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Introduction.

This conference (ANTS-1) marks the beginning of what we hope will be a long
series of international conferences on algorithmic number theory. It seems ap-
propropriate, at the beginning, to state some of the central open problems in
the field. Accordingly, this paper contains a list of 36 open problems in number-
theoretic complexity. We expect that none of these problems are easy; we are
sure that many of them are hard.

This list of problems reflects our own interests and should not be viewed as
definitive. As the field changes and becomes deeper, new problems will emerge
and old problems will lose favor. Ideally there will be other ‘open problems’
papers in future ANTS proceedings to help guide the field.

It is likely that some of the problems presented here will remain open for
the forseeable future. However, it is possible in some cases to make progress
by solving subproblems, or by establishing reductions between problems, or by
settling problems under the assumption of one or more well known hypotheses
(e.g. the various extended Riemann hypotheses, NP # P, NP # coNP).

For the sake of clarity we have often chosen to state a specific version of a
problem rather than a general one. For example, questions about the integers
modulo a prime often have natural generalizations to arbitrary finite fields, to
arbitrary cyclic groups, or to problems with a composite modulus. Questions
about the integers often have natural generalizations to the ring of integers in
an algebraic number field, and questions about elliptic curves often generalize
to arbitrary curves or abelian varieties.

The problems presented here arose from many different places and times.
To those whose research has generated these problems or has contributed to
our present understanding of them but to whom inadequate acknowledgement
is given here, we apologize.

Our list of open problems is derived from an earlier ‘open problems’ pa-
per we wrote in 1986 [AM86]. When we wrote the first version of this paper,
we feared that the problems presented were so difficult that young researchers
reading the list might be discouraged rather than inspired. Happily, despite the
difficulties, eight years has brought considerable progress on a number of these
problems. Even for the two most central problems in the field, primality testing



and factoring, there has been impressive progress: the primes are now known to
be decidable in random polynomial time and the ‘number field sieve’ has given
us the most powerful factoring algorithms yet. To emphasize the progress that
has been made, the statement of each problems is followed by the original 1986
remarks and then the remarks which now seem appropriate.

The authors would appreciate your comments, particularly with regard to
further progress on these problems.

Definitions, notation, and conventions.

In this paper:

R denotes the set of real numbers,

— Z denotes the set of integers,

— N denotes the set of positive integers,

— Primes denotes the set of primes in N,

— Squarefrees denotes the set of squarefree numbers in N,
@ denotes the set of rationals.

— ERH refers to the extended Riemann hypothesis.

For a,b € Z,

— we write a | b if there exists k € Z with b = ka,

— we write a [b if there does not exist k € Z with b = ka,

— ged(a, b) denotes the greatest common divisor of a and b,

— (%) denotes the Jacobi symbol if b is odd and ged(a,b) =1,
— {a,b) denotes the ordered pair.

For n € N,

— Z/nZ denotes the ring of integers modulo n,

— (Z/nZ)" denotes the corresponding multiplicative group,
— ¢(n) denotes the number of elements in (Z/nZ)",

— L(n) represents any function of the form

exp((1 4 o(1))(logn log log n)l/z) .
— ForneN, o, €R, «,8> 0, L[, 8] represents any function of the form
exp((8 + o(1))((log n)* (loglog n)' =) .

If R is a ring, then we write R[z] for the ring of polynomials with coefficients
in R. The set of finite strings composed of the letters a and b is denoted {a, b}*.
For n, a, b € N with ged(n, 4a® + 27b%) = 1, let

Snap =z, y) |2,y €Z/ML & y* = 2° + ax +b (mod n)} U {0} .

When p € Primes, S, 4,5 1 well known to be endowed with a group structure.
We denote this group by Ej .3 and use #F, 4 for the number of elements of
this group. More generally, if S is a set, we write #£S for the cardinality of 5.



In stating open problems we have decided to continue the ad hoc notation
from [AMB86]. For example, we label the first computational problem as C1, the
corresponding open problem as O1 (or Ola and O1b if there are two), and
the original 1986 remarks concerning C1 and O1 we label as Remlgs. Any
new remarks we label as Remlgs. Any additional references are given in Refl.
Computational problems C2 and C6 are stated in terms of a parameter S which
is an arbitrary subset of N. Computational problem C30 is stated in terms of a
parameter ¢ € N.

While it seems inappropriate to spend a great deal of time giving rigor-
ous definitions of the complexity-theoretic notions used in this paper, it seems
worthwhile to provide some guidance. More information on these notions may
be found in [Gil77], [AHU74], [AMT77], and [GJ79]. We assume the concept of a
polynomial time computable function is understood. A computational problem
C is thought of as a set of pairs (z, S;), where z is an input for which an output
is desired and S, is the set of possible ‘correct’ outputs on input z. For example

Cl ={(n,S,) | n € Primes = S,, = {1} & n & Primes = S, = {0}}
C17 = {{{p,d), Sp,a)) | d EN & p € Primes &
Spay ={f | F € (Z/pL)[x] | deg(f) = d & [ irreducible}}.
C19 = {(p,Sy) | p€ Primes & Sp ={g|g EN,1<g<p—-1&
g generates (Z/pZ)"}}
C28 = {({a,b,p, P,Q), Stapp,pq)) | a,0 EN,p € Primes, P,Q € E} a,
(AneN)nP =Q] & Supppro ={n|neN&nP =Q}}

Definition 1 If C = {{x, Sy)} is a computational problem then we let n(C) =
{z | (x,S;) € C}.

We use |#| to denote the length of an object x, where we hope that the
meaning of ‘length’ will be clear from the context.

Definition 2 C is in P iff there exists a polynomial time computable function

[ such that (Ve € m(C))[f(x) € Sy].

Thus for example, in O18 below we ask if C18 is in P. Any deterministic
algorithm which runs in polynomial time with input-output behaviour consistent
with that described in C18 would provide an affirmative answer to O18. In
particular how that algorithm behaves on an input p & Primes is irrelevant.

Definition 3 C is in R iff there exists a ¢ in N and a polynomial ttme com-
putable function f such that

i. (Veem(C)Y(V|r| < |2|9)[f(x,r) €Sy or fla,r)="7"]
i (Vo e T(C))[#{rllrlslxlc&f(w)ESz} > %]

#{rllr|<|ele}

Definition 4 C is in NP iff there exists a ¢ in N and a polynomial time com-
putable function f such that



i. (Ve ewm(C))(Vr| < |z|9)[f(x,r) € Sy or f(z,r)="7"].
u. (Ve €7(C))(Ty € 5)3|r| < |])[f(z,r) = y].

Definition 5 C is recognized in R ff
. (Vo e m(C))[Se = {1} = (V|| < [2])[f (2, r) = {1} or f(z,r) ="77]]
i (Vo € n(C ))[S — (1) > el & fen=) 5 o

#{rllrI<l=]°}
. (Vo e m(C))[Se # {1} = (Y[ < [e])[f(x,r) = ”7”]]~
Definition 6 C s recognized in N'P iff there exists a ¢ in N and a polynomial
time computable function f such that

i (Yo € m(C)[Se = {1} = (Ml < o) (e, 7) = {1} or f(z,r) ="7]]
. (Vo en(C))[5% = {1} = Ar| < [z[)[f(x,r) = 1]
. (Yo € 7(C))[Sy # {1} = (V]| < |e|)[f (2, 7) ="7"]].
For notions involving the reduction of one problem to another we will be even
less formal.

Definition 7 f is a deterministic solution to C iff (Ve € n(C))[f(x) € Sy].

Let D(C) = {f | f is a deterministic solution to C}. For all deterministic
algorithms A and functions f and ¢, we say that A translates f into ¢ iff when
given a subroutine for f, A computes g in polynomial time (where the time used
in the subroutine for f is not counted). We remark that calls to the subroutine
may be ‘dovetailed’ but the algorithm A cannot know if the absence of a response
on a particular call means that no response is forthcoming or that a response
has just not arrived yet. See C18 for an example.

Definition 8 C1 <pC2 iff there exists a deterministic algorithm A such that
for all f € D(C2), there exists a ¢ € D(C1) such that A translates f into g in
polynomaial time.

Definition 9 C s N'P-hard with respect to P iff for all C’, (C' is in NP) =
(C' <p C).
We will follow the convention of using AP-hard to denote AP-hard with
respect to P.
Definition 10 [ is a random solution to C iff there exists a ¢ in N such that
i. (Ve ewm(C)(Vr| < |z|9)[f(x,r) € Sy or fla,r)="7"]

ii. (Ve e W(C))[#{’“” L flere) > 1]

Let R(C) = {f | f is a random solution to C}.

Definition 11 C1 <z C2 iff there exists a deterministic algorithm A such that
for all f € D(C2), there exists a g € R(C1) such that A translates f into g in
polynomaial time.

Definition 12 C is AN"P-hard with respect to R iff for all C’,
(C'isin NP)=C' <z C .



1 Primality testing

C1

Ola
O1b

Rem186

Rem194

Refl

Input neN
Output 1 1f n € Primes,
0 otherwise.

Is C1 in P?
Is C1 recognized in R?

A classical problem. The following quote appears in art. 329 of Gauss’
Disquisitiones Arithmetice:(translation from [Knu81, page 398])
The problem of distinguishing prime numbers from com-

posites, and of resolving composite numbers into their prime

factors, is one of the most important and useful in all of arith-

metic. ... The dignity of science seems to demand that every

aid to the solution of such an elegant and celebrated problem

be zealously cultivated.
Tt is known that the set of composites is recognized in R [SS77]. If the
extended Riemann hypothesis for Dirichlet L-functions is true, then
C1 isin P [Mil76]. There exists a constant ¢ € N and a deterministic
algorithm for C1 with running time O((log n)¢'°8'°8lo87) [APR83]. If
Cramér’s conjecture on the gaps between consecutive primes is true,
then C1 is recognized in R [GK86]. C1 is recognized in AP [Pra75].
Firer [Fiir85] has shown that the problem of distinguishing between
products of two primes that are Z 1 (mod 24) and primes that are
Z 1 (mod 24) is in R.

Problem O1b has been settled in the affirmative by Adleman and
Huang [AH92]. As a result of the work of H. Maier on gaps between
consecutive primes, the exact formulation of Cramér’s conjecture
has now been called into question, however the conjecture required

for [GK86] is unaffected.

[Guy77], [Knu81], [Len81], [CL84], [Pom8&1], [Rab80a], [Rie85b],
[Rie85a], [Wil78].

2 Testing an infinite set of primes

Let S C N.
C2

02

Rem2g6

Input n € N.
Output 1ifne s,
0 otherwise.

Does there exist an infinite set S C Primes such that C2 is in P?

In light of Rem1g¢ it is remarkable that O2 remains unsettled. The
related problem of the existence of an infinite set S C Primes such
that C2 is recognized in R is addressed in [GK86].



Rem294

Ref2

Problem O2 been settled in the affirmative by Pintz, Steiger, and
Szemerédi [PSS89]. One can now ask what the densest such set S is.
In this direction, Konyagin and Pomerance [KP94] have proved that
for every € > 0 there exists an algorithm that will prove primality in
deterministic polynomial time for at least 2!~ primes less than 2.

[PSS83].

3 Prime greater than a given bound

C3

03

Rem3g6

Rem394

Ref3

Input n € N.
Output p € Primes with p > n.

Is C3 in P?

If Cramér’s conjecture (see [Cra36]) on the gaps between consecutive
primes is true, then C3 <pC1. Since the density of primes between
n and 2n is approximately 1/logn, it follows that C3 <z C1. This
problem has cryptographic significance [DH76], [RSATS].

As we mentioned in Rem1gy, the exact formulation of Cramér’s con-
jecture has now been called into question. It is still probably true that
for every constant ¢ > 2, there is a constant d > 0 such that there
is a prime between # and x 4 d(log#)°. This hypothesis still implies
that C3 <pC1.

Note, since C1 is recognized in R (see Remlyy), it follows that
C3 is in R. If anything, the importance of this problem has grown
since 1986, since there have been numerous cryptosystems proposed
since then that require the ability to construct large primes, some-
times with special properties. See [Pom90].

[Bac88], [Pla79]. See also Refl.

4 Prime in an arithmetic progression

C4

04

Rem4g6

Input a,n €N.
Output  p €Primes with p = a (mod n) if ged(a, n) = 1.

Is C4 in P?

It was conjectured by Heath-Brown [HB78] that if ged(a,n) = 1,
then the least prime p = a (mod n) is O(nlog2 n), and this would
imply that C4 <p C1. If there are no Siegel zeroes, then the density
of small primes in the arithmetic progression a modulo n is suffi-
cient to conclude that C4 <xC1 [BomT74]. Without hypothesis, it is
known [EH71] that Heath-Brown’s conjecture is true for almost all
pairs a,n with ged(a,n) = 1. Hence if C1 is in P, then one can solve
C4 in deterministic polynomial time for almost all inputs. See also
Rem2086.



Rem494

Ref4

Since C1 is now known to be in R (see Remlgy), it follows that C4
is also in R. C4 also has cryptographic applications [Sch91], [BM92],
[0C91].

[AMT7]

5 Integer factoring

C5

Oba
0O5b

Rem5g6

Rem594

Refb

Input n € N.
Output  py,ps,...,pr € Primes and ey, e5,... e € N such that

k
n:pr’ifn>1.
i=1

Is C5 in P?
Is C5 in R?

Another classical problem, mentioned by Gauss in his Disquisitiones
Arithmetice (see Remlgg). There are a large number of random
algorithms for C5 whose running time is believed to be L(n)® for
varying constants ¢ > 1 [Pom82], [Len87], [SL84]. The only random
algorithm of this class whose running time has actually been proved
to be L(n)¢ is due to Dixon [Dix81]. Dixon’s algorithm is unfortu-
nately not practical. A determination of the complexity of C5 would
have significance in cryptography [RSA78].

A great deal of progress has been made in the area of factoring inte-
gers. Lenstra and Pomerance [LP92] proved the existence of a prob-
abilistic algorithm for factoring integers with an expected running
time of L,[1/2,1], improving on Dixon’s bound. Another interesting
development was the discovery of the number field sieve. A heuristic
analysis suggests that there exists a constant ¢ > 0 such that the
number field sieve factors an integer n in expected time L,[1/3, ¢].
Contributions to the number field sieve were made by a number of
researchers, including (but not limited to) Adleman, Buhler, Copper-
smith, Couveignes, A.K. Lenstra, H.W. Lenstra, Manasse, Odlyzko,
Pollard, Pomerance and Schroeppel. See [AdI91], [Cop90], [Cou93],
[LL93], and the references cited therein.

In a very recent development Peter Shor [Shoar] has shown that
factoring can be done in polynomial time on a “quantum computer”.
It is premature to judge the implications of this development.

[Dix81], [Guy77], [Knu8l], [Len87], [MB75], [Pom82], [Rie85b],
[Rie85a], [Sha71], [Sch82], [SL84], [Wils4].



6 Factoring a set of positive density

Let S C N.

C6 Input n € N.
Output  p1,pa,...,pr € Primes and ey, e5,... e € N such that

k
n:pr’ ifn>1landnes .
i=1
06 Does there exist a set S such that
o <z& S
hmmf#{n|n_x ne }>0
r— 00 X
and C6(S) is in P?
Rem6gs Assuming the necessary hypotheses for the running time analysis for

Lenstra’s elliptic curve factoring method (see [Len87]), it is probably
possible to prove that a set .S satisfying

. <z & S
hmmf#{n|n_x2n6 }>0 (1)
T 00 zloglog? =

log z log loglog @

can be factored in random polynomial time. This set will still have
density zero, however. A related question is whether factoring a set
of positive density is random polynomial time equivalent to C5. The
set Squarefrees has density 6/72 however it is not even clear that C5
<rC6(Squarefrees).

Rem6g, Let A denote a deterministic algorithm for factoring integers, and
define F'(z,t, A) to be the number of integers n with 1 < n < x such
that A will factor n in at most ¢ bit operations. O6 can then be
stated as asking whether there exists an algorithm A and a constant
¢ > 0 such that

lim inf 0.
r—00

This problem remains open, but Hafner and McCurley [HM89a] and

later Sorenson [Sor90] proved several results about the behaviour of

F for various factoring algorithms (including a generalization to cover

probabilistic algorithms). The estimate (1) has still not been proved,

and the best result known [HM89a] in this direction is

F(z logx, A
(x,o;gx, )>

loglog )&~
Flo,log" 2, A) >>, 2Uoslosa) =™

bl

log x

using a probabilistic algorithm. In this formulation, one may also
ask for the slowest growing function #(z) such that there exists an
algorithm A with



7 Squarefree part

Cc7

OT7a
O7b

Rem7g6

Rem794

Input n € N.

Output  »,s € N with n = v%s and s € Squarefrees.

Is C7 in P?

Is C5 <xCT ?

See Rem13gg. Clearly C7 <pC5. The analogous question for f €
Qx] or (Z/pZ)[x] is solvable in polynomial time by performing cal-
culations of the form ged(f, f'), where f’ is the (formal) derivative
of f. (see [Knu8l, page 421]).

Landau [Lan88] proved that C7 <pC23. According to [Len92], Chis-
tov [Chi89] has shown that C7 is polynomial time equivalent to de-
termining the ring of integers in a number field.

8 Squarefreeness

C8

08

Rem886

Rem894

Input n € N.

Output 1 if n € Squarefrees,
0 otherwise.

Is C8 in P7?

A generalization of this is, given n and & € N, to determine if n is
divisible by the kth power of a prime. Another generalization is to
output p = p(n), where

1 ifn=1,
p(n) = 0  if there exists a p € Primes with p? | n,
(—=1)* if n is a product of k distinct primes.

Shallit and Shamir have shown that this generalization is reducible
to the problem of computing the function d mentioned in Rem9sg¢.

We are unaware of any progress on this problem.

9 Number of distinct prime factors

C9

09

Rem9g6

Input n € N.
Output  w(n) =#{p|p € Primes & p | n}.

Is C9 in P?

Clearly C1 <pC9, since we can easily check to see if n is a perfect
power. An interesting variant of C9 is to output £2(n) = e; +.. .4 ¢y,
where n = Hle pi* is the prime factorization of n. Another variant
is to output d(n) = #{k | k € N & k | n}, and still another variant is
to output the multiset {ey,...,ex}. Shallit and Shamir [SS85] have



proved that the last two variants are polynomial time equivalent to
each other. As a consequence we have that C9 is polynomial time
reducible to the problem of computing the function d(n) mentioned
above.

Rem9y, We are unaware of any progress on this problem. It i1s remarkable
that one can decide if w(n) = 1 in random polynomial time [AH92],
but there are no other partial results known on this problem.

10 Roots modulo a composite

C10 Input e,a,n € N.
Output # € N such that 2° = a (mod n), if ged(e, ¢(n)) = 1 and
ged(a,n) = 1.
010 Is C5 <z C10?

Rem10gs When the restriction that ged(e, ¢(n)) = 1 is dropped, it is known
that C5 <zxC10 [Rab79]. A resolution of this problem would have
important consequences in public-key cryptography [RSA78]. Tt is
known that C10 <pC23.

Rem10y, We are unaware of any progress on this problem.

11 Quadratic residuosity modulo a composite

C11 Input a,n €N.
Output 1 if there exists an # € N such that > = a (mod n) and
ged(a,n) =1,

0 otherwise.
Olla Is C11 in P?
011b Is Cb <z C117

Reml1lgs It is easy to show that C11 <pC5. There is an obvious generaliza-
tion where the exponent 2 is replaced by another exponent & that is
either fixed for the problem or supplied as an input. The presumed
difficulty of C11 has been used as a basis for cryptographic systems
[GM82], [GM84], [Yao82], [BBS86]. C11 is related to C9 since the
proportion of residues modulo n that are quadratic residues is 27%("),
where w(n) is the number of distinct prime divisors of n. Therefore
given an algorithm for C11, one can obtain a confidence interval for
w(n) by checking random values.

Reml1ly,; We are unaware of any progress on this problem.

Refll  [AMS82].



12 Quadratic non-residue modulo a prime

C12

012
Rem1286

Rem1294

Refl2

Input p € N.
Output b € N such that there does not exist ¢ € N with ¢ = b
(mod p), if p € Primes.

Is C12 in P?

C12 is easily seen to be in R, since polynomial time algorithms
for the corresponding problem of distinguishing quadratic residues
from nonresidues can be based on the Jacobi symbol and the law of
quadratic reciprocity, or else on Euler’s criterion:

p € Primes and p fa = P (E) (mod p) .
P

Curiously, Gauss was aware of Euler’s criterion, but was appar-

ently unimpressed by its efficiency [Gau86, art. 106]:
Although 1t is of almost no practical use, it is worthy

of mention because of its simplicity and generality ... But

as soon as the numbers we are examining are even moder-

ately large this criterion is practically useless because of the

amount of calculation involved.
Under the extended Riemann hypothesis, C12 is in P [Mil76]. It
is also known that the least quadratic nonresidue is almost always
small [Erd61], so C12 can be solved in deterministic polynomial time
for almost all inputs.

On the problem of calculating kth power non-residues in GF(p™),
the following is known. On ERH, the algorithm of Huang [Hua85],
generalized by Evdokimov [Evd89], constructs a kth power non-
residue, in GF(p") in deterministic time (knlogp)°!). Buchmann
and Shoup [BS91], on ERH, construct a kth power non-residue in
GF(p”) in deterministic time (log p)°). Bach [Bac90], on ERH, has
given explicit bounds for estimations of the least kth power non-
residue. See also Rem19g4.

[Ank52], [Bac85].

13 Quadratic signature

C13

013

Input oe{-1,1}~

Output The least p € Primes such that for all 7 with 1 < ¢ <
lo], (%) = ¢;, where |o|, the length of ¢, is the number of
symbols in o, p; is the #** prime, and ¢; is the 7** symbol
of o.

Is C13 in P?



Rem1386

Rem1394

Refl3

If n has the form m?q with ¢ an odd prime and m odd, then for any
a with ged(a, n) = 1 we have () = (%) . It follows that if C13 is in
P, then n could be partially factored since, assuming the extended
Riemann hypothesis, ¢ can be determined by a signature of length
O(log® n) [Mil76], [Ank52]. The notion of quadratic signature can be
generalized; see [AM82].

The concept of quadratic signature has found application in the

number field sieve [AdI91].
[Ank52], [Bac85], [Bac90].

14 Square roots modulo a prime

Cl14

014
Rem1486

Rem1494

Refl4

Input a,p € N.
Output z € N with 22 = a (mod p) if p € Primes and such an z
exists.

Is C14 in P7?

Among the researchers who have presented algorithms for C14
are [Gau86, art. 319-322], [Ton91], [Leh69], [Sha72], [Ber67],
[Rab80b], [AMMT77]. It is now known that C14 is in R. It is also
known that C14 <pC12 and that on the extended Riemann hypoth-
esis, C14 is in P. There is a natural generalization of C14 where the
exponent 2 1s replaced by a fixed k. Another generalization has k as
part of the input. For this version there is a random time O((k log p)°)
algorithm based on known algorithms for C15. One can also use a
discrete logarithm algorithm (see Rem?21gg) to solve this variant,
resulting in a random time O(L(p)) algorithm, which for large k& will
be faster.

It is an oversight that we did not mention the work of Schoof [Sch85]

on this problem in our earlier manuscript. Schoof proved that for
fixed a, there exists a deterministic algorithm with running time
polynomial in log p.

Many additional references are given in [LN83, page 182]. See also
Refl6 and [Hua85], [Evd89], [BSI1].

15 Polynomial roots modulo a prime

C15

015

Input peN, fe(Z/pl)]x].
Output a € Z with f(a) =0 (mod p) if p € Primes and such an a
exists.

Is C15 in P7?



Remlb5gs See Reml4gs. C15 is in R [Ber70], [CZ81], [Rab80b]. If the ex-
tended Riemann hypothesis is assumed and f has abelian Galois
group over the rationals, then the problem is in P [Hua85].

Reml5y, If f is fixed the problem appears to remain difficult; however, for
certain f progress has been made. When f is linear the problem is
trivial. When f is a quadratic there exists a deterministic polyno-
mial time algorithm due to Schoof [Sch85]. When f is a cyclotomic
polynomial, there exists a deterministic polynomial time algorithm

due to Pila [Pil90].
Refl5 [Sho90b], [BS91]. See also Refl6.

16 Factoring polynomials modulo a prime

C16 Input peN, fe(Z/pl)[x].
Output irreducible g1, ..., 9% € (Z/pZ)[x], and eq, ..., e € N such
that f = Hle g:t, if p € Primes.
016 Is C16 in P?

Rem16gs See Remlbgs. C16 is in R [Ber70], [CZ81], [Rab80b]. The corre-
sponding problem over @ is in P [LLL82].

Rem16y, Let n denote the degree of f. Rényai [R6n88] on ERH gives a
deterministic algorithm with running time (n”logp)?"). Evdoki-
mov [Evdar] on ERH gives a deterministic algorithm with running
time (n'°8" logp)o(l). In particular, both algorithms are polynomial
time if the degree is bounded. For the case f € Z[z], f irreducible and
Q[z]/(f) Abelian over @, Huang [Hua91] on ERH gives a determin-
istic polynomial time algorithm. For the case f € Z[z], f irreducible
and Q[z]/(f) Galois over @, Rényai on ERH gives a deterministic
polynomial time algorithm [Ron89]. For the case f € Z[x] solvable,
Evdokimov [Evd89] on ERH gives a deterministic polynomial time
algorithm.

Lenstra [Len90] has shown in many cases the assumption of ERH
above may be removed if irreducible polynomials of appropriate de-
gree can be found in deterministic polynomial time.

Buchmann and Shoup [BS91] proved, under ERH, that for all
n € N, there exists a deterministic algorithm for C16 with running
time vk times a polynomial in the input size, where k is the largest
prime dividing ¢, (p) and ¢, is the n-th cyclotomic polynomial.

Refl6 [Ber67], [Ber68], [Knu81, pages 420-441], [LN83, pages 147-185].

17 Irreducible polynomials

C17 Input d,peN.



o17
Rem1786

Reml 794

Refl7

Output irreducible f € (Z/pZ)[x] with degree(f) = d, if p €

Primes.
Is C17 in P?

C17isin R [Ber68], [Rab80b]. C17 is in P if the extended Riemann

hypothesis is true [AL86]. There is a ¢ € N and a deterministic
polynomial time algorithm which on input d,p with p € Primes
outputs an irreducible f € (Z/pZ)[x] of degree greater than cd/ logp
and less than or equal to d [AL86]. Since irreducible quadratics yield
quadratic nonresidues, 1t is clear that C12 <pC17, and also from
the results on C14 that C14 <pC17.

The result of [AL86] was discovered independently by Evdoki-
mov [Evd89]. Shoup [Sho90a] proved C17 <pC16, and gave a de-
terministic algorithm for finding an irreducible polynomial of degree

d over Z/pZ in time /p(d + log p)°H).
[Len92].

18 Recognition of a primitive root modulo a prime

C18

0O18a
018b
Rem1886

Rem1894

Input b,pe N.
Output  1if b is a generator of (Z/pZ)* and p € Primes,
0 if b is not a generator of (Z/pZ)* and p € Primes.

Is C18 in P?
Is C18 recognized in R?

It is known that C18 <pC5, since b is a primitive root modulo p if
and only if p fb and

Yq[lg € Primes & q | p— 1] = 6P~V/9 £ 1 (mod p)] .

A generalization of C18 where a third input ¢ € N is given and the
output is 1 if and only if b has order ¢ is also of interest.

We are unaware of any progress on this problem. We would like to
point out however that under ERH, C18 <pC21. To see why, recall
that under ERH, the least primitive root modulo p is < clog® p for
some constant ¢ [Sho90c]. Let g be a suspected primitive root modulo
p. We dovetail the following procedures:
process A forb=1,2,.. .,clog6 p: ask oracle for C21 to compute

an ¢ with ¢ = b (mod p). If the oracle returns an « keep it only
if you confirm that ¢” = b (mod p). If for all b an z is kept then
output “primitive root”.

process B forb=1,2,.. .,clog6 p: ask oracle for C21 to compute
z such that " = g (mod p). If the oracle returns an x keep it
only if you confirm that 4" = g (mod p). If for some b an z is
kept with ged(z,p— 1) > 1, then output “not a primitive root”.



19 Finding a primitive root modulo a prime

C19

019
Rem1986

Rem1994

Input p € N.
Output ¢ € N such that 1 < g <p—1 and g generates (Z/pZ)*, if
p € Primes.

Is C19 in P7?

The density of generators is sufficient that it is easily shown that
C19 <z C18. If the extended Riemann hypothesis is true, then the
least generator is small [Wan61], and C19 <pC18. An interesting
variant of C19 involves finding elements of (Z/pZ)* of desired order.
C19 has an obvious extension to an arbitrary finite field, or for that
matter to any cyclic group.

Shoup [Sho90¢] proved several results related to this problem.
Among other things, he proved under the assumption of the ex-
tended Riemann hypothesis that a primitive root for GF(p?) can
be constructed in deterministic polynomial time. Buchmann and
Shoup [BS91], on ERH, give a deterministic algorithm, which on in-
put an irreducible f of degree n over Z/pZ, outputs a generating set
for Z/pZ[x]/(f) in time (log p)°™). As a consequence, if the factor-
ization of p” — 1 is known, then under the assumption of ERH, a
primitive root of GF(p™) can be computed in deterministic polyno-
mial time.

20 Calculation of orders modulo a prime

C20

020
Rem2086

Rem2094

Input a,p € N.

Output k& = min{z | x € N,a® =1 (mod p)}, if p € Primes and
ged(a, p) = 1.

Is C20 in P?

The variant in which p 1s not required to be prime is random polyno-
mial time equivalent to C5 [Mil76]. A related question: is the problem
of factoring numbers of the form p—1, with p prime, polynomial time
reducible to C207 If C6 is in P, then the problem of factoring num-
bers of the form p — 1 with p prime 1s polynomial time equivalent to
factqring.

We are unaware of any progress on this problem.

21 Discrete logarithm modulo a prime

C21

Input g,b,p e N.
Output # € N with ¢" = b (mod p), if p € Primes and such an x
exists.



021
Rem2186

Rem2194

Ref21

Is C21 in P7?

If the prime factors of p — 1 are less than log® p for some constant
¢ > 0, then the problem is in P [PH78]. The fastest known algorithms
for solving C21 have running times of L(p) [COS86]. The resolution
of 021 would have important consequences in cryptography [EIG85],
[BM84]. There is an obvious generalization of C21 to an arbitrary
finite field. Bach [Bac84] has asked if the problem of factoring num-
bers of the form p — 1 , with p prime, is polynomial time reducible
to C21.

There has been considerable progress on this problem. Pomer-
ance [Pom86] proved that there exists a probabilistic algorithm to
compute discrete logarithms in GF(¢) with expected running time
of Lq[l/Q,\/i], for the case where ¢ is prime or ¢ is a power of 2.
Gordon [Gor93] presented an adaptation of the number field sieve
to computing discrete logarithms in Z/pZ, along with a heuristic ar-
gument to suggest an expected running time of L,y[1/3,¢] for some
positive constant c.

For discrete logarithms over general finite fields, progress has
also been made. At the time that we wrote our original paper,
we neglected to mention the work of Coppersmith [Cop84], who
had published an algorithm for GF(2") with a heuristic expected
running time bounded by Lax[1/3,¢] for some positive constant c.
Lovorn [Lov92] proved a running time of L,[1/2,¢] for some posi-
tive constant ¢ when ¢ = p” with logp < n%% Adleman and De-
Marrais [AD93a] gave an algorithm for arbitrary finite fields whose
heuristic expected running time is L,[1/2, ¢] for some positive con-
stant ¢. Adleman’s function field sieve [Adlar] gives a heuristic ex-
pected running time of L,[1/3, ¢] for some positive constant ¢ when
¢ = p* and logp < n9") where ¢ is any function such that
0 < g(n) < 0.98 and lim,, ., g(n) = 0.

Surveys on the discrete logarithm problem have been published:

[vO91], [McC90a], [O0d194].

Historically, advances in integer factoring algorithms have
brought corresponding advances in discrete logarithm algorithms.
The first author thinks it is an interesting research problem to es-
tablish whether reductions exist between C5 and C21. The second
author finds the evidence for the existence of such reductions to be
unconvineing.

In a very recent development Peter Shor [Shoar] has shown that
discrete logarithms can be computed in polynomial time on a “quan-
tum computer”. It is premature to judge the implications of this
development.

[0d185], [Sch93], [AD93b].



22 Discrete logarithm modulo a composite

c22

022a
022b
Rem2286

Rem2294

Input g,b,n e N.
Output  # € N with ¢* = b (mod n), if such an z exists.
Is C22 in P?

Is C5 <pC227

Clearly C21 <pC22. It is also known that C5 <z C22 [Bac84].
The resolution of 022 would have consequences in public-key cryp-
tography [McC88]. There is an obvious generalization to an arbitrary
group (see also C28).

We are unaware of any progress on this problem.

23 Calculation of ¢(n)

C23

023
Rem2386

Rem2394

Input n € N.

Output  ¢(n).

Is C5 <pC237

It is known that C5 <xC23 [Mil76], and it is obvious that C23

<pC5. C5 is known to be random polynomial time equivalent to the
problem of computing o(n), the sum of the positive integral divisors

of n [BMS84].

We are unaware of any progress on this problem. See Rem7g,.

24 Point on an elliptic curve

C24

024
Rem2486

Rem2494

Input a,b,peN.
Output  z,y € N with > = 23+az+b (mod p), if p € Primes and
pf4a® + 2702,

Is C24 in P7?

One can show that C24 is in R, since there is an easy argument
to show that C24 <z C14: choose random values of z, evaluate the
right hand side, and use a random algorithm for C14 to try to solve
for y. A theorem of Hasse implies that the probability of choosing a
successful # is approximately %

We are unaware of any progress on this problem. C24 has applica-
tions in cryptography [Kob87b, p. 162].

25 Binary quadratic congruences

C25

Input k,m,n €N.



025
Rem2586

Rem2594

Ref25

Output z,y € N with 22 — ky> = m (mod n), if n is odd and
ged(km,n) = 1.

Is C25 in P7?

C25 is in R [AEMS&T7]. If the extended Riemann hypothesis and
Heath-Brown’s conjecture on the least prime in an arithmetic pro-
gression are true, then C25 is in P [Sha84]. C25 arose from cryptog-
raphy [OSS84], [PS8T7]. In fact, C25 is only one example of a wide
range of questions concerning solutions of f = 0 (mod n), where f
is a multivariate polynomial with coefficients in Z/nZ. Such ques-
tions can vary greatly in their complexity as the form of the question
changes. We may ask questions about determining if a solution exists,
finding a solution, finding the least solution, or finding the number
of solutions. We may vary the form of the polynomial or the prop-
erties of n (e.g. prime, composite, squarefree). As an example of the
variation in complexity, even for the polynomial f(z) = z? — a we
have the following situation:

1. The problem of deciding from inputs a, p € N whether 2> —a =0
(mod p) has a solution when p is prime is in P (see Rem12gs.)

2. The problem of finding from inputs a, p € N a solution of z?—a = 0
(mod p) when p is prime is in R (see Rem14gg).

3. The problem of finding from inputs @, n € N a solution of 2% —a =
0 (mod n) is random equivalent to the problem of factoring n
(see Rem10gg).

4. The problem of finding from inputs a,n € N the least positive

integer solution of z? —a = 0 (mod n) is N'P-hard [MA7S].
We therefore view the problem of classifying all problems concern-
ing solutions of f = 0 (mod n) according to their complexity as an
important metaproblem.

We are unaware of any progress on this problem. There has been
marginal progress on the “metaproblem”. We regard this area as a
very fruitful one for future investigations.

[vaGKS93]. Some cryptographic problems related to the metaprob-
lem are mentioned in [McC90b]. That paper also contains pointers
to other unsolved number-theoretic problems relating to cryptology.

26 Key distribution

C26

026

Input g,p,a,beN.
Output ¢ €N, where ¢ = ¢*¥ (mod p), if p € Primes, g is a primi-
tive root modulo p, a = ¢* (mod p), and b = ¢¥ (mod p).

Is C21 <z C267



Rem2686

Rem2694

Ref26

The motivation for this problem comes from cryptography [DH76].
It is obvious that C26 <pC21. There is a generalization where p is
replaced by a composite n, and we ask only for an output ¢ when a
and b are powers of ¢. For this generalization is the problem equiva-
lent to C5 or C22 (see [Bac84], [McC88])?

Bert den Boer [dB90] proved that when all prime factors of ¢(p —
1) are small, the key distribution problem is as hard as computing
discrete logarithms.

[0d185], [E1GS5).

27 Construction of an elliptic curve group of a given

order

c27

027
Rem2786

Rem2794

Ref27

Input p,n €N.
Output  a,b € N with #F, ., = n, if p € Primes and such an a,b
exist.

Is C27 in P?

There is a polynomial time algorithm that, given p, a, and b with

p f4a® + 27b? computes #E, 45 [Sch85].

We are unaware of any progress on this problem, however it is known
that for some primes p, supersingular curves of order p + 1 can be
constructed efficiently (see [MOV94]).

[Kob87b], [Kob87a], [Sch85], [Sil86], [Kob91], [Kob91], [Kobsg].

28 Discrete logarithms in elliptic curve groups

C28

028
Rem2886

Rem2894

Input a, bap S Na Pa Q S Sp,a,b
Output n € N with P = n@Q, if p € Primes and such an n exists.

Is C28 in P7?

The presumed difficulty of this problem has been used as the basis
for a public key cryptosystem and digital signature scheme [Kob87b],
[Mil86]. Whereas for the discrete logarithm problem in the multiplica-
tive group modulo a prime there is a subexponential algorithm (see
Rem?21g6), no such algorithm is known to exist for C28. A related
problem is given a, b, and p to construct a minimal set of generators
for Ep ap.

Menezes, Okamoto, and Vanstone [MOV94] used Weil pairing to
prove that there exists a probabilistic reduction from C28 to the
problem of computing discrete logarithm in the multiplicative group
of a (perhaps high degree) extension of GF(¢). For supersingular
curves, this reduction can be carried out in random polynomial time,



with the result that a probabilistic subexponential algorithm is ob-
tained for C28 in this special case.

Koblitz [Kob90] has suggested cryptographic uses for the ratio-
nal subgroups of the Jacobian of a hyperelliptic curve over a finite
field. Adleman, Huang, and DeMarrais [AHDar] discovered a heuris-
tic subexponential probabilistic algorithm for the discrete logarithm
problem in these subgroups when the genus of the curve 1s large with
respect to the size of the finite field.

29 Shortest vector in a lattice

C29

029
Rem2986

Rem2994

Ref29

Input bi,...,b, €17
Output v € A with ||v]]s = min{||z]]2 | * € A,x # 0}, where
A=2by&...®Zb, if by,... b, span R".

Is C29 NP-hard?

The corresponding problems with norms || - [|e and || - ||1 are known

to be N"P-hard [Lag85], [vEB81]. See also Rem30gs.

It was an oversight that we did not mention the result of
Lenstra [Len83], who proved that if the dimension n is fixed, the
shortest vector in a lattice of dimension n can be found in polyno-
mial time.

[GLS88] and [Lov86] contain nice surveys of this and related topics.

30 Short vector in a lattice

Let c €N
C30

030
Rem3086

Rem3094
Ref30

Input bi,...,b, €17
Output v € A with ||v]]2 < n®min{||z||2 | # € A,z # 0}, where
A=2by&...®Zb, if by,..., b, span R".

Does there exist a ¢ € N for which C30 1s in P?

In [LLL82] it was shown that there is a polynomial time algorithm
that produces a vector v € A with

[[oll2 < 2°% min{||z|> | € A,x # 0}

and in [Sey87] it was shown that for any € > 0 there is a polynomial
time algorithm .4, that produces a vector v € A with

lollz < (14 &)"min{|lzlz [ # € A, # 0} .

A number of related problems in simultaneous diophantine approxi-
mation are discussed in [Lag85] and [Fru85].

We are unaware of any progress on this problem.

[LLS90], [GLS8E], [Lov86).



31 Galois group of a polynomial

C31

031
Rem3186

Rem3194

Input I € Q[x].
Output n = [K : @], where K is the splitting field of f.

Is C31 in P7?

n is the order of the Galois group associated with f. Polynomial
time algorithms exist for determining if n is a power of 2 or if the
Galois group is solvable [LM85]. Many other properties of the Galois
group can also be determined in polynomial time [Kan85].

Landau [Lan85] proved that the Galois group can be computed in
deterministic time O((#G + £)°) for some constant ¢ > 0, where £ is
the length of the input specification of f and K. Further results are
discussed in [Len92], but the problem remains open.

32 Class numbers

C32

032
Rem3286

Rem3294

Input d € N.

Output  h(—d), the order of the group of equivalence classes of bi-
nary quadratic forms with discriminant —d under compo-
sition.

Is C32 in P?

This is related to classical questions of Gauss [Gau86, art. 303].
It appears that the results of Shanks [Sha72], [Sha7l], Schnorr &
Lenstra [SL84], Seysen [Sey87], and Schoof [Sch82] establish that
C5 <RrC32, and that ERH implies C5 <pC32. It is remarked
in [BMS84] that it is not even known if C32 is in AN'P. The best
known algorithm for computing ~A(—d) is due to Shanks [Sha71]. The
question could also be stated in terms of the class number of orders

in the field Q(v/—d).

McCurley [McC89] proved under ERH that C32 is in A'P. Hafner
and McCurley [HM89b] proved under ERH that there exists a prob-
abilistic algorithm with expected running time Lq[1/2,v/2] that will
compute not only the class number h(—d), but also the structure
of the class group. These results were extended to the case of real
quadratic fields by Buchmann and Williams [BW89]. Thiel [Thiar]
has shown under ERH that verifying the class number belongs to
NP NcoNP.

The more general question of computing class numbers and class
groups of arbitrary algebraic number fields is also of interest. Accord-
ing to Lenstra [Len92], Buchmann and Lenstra proved that there is
a deterministic exponential time algorithm for computing the car-
dinality and structure of the class group. Buchmann [Buc90] gave
a probabilistic subexponential algorithm for a special case of this



Ref32

problem. Lenstra [Len92] outlines an approach to obtaining a prob-
abilistic subexponential algorithm in the general case.

Lenstra’s paper [Len92] is an important source for information
concerning algorithms and open problems concerning algebraic num-

ber fields.
[Gol85], [ShaT72], [Sch82], [Lag80b], [Buc90].

33 Solvability of binary quadratic diophantine equations

C33

033a
033b
Rem3386

Rem3394

Input a,b,c,d,e, feZ.
Output 1 if there exists z,y € Z with az? + bxy + cy? + dx +
ey + f = 0 and there does not exist a ¢ € Z with
b? — 4dac = ¢°,
0 otherwise.

Is C33 NP-hard?
Is C33 N'P-hard with respect to R?

It is known that C33 is recognized in NP [Lag79]. Without the
constraint that 4% — 4ac is not a square, the problem is known to be
NP-hard [MA78]. Certain variants of C33 are known to be A/P-hard
with respect to R [AMT77].

We are unaware of any progress on this problem.

34 Solvability of anti-Pellian equation

C34

034
Rem3486

Rem3494

Input d € N.
Output 1 if there exist z,y € Z with 22 — dy? = —1,
0 otherwise.

Is C34 in P7?

There exist choices of d for which the smallest solution of 22 —dy? =

—1 cannot be written down in polynomial space [Lag79]. It is known
that C34 is in NP [Lag80a]. If the factorization of d is provided
as part of the input, then the problem is recognized in R, and if
in addition we assume the extended Riemann hypothesis, then the
problem is in P [Lag80a].

We are unaware of any progress on this problem.

35 Greatest common divisors in parallel

C35

035

Input a,beN.
Output  ged(a, b).

Is C35 in NC?



Rem3586

Rem3594

Ref35

The best known results for computing greatest common divisors in

parallel are contained in [BK83], [CG] and [KMRS87]. One may ask
a similar question for the modular exponentiation problem: given
a,b,n € N, compute a’ (mod n). For a definition of N'C see [Coo85]
or [Coo8l1].

Polylog depth, subexponential size circuits for both integer GCD
and modular exponentiation have been obtained by Adleman and

Kompella [AK8S].
[KMRS4].

36 Integer multiplication in linear time

C36 Input a,beN.
Output  ab.

036 Does there exist an algorithm to solve C36 that uses only O(log (ab))
bit operations 7

Rem36gs The best known algorithm is due to Schonhage and Strassen and
uses O(log (ab) - loglog (ab) - logloglog (ab)) bit operations [SS71].

Rem36,5, We are unaware of any progress on this problem.

Ref36 [Knu81, pages 278-301]
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