment. Figures 4(c)
compares the interference vectors of the original and reduced map-
ping for the aggregate cache pressure generated by 2 instances of
the bzip workload. Figures 4(d) uses the reduced mapping to pre-
dict performance degradation of the 12 SPEC-CPU workloads when
co-located with 2 instances of the bzip application. Though not
shown here, we find the interference vectors of all the sc/ work-
load combinations between the ‘Original Mapping’ and ‘Reduced
Mapping’ closely match against each other.

4. EVALUATION

We evaluate Cuanta cache pressure characterization and perfor-
mance prediction for 12 SPEC-CPU 2006 workloads with diverse
cache characteristics on the Intel Core-2-Duo and Nehalem Quad-
core processors. We then discuss and evaluate the efficacy of our
techniques in capturing temporal variation in application cache us-
age. Each application is run in a Linux 2.6.18 guest kernel hosted
in a VM, using the Xen VMM 3.3.4 hypervisor, and is allocated a
dedicated core. The SPEC-CPU 2006 benchmarks are CPU inten-

Applications Original Mapping
(4096,4)+(4096,4)
(4096,4)+(4096,4)+(4096,4)

(8192,16)+(4096,4)+(4096,4)

Reduced Mapping
(6144.,4)
(6144,16)

(8192,16)+(6144,4)

bzip+bzip
bzip+bzip+bzip
Ibm+bzip+bzip

Table 2: Reductions using equations (4) and (5) for 1bm and bzip in
the Nehalem Quad-core processor. For this processor, (8192,16) corre-
sponds to scl (Smaz, Wmaz)-

sive with little I/O, and hence interference mainly arises in the LLC
and memory hierarchy as opposed to disk or network bandwidth.
Throughout this section, the reported prediction error corresponds
to the absolute difference between the measured and estimated ap-
plication performance degradation.

Table 3 presents the representative cache clones (as derived us-
ing the methods discussed in Section 2) for all the 12 applications
on both the hardware platforms. It is worth noting that the cache
clone mapping (sc/(sets,ways)) of workloads might not reflect their
real cache usage. Our intention is not to infer the exact cache us-
age but only to mimic the workload cache pressure. Therefore, our
mapping of workloads to their respective cache clones occupying
a specific number of cache sets and ways should not be interpreted
literally. Without hardware support, there is currently no way to
confirm that an application uses a specified number of cache sets
and ways. The key metric that we use to evaluate the efficacy of
the cache clones is in their ability to predict application perfor-
mance upon consolidation, which we present later in this section.
It is also important to note that the cache pressure exerted by an
application is very different between the two hardware platforms,
because of their different private cache sizes (see Table 1). Notably,
while bzip, gobmk, and s jeng have similar cache pressure on
the Core-2-Duo architecture, their characteristics are very different
on Nehalem —s jeng is able to contain most of its memory ac-
cess within the 256 KB L2 cache and has a negligible (zero) cache
pressure at the LLC.

Core-2-duo Nehalem Quad-core
Application cache clone cache clone
scl (sets, ways) scl (sets, ways)
Ibm (4096, 15) (8192, 16)
mcf (2048, 24) (6144, 16)
soplex (3072, 15) (8192, 12)
gee (3840, 6) (4096, 4)
perlbench (3840, 6) (2048, 4)
hmmer (3840, 6) (4096, 4)
povray (2048, 6) (0,0)
bzip (3584, 6) (4096, 4)
gobmk (3584, 6) (2048, 4)
sjeng (3584, 6) (0, 0)
libquantum (3584, 15) (8192, 12)
omnetpp (1792, 24) (8192, 6)

Table 3: Cache clones for 12 of the SPEC CPU 2006 suite ap-
plications in Core-2-duo and Nehalem Quad-core processors.

First, we present prediction results for 2-application consolida-
tion scenario in Figure 6 when the 12 SPEC-CPU applications are
co-located among each other in both Core-2-Duo and Nehalem pro-
cessors. Each workload shown along the x-axis is run with all the
12 workloads (including itself) leading to a total of 12 X 12 mea-
surements. The resulting average and maximum prediction error is
reported for each of the workloads. The average prediction error
was less than 7% and 4% across these workloads for the Core-2-
Duo and Nehalem architectures, respectively.

Next, we investigate the prediction accuracy for 3-application
and 4-application consolidation scenarios in the Nehalem Quad-

Prediction error (%)

' Average Prediction Error B Maximum Prediction Error 12 L
20 W Avg. Prediction Error

B Max. Prediction Error

b

«-
0 § §

&

o

o N B o ®

IS
i

Bzip

Gobmk
Sjeng

o
S
o

Povray
Soplex
Perlbench
Hmmer
Libquantum
Omnetpp

(a) Core-2-Duo prediction (b) Nehalem Quad-core prediction

Figure 6: Two-core consolidation: Average and maximum er-
ror in performance prediction for 12 SPEC-CPU workloads
when consolidated with every other workload (including itself)
on Core-2-Duo and Nehalem Quad-core processors.

core processor. The total number of possible placements is of course
very large for 3 and 4 co-located applications (greater than 20,000
combinations). Rather than measure all possible combinations, we
randomly selected 200 possible placements for each of the 3 and 4
core consolidation scenarios.

For space reasons we do not list all 200 combinations but a few
select ones in Table 4. We present the average and maximum pre-
diction error over all 12 workloads running on the last core, given
that the first 2 or 3 cores run the workloads shown in the table.

Figure 7(d) shows the results across all 200 measurements for
each of 3 and 4 core experiments in the form of a cumulative dis-
tribution function (CDF). The prediction results for the 144, 2-core
consolidation experiments is also included (7(b)). The performance
degradation CDF for both dual-core and quad-core processors (Fig-
ures 7(a) and 7(c) respectively) show that cache-interference can
lead to undesirable performance degradation for a significant frac-
tion of workload co-location scenarios. We see that almost a quarter
of workload co-location scenarios can result in performance degra-
dation of more than 25% for both the processors (except for the
case where only 2 of the 4 cores in the quad core processor are used,
where degradation is less than 25% for 95% of the co-locations).

Two observations can be made from the data in Figure 7. First,
the error plots in Figures 7(b) and (d) show that Cuanta achieves a
useful prediction accuracy: the error is less than 8% in almost 90%
of the workload combinations, for both processor architectures.

Second, as seen from Figures 7(a) and (c), there exists a wide
variance in the amount of degradation across the consolidation sce-
narios. While the maximum performance degradation exceeds 100%
for both the processors, there exist a significant fraction of co-
locations with less than 10% performance impact. This suggests
that the performance prediction capability provided by Cuanta, if
used for intelligent placement, could be very effective in improv-
ing the overall performance for a given number of processor cores
in the hosting infrastructure.

4.1 Variation in Cache Usage

Recall from Section 2 that we address the temporal variation in
application cache usage by performing the cache pressure probing
several times during the application execution. Let I, () denote the
interference vector of workload « at the i*" interval of its execution
duration. Based on the Euclidean distance for interference vector at
each interval 4, we estimate the fraction of time an application maps
to a particular clone. Among the 12 SPEC-CPU applications, we
find that mc £ exhibits a significant temporal variation on the Core-
2-Duo processor: mcf maps to sc/(2048, 18) for 30% of the time
and maps to sc/(3072, 12) for 70% of the time when probed peri-

odically every 30 seconds during its execution. We represent the
resulting cache clone mapping as, Ro,cr = { (0.3, scl(2048, 18)),
(0.7,5cl(3072,12)) }.

Figure 8 shows the predicted and measured degradations for mcf
in the Core-2-Duo processor. The result for prediction without tem-
poral variance corresponds to mapping mc £ to a single interference
vector ((2048, 24) as shown in Table 3) based on average inter-
ference across its entire run. The figure shows the significance of
temporal variance analysis in performance prediction accuracy. We
do not find significant temporal variation for the other 11 applica-
tions in the Core-2-Duo architecture and none of the applications
exhibited such variation in the Nehalem architecture.

B Measured

B Predicted (with temporal)
O Predicted (without temporal)

Degradation (%)
RN
B (=2} 00 o N
o o o o o

N
o

o

Figure 8: Predicted and measured degradations for workloads listed
along the x-axis when co-located with mc f, an application that exhibits
temporal variation in cache usage pattern. The error in prediction is
much higher when the temporal variance is not accounted for.

SPECjbb | Transactions | Cache clone

load-level per second (sets, ways)
20% 3967 (2048, 2)
50% 9918 (2048, 6)
100% 19836 (8192, 4)

Table 5: Varying workload intensity of SPECjbb translates in to
widely different cache interference.

Another source of variation in cache usage is change in workload
volume, such as due to changes in the number of incoming user re-
quests over the course of a day. We study such variation with a
request driven enterprise workload, the SPECjbb 2005 benchmark.
The amount of work performed by a SPECjbb VM changes with
the number of transactions processed, which we vary to simulate
temporal load variations. It is important to note that, unlike mcf
where variations can be observed at the granularity of a few sec-
onds primarily due to the change in nature of computation in var-
ious phases of the workload, the workload volumes that cause the
behavior of enterprise applications to change would change only
gradually, such as the granularity of an hour. Table 5 presents the
mapping of SPECjbb to different cache clones based on its work-
load intensity, represented as the number of transactions processed
per second.

We present performance degradation of the 12 SPEC-CPU work-
loads when co-located with 3 instances of the SPECjbb application
at two different load-levels (20% and 100%) on the Nehalem quad-
core processor in Figure 9. It can be seen that the performance
degradation of the SPEC-CPU applications varies by a factor of 3
between the two SPECjbb load-levels, indicating that it is important
to identify and react to these different workload phases. As part of
our future work, we plan to investigate techniques to dynamically

Co-located Applications Cache clones Predict Error (%) Co-located Applications Cache clones Predict Error (%)
3-core Max. [Avg.] | 4-core Max. [Avg.]

Ibm+lbm (8192,16)+(8192,16) 8.4 [4.0] Ibm+Ibm+lbm (8192,16)+(8192,16)+(8192,16) 7.112.9]
bzip+bzip (6144,4) 8.3 [3.0] bzip+bzip+bzip (6144,16) 9.5[4.0]
gee+soplex (8192,12) 5.91[2.5] omnetpp+omnetpp+omnetpp (8192,15) 6.8 [2.5]
mef+mcef (8192,12) 6.7 [3.1] soplex-+soplex+soplex (8192,16)+(8192,16)+(8192,8) 15.7 [4.6]
mcf+bzip (6144,16) 8.4 [2.5] geet+gect+gee (6144,16) 7.0[2.6]
gobmk-+gobmk (4096,4) 2.910.9] omnetpp+soplex+soplex (8192,16)+(8192,12) 13.7 [3.1]
omnetpp+soplex (8192,15) 6.2 [1.6] omnetpp+omnetpp+lbm (8192,16)+(8192,12) 5.6[1.9]
omnetpp+gcc (6144,16) 9.2 [3.5] gec+soplex+lbm (8192,16)+(8192,12) 7.3[2.5]
Ibm+gcc (8192,16)+(4096,4) 16.1[4.5] soplex+soplex+gcc (8192,16)+(8192,10) 7.1[1.9]
omnetpp+lbm (8192,16)+(8192,6) 15.6 [7.0] povray+povray+povray (0,0) 2.210.5]
soplex-+soplex (8192,16)+(8192,10) 4.9[1.8] hmmer+hmmer+hmmer (6144,16) 15.0 [5.6]
Ibm+soplex (8192,16)+(8192,12) 14.3[5.8] gobmk+gobmk+gobmk (6144,4) 6.8 [1.9]

Table 4: Mapping and prediction results for 3-application and 4-application consolidation scenarios in the quad-core processors. The 12 SPEC-
CPU applications are co-located with application combinations specified in the first column. The difference between the measured and predicted
performance degradation for the 12 experiments corresponding to each application combination (both average and maximum errors) are presented.

1

1 el ' o
09 0.8 09 0.8 Ry -
K4 / -+ 2-core consolidation
0.6 06 7 ¢
w 0.8 a ’ u 08 N I’ 3-core consolidation
5] S 5] : 04 &f —
0.7 - 0.7 + | -core consolidation /I =-4-core consolidation
/ 0.2 [} ==4-core consolidation 0.2 N
0.6 06 5 '
[0 7l 0
0.5 T T , 0.5 +— T T T T Y
0 5 10 15 20 25 0 > 10 15 20
0 25 50 75 100 125 150 L lute diff et dicted and 0 20 40 60 80 100 120 Absolute difference between predicted and

Performance Degradation (%)

d performance di dati
Performance Degradation
(a) Core-2-Duo

Prediction Error
(b) Core-2-Duo:

(%)

Performance Degradation (%) measured performance degradation (%)

Performance Degradation
(c) Nehalem Quad-core:

Prediction Error
(d) Nehalem Quad-core:

Figure 7: CDF of performance degradation and prediction error for Core-2-Duo (a,b) and Nehalem Quad-core (c,d) processors. We present
results for all possible combinations of the 12 SPEC-CPU applications for 2-core consolidation scenario in both Core-2-Duo and Nehalem Quad-core
processor (144 such combinations). For 3-core and 4-core consolidation results, we randomly choose 200 workload combinations in each. We were
able to predict performance for 90% of the workload co-location scenarios with less than 8% error.

-
15
N
EN

W Measured (Vs 3 SPECjbb (20))
m Predicted (Vs (4096,6))

W Measured (Vs 3 SPECjbb (100))
m Predicted (Vs (8192,12))

=3
15}

o

Application Perf. Degr. (%)
(Compared to default)
~N B

Application Perf. Degr. (%)
(Compared to default)

9
S
)

(a) Vs 3 SPEC;jbb at 20% load each

[N
o H 00O N O

lbm -

I S——

mcf | ——

mcf E—_

bzip2 ™
gobmk ==
povray

bzip2 | —

gobmk M=

povray |

o
Ibm =

sjeng

soplex [E—

perlbench f——

sieng .,

soplex ®
hmmer wm

perlbench =
hmmer

omnetpp —

libquantum ™

omnetpp |E—

libquantum M=—__

(b) Vs 3 SPECjbb at 100% load each

Figure 9: Measured and predicted performance degradation of
the 12 SPEC-CPU workloads when co-located with 3 SPECjbb
workloads with 20% load-level (a) and 100% load-level (b) on
the Nehalem Quad-core processor.

identify these workload phases and re-configure workload place-
ment by leveraging our prediction framework.

S. USE CASES

Cuanta can answer several key questions that may arise when
improving the consolidation algorithms for cloud platforms, such
as (i) What should be the right degree of consolidation to arrive
at the best resource-performance trade-off? (ii) What applications
can or cannot be co-located for satisfying performance SLAs? (iii)
Among multiple placement choices that satisfy the consolidation

constraints of resource reservation, efficient packing, and distribu-
tion across redundant servers, which choices would provide the best
performance? (iv) Can the cache interference information be ex-
posed to system software (such as for page-coloring) for making
intelligent resource partitioning decisions?

Though an in-depth design of consolidation algorithms and place-
ment strategies is beyond the scope of this paper, we discuss two
simple use-cases to illustrate the applicability of Cuanta in assisting
VM consolidation.

5.1 Energy-Performance Tradeoff

Workload consolidation reduces overall energy consumption by
co-locating applications on as few active servers as possible and
switching off the rest. This saves the idle power cost of under-
utilized servers. However, it also results in undesirable perfor-
mance degradation for certain applications. It is important for a
hosting platform to predict the performance impact of any arbitrary
co-location to arrive at the right energy-performance trade-off.

We illustrate this trade-off using eight benchmarks from the SPEC-
CPU 2006 suite with moderate cache interference mcf, gce, bzip,
gobmk, lbm, soplex, libguantum, omnetpp. One instance of
each application is to be placed on a set of Core-2-Duo based servers.
We vary the number of servers allocated from 4 (maximum pack-
ing) to 8 (each instance gets a dedicated server). Figure 10 reports
the performance and energy use assuming the best possible place-
ment choice is made in terms of interference maximization for each
placement using Cuanta. Performance and energy numbers shown
are normalized with respect to these metrics for applications run-

ning on a dedicated server each. The idle and peak power con-
sumption of our server is SOW and 90W respectively, and the figure
assumes a linear relationship between CPU utilization and power
within this range [14, 13].

—&— Operating Profit
—a&— Energy

Throughput 1.1

0.9
0.8
0.7
0.6
0.5

0.4

8 7 6 5 4
Number of machines

Figure 10: Resource and performance trade-off for inter-
ference aware consolidation. Performance prediction using
Cuanta is used for estimating the degradation in overall
throughput.

For a given performance SLA constraint, the degree of consoli-
dation can directly be read off from the above curve. For instance,
if required SLA is within 90% of peak performance, then using 5
machines will minimize energy use, while only 4 machines should
be used if required SLA is only 80%.

Alternatively, a joint resource and performance utility metric may
be optimized. Suppose the cost of energy is 10.5¢ per kWh (US
average energy price [12]) and the revenue is 12c/hr when provid-
ing non-degraded throughput (similar to cost of one VM instance
in commercial clouds). The operating profit, that is the difference
of revenue and energy cost, is also shown in Figure 10. In this
scenario, we see that consolidation helps up to 5 machines, but
consolidating further is not advantageous. The best performance
for 5 machines was achieved for the placement: mcf — omnetpp,
gcc—bzip, soplex—gobmk run in pairs using up 3 machines, while
Ibm and libquantum run on a dedicated machine each. Thus, the
technique to predict performance degradation can be used to deter-
mine when, and to what extent, consolidation is advantageous.

5.2 SLA Adherence

One of the main concerns for customers hosting their applica-
tions on the cloud is the fluctuation in performance over time, as has
been measured for commercial clouds [31, 11]. In spite of resource
reservations, certain events change the shared resource availabil-
ity, such as (a) re-configuration of workload placement, triggered
by addition of new applications to the cloud, (b) change in work-
load volume of co-located applications with time-of-day, etc. These
variations affect the interference among co-located workloads lead-
ing to performance fluctuations.

We illustrate the applicability of Cuanta in making intelligent
placement decisions while respecting application SLAs. Consider
the following applications, SPEC'jbb,, SPECjbba, SPECjbbs,
lbmy, lbma, Ibms, lbmy, and lbms, to be placed in a hosting plat-
form. The applications are given a number subscript to differenti-
ate between the instances. We treat SPFECjbb instances that are
transaction processing applications to be customer facing services
that have a SLA constraint of 80% of their normalized throughput.
Suppose that they initially start with an input request volume of
50%. The five [bm instances represent batch processing tasks and
are run in best-effort mode (without SLA constraints). The cloud

10

platform attempts to run the applications on as few servers as pos-
sible while satisfying SLA constraints. We assume that all servers
use Nehalem Quad-core processors. We tabulate the different ac-
tions taken by hosting platform as the applications enter the system
in Table 6. We associate a timestamp, ¢;, with each event to indi-
cate ordering (t;+1 happens after ¢;). The sc/ interference vectors
(as indicated in Equations (1) and (7)) are assumed to have been
initialized for the Nehalem processor.

Event Action/Observation

(i) Measure interference vector [, find clone R,
and construct degradation table D, for each
accepted application cx.

(ii) Place lbmy, lbma, lbms, and SPEC jbby
on server Sy.

(iii) Perf. degr. of SPEC jbb, predicted using
Cuanta is 6% (within SLA).

tli lbml, lme,
lbms, and SPEC jbby
enter the cloud
platform

to: lbmy, SPEC jbba,
SPECjbbg, and lbmg
enter the cloud
platform

(1) Measure interference vector [, find clone R,
and construct degradation table D, for each
newly accepted application .

(ii) Place lbmy, lbms, SPEC jbbs, and,
SPEC jbbs on server Sa.

(iii) Perf. degr. of SPEC jbbs and SPEC jbbs
predicted using Cuanta is 4% (within SLA).

t3: Load intensity
of SPEC jbby changes
from 50% to 100%

(i) Perf. degr. of SPECjbb; measured as

40% (violates SLA).

(ii) Measure interference vector I's pEcjbby > find
clone RspEc;bb, » and construct degradation

table DspEC;bby

(iii) Migrate S P ECjbb; to server So and

migrate SPEC jbbs to server Sy.

Xen live migration took about 2 minutes.

(iv) Perf. degr. of SPECjbby and SPEC jbba
predicted using Cuanta is 15% and 6% (within SLA).

Table 6: Events and the corresponding actions taken by hosting plat-
form by leveraging of Cuanta.

Change in workload intensity of SPEC'jbb; at time t3 triggers
re-characterization of the workload since we may not know the
cache pressure exhibited by the new workload phase. Thus Cuanta
can be used in dynamic decision making and for precisely identify-
ing the target server to co-locate a new workload.

6. RELATED WORK

Cache is an essential part of modern processor for improving
software execution performance. However, being an opportunistic
mechanism, cache brings complexity to provide predictable perfor-
mance and quality-of-service guarantee. Based on the underlying
platform, we classify existing work into three categories.

Architecture-level solutions. Changes to processor cache ar-
chitecture and intelligent cache replacement algorithms have been
proposed to provide cache partitioning and QoS guarantees for co-
located applications [25, 37, 23, 46, 9, 8, 34, 35, 27, 29, 43]. Since
these approaches require alteration to the hardware design, they
are typically evaluated in simulation. Qureshi et al. [28] present a
cache utility function that captures an application’s miss-rate as a
function of cache-space allocation and propose a greedy technique
to deal with non-convex behavior. Bitirgen et al. [5] use machine
learning technique to understand the complex interaction between
cache partitioning, memory bandwidth and CPU power states. The
hardware-based solutions add complexity to processor design and
the interface is hard to maintain stable over time. In comparison,
software-based solutions have less processor dependencies.

OS/Software solutions. Software solutions to cache manage-
ment mainly involves some variations of page coloring/re-mapping
techniques for providing performance isolation [45, 2, 26, 7, 10,
4, 32, 30, 36, 33, 45]. Intelligent processor scheduling (mapping
of threads to processor cores) have also been proposed to reduced

cache contention among co-located threads [47]. Lin et al. [22] ob-
serve that application performance is more sensitive to main mem-
ory latencies than shared-cache space and propose a dynamic cache
partitioning technique that makes use of this observation to adjust
application cache space based on their QoS requirements.

Measurement/Modeling based solutions. The techniques that
are closest to our approach are measurement or modeling based so-
lutions. These solutions treat the hardware and OS as black (or
gray) boxes, and use external measurements to derive user observ-
able performance models. Since they are not processor or OS de-
pendent, these solutions are in general less accurate but are more
widely applicable than the previous two kinds of solutions. In [21],
Koh et al. propose a technique for predicting performance degrada-
tion of co-located applications based on their resource usage statis-
tics, similar to program similarity analysis [16]. They use a re-
source usage vector that includes statistics such as cache hits/misses,
processor utilization, and disk/network usage to describe an appli-
cation. When a new application is hosted, its resource vector is
compared with that of known applications (applications which are
already profiled) and is mapped to the weighted average of one
or more known applications whose resource vectors it closely re-
sembles. Then the performance degradation of the new applica-
tion is predicted based on already recorded performance degra-
dation of the mapped/representative known applications. West et
al. [40] looked at using hardware performance counters for estimat-
ing cache occupancy and use analytical models to predict increase
in cache miss upon co-placement. In [38], Verma et al. assume
that cache occupancy is explicitly provided by the HPC applica-
tions and provide heuristics for co-locating applications with min-
imal impact on cache interference. Another approach to managing
performance interference by measuring it in situ was presented in
Nathuji et al. [26]. That approach uses an online MIMO model to
capture the performance interference effects in terms of resource
allocations. The method then adjusts the processor allocation for
each application based on the required performance level, in effect
compensating for performance degradation by allocating additional
resources.

7. CONCLUSION AND FUTURE WORK

The intention of this paper is to develop a software only solu-
tion to characterize cache interference of consolidated applications.
Cache usage information, which is not exposed in current processor
architectures, is very crucial in determining the performance impact
of consolidated applications. Although performance degradation of
consolidated applications can be empirically measured for making
placement decisions, the number of possible workload placements
is combinatorial in the number of workloads, rendering it imprac-
tical. We developed a novel technique to estimate the cache us-
age of co-located applications and use it to predict the performance
degradation of applications due to cache interference. Our tech-
nique work on current processors without requiring changes to the
software stack of the hosting platform and the prediction overhead
is only linear to the number of cores sharing the last-level cache.
Our evaluation results on Intel Core-2-Duo and Nehalem Quad-
core processors are very positive and we were able to predict the
performance degradation of 12 SPEC-CPU 2006 applications with
very high accuracy of 96%.

There are several interesting directions for future work, (a) The
cache pressure exerted by an application is dependent on several
other factors such as its CPU reservation, CPU frequency/voltage
level, private-cache interference etc., and we plan to extend our
probe-based characterization to incorporate these factors. (b) Apart
from on-chip resource interference, several other forms of inter-

ference such as storage device (hard-drive/SSD) interference, net-
work bandwidth contention, etc., also contribute to the overall ap-
plication performance. We wish to address resource interference
across these different layers and capture their inter-dependency to
develop a holistic framework for predicting performance degrada-
tion due to consolidation. (c) Our fine-grained probing of appli-
cation cache usage can provide useful runtime information about
the degree of cache contention to system-software such as page-
coloring/remapping techniques, which can in turn use this infor-
mation for providing better performance isolation guarantees. (d)
We would also like to evaluate the impact of cache pressure be-
tween applications that do not share the last level cache space.
This could happen due to just the memory-bandwidth contention
between applications co-located on the same server but on differ-
ent processor sockets. Our scl based characterization can be read-
ily extended to incorporate such scenarios. (e) Characterization of
temporal variation in application cache usage, though addressed
in this paper, needs further attention. Especially, the granularity
of variance impacts the profiling duration/accuracy. Techniques for
detecting dynamic phase change of applications and consequent re-
configuration decisions are part of future work. (f) Evaluating the
efficacy of our prediction technique for enterprise (multi-tier, possi-
bly spanning multiple physical servers) workloads such as TPC-W,
RUBIS, streaming-media servers, etc., are also of interest.

8[‘l] Mfogmgggl%ute Cloud.

http://aws.amazon.com/ec2/.

[2] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter.

Dynamic hardware-assisted software-controlled page

placement to manage capacity allocation and sharing within

large caches. In Proceedings of High-Performance Computer

Architecture (HPCA), 2009.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebuer, I. Pratt, and A. Warfield. Xen and the

Art of Virtulization. In Proceedings of the Nineteenth

Symposium on Operating Systems Principles (SOSP), 2003.

B. Bershad, D. Lee, T. H. Romer, and J. B. Chen. Avoiding

conflict misses dynamically in large direct-mapped caches.

In Proceedings of the International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 1994.

R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated

management of multiple interacting resources in chip

multiprocessors: A machine learning approach. In

Proceedings of the IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2008.

[6] N. Bobroff, A. Kochut, and k. Beaty. Dynamic placement of
virtual machines for managing sla violations. In Proceedings
of the International Symposium on Integrated Network
Management, 2007.

[7] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum,
and M. S. Lam. Compiler-directed page coloring for
multiprocessors. In Proceedings of the Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 1996.

[8] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting
inter-thread cache contention on a chip multi-processor
architecture. In Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA), 2005.

[9] J. Chang and G. S. Sohi. Cooperative cache partitioning for
chip multiprocessors. In Proceedings of the international
conference on Supercomputing (ICS), 2007.

[10] S. Cho and L. Jin. Managing distributed, shared 12 caches
through os-level page allocation. In Proceedings of the
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2006.

[11] J. Dejun, G. Pierre, and C.-H. Chi. Ec2 performance analysis
for resource provisioning of service-oriented applications. In

[3

—

[4

—

[5

—

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Proceedings of the international conference on
Service-oriented computing, 2009.

Department of Energy - prices and trends.
http://www.energy.gov/pricestrends/index.htm.

D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan.
Full-system power analysis and modeling for server
environments. In Workshop on Modeling, Benchmarking and
Simulation, 2006.

X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning
for a warehouse-sized computer. In Proceedings of the
International Symposium on Computer Architecture (ISCA),
2007.

D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat.
Enforcing performance isolation across virtual machines in
xen. In Proceedings of the Conference on Middleware
(MIDDLEWARE), 2006.

K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K.
John, and K. D. Bosschere. Performance prediction based on
inherent program similarity. In Proceedings of the conference
on Parallel architectures and compilation techniques
(PACT), 2006.

Intel Corporation. Intel Single-chip Cloud Computer.
http://techresearch.intel.com/spaw2/
uploads/files/SCC-Overview.pdf.

C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase
monitoring and prediction on real systems with application
to dynamic power management. In Proceedings of the
Symposium on Microarchitecture (MICRO), 2006.

R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, and

D. Newell. Vm3: Measuring, modeling and managing vm
shared resources. Computer Networks, 53(17):2873-2887,
2009.

D. Kaseridis, J. Stuecheli, J. Chen, and L. K. John. A
bandwidth-aware memory-subsystem resource management
using non-invasive resource profilers for large cmp systems.
In Proceedings of High-performance Computer Architecture
(HPCA), 2010.

Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and
C. Pu. An analysis of performance interference effects in
virtual environments. In Proceedings of the IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2007.

J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and

P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and real
systems. In Proceedings of high performance computer
architecture (HPCA), 2008.

C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing
the last line of defense before hitting the memory wall for
cmps. In Proceedings of the IEEE Symposium on
High-Performance Computer Architecture (HPCA), 2004.

F. Liu and Y. Solihin. Studying the impact of hardware
prefetching and bandwidth partitioning in
chip-multiprocessors. In Proceedings of the ACM
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), 2011.

G. Memik, G. Reinman, and W. H. Mangione-Smith. Just
say no: Benefits of early cache miss determination. In
Proceedings of High-Performance Computer Architecture
(HPCA), 2003.

R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds:
managing performance interference effects for qos-aware
clouds. In Proceedings of the 4th ACM European conference
on Computer systems (EUROSYS), 2010.

K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private
caches. SIGARCH Computer Architecture News,
35(2):57-68, 2007.

M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In Proceedings of the
Symposium on Microarchitecture (MICRO), 2006.

12

[29]

(30]

(31]

(32]

[33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural
support for operating system-driven cmp cache management.
In Proceedings of Parallel architectures and compilation
techniques (PACT), 2006.

T. Romer, D. Lee, B. N. Bershad, and J. B. Chen. Dynamic
page mapping policies for cache conflict resolution on
standard hardware. In Proceedings of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 1994.

J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
measurements in the cloud: observing, analyzing, and
reducing variance. Proc. VLDB Endow., 3:460-471,
September 2010.

T. Sherwood, B. Calder, and J. Emer. Reducing cache misses
using hardware and software page placement. In Proceedings
of the international conference on Supercomputing (ICS),
1999.

L. Soares, D. Tam, and M. Stumm. Reducing the harmful
effects of last-level cache polluters with an os-level,
software-only pollute buffer. In Proceedings of the
Symposium on Microarchitecture (MICRO), 2008.

S. Srikantaiah, M. Kandemir, and M. J. Irwin. Adaptive set
pinning: managing shared caches in chip multiprocessors.
SIGARCH Comput. Archit. News, 36(1):135-144, 2008.

G. E. Suh, L. Rudolph, and S. Devadas. Dynamic cache
partitioning for simultaneous multithreading systems. In
Proceedings of Conference on Parallel and Distributed
Computing Systems, 2001.

D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing
shared 12 caches on multicore systems in software. In
Proceedings of the Workshop on the Interaction between
Operating Systems and Computer Architecture (WIOSCA),
2007.

N. Topham, A. Gonzélez, and J. Gonzélez. The design and
performance of a conflict-avoiding cache. In Proceedings of
the symposium on Microarchitecture (MICRO), 1997.

A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamic
placement of hpc applications. In Proceedings of the 22nd
annual international conference on Supercomputing (ICS),
2008.

Vmware. http://www.vmware.com/.

R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang. Online
cache modeling for commodity multicore processors.
SIGOPS Oper. Syst. Rev., 44:19-29, December 2010.
Windows Azure Platform.
http://www.microsoft.com/windowsazure/.
Y. Xie and G. H. Loh. Pipp: promotion/insertion
pseudo-partitioning of multi-core shared caches. In
Proceedings of the International Symposium on Computer
Architecture (ISCA), 2009.

C. Zhang. Balanced cache: Reducing conflict misses of
direct-mapped caches. SIGARCH Computure Architecture
News, 34(2):155-166, 2006.

J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and

E. Riedel. Storage performance virtualization via throughput
and latency control. Trans. Storage, 2(3):283-308, 2006.
X. Zhang, S. Dwarkadas, and K. Shen. Towards practical
page coloring-based multicore cache management. In
Proceedings of the European conference on Computer
systems (EUROSYS), 2009.

L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and

D. Newell. Cachescouts: Fine-grain monitoring of shared
caches in cmp platforms. In Proceedings of the conference
on Parallel architectures and compilation techniques
(PACT), 2007.

S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing
shared resource contention in multicore processors via
scheduling. SIGPLAN Notices, 45(3):129-142, 2010.

