
Open Problemsin Number Theoretic Complexity, IILeonard M. Adleman1 and Kevin S. McCurley21 Department of Computer Science, University of Southern California, Los Angeles,CA 90089-0782, USA, adleman@cs.usc.edu2 Organization 1423, MS 1110, Sandia National Laboratories, Albuquerque, NM87185, USA, mccurley@cs.sandia.govIntroduction.This conference (ANTS-1) marks the beginning of what we hope will be a longseries of international conferences on algorithmic number theory. It seems ap-propropriate, at the beginning, to state some of the central open problems inthe �eld. Accordingly, this paper contains a list of 36 open problems in number-theoretic complexity. We expect that none of these problems are easy; we aresure that many of them are hard.This list of problems re
ects our own interests and should not be viewed asde�nitive. As the �eld changes and becomes deeper, new problems will emergeand old problems will lose favor. Ideally there will be other `open problems'papers in future ANTS proceedings to help guide the �eld.It is likely that some of the problems presented here will remain open forthe forseeable future. However, it is possible in some cases to make progressby solving subproblems, or by establishing reductions between problems, or bysettling problems under the assumption of one or more well known hypotheses(e.g. the various extended Riemann hypotheses, NP 6= P;NP 6= coNP).For the sake of clarity we have often chosen to state a speci�c version of aproblem rather than a general one. For example, questions about the integersmodulo a prime often have natural generalizations to arbitrary �nite �elds, toarbitrary cyclic groups, or to problems with a composite modulus. Questionsabout the integers often have natural generalizations to the ring of integers inan algebraic number �eld, and questions about elliptic curves often generalizeto arbitrary curves or abelian varieties.The problems presented here arose from many di�erent places and times.To those whose research has generated these problems or has contributed toour present understanding of them but to whom inadequate acknowledgementis given here, we apologize.Our list of open problems is derived from an earlier `open problems' pa-per we wrote in 1986 [AM86]. When we wrote the �rst version of this paper,we feared that the problems presented were so di�cult that young researchersreading the list might be discouraged rather than inspired. Happily, despite thedi�culties, eight years has brought considerable progress on a number of theseproblems. Even for the two most central problems in the �eld, primality testing



and factoring, there has been impressive progress: the primes are now known tobe decidable in random polynomial time and the `number �eld sieve' has givenus the most powerful factoring algorithms yet. To emphasize the progress thathas been made, the statement of each problems is followed by the original 1986remarks and then the remarks which now seem appropriate.The authors would appreciate your comments, particularly with regard tofurther progress on these problems.De�nitions, notation, and conventions.In this paper:{ R denotes the set of real numbers,{ Z denotes the set of integers,{ N denotes the set of positive integers,{ Primes denotes the set of primes in N,{ Squarefrees denotes the set of squarefree numbers in N,{ Q denotes the set of rationals.{ ERH refers to the extended Riemann hypothesis.For a; b 2 Z,{ we write a j b if there exists k 2 Z with b = ka,{ we write a j6 b if there does not exist k 2 Z with b = ka,{ gcd(a; b) denotes the greatest common divisor of a and b,{ (ab ) denotes the Jacobi symbol if b is odd and gcd(a; b) = 1,{ ha; bi denotes the ordered pair.For n 2 N,{ Z=nZ denotes the ring of integers modulo n,{ (Z=nZ)� denotes the corresponding multiplicative group,{ �(n) denotes the number of elements in (Z=nZ)�,{ L(n) represents any function of the formexp((1 + o(1))(logn log logn)1=2) :{ For n 2 N, �; � 2 R, �; � > 0, Ln[�; �] represents any function of the formexp((� + o(1))((logn)�(log logn)1��)) :If R is a ring, then we write R[x] for the ring of polynomials with coe�cientsin R. The set of �nite strings composed of the letters a and b is denoted fa; bg�.For n, a, b 2 N with gcd(n; 4a3 + 27b2) = 1, letSn;a;b = fhx; yi j x; y 2 Z=nZ & y2 � x3 + ax+ b (mod n)g [ f0g :When p 2 Primes, Sp;a;b is well known to be endowed with a group structure.We denote this group by Ep;a;b and use #Ep;a;b for the number of elements ofthis group. More generally, if S is a set, we write #S for the cardinality of S.



In stating open problems we have decided to continue the ad hoc notationfrom [AM86]. For example, we label the �rst computational problem as C1, thecorresponding open problem as O1 (or O1a and O1b if there are two), andthe original 1986 remarks concerning C1 and O1 we label as Rem186. Anynew remarks we label as Rem194. Any additional references are given in Ref1.Computational problemsC2 and C6 are stated in terms of a parameter S whichis an arbitrary subset of N. Computational problem C30 is stated in terms of aparameter c 2 N.While it seems inappropriate to spend a great deal of time giving rigor-ous de�nitions of the complexity-theoretic notions used in this paper, it seemsworthwhile to provide some guidance. More information on these notions maybe found in [Gil77], [AHU74], [AM77], and [GJ79]. We assume the concept of apolynomial time computable function is understood. A computational problemC is thought of as a set of pairs hx; Sxi, where x is an input for which an outputis desired and Sx is the set of possible `correct' outputs on input x. For exampleC1 = fhn; Sni j n 2 Primes ) Sn = f1g & n 62 Primes ) Sn = f0ggC17 = fhhp; di; Shp;dii j d 2 N & p 2 Primes &Shp;di = ff j f 2 (Z=pZ)[x] j deg(f) = d & f irreduciblegg:C19 = fhp; Spi j p 2 Primes & Sp = fg j g 2 N; 1 � g � p� 1 &g generates (Z=pZ)�ggC28 = fhha; b; p; P;Qi; Sha;b;p;P;Qii j a; b 2 N; p 2 Primes; P;Q 2 Ep;a;b;(9n 2 N)[nP = Q] & Sha;b;p;P;Qi = fn j n 2 N & nP = QggDe�nition 1 If C = fhx; Sxig is a computational problem then we let �(C) =fx j hx; Sxi 2 Cg.We use jxj to denote the length of an object x, where we hope that themeaning of `length' will be clear from the context.De�nition 2 C is in P i� there exists a polynomial time computable functionf such that (8x 2 �(C))[f(x) 2 Sx].Thus for example, in O18 below we ask if C18 is in P. Any deterministicalgorithmwhich runs in polynomial time with input-output behaviour consistentwith that described in C18 would provide an a�rmative answer to O18. Inparticular how that algorithm behaves on an input p 62 Primes is irrelevant.De�nition 3 C is in R i� there exists a c in N and a polynomial time com-putable function f such thati. (8x 2 �(C))(8jrj � jxjc)[f(x; r) 2 Sx or f(x; r) = "?"]ii. (8x 2 �(C))�#frjjrj�jxjc & f(x;r)2Sxg#frjjrj�jxjcg � 12�De�nition 4 C is in NP i� there exists a c in N and a polynomial time com-putable function f such that



i. (8x 2 �(C))(8jrj � jxjc)[f(x; r) 2 Sx or f(x; r) = "?"]:ii. (8x 2 �(C))(9y 2 Sx)(9jrj � jxjc)[f(x; r) = y]:De�nition 5 C is recognized in R i�i. (8x 2 �(C))[Sx = f1g ) (8jrj � jxjc)[f(x; r) = f1g or f(x; r) = "?"]]ii. (8x 2 �(C))�Sx = f1g ) #frjjrj�jxjc & f(x;r)=1g#frjjrj�jxjcg � 12�iii. (8x 2 �(C))[Sx 6= f1g ) (8jrj � jxjc)[f(x; r) = "?"]]:De�nition 6 C is recognized in NP i� there exists a c in N and a polynomialtime computable function f such thati. (8x 2 �(C))[Sx = f1g ) (8jrj � jxjc)[f(x; r) = f1g or f(x; r) = "?"]]ii. (8x 2 �(C))[Sx = f1g ) (9jrj � jxjc)[f(x; r) = 1]]iii. (8x 2 �(C))[Sx 6= f1g ) (8jrj � jxjc)[f(x; r) = "?"]]:For notions involving the reduction of one problem to another we will be evenless formal.De�nition 7 f is a deterministic solution to C i� (8x 2 �(C))[f(x) 2 Sx].Let D(C) = ff j f is a deterministic solution to Cg. For all deterministicalgorithms A and functions f and g, we say that A translates f into g i� whengiven a subroutine for f , A computes g in polynomial time (where the time usedin the subroutine for f is not counted). We remark that calls to the subroutinemay be `dovetailed' but the algorithmA cannot know if the absence of a responseon a particular call means that no response is forthcoming or that a responsehas just not arrived yet. See C18 for an example.De�nition 8 C1 �PC2 i� there exists a deterministic algorithm A such thatfor all f 2 D(C2), there exists a g 2 D(C1) such that A translates f into g inpolynomial time.De�nition 9 C is NP-hard with respect to P i� for all C0, (C0 is in NP) )(C0 �P C).We will follow the convention of using NP-hard to denote NP-hard withrespect to P.De�nition 10 f is a random solution to C i� there exists a c in N such thati. (8x 2 �(C))(8jrj � jxjc)[f(x; r) 2 Sx or f(x; r) = "?"]ii. (8x 2 �(C))�#frjjrj�jxjc & f(x;r)2Sxg#frjjrj�jxjcg � 12�Let R(C) = ff j f is a random solution to Cg.De�nition 11 C1 �RC2 i� there exists a deterministic algorithm A such thatfor all f 2 D(C2), there exists a g 2 R(C1) such that A translates f into g inpolynomial time.De�nition 12 C is NP-hard with respect to R i� for all C0,(C0 is in NP)) C0 �R C :



1 Primality testingC1 Input n 2 NOutput 1 if n 2 Primes,0 otherwise.O1a Is C1 in P?O1b Is C1 recognized in R?Rem186 A classical problem. The following quote appears in art. 329 of Gauss'Disquisitiones Arithmetic�:(translation from [Knu81, page 398])The problem of distinguishing prime numbers from com-posites, and of resolving composite numbers into their primefactors, is one of the most important and useful in all of arith-metic. . . .The dignity of science seems to demand that everyaid to the solution of such an elegant and celebrated problembe zealously cultivated.It is known that the set of composites is recognized inR [SS77]. If theextended Riemann hypothesis for Dirichlet L-functions is true, thenC1 is in P [Mil76]. There exists a constant c 2 N and a deterministicalgorithm forC1 with running timeO((logn)c log log logn) [APR83]. IfCram�er's conjecture on the gaps between consecutive primes is true,then C1 is recognized in R [GK86]. C1 is recognized in NP [Pra75].F�urer [F�ur85] has shown that the problem of distinguishing betweenproducts of two primes that are 6� 1 (mod 24) and primes that are6� 1 (mod 24) is in R.Rem194 Problem O1b has been settled in the a�rmative by Adleman andHuang [AH92]. As a result of the work of H. Maier on gaps betweenconsecutive primes, the exact formulation of Cram�er's conjecturehas now been called into question, however the conjecture requiredfor [GK86] is una�ected.Ref1 [Guy77], [Knu81], [Len81], [CL84], [Pom81], [Rab80a], [Rie85b],[Rie85a], [Wil78].2 Testing an in�nite set of primesLet S � N.C2 Input n 2 N.Output 1 if n 2 S,0 otherwise.O2 Does there exist an in�nite set S � Primes such that C2 is in P?Rem286 In light of Rem186 it is remarkable that O2 remains unsettled. Therelated problem of the existence of an in�nite set S � Primes suchthat C2 is recognized in R is addressed in [GK86].



Rem294 Problem O2 been settled in the a�rmative by Pintz, Steiger, andSzemer�edi [PSS89]. One can now ask what the densest such set S is.In this direction, Konyagin and Pomerance [KP94] have proved thatfor every � > 0 there exists an algorithm that will prove primality indeterministic polynomial time for at least x1�� primes less than x.Ref2 [PSS88].3 Prime greater than a given boundC3 Input n 2 N.Output p 2 Primes with p > n.O3 Is C3 in P?Rem386 If Cram�er's conjecture (see [Cra36]) on the gaps between consecutiveprimes is true, then C3 �PC1. Since the density of primes betweenn and 2n is approximately 1= logn, it follows that C3 �RC1. Thisproblem has cryptographic signi�cance [DH76], [RSA78].Rem394 As we mentioned in Rem194, the exact formulation of Cram�er's con-jecture has now been called into question. It is still probably true thatfor every constant c > 2, there is a constant d > 0 such that thereis a prime between x and x+ d(logx)c. This hypothesis still impliesthat C3 �PC1.Note, since C1 is recognized in R (see Rem194), it follows thatC3 is in R. If anything, the importance of this problem has grownsince 1986, since there have been numerous cryptosystems proposedsince then that require the ability to construct large primes, some-times with special properties. See [Pom90].Ref3 [Bac88], [Pla79]. See also Ref1.4 Prime in an arithmetic progressionC4 Input a; n 2 N.Output p 2Primes with p � a (mod n) if gcd(a; n) = 1.O4 Is C4 in P?Rem486 It was conjectured by Heath-Brown [HB78] that if gcd(a; n) = 1,then the least prime p � a (mod n) is O(n log2 n), and this wouldimply that C4 �PC1. If there are no Siegel zeroes, then the densityof small primes in the arithmetic progression a modulo n is su�-cient to conclude that C4 �RC1 [Bom74]. Without hypothesis, it isknown [EH71] that Heath-Brown's conjecture is true for almost allpairs a; n with gcd(a; n) = 1. Hence if C1 is in P, then one can solveC4 in deterministic polynomial time for almost all inputs. See alsoRem2086.



Rem494 Since C1 is now known to be in R (see Rem194), it follows that C4is also in R. C4 also has cryptographic applications [Sch91], [BM92],[oC91].Ref4 [AM77]5 Integer factoringC5 Input n 2 N.Output p1; p2; . . . ; pk 2 Primes and e1; e2; . . . ; ek 2 N such thatn = kYi=1peii if n > 1 :O5a Is C5 in P?O5b Is C5 in R?Rem586 Another classical problem, mentioned by Gauss in his DisquisitionesArithmetic� (see Rem186). There are a large number of randomalgorithms for C5 whose running time is believed to be L(n)c forvarying constants c � 1 [Pom82], [Len87], [SL84]. The only randomalgorithm of this class whose running time has actually been provedto be L(n)c is due to Dixon [Dix81]. Dixon's algorithm is unfortu-nately not practical. A determination of the complexity of C5 wouldhave signi�cance in cryptography [RSA78].Rem594 A great deal of progress has been made in the area of factoring inte-gers. Lenstra and Pomerance [LP92] proved the existence of a prob-abilistic algorithm for factoring integers with an expected runningtime of Ln[1=2; 1], improving on Dixon's bound. Another interestingdevelopment was the discovery of the number �eld sieve. A heuristicanalysis suggests that there exists a constant c > 0 such that thenumber �eld sieve factors an integer n in expected time Ln[1=3; c].Contributions to the number �eld sieve were made by a number ofresearchers, including (but not limited to) Adleman, Buhler, Copper-smith, Couveignes, A.K. Lenstra, H.W. Lenstra, Manasse, Odlyzko,Pollard, Pomerance and Schroeppel. See [Adl91], [Cop90], [Cou93],[LL93], and the references cited therein.In a very recent development Peter Shor [Shoar] has shown thatfactoring can be done in polynomial time on a \quantum computer".It is premature to judge the implications of this development.Ref5 [Dix81], [Guy77], [Knu81], [Len87], [MB75], [Pom82], [Rie85b],[Rie85a], [Sha71], [Sch82], [SL84], [Wil84].



6 Factoring a set of positive densityLet S � N.C6 Input n 2 N.Output p1; p2; . . . ; pk 2 Primes and e1; e2; . . . ; ek 2 N such thatn = kYi=1 peii if n > 1 and n 2 S :O6 Does there exist a set S such thatlim infx!1 #fn j n � x & n 2 Sgx > 0and C6(S) is in P?Rem686 Assuming the necessary hypotheses for the running time analysis forLenstra's elliptic curve factoring method (see [Len87]), it is probablypossible to prove that a set S satisfyinglim infx!1 #fn j n � x & n 2 Sgx log log2 xlog x log log log x > 0 (1)can be factored in random polynomial time. This set will still havedensity zero, however. A related question is whether factoring a setof positive density is random polynomial time equivalent to C5. Theset Squarefrees has density 6=�2 however it is not even clear that C5�RC6(Squarefrees).Rem694 Let A denote a deterministic algorithm for factoring integers, andde�ne F (x; t; A) to be the number of integers n with 1 � n � x suchthat A will factor n in at most t bit operations. O6 can then bestated as asking whether there exists an algorithm A and a constantc > 0 such that lim infx!1 F (x; logc x;A)x > 0 :This problem remains open, but Hafner and McCurley [HM89a] andlater Sorenson [Sor90] proved several results about the behaviour ofF for various factoring algorithms (including a generalization to coverprobabilistic algorithms). The estimate (1) has still not been proved,and the best result known [HM89a] in this direction isF (x; logc x;A) >>c x(log logx) 65��logx ;using a probabilistic algorithm. In this formulation, one may alsoask for the slowest growing function t(x) such that there exists analgorithm A with lim infx!1 F (x; t(x); A)x > 0 :



7 Squarefree partC7 Input n 2 N.Output r; s 2 N with n = r2s and s 2 Squarefrees.O7a Is C7 in P?O7b Is C5 �RC7 ?Rem786 See Rem1386. Clearly C7 �PC5. The analogous question for f 2Q[x] or (Z=pZ)[x] is solvable in polynomial time by performing cal-culations of the form gcd(f; f 0), where f 0 is the (formal) derivativeof f . (see [Knu81, page 421]).Rem794 Landau [Lan88] proved thatC7 �PC23. According to [Len92], Chis-tov [Chi89] has shown that C7 is polynomial time equivalent to de-termining the ring of integers in a number �eld.8 SquarefreenessC8 Input n 2 N.Output 1 if n 2 Squarefrees,0 otherwise.O8 Is C8 in P?Rem886 A generalization of this is, given n and k 2 N, to determine if n isdivisible by the kth power of a prime. Another generalization is tooutput � = �(n), where�(n) = 8<: 1 if n = 1;0 if there exists a p 2 Primes with p2 j n;(�1)k if n is a product of k distinct primes.Shallit and Shamir have shown that this generalization is reducibleto the problem of computing the function d mentioned in Rem986.Rem894 We are unaware of any progress on this problem.9 Number of distinct prime factorsC9 Input n 2 N:Output !(n) = #fp j p 2 Primes & p j ng.O9 Is C9 in P?Rem986 Clearly C1 �PC9, since we can easily check to see if n is a perfectpower. An interesting variant of C9 is to output 
(n) = e1+. . .+ek;where n = Qki=1 peii is the prime factorization of n. Another variantis to output d(n) = #fk j k 2 N & k j ng, and still another variant isto output the multiset fe1; . . . ; ekg. Shallit and Shamir [SS85] have



proved that the last two variants are polynomial time equivalent toeach other. As a consequence we have that C9 is polynomial timereducible to the problem of computing the function d(n) mentionedabove.Rem994 We are unaware of any progress on this problem. It is remarkablethat one can decide if !(n) = 1 in random polynomial time [AH92],but there are no other partial results known on this problem.10 Roots modulo a compositeC10 Input e; a; n 2 N.Output x 2 N such that xe � a (mod n), if gcd(e; �(n)) = 1 andgcd(a; n) = 1.O10 Is C5 �RC10?Rem1086 When the restriction that gcd(e; �(n)) = 1 is dropped, it is knownthat C5 �RC10 [Rab79]. A resolution of this problem would haveimportant consequences in public-key cryptography [RSA78]. It isknown that C10 �PC23.Rem1094 We are unaware of any progress on this problem.11 Quadratic residuosity modulo a compositeC11 Input a; n 2 N.Output 1 if there exists an x 2 N such that x2 � a (mod n) andgcd(a; n) = 1,0 otherwise.O11a Is C11 in P?O11b Is C5 �RC11?Rem1186 It is easy to show that C11 �PC5. There is an obvious generaliza-tion where the exponent 2 is replaced by another exponent k that iseither �xed for the problem or supplied as an input. The presumeddi�culty of C11 has been used as a basis for cryptographic systems[GM82], [GM84], [Yao82], [BBS86]. C11 is related to C9 since theproportion of residues modulo n that are quadratic residues is 2�!(n),where !(n) is the number of distinct prime divisors of n. Thereforegiven an algorithm for C11, one can obtain a con�dence interval for!(n) by checking random values.Rem1194 We are unaware of any progress on this problem.Ref11 [AM82].



12 Quadratic non-residue modulo a primeC12 Input p 2 N:Output b 2 N such that there does not exist c 2 N with c2 � b(mod p), if p 2 Primes.O12 Is C12 in P?Rem1286 C12 is easily seen to be in R, since polynomial time algorithmsfor the corresponding problem of distinguishing quadratic residuesfrom nonresidues can be based on the Jacobi symbol and the law ofquadratic reciprocity, or else on Euler's criterion:p 2 Primes and p j6 a) a p�12 � (ap ) (mod p) :Curiously, Gauss was aware of Euler's criterion, but was appar-ently unimpressed by its e�ciency [Gau86, art. 106]:Although it is of almost no practical use, it is worthyof mention because of its simplicity and generality . . . Butas soon as the numbers we are examining are even moder-ately large this criterion is practically useless because of theamount of calculation involved.Under the extended Riemann hypothesis, C12 is in P [Mil76]. Itis also known that the least quadratic nonresidue is almost alwayssmall [Erd61], so C12 can be solved in deterministic polynomial timefor almost all inputs.Rem1294 On the problem of calculating kth power non-residues in GF(pn),the following is known. On ERH, the algorithm of Huang [Hua85],generalized by Evdokimov [Evd89], constructs a kth power non-residue, in GF(pn) in deterministic time (kn log p)O(1). Buchmannand Shoup [BS91], on ERH, construct a kth power non-residue inGF(pn) in deterministic time (logp)O(n). Bach [Bac90], on ERH, hasgiven explicit bounds for estimations of the least kth power non-residue. See also Rem1994.Ref12 [Ank52], [Bac85].13 Quadratic signatureC13 Input � 2 f�1; 1g�.Output The least p 2 Primes such that for all i with 1 � i �j�j; (pip ) = �i, where j�j, the length of �, is the number ofsymbols in �, pi is the ith prime, and �i is the ith symbolof �.O13 Is C13 in P?



Rem1386 If n has the form m2q with q an odd prime and m odd, then for anya with gcd(a; n) = 1 we have ( an ) = (aq ) . It follows that if C13 is inP, then n could be partially factored since, assuming the extendedRiemann hypothesis, q can be determined by a signature of lengthO(log2 n) [Mil76], [Ank52]. The notion of quadratic signature can begeneralized; see [AM82].Rem1394 The concept of quadratic signature has found application in thenumber �eld sieve [Adl91].Ref13 [Ank52], [Bac85], [Bac90].14 Square roots modulo a primeC14 Input a; p 2 N.Output x 2 N with x2 � a (mod p) if p 2 Primes and such an xexists.O14 Is C14 in P?Rem1486 Among the researchers who have presented algorithms for C14are [Gau86, art. 319-322], [Ton91], [Leh69], [Sha72], [Ber67],[Rab80b], [AMM77]. It is now known that C14 is in R. It is alsoknown thatC14 �PC12 and that on the extended Riemann hypoth-esis, C14 is in P. There is a natural generalization of C14 where theexponent 2 is replaced by a �xed k. Another generalization has k aspart of the input. For this version there is a random timeO((k logp)c)algorithm based on known algorithms for C15. One can also use adiscrete logarithm algorithm (see Rem2186) to solve this variant,resulting in a random time O(L(p)) algorithm, which for large k willbe faster.Rem1494 It is an oversight that we did not mention the work of Schoof [Sch85]on this problem in our earlier manuscript. Schoof proved that for�xed a, there exists a deterministic algorithm with running timepolynomial in logp.Ref14 Many additional references are given in [LN83, page 182]. See alsoRef16 and [Hua85], [Evd89], [BS91].15 Polynomial roots modulo a primeC15 Input p 2 N, f 2 (Z=pZ)[x].Output a 2 Z with f(a) � 0 (mod p) if p 2 Primes and such an aexists.O15 Is C15 in P?



Rem1586 See Rem1486. C15 is in R [Ber70], [CZ81], [Rab80b]. If the ex-tended Riemann hypothesis is assumed and f has abelian Galoisgroup over the rationals, then the problem is in P [Hua85].Rem1594 If f is �xed the problem appears to remain di�cult; however, forcertain f progress has been made. When f is linear the problem istrivial. When f is a quadratic there exists a deterministic polyno-mial time algorithm due to Schoof [Sch85]. When f is a cyclotomicpolynomial, there exists a deterministic polynomial time algorithmdue to Pila [Pil90].Ref15 [Sho90b], [BS91]. See also Ref16.16 Factoring polynomials modulo a primeC16 Input p 2 N; f 2 (Z=pZ)[x].Output irreducible g1; . . . ; gk 2 (Z=pZ)[x], and e1; . . . ; ek 2 N suchthat f = Qki=1 geii , if p 2 Primes.O16 Is C16 in P?Rem1686 See Rem1586. C16 is in R [Ber70], [CZ81], [Rab80b]. The corre-sponding problem over Q is in P [LLL82].Rem1694 Let n denote the degree of f . R�onyai [R�on88] on ERH gives adeterministic algorithm with running time (nn log p)O(1). Evdoki-mov [Evdar] on ERH gives a deterministic algorithm with runningtime (nlogn logp)O(1). In particular, both algorithms are polynomialtime if the degree is bounded. For the case f 2 Z[x], f irreducible andQ[x]=(f) Abelian over Q, Huang [Hua91] on ERH gives a determin-istic polynomial time algorithm. For the case f 2 Z[x], f irreducibleand Q[x]=(f) Galois over Q, R�onyai on ERH gives a deterministicpolynomial time algorithm [R�on89]. For the case f 2 Z[x] solvable,Evdokimov [Evd89] on ERH gives a deterministic polynomial timealgorithm.Lenstra [Len90] has shown in many cases the assumption of ERHabove may be removed if irreducible polynomials of appropriate de-gree can be found in deterministic polynomial time.Buchmann and Shoup [BS91] proved, under ERH, that for alln 2 N, there exists a deterministic algorithm for C16 with runningtime pk times a polynomial in the input size, where k is the largestprime dividing �n(p) and �n is the n-th cyclotomic polynomial.Ref16 [Ber67], [Ber68], [Knu81, pages 420{441], [LN83, pages 147-185].17 Irreducible polynomialsC17 Input d; p 2 N.



Output irreducible f 2 (Z=pZ)[x] with degree(f) = d, if p 2Primes.O17 Is C17 in P?Rem1786 C17 is inR [Ber68], [Rab80b].C17 is in P if the extended Riemannhypothesis is true [AL86]. There is a c 2 N and a deterministicpolynomial time algorithm which on input d; p with p 2 Primesoutputs an irreducible f 2 (Z=pZ)[x] of degree greater than cd= logpand less than or equal to d [AL86]. Since irreducible quadratics yieldquadratic nonresidues, it is clear that C12 �PC17, and also fromthe results on C14 that C14 �PC17.Rem1794 The result of [AL86] was discovered independently by Evdoki-mov [Evd89]. Shoup [Sho90a] proved C17 �PC16, and gave a de-terministic algorithm for �nding an irreducible polynomial of degreed over Z=pZ in time pp(d+ log p)O(1).Ref17 [Len92].18 Recognition of a primitive root modulo a primeC18 Input b; p 2 N.Output 1 if b is a generator of (Z=pZ)� and p 2 Primes,0 if b is not a generator of (Z=pZ)� and p 2 Primes.O18a Is C18 in P?O18b Is C18 recognized in R?Rem1886 It is known that C18 �PC5, since b is a primitive root modulo p ifand only if p j6 b and8q[[q 2 Primes & q j p� 1]) b(p�1)=q 6� 1 (mod p)] :A generalization of C18 where a third input c 2 N is given and theoutput is 1 if and only if b has order c is also of interest.Rem1894 We are unaware of any progress on this problem. We would like topoint out however that under ERH, C18 �PC21. To see why, recallthat under ERH, the least primitive root modulo p is � c log6 p forsome constant c [Sho90c]. Let g be a suspected primitive root modulop. We dovetail the following procedures:process A for b = 1; 2; . . . ; c log6 p: ask oracle for C21 to computean x with gx � b (mod p). If the oracle returns an x keep it onlyif you con�rm that gx � b (mod p). If for all b an x is kept thenoutput \primitive root".process B for b = 1; 2; . . . ; c log6 p: ask oracle for C21 to computex such that bx � g (mod p). If the oracle returns an x keep itonly if you con�rm that bx � g (mod p). If for some b an x iskept with gcd(x; p� 1) > 1, then output \not a primitive root".



19 Finding a primitive root modulo a primeC19 Input p 2 N.Output g 2 N such that 1 � g � p� 1 and g generates (Z=pZ)�, ifp 2 Primes.O19 Is C19 in P?Rem1986 The density of generators is su�cient that it is easily shown thatC19 �RC18. If the extended Riemann hypothesis is true, then theleast generator is small [Wan61], and C19 �PC18. An interestingvariant of C19 involves �nding elements of (Z=pZ)� of desired order.C19 has an obvious extension to an arbitrary �nite �eld, or for thatmatter to any cyclic group.Rem1994 Shoup [Sho90c] proved several results related to this problem.Among other things, he proved under the assumption of the ex-tended Riemann hypothesis that a primitive root for GF(p2) canbe constructed in deterministic polynomial time. Buchmann andShoup [BS91], on ERH, give a deterministic algorithm, which on in-put an irreducible f of degree n over Z=pZ, outputs a generating setfor Z=pZ[x]=(f) in time (log p)O(n). As a consequence, if the factor-ization of pn � 1 is known, then under the assumption of ERH, aprimitive root of GF(pn) can be computed in deterministic polyno-mial time.20 Calculation of orders modulo a primeC20 Input a; p 2 N.Output k = minfx j x 2 N; ax � 1 (mod p)g, if p 2 Primes andgcd(a; p) = 1.O20 Is C20 in P?Rem2086 The variant in which p is not required to be prime is random polyno-mial time equivalent toC5 [Mil76]. A related question: is the problemof factoring numbers of the form p�1, with p prime, polynomial timereducible to C20? If C6 is in P, then the problem of factoring num-bers of the form p� 1 with p prime is polynomial time equivalent to�factoring.Rem2094 We are unaware of any progress on this problem.21 Discrete logarithm modulo a primeC21 Input g; b; p 2 N.Output x 2 N with gx � b (mod p), if p 2 Primes and such an xexists.



O21 Is C21 in P?Rem2186 If the prime factors of p � 1 are less than logc p for some constantc > 0, then the problem is in P [PH78]. The fastest known algorithmsfor solving C21 have running times of L(p) [COS86]. The resolutionofO21 would have important consequences in cryptography [ElG85],[BM84]. There is an obvious generalization of C21 to an arbitrary�nite �eld. Bach [Bac84] has asked if the problem of factoring num-bers of the form p � 1 , with p prime, is polynomial time reducibleto C21.Rem2194 There has been considerable progress on this problem. Pomer-ance [Pom86] proved that there exists a probabilistic algorithm tocompute discrete logarithms in GF(q) with expected running timeof Lq [1=2;p2], for the case where q is prime or q is a power of 2.Gordon [Gor93] presented an adaptation of the number �eld sieveto computing discrete logarithms in Z=pZ, along with a heuristic ar-gument to suggest an expected running time of Lp[1=3; c] for somepositive constant c.For discrete logarithms over general �nite �elds, progress hasalso been made. At the time that we wrote our original paper,we neglected to mention the work of Coppersmith [Cop84], whohad published an algorithm for GF(2n) with a heuristic expectedrunning time bounded by L2n [1=3; c] for some positive constant c.Lovorn [Lov92] proved a running time of Lq[1=2; c] for some posi-tive constant c when q = pn with log p � n0:98. Adleman and De-Marrais [AD93a] gave an algorithm for arbitrary �nite �elds whoseheuristic expected running time is Lq [1=2; c] for some positive con-stant c. Adleman's function �eld sieve [Adlar] gives a heuristic ex-pected running time of Lq[1=3; c] for some positive constant c whenq = pn and logp � ng(n), where g is any function such that0 < g(n) < 0:98 and limn!1 g(n) = 0.Surveys on the discrete logarithm problem have been published:[vO91], [McC90a], [Odl94].Historically, advances in integer factoring algorithms havebrought corresponding advances in discrete logarithm algorithms.The �rst author thinks it is an interesting research problem to es-tablish whether reductions exist between C5 and C21. The secondauthor �nds the evidence for the existence of such reductions to beunconvincing.In a very recent development Peter Shor [Shoar] has shown thatdiscrete logarithms can be computed in polynomial time on a \quan-tum computer". It is premature to judge the implications of thisdevelopment.Ref21 [Odl85], [Sch93], [AD93b].



22 Discrete logarithm modulo a compositeC22 Input g; b; n 2 N.Output x 2 N with gx � b (mod n), if such an x exists.O22a Is C22 in P?O22b Is C5 �PC22?Rem2286 Clearly C21 �PC22. It is also known that C5 �RC22 [Bac84].The resolution of O22 would have consequences in public-key cryp-tography [McC88]. There is an obvious generalization to an arbitrarygroup (see also C28).Rem2294 We are unaware of any progress on this problem.23 Calculation of �(n)C23 Input n 2 N.Output �(n).O23 Is C5 �PC23?Rem2386 It is known that C5 �RC23 [Mil76], and it is obvious that C23�PC5.C5 is known to be random polynomial time equivalent to theproblem of computing �(n), the sum of the positive integral divisorsof n [BMS84].Rem2394 We are unaware of any progress on this problem. See Rem794.24 Point on an elliptic curveC24 Input a; b; p 2 N.Output x; y 2 N with y2 � x3+ax+b (mod p), if p 2 Primes andp j6 4a3 + 27b2.O24 Is C24 in P?Rem2486 One can show that C24 is in R, since there is an easy argumentto show that C24 �RC14: choose random values of x, evaluate theright hand side, and use a random algorithm for C14 to try to solvefor y. A theorem of Hasse implies that the probability of choosing asuccessful x is approximately 12 .Rem2494 We are unaware of any progress on this problem. C24 has applica-tions in cryptography [Kob87b, p. 162].25 Binary quadratic congruencesC25 Input k;m; n 2 N.



Output x; y 2 N with x2 � ky2 � m (mod n), if n is odd andgcd(km; n) = 1.O25 Is C25 in P?Rem2586 C25 is in R [AEM87]. If the extended Riemann hypothesis andHeath-Brown's conjecture on the least prime in an arithmetic pro-gression are true, then C25 is in P [Sha84]. C25 arose from cryptog-raphy [OSS84], [PS87]. In fact, C25 is only one example of a widerange of questions concerning solutions of f � 0 (mod n), where fis a multivariate polynomial with coe�cients in Z=nZ. Such ques-tions can vary greatly in their complexity as the form of the questionchanges. We may ask questions about determining if a solution exists,�nding a solution, �nding the least solution, or �nding the numberof solutions. We may vary the form of the polynomial or the prop-erties of n (e.g. prime, composite, squarefree). As an example of thevariation in complexity, even for the polynomial f(x) = x2 � a wehave the following situation:1. The problem of deciding from inputs a; p 2 N whether x2� a � 0(mod p) has a solution when p is prime is in P (see Rem1286.)2. The problem of �nding from inputs a; p 2 N a solution of x2�a � 0(mod p) when p is prime is in R (see Rem1486).3. The problem of �nding from inputs a; n 2 N a solution of x2�a �0 (mod n) is random equivalent to the problem of factoring n(see Rem1086).4. The problem of �nding from inputs a; n 2 N the least positiveinteger solution of x2 � a � 0 (mod n) is NP-hard [MA78].We therefore view the problem of classifying all problems concern-ing solutions of f � 0 (mod n) according to their complexity as animportant metaproblem.Rem2594 We are unaware of any progress on this problem. There has beenmarginal progress on the \metaproblem". We regard this area as avery fruitful one for future investigations.Ref25 [vzGKS93]. Some cryptographic problems related to the metaprob-lem are mentioned in [McC90b]. That paper also contains pointersto other unsolved number-theoretic problems relating to cryptology.26 Key distributionC26 Input g; p; a; b 2 N.Output c 2 N, where c � gxy (mod p), if p 2 Primes, g is a primi-tive root modulo p, a � gx (mod p), and b � gy (mod p).O26 Is C21 �RC26?



Rem2686 The motivation for this problem comes from cryptography [DH76].It is obvious that C26 �PC21. There is a generalization where p isreplaced by a composite n, and we ask only for an output c when aand b are powers of g. For this generalization is the problem equiva-lent to C5 or C22 (see [Bac84], [McC88])?Rem2694 Bert den Boer [dB90] proved that when all prime factors of �(p �1) are small, the key distribution problem is as hard as computingdiscrete logarithms.Ref26 [Odl85], [ElG85].27 Construction of an elliptic curve group of a givenorderC27 Input p; n 2 N.Output a; b 2 N with #Ep;a;b = n, if p 2 Primes and such an a; bexist.O27 Is C27 in P?Rem2786 There is a polynomial time algorithm that, given p, a, and b withp j6 4a3 + 27b2 computes #Ep;a;b [Sch85].Rem2794 We are unaware of any progress on this problem, however it is knownthat for some primes p, supersingular curves of order p + 1 can beconstructed e�ciently (see [MOV94]).Ref27 [Kob87b], [Kob87a], [Sch85], [Sil86], [Kob91], [Kob91], [Kob88].28 Discrete logarithms in elliptic curve groupsC28 Input a; b; p 2 N; P;Q 2 Sp;a;bOutput n 2 N with P = nQ, if p 2 Primes and such an n exists.O28 Is C28 in P?Rem2886 The presumed di�culty of this problem has been used as the basisfor a public key cryptosystem and digital signature scheme [Kob87b],[Mil86]. Whereas for the discrete logarithmproblem in the multiplica-tive group modulo a prime there is a subexponential algorithm (seeRem2186), no such algorithm is known to exist for C28. A relatedproblem is given a, b, and p to construct a minimal set of generatorsfor Ep;a;b.Rem2894 Menezes, Okamoto, and Vanstone [MOV94] used Weil pairing toprove that there exists a probabilistic reduction from C28 to theproblem of computing discrete logarithm in the multiplicative groupof a (perhaps high degree) extension of GF(q). For supersingularcurves, this reduction can be carried out in random polynomial time,



with the result that a probabilistic subexponential algorithm is ob-tained for C28 in this special case.Koblitz [Kob90] has suggested cryptographic uses for the ratio-nal subgroups of the Jacobian of a hyperelliptic curve over a �nite�eld. Adleman, Huang, and DeMarrais [AHDar] discovered a heuris-tic subexponential probabilistic algorithm for the discrete logarithmproblem in these subgroups when the genus of the curve is large withrespect to the size of the �nite �eld.29 Shortest vector in a latticeC29 Input b1; . . . ; bn 2 ZnOutput v 2 � with kvk2 = minfkxk2 j x 2 �; x 6= 0g, where� = Zb1 � . . .� Zbn if b1; . . . ; bn span Rn.O29 Is C29 NP-hard?Rem2986 The corresponding problems with norms k � k1 and k � k1 are knownto be NP-hard [Lag85], [vEB81]. See also Rem3086.Rem2994 It was an oversight that we did not mention the result ofLenstra [Len83], who proved that if the dimension n is �xed, theshortest vector in a lattice of dimension n can be found in polyno-mial time.Ref29 [GLS88] and [Lov86] contain nice surveys of this and related topics.30 Short vector in a latticeLet c 2 NC30 Input b1; . . . ; bn 2 ZnOutput v 2 � with kvk2 � ncminfkxk2 j x 2 �; x 6= 0g, where� = Zb1 � . . .� Zbn if b1; . . . ; bn span Rn.O30 Does there exist a c 2 N for which C30 is in P?Rem3086 In [LLL82] it was shown that there is a polynomial time algorithmthat produces a vector v 2 � withkvk2 � 2n�12 minfkxk2 j x 2 �; x 6= 0g ;and in [Sey87] it was shown that for any � > 0 there is a polynomialtime algorithm A� that produces a vector v 2 � withkvk2 � (1 + �)nminfkxk2 j x 2 �; x 6= 0g :A number of related problems in simultaneous diophantine approxi-mation are discussed in [Lag85] and [Fru85].Rem3094 We are unaware of any progress on this problem.Ref30 [LLS90], [GLS88], [Lov86].



31 Galois group of a polynomialC31 Input f 2 Q[x].Output n = [K : Q], where K is the splitting �eld of f .O31 Is C31 in P?Rem3186 n is the order of the Galois group associated with f . Polynomialtime algorithms exist for determining if n is a power of 2 or if theGalois group is solvable [LM85]. Many other properties of the Galoisgroup can also be determined in polynomial time [Kan85].Rem3194 Landau [Lan85] proved that the Galois group can be computed indeterministic time O((#G+ `)c) for some constant c > 0, where ` isthe length of the input speci�cation of f and K. Further results arediscussed in [Len92], but the problem remains open.32 Class numbersC32 Input d 2 N.Output h(�d), the order of the group of equivalence classes of bi-nary quadratic forms with discriminant �d under compo-sition.O32 Is C32 in P?Rem3286 This is related to classical questions of Gauss [Gau86, art. 303].It appears that the results of Shanks [Sha72], [Sha71], Schnorr &Lenstra [SL84], Seysen [Sey87], and Schoof [Sch82] establish thatC5 �RC32, and that ERH implies C5 �PC32. It is remarkedin [BMS84] that it is not even known if C32 is in NP. The bestknown algorithm for computing h(�d) is due to Shanks [Sha71]. Thequestion could also be stated in terms of the class number of ordersin the �eld Q(p�d).Rem3294 McCurley [McC89] proved under ERH that C32 is in NP. Hafnerand McCurley [HM89b] proved under ERH that there exists a prob-abilistic algorithm with expected running time Ld[1=2;p2] that willcompute not only the class number h(�d), but also the structureof the class group. These results were extended to the case of realquadratic �elds by Buchmann and Williams [BW89]. Thiel [Thiar]has shown under ERH that verifying the class number belongs toNP \ coNP.The more general question of computing class numbers and classgroups of arbitrary algebraic number �elds is also of interest. Accord-ing to Lenstra [Len92], Buchmann and Lenstra proved that there isa deterministic exponential time algorithm for computing the car-dinality and structure of the class group. Buchmann [Buc90] gavea probabilistic subexponential algorithm for a special case of this



problem. Lenstra [Len92] outlines an approach to obtaining a prob-abilistic subexponential algorithm in the general case.Lenstra's paper [Len92] is an important source for informationconcerning algorithms and open problems concerning algebraic num-ber �elds.Ref32 [Gol85], [Sha72], [Sch82], [Lag80b], [Buc90].33 Solvability of binary quadratic diophantine equationsC33 Input a; b; c; d; e; f 2 Z.Output 1 if there exists x; y 2 Z with ax2 + bxy + cy2 + dx +ey + f = 0 and there does not exist a g 2 Z withb2 � 4ac = g2,0 otherwise.O33a Is C33 NP-hard?O33b Is C33 NP-hard with respect to R?Rem3386 It is known that C33 is recognized in NP [Lag79]. Without theconstraint that b2 � 4ac is not a square, the problem is known to beNP-hard [MA78]. Certain variants ofC33 are known to be NP-hardwith respect to R [AM77].Rem3394 We are unaware of any progress on this problem.34 Solvability of anti-Pellian equationC34 Input d 2 N.Output 1 if there exist x; y 2 Z with x2 � dy2 = �1,0 otherwise.O34 Is C34 in P?Rem3486 There exist choices of d for which the smallest solution of x2�dy2 =�1 cannot be written down in polynomial space [Lag79]. It is knownthat C34 is in NP [Lag80a]. If the factorization of d is providedas part of the input, then the problem is recognized in R, and ifin addition we assume the extended Riemann hypothesis, then theproblem is in P [Lag80a].Rem3494 We are unaware of any progress on this problem.35 Greatest common divisors in parallelC35 Input a; b 2 N.Output gcd(a; b).O35 Is C35 in NC?



Rem3586 The best known results for computing greatest common divisors inparallel are contained in [BK83], [CG] and [KMR87]. One may aska similar question for the modular exponentiation problem: givena; b; n 2 N, compute ab (mod n). For a de�nition of NC see [Coo85]or [Coo81].Rem3594 Polylog depth, subexponential size circuits for both integer GCDand modular exponentiation have been obtained by Adleman andKompella [AK88].Ref35 [KMR84].36 Integer multiplication in linear timeC36 Input a; b 2 N.Output ab.O36 Does there exist an algorithm to solve C36 that uses only O(log (ab))bit operations ?Rem3686 The best known algorithm is due to Sch�onhage and Strassen anduses O(log (ab) � log log (ab) � log log log (ab)) bit operations [SS71].Rem3694 We are unaware of any progress on this problem.Ref36 [Knu81, pages 278-301]AcknowledgmentsDuring the course of writing this paper we have bene�ted from conversationswith several people, and we would like especially to thank Neal Koblitz, Je�Lagarias, Gary Miller, Jonathan DeMarrais, Ming-Deh Huang, and AndrewGranville for their contributions. The work of the �rst author was supportedby NSF grant CCR-9214671.References[AD93a] Leonard M. Adleman and Jonathan DeMarrais. A subexponential algo-rithm for discrete logarithms over all �nite �elds. In Douglas R. Stinson,editor, Advances in Cryptology: Crypto '93, volume 773 of Lecture Notes inComputer Science, pages 147{158, New York, 1993. Springer-Verlag.[AD93b] Leonard M. Adleman and Jonathan DeMarrais. A subexponential algo-rithm for discrete logarithms over all �nite �elds. Mathematics of Compu-tation, 61:1{15, 1993. Extended abstract in [AD93a].[Adl91] Leonard M. Adleman. Factoring numbers using singular integers. In Pro-ceedings of the 23th Annual Symposium on Theory of Computing, pages64{71, 1991.[Adlar] Leonard M. Adleman. The function �eld sieve. In Proceedings of the 1994Algorithmic Number Theory Symposium, Lecture Notes in Computer Sci-ence. Springer-Verlag, to appear.
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