
Coordinating Production and Delivery Under a

(z, Z)-type Vendor-Managed Inventory Contract

Michael J. Fry

Mike.Fry@uc.edu

College of Business Administration

University of Cincinnati

Cincinnati, OH 45221-0130

Roman Kapuscinski

University of Michigan Business School

Ann Arbor, MI 48109-1234

Tava Lennon Olsen

John M. Olin School of Business

Washington University in St. Louis

St. Louis, MO 63130-4899

April 12, 2001



Abstract

This paper models a type of vendor-managed inventory (VMI) agreement that occurs in

practice called a (z, Z) contract. We investigate the savings due to better coordination of

production and delivery facilitated by such an agreement. The optimal behavior of both

the supplier and the retailer are characterized. The optimal replenishment and production

policies for a supplier are found to be up-to policies, which are shown to be easily computed

by decoupling the periods when the supplier outsources from those when the supplier does not

outsource. A simple application of the newsvendor relation is used to define the retailer’s

optimal policy. Numerical analysis is conducted to compare the performance of a single

supplier and a single retailer operating under a (z, Z) VMI contract with the performance

of those operating under traditional retailer-managed inventory (RMI) with information

sharing. Our results verify some observations made in industry about VMI and show that

the (z, Z) type of VMI agreement performs significantly better than RMI in many settings,

but can perform worse in others.



1 Introduction

New information technologies and a continued increase in competition has led to the devel-

opment of new inter-organizational relationships in the supply chain. One such relationship

is vendor-managed inventory, or VMI (Andel (1996), Lucy (1995)). Under VMI, the sup-

plier assumes management of the retailer’s inventory, making such decisions as when and

how much inventory to ship to the retailer. The supplier typically uses advanced informa-

tion technology, such as Electronic Data Interchange (EDI) or the internet, to monitor the

retailer’s stock level and demand information. As these technologies continue to become less

expensive and, hence, more common in industry, it is expected that programs such as VMI

will also become more popular. Probably the best known VMI program is the partnership

between Wal-Mart and Procter and Gamble, but other companies have implemented VMI

as well including Campbell Soup (Clark and McKenney (1994)), Barilla SpA (Hammond

(1994)), Shell Chemical, General Electric, Intel, and many others.

Reports from industry provide differing accounts on the success and benefits attributable

to VMI (Saccomano (1997a), Schenck and McInerney (1998)). Due to a lack of analyti-

cal models describing VMI and the fact that VMI appears in many different forms within

industry, it has been very difficult to determine exactly why VMI seems to work in some

situations, but not in others. It is also well known that implementing VMI can be difficult

since information systems and business processes must be made compatible between part-

ners (Saccomano (1997b)). Therefore, it is extremely helpful for firms considering VMI to

be able to estimate the expected benefits before actual implementation of a VMI program.

Our research models one particular form of VMI agreement, which we call a (z, Z) VMI

contract. Using it, we examine whether or not VMI provides opportunities for savings over

traditional retailer-managed inventory (RMI) for the overall supply chain, and if so, how

much of a savings can be realized.

In this paper we model a specific VMI agreement between a single retailer and a single

supplier to determine the benefits offered by coordinating production and delivery. We

compare our VMI model to a model representing a traditional retailer-managed scenario.
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Our analysis suggests that the (z, Z)-type of VMI agreement performs significantly better

than RMI in many settings, but that it can perform worse in some scenarios.

Literature Review

To the best of our knowledge, this paper is the only research that studies the specific type

of VMI agreement, which we refer to as a (z, Z) VMI contract. In addition to some very

recent work that examines VMI from slightly different perspectives, the related literature

includes research describing the benefits of information sharing in the supply chain.

There is considerable literature regarding information sharing in the supply chain. Here,

we list some of the references most closely related to our work. Gavirneni et al. (1999)

examine the value of information in the context of a single retailer and a single capacitated

supplier. The authors examine the benefits of knowing, instead of deducing, the retailer’s

inventory position. They show that in ‘most typical’ situations, the benefits of information

may be significant while they disappear in extreme conditions. Cachon and Fisher (2000)

examine a single supplier and N retailers to construct an upper bound on the value of shared

information. They compare this upper bound on shared information with benefits offered

from faster and cheaper order processing. Their analysis suggests that more efficient order

processing leads to an acceleration of the physical flow of goods through a supply chain, which

is significantly more beneficial than increasing the flow of information. Lovejoy and Whang

(1995), under the assumption that information and processing are done in parallel, show

that decreasing information flow is always more beneficial than physical flow. Chen (1998)

considers a serial supply system and calculates the value of centralized demand information.

Chen defines the benefit of centralized demand information to be the relative cost difference

between an inventory policy based on echelon stock (which requires centralized information)

to a policy based on local inventory. The benefit is derived from batching which causes

some information to be lost when only local-inventory information is used. All of the above

references assume, as we do, that the customer’s demand process is stationary. Lee et

al. (2000) examine a system with nonstationary demand. As in our model, Lee et al. and

Gavirneni et al. assume that there is another source of material other than the supplier that
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can be used to replenish the retailer at an additional cost. Hariharan and Zipkin (1995),

Bourland et al. (1996), Moinzadeh (1999), and Moinzadeh and Bassok (1998) also discuss

the benefits of information sharing in the supply chain.

Many references examining information sharing deal with benefits that are commonly

attributed to VMI by the business press but are actually accomplished through information

sharing. For instance, reducing lead times or delaying allocation of scarce products among

retailers and improving forecasts are often reasons given for implementing VMI. This is

accomplished by the supplier being able to observe the demands at the retailer when they

occur, instead of when the retailer places an order to the supplier.

Most of the research dealing specifically with VMI is quite recent and there are few

published papers that attempt to develop analytical models for VMI. Narayanan and Ra-

man (1997) provide the only other research we are aware of that examines VMI agreements

between a single retailer and a single supplier. They model the effect of ‘contract incom-

pleteness’ on both VMI and RMI. Narayanan and Raman compare RMI to a specific VMI

agreement where the retailer basically rents space to the supplier. Clark and Hammond

(1997) provide empirical evidence that suggests that VMI coupled with information sharing

(in the form of EDI) provides greater benefits than information sharing alone. However,

Clark and Hammond concede that “most of the benefits of [VMI] could be realized by infor-

mation sharing without actually requiring . . . the VMI replenishment process.” Cachon and

Fisher (1997) use simulation to identify the savings offered by VMI to the Campbell Soup

Company. They conclude that the savings could have been achieved without VMI through

information sharing. Cachon (1999b) uses game theory to investigate how to obtain chan-

nel coordination from a two-echelon competitive supply chain using VMI. Cachon’s analysis

shows that VMI is not guaranteed to achieve the supply chain optimal solution unless both

the retailers and the supplier are willing to make fixed transfer payments in order to par-

ticipate in VMI, and both are willing to share the benefits. His numerical study shows that

there is no improvement from VMI if fixed payments were forbidden. Bernstein and Feder-

gruen (1999) analyze the constant-demand-rate case and consider a model of VMI where the

replenishment decision is transferred to the supplier, but the retailer is able to make his own
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pricing decisions. The authors, however, assume that the supplier absorbs all holding costs,

even for inventory at the retailer, which seems to more closely resemble a consignment type

of system or shelf renting.

The remainder of the literature addressing VMI focuses on the flexibility that VMI offers

for a supplier delivering stock to multiple retailers. These papers mostly concentrate on

coordinating the delivery of products and possibly delaying allocation of products. Campbell

et al. (1998) and Kleywegt et al. (2000a) derive benefits for VMI by allowing the supplier

to construct better delivery routes for multiple retailers. Kleywegt et al. (2000b) focuses on

the special case where only one customer is visited on each vehicle route. Cheung and Lee

(1998) also address the flexibility of delivery to multiple retailers offered by VMI. Specifically,

they model the benefits of shipment coordination and stock rebalancing. Çetinkaya and Lee

(2000) investigate a VMI agreement where the supplier can delay small orders from multiple

retailers to achieve economies of scale in delivery. Çetinkaya and Lee derive the optimal

policy for such an agreement and conclude that shipment consolidation is beneficial in some,

but not all, cases. Aviv and Federgruen (1998) analyze a VMI setting with one supplier

and N retailers under periodic inventory review. They conclude that VMI is always more

beneficial than information sharing alone. However, this is based on the assumption that

the supplier is minimizing a single system-wide performance measure. Our analysis allows

the supplier to act competitively in his or her own interest and considers the effect of this

decision-rights transfer.

The Model

We assume a supply chain consisting of a single retailer (he) and a single supplier (she).

The supplier can ship to the retailer in any period but produces only once every T periods.

This is appropriate for a setting in which a supplier may manufacture different goods on

a set production schedule so that she can only produce material for a given retailer once

every T periods. We assume no bound on the amount produced. Alternatively, one could

imagine a supplier which, because of limited availability of necessary raw materials, can

produce for a given retailer only once every T periods. There is a large body of literature

4



that discusses the benefits of sequencing multiple jobs that must use common resources over

a fixed time interval. These types of problems are collectively referred to as economic lot

scheduling problems or lot-sizing problems. Elmaghraby (1978) examines both analytical

and heuristic techniques for finding policies under no capacity restrictions. Cachon (1999a)

provides additional reasons for using policies with fixed-time-review intervals as well as an

excellent review of papers that use this assumption. Other references can be found in Graves

(1981), which provides a review of production scheduling literature.

We further assume that the retailer (under RMI) and the supplier (under VMI) follow

a periodic-review inventory policy so that they examine the retailer’s inventory level at the

beginning of each period, and that end-user demand occurs only at the retailer. Demand is

independently and identically distributed (i.i.d.) according to the distribution function Φ(·)

and density function φ(·). Excess demand at the retailer is backlogged. We allow the supplier

to outsource in order to obtain material to ship to the retailer in a period in which the supplier

cannot produce. In this context outsourcing could represent a form of expediting such

as working overtime, producing using less efficient technology, transshipping from another

location, or procuring from an outside source. Outsourcing results in an additional cost to

the supplier of b0 per unit. When salvage value corresponds to production costs, both salvage

value and production costs can be ignored. Therefore, we do not include them in the model.

Instead, we model only the premium for outsourced goods, b0. Under both RMI and VMI,

as soon as inventory arrives at the retailer, ownership of the inventory is transferred to the

retailer. Thus, our situation does not represent a consignment system.

The relevant costs for the supplier are hS, the supplier unit holding cost, and b0, the unit

cost of outsourcing. For the retailer we consider hR, the retailer unit holding cost, and p,

the retailer unit backorder penalty cost.

One shortcoming of many investigations of VMI is that there is little attention paid to

why or how participating firms enter into such an agreement. If the supplier’s control under

VMI were unrestricted, then without some form of penalty costs at the supplier it would be

optimal for the supplier to ship an extraordinarily large amount of inventory to the retailer.

However, in actuality the supplier’s control is not total (Cachon (1999b)). We have seen that
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in many instances VMI is initiated under some sort of agreement or contract between the

involved parties (see also Aviv and Federgruen (1998) and Copacino (1993)). The contract or

agreement may specify a minimum end-user customer service level that must be maintained

by the supplier under VMI, and storage space (e.g., shelf space allocated by the retailer)

may effectively play the role of an upper limit. Alternatively, the contract may set minimum

and maximum retailer inventory levels that the supplier is expected to maintain. Despite

many common features, the details of implementation of VMI contracts differ from company

to company. Several of our specific experiences with VMI agreements used in practice are

listed here.

A large semiconductor manufacturer establishes VMI agreements with several of its

largest spare parts suppliers. These parts include many different items that are used in a

wafer-fabrication process. The end-user customers are the production engineers who demand

a part whenever one is needed in the wafer fab because of machine breakdown, replacement,

or maintenance. In this particular VMI agreement, each supplier is given access to the

semiconductor’s inventory programs so that they can view current inventory levels and de-

mand histories for the items that they supply.1 The suppliers are then expected to make

all decisions on how much and when to ship inventory to the semiconductor manufacturer.

The semiconductor firm also communicates suggested minimum inventory levels and reorder

points for each of the parts involved in the VMI program as well as maximum inventory levels

for some items (usually larger parts that had space constraints). For the most part, these

levels are the same as the semiconductor firm uses for its own in-house inventory decision

making process. The semiconductor manufacturer and the suppliers have scheduled meetings

(monthly at the beginning of the program and less often as the VMI program progresses) to

discuss the success of the VMI program and any problems that are occurring. Some of the

main factors in evaluating the performance of a supplier in the VMI program is how many

stockouts have occurred at the semiconductor manufacturer for its parts and whether the

1If a supplier cannot access the semiconductor firm’s inventory computer system (due to incompatible

software or such), then daily or weekly facsimile reports are sent to the supplier showing the supplier’s parts

current inventory levels and demand histories.
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supplier maintained the minimum and the maximum allowable inventory levels.

A JIT assembler of electronic devices uses VMI-type agreements with suppliers of more

than 85% of its parts – all of the important components except one supplied by a company

considered as a monopolist. The minimum and maximum levels of inventory are expressed

as seven and 14 days of production according to the forecast that the assembler publishes.

The suppliers do not have any major benefits of scale in the delivery process and typically

deliver several times a week (sometimes every day). The performance, in terms of main-

taining inventory between seven and 14 days of production, is closely monitored and is used

as a significant factor (one of five factors) in a “scorecard” evaluation of all suppliers. The

actual parameters of seven and 14 days, when introduced and for a long period afterwards,

were identical across all parts (and all suppliers). They were viewed as probably exceeding

the actual needs, but maintained due to the weekly routine of updating forecasts (a newly

published forecast might dramatically change the actual number of parts needed, and too

small a buffer or too small a difference between the minimum and maximum could put the

retailer’s inventory outside of the desirable interval). A student team evaluated the appro-

priateness of the levels used. As a result of recommendations, the assembler has introduced

a pilot program with parameters based on economic considerations (as we describe in this

paper) instead of a fixed number of days, independent of product.

A producer of furniture that offers some partly customized configurations with two-day

production lead time relies on minimum and maximum levels of inventory of all parts. The

parts are stored in a nearby warehouse (three miles away) owned by the producer and

replenished by the supplier. Lower and upper limits on each item are set by the producer.

Increasingly often, we observe evaluation techniques based on a “balanced scorecard,”

which make the inventory performance an important part of the evaluation. In most cases the

supplier’s ability to maintain the desired inventory level is collected over the year and becomes

a significant factor in next year’s market share and price decisions. The JIT assembler

mentioned here performs evaluations on a quarterly basis and its suppliers feel that this

puts more weight on being out of the defined inventory range than the assembler cares to

admit. Less often, the explicit penalties are collected. Our conversations with the Advanced
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Supply Chain Solutions Department of an auto manufacturer indicate that this company

has considered explicitly setting penalties for falling below the minimum levels (in the spirit

of currently collected penalties for any order that is not satisfied) but has not implemented

such a system yet.

Our work with these firms has led us to define a type of initiating VMI contract, which

we call a (z, Z) VMI contract. Under a (z, Z) VMI contract, the retailer sets a minimum

inventory level, z, and a maximum inventory level, Z, that represent the lowest and highest

inventory levels, respectively, that the retailer wishes his stock to experience when measured

after customer demand. The values of z and Z represent either the actual minimum and

maximum levels or the implicit values that are tied to inventory turns and customer service

levels. The supplier agrees to pay a penalty amount of b− (b+) per unit to the retailer for every

unit of the retailer’s inventory that is less than z (more than Z) after customer demand. In

all of the VMI agreements mentioned previously, the penalties are not incurred immediately

(i.e., on a daily basis), but are based on long-term (approximately yearly) performance, often

as part of “balanced scorecard” evaluation. The companies that we worked with indicated

that these measures and resulting penalties and awards, although often neither contractually

enforced or even necessarily explicit, are nevertheless very strong incentives in to trying to

remain within the agreed upon inventory levels. VMI agreements effectively serve to transfer

part of the demand risk from the retailer to the supplier. While this model does not perfectly

correspond to all of the intricacies of the examples given here, it is a useful abstraction of

common VMI agreements, which we believe allows us to make a fair evaluation of VMI.

We wish to characterize the supplier’s optimal policy under a (z, Z) VMI contract. This

means determining how much the supplier should produce once every T periods, and how

much the supplier should send to the retailer at the beginning of each period (associated

with this decision is the decision of how much to outsource in each period). We assume that

there is negligible lead time for shipments from supplier to retailer (an assumption that can

be relaxed), but that the decision of how much to outsource must be made by the supplier

before demand is experienced at the retailer. We use Markov Decision Processes (MDPs) to

characterize the optimal policy for the supplier under VMI.
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Once the optimal policy for the supplier under a (z, Z) VMI contract is determined,

we examine how a retailer would want to structure a (z, Z)-type of VMI contract. We do

this by allowing the retailer to choose Z and z values so as to minimize its overall costs.

A traditional RMI setting is defined and the optimal policies for the supplier are derived.

In both cases we assume that all information is shared (whether it is useful or not), i.e., in

addition to actual inventory position, the supplier has full knowledge of the end-user demand

distribution as well as the inventory policy being followed by the retailer. We incorporate

information sharing into the RMI case so that we can identify those benefits that are offered

by VMI in addition to benefits offered by information sharing alone.

Once both the supplier’s and the retailer’s operating policies under VMI and RMI have

been fully defined, we numerically compare the overall performance of the supply chain

under VMI to the supply chain operating under a traditional RMI setting. Infinitesimal

perturbation analysis (IPA) is used to determine the retailer’s order up-to values under RMI

and the supplier’s optimal levels of replenishing the retailer under VMI as well as her optimal

production quantities. The retailer’s best z and Z values are found using a newsvendor-type

relation. A computational study also allows us to describe when VMI contracts are most

beneficial as well as to define general guidelines for setting the contractual parameters.

Section 2 of this paper defines the optimal policy that a supplier would follow under the

(z, Z) VMI contract that we have defined. Section 3 describes the retailer’s optimal policy

and explains how the VMI contractual parameters are set. Sections 4 and 5 describe our

numerical solution technique and analysis. Section 6 translates our findings into implications

and insights for practitioners of VMI. Section 7 lists possible problem extensions and Section

8 provides concluding remarks.
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2 Supplier Behavior Under VMI and RMI

Replenishment Policy Under VMI

Given that a certain amount of inventory has been produced at the beginning of the cycle

of T periods, the replenishment policy for the supplier consists of the decision of how much

inventory to ship to the retailer at the beginning of each period under a (z, Z) VMI contract.

The sequence of events relating to the replenishment decision under VMI is as follows: 1)

the supplier examines the retailer’s inventory level and decides how much to outsource and

how much to ship to the retailer; 2) the material is shipped to the retailer with negligible

lead time; 3) demand occurs at the retailer; 4) VMI contractual costs, as well as penalty and

holding costs, are assessed.

Let xS and xR denote the inventory level at the beginning of a period at the supplier and

retailer, respectively. The following Lemma 1 allows us to characterize the optimal policy

for the supplier by first considering two special cases for replenishment.

Lemma 1 As long as xS > 0, it is cost effective for the supplier to replenish the retailer

from on-hand inventory rather than outsourcing.

Proof The proof is based on a simple interchange argument.

Case 1: Supplier Has No Stock and Considers Outsourcing

Once the supplier has allocated all of her on-hand inventory (xS = 0), outsourcing is the

only means for the supplier to obtain more stock with which she can replenish the retailer.

Let V VMI
n (xR) be the supplier’s expected cost-to-go of the optimal policy for replenishing

the retailer, from n periods after the last production period until the end of the production

cycle, when the retailer has xR units of inventory and the supplier has none. V VMI
n (xR) can be

decoupled into the term, −b0xR and a term that depends only on y, the retailer’s inventory

after being replenished by the supplier. Thus, V VMI
n (xR) = −b0xR + miny≥xR

JVMI
n (y), where

JVMI
n (y) is defined below. We can determine the optimal amount for the supplier to send to

the retailer by finding the value of y that minimizes JVMI
n (y).
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Consider a period n where xS = 0. If xS = 0 in period n, then xS = 0 in period n + 1,

therefore

JVMI

n (y) = b−E
[
(z + D − y)+

]
+ b+E

[
(y − Z −D)+

]
+ b0y

+ E
[
V VMI

n+1 (y −D)
]

= L(y) + b0y + E
[
V VMI

n+1 (y −D)
]
, (1)

where L(y) = b−E [(z + D − y)+]+b+E [(y − Z −D)+]. Assume that JVMI
T (·) = V VMI

T (·) = 0.

Theorem 1 shows that a replenish up-to policy is optimal for the supplier when xS = 0; by

which we mean that the supplier replenishes the retailer up to a value of y∗n by outsourcing

y∗n − xR units. Although L, JVMI
n+1, and V VMI

n+1 may not be differentiable, due to the convexity

of L, JVMI
n+1, and V VMI

n+1 , right-hand-side first and second derivatives exist. We use ∂
∂x

, ∂
∂y

, ′

and ∂2

∂x2 ,
∂2

∂y2 ,
′′ to denote them, respectively. Although Theorems 1-4 below apply to any

production cycle, we prove them here for the last cycle (of T periods). Later (see Theorem

5) we argue that the results apply generally.

Theorem 1 If xS = 0 in period n, then it is optimal for the supplier to follow a replenish

up-to policy using outsourcing. The replenish up-to values may depend on n.

Proof We show that a replenish up-to policy is optimal by using induction to show that (1)

is convex in y, and that V VMI
n (x) is convex in x.

Because JVMI
T (·) = 0 and V VMI

T (·) = 0, JVMI
T (·) and V VMI

T (·) are obviously convex in y and

x, respectively. We assume that V VMI
n+1 (x) is convex in x and JVMI

n+1(y) is convex in y. We then

show that JVMI
n (y) and V VMI

n (x) are convex in y and x, respectively. Using (1),

∂

∂y
JVMI

n (y) = L′(y) + b0 +
∂

∂y
E

[
V VMI

n+1 (y −D)
]

= L′(y) + b0 + E
[
V ′VMI

n+1 (y −D)
]

= −b−(1− Φ(y − z)) + b+Φ(y − Z) + b0 +
∫ ∞

0
V ′VMI

n+1 (y − ξ)dΦ(ξ),

where the second equality follows since V VMI
n+1 (·) is continuous and convex by the inductional

assumption (see Wets (1989), page 585, Proposition 2.10).

∂2

∂y2
JVMI

n (y) = b−φ(y − z) + b+φ(y − Z) +
∫ ∞

0
V ′′VMI

n+1 (y − ξ)dΦ(ξ)

11



which is ≥ 0 since φ(·) ≥ 0 and V ′′V MI
n+1 (y − ξ) ≥ 0 by our inductional assumption on the

convexity of V VMI
n+1 (x). Thus, JVMI

n (y) is convex in y (as a sum of convex functions), and hence,

V VMI
n (x) is convex (see Heyman and Sobel (1984), page 525, Proposition B-4). Therefore,

since JVMI
n (y) is convex in y, it is optimal to replenish the retailer up to y∗n, where y∗n is the

minimizing value of y in JVMI
n (y). 2

The following Theorem 2 shows that as the number of periods remaining in the production

cycle increases, the replenish up-to values, y∗n, increase. The proof is similar to that in Arrow

et al. (1958) and is included in the Appendix.

Theorem 2 The values of y∗n are ordered such that y∗0 ≥ y∗1 ≥ · · · ≥ y∗T−1.

Proof See Appendix.

Case 2: Supplier Replenishes Retailer from On-Hand Inventory

Since we have derived the optimal policy for the supplier once she has allocated all of her

on-hand inventory to the retailer, we should optimize the remaining periods in which the

supplier has inventory to replenish the retailer. For periods in which the supplier has on-hand

inventory, we hypothesize that this will again be a replenish up-to policy where the supplier

replenishes the retailer up to ȳ∗n in period n. Let xE be the combined units of inventory at

the supplier and retailer (xE = xS + xR). We adapt the analysis of Clark and Scarf (1960)

dealing with multi-echelon inventory systems to express KVMI
n (y, xE), the expected cost-to-go

for the supplier from period n until the end of the production cycle when the retailer has y

units of inventory, as

KVMI

n (y, xE) = b−E
[
(z + D − y)+

]
+ b+E

[
(y − Z −D)+

]
− hSy + hSxE + E

[
UVMI

n+1(y −D, xE −D
]

= L̄(y) + hSxE + E
[
UVMI

n+1(y −D, xE −D)
]
, (2)

where L̄(y) = b−E [(z + D − y)+] + b+E [(y − Z −D)+]− hSy and

UVMI

n (x1, x2) = min
x1≤y≤x2

KVMI

n (y, x2). (3)
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Theorem 3 shows that there exists an optimal amount, independent of xE, up to which the

supplier should replenish the retailer without outsourcing. Corollary 1 shows that these up-

to values are independent of the number of periods remaining. We introduce here notation

which will be used in Theorem 3:

J̄VMI

n (y) = L̄(y) +
∫ ∞

0
V̄ VMI

n+1 (y − ξ)dΦ(ξ) (4)

where

V̄ VMI

n (x1) = min
y≥x1

J̄VMI

n (y) (5)

and V̄ VMI
T (·) = J̄VMI

T (·) = 0.

Theorem 3 There exists a sequence of functions, gn(x2), such that UVMI
n (x1, x2) = V̄ VMI

n (x1)+

gn(x2) Furthermore, it is optimal for the supplier to replenish the retailer up to ȳ∗n from her

on-hand inventory in period n.

Proof See Appendix.

Corollary 1 The values ȳ∗n that minimize J̄VMI
n are all equal, i.e., ȳ∗0 = ȳ∗1 = · · · = ȳ∗T−1.

Proof See Appendix.

Notice that we derive the structure of the optimal policy in two steps. In the first step

(Theorem 3) we show that the value function decouples into two parts, first, a function of

inventory at the retailer, and second, a function of total supply chain inventory. Because both

of these functions are convex, the optimal policy of the supplier under VMI is to replenish

the retailer up to a level independent of total inventory in the supply chain. By explicitly

showing that the first function is V̄ VMI
n , we make it easy to show in Corollary 1 that the

optimal up-to levels are the myopic levels which minimize L̄. Since ȳ∗0 = ȳ∗1 = · · · = ȳ∗T−1,

we denote the optimal replenish up-to value without outsourcing as ȳ∗.

Corollary 2 ȳ∗ ≥ y∗n ∀ n = 0, . . . , T − 1.
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Proof See Appendix.

Based on Lemma 1 and the fact that the derivative of future costs is identical for the

non-outsourcing case and for the general case, we can now state the supplier’s optimal

replenishment policy as follows:

• If xS + xR ≥ ȳ∗, replenish the retailer up to ȳ∗.

• If ȳ∗ > xS + xR > y∗n, replenish the retailer up to xS + xR.

• If xS + xR ≤ y∗n in period n, replenish the retailer up to y∗n.

Production Policy Under VMI

The production policy for the supplier consists of the decision of how much inventory to

produce at the beginning of each production cycle, which will be used to replenish the

retailer. Let q be the amount of inventory at the supplier and retailer at the beginning

of the final production cycle. We can recursively define the supplier’s cost over the final

production cycle when the supplier and retailer begin the cycle with a combined total of q

units of on-hand inventory as

F VMI(q) = hS

[
T−1∑
n=0

In

]
+ b0

[
T−1∑
n=1

On

]
+ b+

[
T−1∑
n=0

(yn −Dn − Z)+

]

+ b−
[

T−1∑
n=0

(z − yn + Dn)+

]
(6)

where

In = Inventory at the supplier, after delivery to the retailer, in period n,

Dn = Demand experienced at retailer in period n,

On = Amount outsourced in period n.

Notice that in the first period of a production cycle (period 0) the supplier will never out-

source, since it is always cheaper for her to produce enough inventory to replenish the retailer

up-to ȳ∗ (as production has no associated cost and supplier holding costs are assessed after
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replenishment of the retailer). Therefore, In and On are defined as

I0 = x̄S + (q − x̄S − x̄R)+ − (ȳ∗ − x̄R)+ where

x̄S = inventory position at supplier just before production,

x̄R = inventory position at retailer just before production,

In =
[
In−1 − (ȳ∗ − (yn−1 −Dn−1))

+
]+

for n = 1, . . . , T − 1,

On = [y∗n − In−1 − (yn−1 −Dn−1)]
+ for n = 1, . . . , T − 1 where

yn = retailer’s inventory position just after being replenished by the supplier

in period n,

y0 = x̄R + (ȳ∗ − x̄R)+, and for n = 1, . . . , T − 1,

yn =


yn−1 −Dn−1 : yn−1 −Dn−1 ≥ ȳ∗

ȳ∗ : yn−1 −Dn−1 < ȳ∗ and In−1 ≥ ȳ∗ − (yn−1 −Dn−1)

In−1 + On + yn−1 −Dn−1 : yn−1 −Dn−1 < ȳ∗ and In−1 < ȳ∗ − (yn−1 −Dn−1).

We can demonstrate that F VMI(q) is convex in q by using a modified sample path argument

which then allows us to derive the optimal production policy (Theorem 4).

Theorem 4 The cost for the supplier of having (producing up to) q units in the production

period is convex in q.

Proof See Appendix.

Theorem 5 All properties expressed in Theorems 1-4 hold for multiple production cycles.

Idea of Proof The production decision and replenish up-to decisions from periods 0 to

T − 1 can be interpreted as a single action set. Then following the same logic as in Veinott

(1965) it is possible to prove that the end of period inventory levels at the supplier and the

retailer will be no larger than the optimal up-to values solved for under a myopic policy. It

is then feasible for the supplier to bring her inventory level up to the myopic policy (since we

do not consider a production capacity). As the retailer’s inventory levels are no larger than

the myopic replenish up-to levels, it is also feasible for the supplier to bring the retailer’s
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inventory level back to these values. Thus, Veinott’s Theorem 3.1 can be used to show that

this feasible policy is indeed optimal. 2

This result is fairly intuitive: the next production period becomes the end of the planning

horizon, which serves as a renewal point. Consequently, we do not need to consider actions

taken at and after the next production period. We denote the minimizing value of E [F VMI(q)]

as q∗VMI, and thus it is optimal for the supplier to produce up to q∗VMI (i.e., to produce

(q∗VMI − x̄S − x̄R)+ at the beginning of each production cycle).

Replenishment Policy Under RMI

To make fair comparisons between VMI and RMI, we consider a retailer-managed scenario

where the retailer can expect to have his orders fully replenished by the supplier. Otherwise,

the retailer would have to either procure the remaining items from another source (most

likely at a higher cost) or the retailer might order a higher amount than would actually be

optimal, expecting that the supplier will only fulfill a portion of the quantity ordered. Both

of these situations add additional complexities that are not captured in the VMI model and,

therefore, would not lead to fair comparisons. Also, we believe that this assumption is very

realistic. Based on anecdotal evidence, many suppliers in RMI environments are not given

an option of not satisfying retailer’s orders, and thus they attempt to fully ship the ordered

amount of goods to the retailer, even if it implies higher costs.

If the retailer can expect to receive his ordered amount in full each period, then the retailer

will simply order up to the traditional, well-known newsvendor amount. Let y∗RMI denote this

amount, so that y∗RMI = Φ−1
(

p
p+hR

)
. To ensure that the retailer can expect to receive his

ordered amount in full each period, we assume that the supplier must completely satisfy the

retailer’s order. In other words, production takes place only at the beginning of period 0,

and in each period the sequence of events under RMI is that 1) the supplier decides how

much to outsource; 2) the amount ordered in the previous period by the retailer is shipped

to the retailer with negligible lead time; 3) demand occurs at the retailer; 4) penalty and

holding costs are incurred; 5) the retailer places the order with the supplier to be filled in
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the next period. This is basically the same sequence of events as under VMI (discussed

previously): both outsourcing and shipping decisions are made at the very beginning of

the period based on the retailer’s inventory after the previous period’s demand. The RMI

replenishment policy can be characterized as an order up-to policy where the retailer orders

up to y∗RMI in each period.

Production Policy Under RMI

Under RMI, we assume that all information is available to the supplier. However, the only

relevant information is the distribution of customer demand and current orders. The decision

of how much the supplier should produce is very similar to that of the VMI case. The cost

resulting from having q units in inventory at the supplier and retailer at the beginning of

the production cycle is

F RMI(q) = hS

[
T−1∑
n=0

In

]
+ b0

[
T−1∑
n=1

On

]
where

I0 = x̄S + (q − x̄S − x̄R)+ − (y∗RMI − x̄R)+

In =
[
In−1 − (y∗RMI − (yn−1 −Dn−1))

+
]+

for n = 1, . . . , T − 1

On = [y∗RMI − In−1 − (yn−1 −Dn−1)]
+ for n = 1, . . . , T − 1

y0 = x̄R + (y∗RMI − x̄R)+, and for n = 1, . . . , T − 1

yn =

 yn−1 −Dn−1 : yn−1 −Dn−1 ≥ y∗RMI

y∗RMI : yn−1 −Dn−1 < y∗RMI.

As in the VMI case, F RMI(q) can be shown to be a convex function of q through a sample

path argument, and thus it is optimal for the supplier to produce (q∗RMI − x̄S − x̄R)+ at the

beginning of the production cycle under an RMI scenario.

3 Retailer Behavior Under VMI

Although we have now defined the optimal replenishment and production policy for the

supplier under a (z, Z) VMI contract, we have made no mention of how a retailer would
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operate under VMI or how the model parameters such as b−, b+, z, and Z are chosen. There

are many different approaches one could take for deciding the value of these parameters.

One possibility is to assume that b−, b+, z, and Z are all set by a central decision maker who

wishes to optimize the performance of the entire supply chain. While this is guaranteed to

result in the supply chain optimal policy (as is shown in Theorem 6)2, we wish to examine

the supplier and retailer as individual decision makers. Therefore, we consider a somewhat

different approach that we believe is closer to what happens in actual VMI agreements in

practice.

Theorem 6 If a central controller is allowed to choose the values of b−, b+, z, and Z, then

the supply chain optimal solution can be obtained.

Proof Let the expected cost to the supply chain from period n until the end of the production

cycle be JSC
n (y).

JSC
n (y) = hRE

[
(y −D)+

]
+ pE

[
(D − y)+

]
+ b0(y − xS − xR)+

+ hS(xS − y + xR)+ + E
[
V SC

n+1(y −D)
]
, (7)

where V SC
n (x) = miny≥x JSC

n (y). By referring to Equations (1) and (4), we can see that one

solution to obtaining the supply chain optimal replenishment values under VMI is to set

z = Z = 0, b− = p, and b+ = hR. By doing so, we have forced the supplier to minimize her

expected costs under VMI as if she was minimizing the total supply chain costs. Denote the

minimizing value of (7) as ySC
n . Solving (6) with y∗n = ySC

n provides the supply chain optimal

production amount. 2

We assume that the values of z and Z are set by the retailer. The purpose of these

values is to provide a measure of control over the supplier. Without these values, one could

imagine a situation in which the supplier ships all of her inventory to the retailer at the

beginning of a production period to save on holding costs. Or, once the supplier has run out

2Unfortunately, this particular supply chain optimal solution transfers all costs to the supplier and makes

her responsible for making the optimal decision for the entire supply chain.
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of on-hand inventory, she could decide not to replenish the retailer at all rather than incur

outsourcing costs. When the retailer sets the values of z and Z, he knows the supplier’s

optimal replenishment and production policies.

We assume that the value of Z−z is set through a mutual agreement between the supplier

and the retailer before any other concerns are discussed. From the retailer’s point of view

Z − z = 0 is preferred, thereby maximizing the contractual penalties paid to him by the

supplier. The supplier, however, would like to set Z − z = ∞, and thus not have to pay any

penalty for over-stocking or under-stocking the retailer. Given the contrary nature of these

two viewpoints, it seems likely that a mutual agreement will be reached between the supplier

and retailer. In order to continue our analysis, we define Q = Z − z and assume it has been

reached by negotiation (later we examine the effect that Q has on supply chain costs).

The retailer is then left with choosing the value of Z for the VMI contract. For a value of

Z specified by the retailer, let y∗n(Z) be the amount that the supplier replenishes the retailer

up-to in period n when outsourcing is required. Also let ȳ∗(Z) be the similar value when

the supplier does not utilize outsourcing. Consider the supplier’s cost of replenishing the

retailer with and without outsourcing (JVMI
n and J̄VMI

n ) as functions of both y and Z. Lemma

2 shows that y∗n(Z) and ȳ∗(Z) are linear functions of Z, and Lemma 3 shows a similar result

for the production up-to quantity q∗VMI(Z). The exact procedure for finding the minimizing

value of Z is outlined in the next section.

Lemma 2 (a) y∗n(Z) = y∗n(0) + Z; (b) ȳ∗(Z) = ȳ∗(0) + Z.

Proof See Appendix.

Lemma 3 Assume xS = xR = 0. Then, q∗VMI(Z) = q∗VMI(0) + Z.

Proof See Appendix.

4 Solution Procedure

The optimal replenish up-to values under a (z, Z) VMI contract and the optimal production

values under both VMI and RMI are obtained using infinitesimal perturbation analysis, or
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IPA (see Glasserman and Tayur (1995) for a discussion of IPA). The value of Z that minimizes

the retailer costs is found using an analogous version of a newsvendor-type problem based

on the following Theorem 7 and supporting arguments.

Lemma 4 For fixed values of Q, b−, and b+, the total expected payment from the supplier to

the retailer is independent of the retailer’s choice of Z.

Proof See Appendix.

Corollary 3 The choice of Z by the retailer influences only his holding and penalty costs.

Lemma 4 and Corollary 3 show that the supplier is indifferent to the choice of Z; therefore,

the assignment of the right to choose Z to the retailer is fully justified. For the rest of the

analysis, we intend to use an analog of shortfall calculations, therefore, we set Z to be our

reference point.

Definition 1 For a given Z and corresponding ȳ∗, y∗n and q∗VMI, which are linear in Z, define

Θn(x) = Pr(un ≥ Z − x) and Ψ(x) =
∑T−1

n=0 Θn(x)/T where un is the ending inventory at

the retailer in period n.

Notice that based on Lemmas 2 and 3 and Proposition 4, Θn(·) and Ψ(·) do not depend

on Z and the definition given above is correct. This allows us to state the following Theorem

7 which shows that the retailer’s optimal choice of Z satisfies a newsvendor type relation.

Theorem 7 The retailer’s expected cost, CVMI(Z), is convex in Z and the optimal choice of

Z satisfies Ψ(Z) = p
p+hR

.

Proof Let CVMI
n (Z) be the expected cost paid by the retailer under VMI when he chooses

a value of Z in period n in the production horizon (we exclude here the payment from the

supplier which is independent of Z). Further, let CVMI(Z) be the expected cost paid by the

retailer under VMI during the entire production cycle. Then,

CVMI(Z) =
T−1∑
n=0

CVMI

n (Z)
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=
T−1∑
n=0

(
hRE

[
u+

n

]
+ pE

[
u−n

])

=
T−1∑
n=0

[
hR

∫ Z

−∞
(Z − ξ)dΘn(ξ) + p

∫ ∞

Z
(ξ − Z)dΘn(ξ)

]

and

C ′VMI(Z) =
T−1∑
n=0

[
hR

∫ Z

−∞
dΘn(ξ)− p

∫ ∞

Z
dΘn(ξ)

]

=
T−1∑
n=0

[hRΘn(Z)− p(1−Θn(Z))]

= (hRΨ(Z)− p + pΨ(Z)) T.

C ′′VMI(Z) is obviously non-negative, thus, CVMI is convex. Setting C ′VMI(Z) = 0, we see that

the optimal Z satisfies Ψ(Z) = p
p+hR

. 2

Thus, our solution procedure is as follows: 1) we set Z to some arbitrary value, say Ẑ;

2) we solve for ȳ∗(Ẑ), y∗n(Ẑ) and q∗VMI(Ẑ) using IPA; 3) we collect statistics on the retailer’s

inventory shortfall at the end of each period (defined as s = ȳ∗ − un); 4) the optimal

shortfall amount, say s∗, is defined to be the value of s where Ψ(s) = p
p+hR

; 5) the optimal

value of Z, say Z∗, is then computed as Z∗ = Ẑ − (ȳ∗ − s∗); and 6) we find the supplier’s

optimal replenishment values (ȳ∗(Z∗) and y∗n(Z∗) ∀ n) and production value (q∗VMI) using

the relationships given in Lemmas 2 and 3, and the associated costs are found through

simulation.

5 Numerical Analysis

Through numerical analysis, we examine the question of why VMI appears to outperform

RMI in some situations, but performs worse than RMI in other scenarios. We then consider

the question of how retailers and suppliers can structure a VMI contract (i.e., choose the

contractual parameters b−, b+, and Q) such that VMI is given the best opportunity to out-

perform RMI. We present broad guidelines for choosing the contractual parameters. Given

contractual parameters which allow VMI to perform well (not necessarily optimally), we ex-
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Figure 1: Example of VMI Performing Poorly

amine the effect of different outsourcing costs and demand variabilities on the performance

of VMI. Finally, we examine the effect of VMI on the individual supply chain members.

Replenish up-to Values

Our numerical results show that a (z, Z)-type VMI contract can perform better or worse

than RMI, depending on the scenario and the chosen contract parameters (b−, b+, z, and

Z). Figure ?? shows the optimal VMI, RMI, and supply chain replenish up-to values for a

situation where VMI performs better than RMI in terms of overall supply chain cost. Figure

1 shows the same information for a situation where VMI performs worse than RMI. In cases

where VMI performs better than RMI, the VMI replenish up-to values closely match those

of the supply chain optimal values (see Figure ??). In Figure 1 due to the poor selection

of b− and b+ values, under VMI the supplier is sending much more inventory to the retailer

than is optimal for the supply chain. However, by simply changing the b− value to 1100

and b+ to 75, we can significantly improve the performance of VMI so that it now performs

better than RMI, as shown in Figure 2. The VMI replenish up-to values are now very close

to the supply chain optimal values for this scenario.
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Figure 2: Example of Improving VMI Performance

Choosing Contractual Parameters

Figure 3: VMI for Low Demand Variance

While it is possible to search over all b−, b+, and Q values to attain the minimum supply

chain cost achievable under VMI, finding these values requires an extremely time-intensive

search procedure. However, we have examined a variety of scenarios which we consider

to be realistic, and we have identified general guidelines which may aid in the choosing of
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VMI contractual parameters. These guidelines will not, in general, achieve the supply chain

optimal cost; however, they will provide a robust VMI contract which performs (in most

realistic scenarios) significantly better than RMI agreements.

Figure 4: VMI for High Demand Variance

The recommended settings for the VMI contractual parameters are actually quite intu-

itive. Consider Figures 3 and 4 which show the total supply chain costs in cases of low and

high demand variance, respectively. Each line in the figures corresponds to a different value

of b+. The b− values are along the x-axis. As demand variance increases, it is optimal (from

the supply chain perspective) to allow more flexibility to the supplier in determining how

much inventory to ship to the retailer. This is done by increasing the value of Q. Based on

our sampling of different scenarios, our recommendation for the value of Q does not appear

to be sensitive to the length of the horizon or other parameters. Thus, the costs in Figure 3

are calculated with Q = 40, while the costs in Figure 4 are calculated using Q = 200).

When b+ < hS it is cost effective for the supplier to pay the penalty costs rather than

to hold inventory, which is obviously not in the best interest of the supply chain. Therefore,

we exclude consideration of b+ < hS. We examined values of b+ between 10 and 200 in

increments of 10, as well as larger increments up to a maximum value of 1000 for this
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example (although for clarity not all of these lines are shown in the figures).

Figure 5: VMI for Low Demand Variance with Incorrect Choice of Q

The cost under RMI for the scenario of low demand variance (standard deviation=20) is

approximately $3463, and most combinations of b− and b+ produce supply chain costs lower

than under an RMI agreement. For the high demand variance case (standard deviation=100),

the RMI cost is $10965, and all of the VMI contracts shown in Figure 4 result in supply chain

savings. In both cases values of b+ near hR serve to transfer the cost of holding inventory

from the retailer to the supplier to promote inventory levels that are more in-line with those

of a coordinated channel. Therefore, we suggest that b+ be set near the retailer’s holding

cost (so b+ = 10, in this example).

Notice that in both the low demand variance case (Figure 3) and the high demand

variance case (Figure 4), given that b+ = hR, the lowest supply chain costs are attained

when b− is in the range of 250 to 300. At Z = z = 0, we would expect a b− value around the

retailer’s penalty cost p to produce the lowest supply chain costs (see Theorem 6). Intuitively,

as Q (since Q = Z − z) increases, the supplier enjoys more flexibility under VMI, and to

balance this a higher value of b− is necessary in order to create inventory levels which are

best for the supply chain (as is the case in the scenario depicted in Figure 4). For Q > 0,
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therefore, we expect that the best values of b− to be (1+ ε)p where ε depends on the value of

Q, and is increasing in Q. For the examples shown here, b− values of about 1.2 to 1.4 times

the value of p give the lowest total supply chain costs.

Figure 5 shows the importance of choosing the appropriate value of Q for a given scenario.

It recreates the low demand variance scenario shown in Figure 3, except that here Q is set to

a value of 100, and our suggested guidelines for setting b− and b+ would result in total supply

chain costs greater than those under RMI. Figure 5 shows that when Q is very large, the

total supply chain costs can be more sensitive to changing b+ values. Furthermore, Figure

5 suggests that when Q is very large, large values of b+ and b− actually result in lower total

supply chain costs than our recommended settings.

Effect of Outsourcing Cost

Table 1 compares the performance of VMI versus RMI at different costs of outsourcing (b0).

For these examples hS = 5, hR = 10, p = 200, T = 3, and demand is normally distributed

with mean 100 and standard deviation of 50. Following our guidelines we set Q to 100, b−

to 300, and b+ to 10. In these examples VMI results in savings over RMI of just over 8% at

an outsourcing cost of 50 to over 23% at an outsourcing cost of 1000. Clearly, as outsourcing

becomes more expensive, the supplier is able to send less inventory to the retailer under VMI.

Thus, the savings from VMI increases as the cost of outsourcing increases. The increase in

savings is driven by the widening gap between RMI costs and supply chain costs. For all

cases in Table 1, more than 99% of the potential savings3 are captured by VMI.

3Measured as 1−VMI Cost - SC Opt. Cost
RMI Cost - SC Opt. Cost × 100%
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b0 SC Opt. VMI RMI % Savings % of Potential Opt. VMI Opt. RMI

Cost Cost Cost Over RMI Savings Captured Production Production

by VMI Amount Amount

50 5332.33 5333.72 5813.26 8.25% 99.71% 393.75 425.27

100 5476.90 5481.42 6195.69 11.53% 99.37% 408.46 458.12

150 5512.90 5516.70 6394.52 13.73% 99.57% 413.38 474.77

200 5523.43 5527.80 6526.69 15.30% 99.56% 415.34 484.96

250 5523.43 5528.19 6628.35 16.60% 99.57% 416.31 491.70

500 5523.43 5528.22 6923.36 20.15% 99.66% 416.46 514.86

1000 5523.43 5528.22 7184.05 23.05% 99.71% 416.46 535.99

Table 1: Effect of Cost of Outsourcing

Notice that the optimal production amount under VMI levels off around 416 units once

the cost of outsourcing (b0) surpasses 200. Once outsourcing becomes prohibitively expensive,

the supplier will choose to not ever outsource. Thus, further increases in b0 have no effect

under VMI, and the greater flexibility of VMI (specifically due to the supplier being in a

better position to decide whether or not to outsource) translates into larger supply-chain

savings.

Effect of Variance

Standard Q SC Opt. VMI RMI % Savings % of Potential Savings

Deviation Value Cost Cost Cost Over RMI Captured by VMI

20 0 3113.24 3115.78 3463.78 10.04% 99.27%

50 100 5513.90 5522.22 6394.52 13.64% 99.06%

80 150 7788.11 7802.40 9186.52 15.07% 98.98%

100 200 9235.65 9255.93 10965.46 15.59% 98.83%

27



Table 2: Effect of Variance

Table 2 displays the effect of increasing demand variance on the performance of VMI for the

supply chain. As variance increases, VMI provides greater savings for the supply chain over

RMI. With higher variance we would expect a greater chance of the supplier outsourcing. As

stated previously, VMI allows the supplier to make better decisions about when to outsource,

and this translates into savings for the supply chain. Additionally, by following our general

rules for setting the contractual parameters, VMI comes very close to the supply chain

optimal. For the cases shown in Table 2, VMI captures at least 98.8% of the potential

benefits for each value of demand variance.

Cost to Individual Agents

We can also look at the cost to the individual agents (supplier and retailer) under VMI. To do

this, we use a scenario which we consider “realistic”, and we follow the guidelines we suggest

for choosing VMI contractual parameters by setting b− to a value somewhat greater than p

(b− = 1.5p in these examples) and b+ = hR. We assume that hS = 5, hR = 10, p = 200, b0 =

150, mean demand = 100, and T = 3. We will examine three scenarios: 1) low demand

variance (standard deviation = 20); 2) medium demand variance (standard deviation = 50);

and 3) high demand variance (standard deviation = 100).

For each instance of demand variance (see Figure 6) there is actually a range of Q

values for which a move from RMI to VMI results in significant total supply chain savings.

Within this range, however, the value of Q significantly affects the distribution of costs

between individual agents. At very small values of Q, the costs under VMI are very unevenly

distributed; the supplier is incurring most of the costs, while the retailer can actually make

money from the contractual penalty payments paid to him by the supplier. As Q increases

the costs become much more equally divided between the retailer and supplier. When Q

becomes very large, the retailer incurs most of the costs. This illustrates the ability to

adjust Q in order to achieve different divisions of the total supply chain costs. This option,

however, is attractive for values of Q which are not ‘too large’ – very large values of Q do

28



not necessarily result in savings to the supply chain. Figure 6 suggests that when demand

variance is high, not only is the potential savings from VMI contracts higher, but also the

range in which Q can be used as an instrument of dividing savings is much broader.

6 Managerial Insights

First, we see that VMI can provide significant savings for the supply chain over RMI in

almost all scenarios capturing nearly all benefits of the centralized model. Second, we see

that VMI can be particularly beneficial for products with high demand variance or high

outsourcing cost. However, care must be taken in determining the contract parameters such

as b−, b+ and Q values. As we have shown, an incorrect choice of b−, b+, and Q values can

cause the supply chain to incur larger costs under VMI than RMI, however, such situations

can be avoided.

We have also provided some very general guidelines that may aid in determining appro-

priate contractual parameters for many realistic scenarios. Our analysis has shown that if the

value of Q is adjusted based on the amount of variance present in the demand distribution,

then guidelines for choosing b− and b+ can be given to ensure that total supply chain costs

under VMI are lower than those under RMI. We have also shown how changing the value of

Q can (within some limits) be used to obtain different divisions of costs between the retailer

and its supplier. The potential for this tool is greater when demand is more variable.

Our computational analysis can also show that in many situations where VMI performs

poorly, it is the supplier who bears the brunt of the additional costs. This appears to match

some criticisms of VMI implementation in industry that VMI can be quite detrimental to

suppliers. The performance of individual members of the supply chain also seems to depend

to a large extent on the amount of flexibility given to the supplier in the form of greater

values of Q. For example, our numerical analysis shows that given a large Q and appropriate

b− and b+ values, the supplier benefits from a move to VMI. This validates claims made on

a Harvard Business School videotape (HBS #695504) that the supplier may receive great

benefit from VMI.
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Figure 6: Cost to Individual Supply Chain Agents
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Finally, although we provide guidelines for choosing parameters that benefit the supply

chain as a whole, our computational analysis suggests that finding parameters where both

the supplier and the retailer benefit from VMI is difficult in most cases. Thus, it may be

appropriate to consider a fixed payment or other pricing scheme which more fairly distributes

the savings from VMI to make VMI attractive to all parties involved.

7 Model Extensions

One can easily imagine many variations and extensions of the model presented here. Some

possible extensions of our model include accounting for situations where the length of the

production cycle may vary, incorporating multiple retailers under a single supplier, and

including a lead time for delivery of product from supplier to retailer. We now discuss these

changes to our model and their impact.

If we allow the length of the production cycle (T ) to change, our structural results remain

unchanged if we assume that the value of T is known at the beginning of that production

cycle (i.e., the value of T is known at the time the amount of production for that cycle is

decided). However, the actual production decision is no longer independent of the other

production cycles as Theorem 5 will no longer hold since the inventory at the end of a

production cycle cannot be guaranteed to be less than the desired up-to value for the next

production cycle. Without transshipment, positive lead time can be easily incorporated into

our model. As in Hariharan and Zipkin (1995), the actual uncertainty of demand corresponds

to the sum of information delay and physical flow delay. Our analysis remains unchanged for

this case, but the uncertainty is increased accordingly. If we now allow for multiple retailers,

as long as the supplier is able to transship inventories among retailers and negotiated penalty

coefficients are identical, the demand from the retailers can be aggregated and then viewed

exactly as in our model. Notice also that positive lead time can be incorporated if we allow

for transshipment (which implies that no portion of the inventory is assigned to a specific

retailer).
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8 Conclusions

In this paper we have modeled a specific type of VMI agreement that occurs in practice

called a (z, Z) VMI contract in which the supplier makes all decisions regarding the amount

and timing of deliveries to the retailer, but is penalized if the retailer’s inventory level falls

below z or remains above Z after customer demand. Our goal has been to investigate the

benefit of better coordination between production and delivery allowed by VMI. Our model

applies to a single supplier and single retailer.

We characterize the optimal behavior of a supplier operating under such an agreement

where the supplier is constrained to producing only once every T periods, but can deliver

and outsource in any period. The supplier’s optimal policy is characterized as a replenish

up-to policy, which is shown to be easily computed since the periods when the supplier

outsources and when the supplier does not outsource can be decoupled. If the supplier

employs outsourcing in a period, the replenishment amount is dependent on the number

of periods remaining in the production cycle; however, the optimal up-to values when the

supplier does not outsource are stationary. The optimal production policy for the supplier

is also defined. We describe the policy of a retailer operating under a (z, Z) VMI contract

where the retailer can exert some measure of control over the supplier by setting the values of

z and Z in the contract, and we relate his decision to the well-known newsvendor problem. It

is also shown that the costs incurred by the supplier are driven by the contractual parameter

Q, while the retailer’s costs are driven by his choice of Z and his transfer benefits by Q.

We use computer simulation to compare the performance of this type of VMI agreement

with a traditional RMI setting with some information sharing. Our numerical results suggest

that the savings from this type of VMI agreement can be significant (particularly when

outsourcing is very expensive or variance is high), but that this type of VMI contract can

also perform worse than RMI in some situations. These results correspond with industry

reports, which provide differing accounts on the effectiveness of VMI. Our analysis suggests

that the choice of VMI contract parameters during the negotiation process can make the

difference between effective VMI agreements and agreements that are detrimental to one or
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all members of the supply chain, and thus we present some general guidelines that may be

of use in determining VMI contractual parameters.
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Appendix

Proof of Theorem 2 This will be proved using induction on the following statements:

1. y∗n−1 ≥ y∗n,

2. V ′VMI
n−1 (x) ≤ V ′VMI

n (x) ∀ x < y∗n−1.

Assume (1) and (2) hold for n = i + 1. Recall that

V VMI

i−1 (x) = −b0x + min
y≥x

JVMI

i−1 (y),

JVMI

i−1 (y) = b0y + L(y) +
∫ ∞

0
V VMI

i (y − ξ)dΦ(ξ), and

d

dy
JVMI

i−1 (y) = b0 + L′(y) +
∫ ∞

0
V ′VMI

i (y − ξ)dΦ(ξ).

Define

Hi(ω) = b0 + L′(ω) +
∫ ∞

0
V ′VMI

i (ω − ξ)dΦ(ξ).

Since JVMI
i (y) is convex, we see that Hi(ω) is non-decreasing. We also note that limω→∞Hi(ω) >

0. Therefore, either Hi(ω) has at least one zero, or is positive for all ω’s. We define y∗i as

the smallest of its zeros or −∞ if none exists.

We now show that (1) and (2) hold for n = i. From the definition of Hi(ω) and the

second induction assumption, Hi(ω) ≤ Hi+1(ω). Thus, y∗i−1 ≥ y∗i . To show that V ′VMI
i−1 (x) ≤

V ′VMI
i (x) ∀x < y∗i−1, we note that under an optimal policy,

V VMI

i−1 (x) =

 b0(y
∗
i−1 − x) + L(y∗i−1) +

∫∞
0 V VMI

i (y∗i−1 − ξ)dΦ(ξ) : x < y∗i−1

L(x) +
∫∞
0 V VMI

i (x− ξ)dΦ(ξ), : x ≥ y∗i−1,

and

V ′VMI

i−1 (x) =

 −b0 : x < y∗i−1

L′(x) +
∫∞
0 V ′VMI

i (x− ξ)dΦ(ξ), : x ≥ y∗i−1.

Thus for x < y∗i ≤ y∗i−1, V ′VMI
i−1 (x) = V ′VMI

i (x) = −b0.

For y∗i ≤ x < y∗i−1, V ′VMI
i−1 (x) = −b0. But V ′VMI

i (x) = 0 at y∗i and since V VMI
i (x) is con-

vex, V ′VMI
i (x) is non-decreasing in x for x > y∗i . Therefore, V ′VMI

i (x) ≥ 0 for x ≥ y∗i , and
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V ′VMI
i (x) ≥ V ′VMI

i+1 (x) for y∗i ≤ x < y∗i+1. Combining, we see that V ′VMI
i−1 (x) ≤ V ′VMI

i (x). In order

to conclude our proof, we now must show that y∗T−2 ≥ y∗T−1 and that V ′VMI
T−2 (x) ≤ V ′VMI

T−1 (x).

However, the above argument remains true with n replaced by T − 1 and recalling that

V VMI
T (·) = 0. 2

Proof of Theorem 3 The cost equations for the non-outsourcing case are given by (2) and

(3). Consider only the costs that are dependent on the retailer’s inventory, Equations (4)

and (5). A slight adaptation of Theorem 1 can be used to show that (4) and (5) are convex

in y and x1, respectively. We denote the y that minimizes (4) as ȳ∗n.

We assume that UVMI
n+1(x1, x2) = V̄ VMI

n+1 (x1) + gn+1(x2) and we show that UVMI
n (x1, x2) =

V̄ VMI
n (x1) + gn(x2). The y that minimizes KVMI

n (y, xE) is y = ȳ∗n. Hence, x1 = ȳ∗n also

minimizes UVMI
n (x1, x2) in x1. Thus, if x2 ≥ ȳ∗n (and therefore outsourcing is not required to

reach the replenish up-to point),

UVMI

n (x1, x2) = V̄ VMI

n (x1) + hSx2 +
∫ ∞

0
gn+1(x2 − ξ)dΦ(ξ).

If x2 < ȳ∗n, it is optimal to set y as close to ȳ∗n as possible due to convexity. Therefore, if

x2 < ȳ∗n,

UVMI

n (x1, x2) = L̄(x2) + hSx2 +
∫ ∞

0
V̄ VMI

n+1 (x2 − ξ)dΦ(ξ)

+
∫ ∞

0
gn+1(x2 − ξ)dΦ(ξ).

Therefore, if we can show that UVMI
n (x1, x2)− V̄ VMI

n (x1) is a function of x2 alone then we are

done.

UVMI

n (x1, x2)− V̄ VMI

n (x1) = Λn(x1, x2) +
∫ ∞

0
gn+1(x2 − ξ)dΦ(ξ)

where

Λn(x1, x2) =

 L̄(x2) + hSx2 +
∫∞
0 V̄ VMI

n+1 (x2 − ξ)dΦ(ξ)− V̄ VMI
n (x1) : x2 < ȳ∗n

0 : x2 ≥ ȳ∗n.

However, when x2 < ȳ∗n,

V̄ VMI

n (x1) = L̄(ȳ∗n) +
∫ ∞

0
V̄ VMI

n+1 (ȳ∗n − ξ)dΦ(ξ).
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Therefore,

Λn(x1, x2) = L̄(x2) + hSx2 − L̄(ȳ∗n) +
∫ ∞

0

[
V̄ VMI

n+1 (x2 − ξ)− V̄ VMI

n+1 (ȳ∗n − ξ)
]
dΦ(ξ)

which is independent of x1. Therefore, UVMI
n (x1, x2) = V̄ VMI

n (x1)+ gn(x2). Letting n = T − 1,

the same arguments can be used to show that UVMI
T−1(x1, x2) = V̄ VMI

T−1(x1) + gT−1(x2) in order

to conclude the inductive argument. 2

Proof of Corollary 1 Notice that J̄ ′VMI
T−1 (ȳ∗T−1) = L̄′(ȳ∗T−1) = 0. Assume J̄ ′VMI

n+1 (ȳ∗T−1) = 0

(and thus, V̄ ′VMI
n+1 (y) = 0 ∀ y < ȳ∗T−1). This implies

∫∞
0 V̄ ′VMI

n+1 (ȳ∗T−1 − ξ)dΦ(ξ) = 0. Therefore,

J̄ ′VMI
n (ȳ∗T−1) = L̄′(ȳ∗T−1) +

∫∞
0 V̄ ′VMI

n+1 (ȳ∗T−1 − ξ)dΦ(ξ) = 0. 2

Proof of Corollary 2 Since ȳ∗ is independent of n, it is sufficient to show that J ′VMI
n (y) ≥

J̄ ′VMI
T−1 (y) ∀ n = 0, . . . , T − 1.

The proof is by induction. For n = T − 1

J ′VMI

T−1 (y) = L′(y) + b0 and

J̄ ′VMI

T−1 (y) = L′(y)− hS.

So, J̄ ′VMI
T−1 (y) ≤ J ′VMI

T−1 (y) for all b0 ≥ 0 and hS ≥ 0. Thus, ȳ∗ ≥ y∗T−1. Assume that J̄ ′VMI
T−1 (y) ≤

J ′VMI
n+1 (y). We will show that J̄ ′VMI

T−1 (y) ≤ J ′VMI
n (y).

J ′VMI

n (y) = L′(y) + b0 + E[V ′VMI

n+1 (y −D)] and

J̄ ′VMI

T−1 (y) = L′(y)− hS.

Since V ′VMI
n+1 (x) = −b0 if x < y∗n+1 and V VMI

n+1 is convex, V ′VMI
n+1 (x) ≥ −b0 for all x. Therefore,

J̄ ′VMI
T−1 (y) ≤ J ′VMI

n (y) which implies that ȳ∗ ≥ y∗n. 2

Proof of Theorem 4 Let L̄(x) be the one period cost to the supplier as defined in Equation

2. Define L̂(x) as

L̂(x) =

 L̄(x) + hSx : x < ȳ∗

L̄(ȳ∗) + hSx : x ≥ ȳ∗.
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From Theorem 3, L̄ is convex and from Corollary 1, L̄′(ȳ∗) = 0, thus, L̂ is convex.

The proof of Theorem 4 is provided by a modified sample path argument. Assume that

the supplier initially has (produces up to) q units. Let xi(q) be the amount of inventory at

the retailer and the supplier (combined) in period i. For a given realization of demands, let

M(q) be the first period in which xM(q)(q) ≤ y∗M(q). For δ ≥ 0, we have xi(q + δ) = xi(q)+ δ,

for i ∈ {0, . . . ,M(q) − 1} since in the initial M(q) − 1 periods we do not outsource and,

along a fixed sample path, increasing the production value by δ corresponds to increasing

the system inventory by δ. If F VMI
i (q) denotes the supplier’s costs in period i (i ≤ M(q)), it

is easy to verify that

F VMI

i (q + δ)− F VMI

i (q) = L̂(xi(q) + δ)− L̂(xi(q)).

Consider the following cases:

1. There exists a period such that xM(q)(q) ≤ y∗M(q) (M(q) ∈ {0, . . . , T − 1}).

We group all the paths that have the same realizations of demand in periods 0 to M(q).

This is a correctly defined partition of all paths (based on our definition of M(q)), which

allows us to use the expected cost-to-go values starting from period M(q), V VMI

M(q)(·).

Consider two subcases:

(a) xM(q)(q) < y∗M(q).

Choose a δ such that xM(q)(q + δ) = xM(q)(q) + δ < y∗M(q) and xM(q)−1(q − δ) =

xM(q)−1(q)− δ > y∗M(q)−1. In period M(q), the retailer’s inventory will be brought

up to y∗M(q) when we start with q − δ, q, or q + δ. Therefore,

F VMI(q + δ)− F VMI(q) =
M(q)∑
i=0

[
L̂(xi(q) + δ)− L̂(xi(q))

]
,

and we have a similar result for F VMI(q)− F VMI(q − δ). Thus, by convexity of L̂,

F VMI(q + δ)− F VMI(q) ≥ F VMI(q)− F VMI(q − δ).

(b) xM(q)(q) = y∗M(q).

For b0 > 0, y∗n < ȳ∗ for all n ∈ {0, . . . , T − 1} (see Proof of Corollary 2). Thus,

we choose a δ such that δ < ȳ∗ − y∗M(q) and δ < xM(q)−1(q) − y∗M(q)−1. Notice
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that F VMI(q) − F VMI(q − δ) = −b0δ since xM(q)(q − δ) = y∗M(q). Also, since no

inventory is left at the supplier after the retailer is replenished in period M(q),

V VMI

M(q)(·) describes the cost-to-go.

F VMI(q + δ)− F VMI(q) = V VMI

M(q)(xM(q)(q) + δ)− V VMI

M(q)(xM(q)(q))

≥ V VMI

M(q)(xM(q)(q))− V VMI

M(q)(xM(q)(q)− δ)

= −b0δ

from convexity of V VMI

M(q) and the definition of y∗M(q). Thus,

F VMI(q + δ)− F VMI(q) ≥ F VMI(q)− F VMI(q − δ).

2. xn(q) > y∗n in each period n ∈ {0, . . . , T − 1}.

If xn > y∗n for each period n, then for δ > 0, xn(q + δ) > y∗n for each period n. Choose

a δ such that xn(q − δ) > y∗n for each period n.

F VMI(q)− F VMI(q − δ) =
T−1∑
i=0

[
L̂(xi(q))− L̂(xi(q)− δ)

]
.

Thus, by convexity of L̂,

F VMI(q + δ)− F VMI(q) ≥ F VMI(q)− F VMI(q − δ).

2

Proof of Lemma 2 (a) The minimizing value of y in period n can be found by solving

∂
∂y

JVMI
n (y, Z) = 0 4, or

L′(y, Z) +
∫ ∞

0
V ′VMI

n+1 (y − ξ, Z)dΦ(ξ) = −b0

⇐⇒ b−Φ(y − Z + Q) + b+Φ(y − Z) +
∫ ∞

0
V ′VMI

n+1 (y − ξ, Z)dΦ(ξ) = b− − b0 (A1)

Let y∗n(Ẑ) be the minimal solution to (A1) when Z = Ẑ. We will use induction on the

following statements:

1. y∗n(Ẑ) = y∗n(0) + Ẑ

4JVMI
n (y, Z) and V VMI

n (y, Z) are equivalent to the equations defined for JVMI
n (y) and V VMI

n (y) previously

but now we need these equations to depend explicitly upon Z.

38



2. V ′VMI
n (x + Ẑ, Ẑ) = V ′VMI

n (x, 0).

By definition of y∗T−1(0),

b−Φ(y∗T−1(0) + Q) + b+Φ(y∗T−1(0)) = b− − b0

⇒ b−Φ(y∗T−1(0) + Ẑ − Ẑ + Q) + b+Φ(y∗T−1(0) + Ẑ − Ẑ) = b− − b0.

Therefore, y∗T−1(Ẑ) = y∗T−1(0) + Ẑ.

V ′VMI

T−1 (x + Ẑ, Ẑ) =

 −b0 : x + Ẑ < y∗T−1(Ẑ)

L′(x + Ẑ, Ẑ) : x + Ẑ ≥ y∗T−1(Ẑ)

and

V ′VMI

T−1 (x, 0) =

 −b0 : x < y∗T−1(0)

L′(x, 0) : x ≥ y∗T−1(0).

But,

L′(x + Ẑ, Ẑ) = b−Φ(x + Ẑ − Ẑ + Q) + b+Φ(x + Ẑ − Ẑ)

= b−Φ(x + Q) + b+Φ(x)

= L′(x, 0)

and y∗T−1(Ẑ) = y∗T−1(0) + Ẑ. Therefore, V ′VMI
T−1 (x + Ẑ, Ẑ) = V ′VMI

T−1 (x, 0).

Now we assume that y∗n+1(Ẑ) = y∗n+1(0) + Ẑ and V ′VMI
n+1 (x + Ẑ, Ẑ) = V ′VMI

n+1 (x, 0) and we

will show that the same is true with n periods remaining. Recall that ∂
∂y

JVMI
n (y, Z) = 0 is

equivalent to (A1). Thus, if Z = 0

b−Φ(y∗n(0) + Q) + b+Φ(y∗n(0)) +
∫ ∞

0
V ′VMI

n+1 (y∗n(0)− ξ, 0)dΦ(ξ) = b− − b0

by definition of y∗n(0). By the induction assumption,

b−Φ(y∗n(0) + Q) + b+Φ(y∗n(0))

+
∫ ∞

0
V ′VMI

n+1 (y∗n(0)− ξ, 0)dΦ(ξ) = b− − b0

⇒ b−Φ(y∗n(0) + Ẑ − Ẑ + Q) + b+Φ(y∗n(0) + Ẑ − Ẑ)

+
∫ ∞

0
V ′VMI

n+1 (y∗n(0) + Ẑ − ξ, Ẑ)dΦ(ξ) = b− − b0.
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Therefore,

b−Φ(y∗n(Ẑ)− Ẑ + Q) + b+Φ(y∗n(Ẑ)− Ẑ) +
∫ ∞

0
V ′VMI

n+1 (y∗n(Ẑ)− ξ, Ẑ)dΦ(ξ) = b− − b0

and y∗n(Ẑ) = y∗n(0) + Ẑ.

V ′VMI

n (x + Ẑ, Ẑ) =

 −b0 : x + Ẑ < y∗n(Ẑ)

L′(x + Ẑ, Ẑ) +
∫∞
0 V ′VMI

n+1 (x + Ẑ − ξ, Ẑ)dΦ(ξ) : x + Ẑ ≥ y∗n(Ẑ)

and

V ′VMI

n (x, 0) =

 −b0 : x < y∗n(0)

L′(x, 0) +
∫∞
0 V ′VMI

n+1 (x− ξ, 0)dΦ(ξ) : x ≥ y∗n(0).

By our previous argument, L′(x, 0) = L′(x + Ẑ, Ẑ) and from the induction assumption,

V ′VMI
n+1 (x+ Ẑ, Ẑ) = V ′VMI

n+1 (x, 0). Thus,
∫∞
0 V ′VMI

n+1 (x+ Ẑ−ξ, Ẑ)dΦ(ξ) =
∫∞
0 V ′VMI

n+1 (x−ξ, 0)dΦ(ξ).

Combined with the fact that y∗n(Ẑ) = y∗n(0) + Ẑ, we see that V ′VMI
n (x + Ẑ, Ẑ) = V ′VMI

n (x, 0).

(b) The proof for the non-outsourcing case is similar. 2

Proof of Lemma 3 For a given Z, the supplier’s optimal policy, π(Z), can be fully described

by the quantity produced (q∗VMI), the up-to level when the supplier has sufficient on-hand

inventory to replenish the retailer (ȳ∗), and the outsourcing up-to levels (y∗n); i.e., π(Z) :=

{q∗VMI, ȳ
∗, y∗n, for n = 0, . . . , T − 1}. Based on Lemma 2, if we increase Z by δ (to Z + δ,

δ > 0), all up-to levels (ȳ∗ and y∗n, for n = 0, . . . , T − 1) increase by δ.

Notice that if q∗VMI is also increased by δ, then policy π(Z + δ) := {q∗VMI + δ, ȳ∗ + δ, y∗n +

δ, for n = 1, . . . , T} has the same costs for the supplier as π(Z). Consider case (a) where

the retailer specifies the level Z and the supplier chooses policy π(Z) and case (b) where

the retailer specifies Z + δ and the supplier chooses π(Z + δ). These two cases result in the

same amount of holding costs for the supplier, since the inventory levels at the supplier are

identical for the two cases for a given set of demand realizations. The inventory levels at

the retailer, however, are larger by a value of δ for case (b) than for case (a) for a given

set of demand realizations. Let V (Z) and V (Z + δ) be the minimum costs to the supplier

over the entire horizon from contractual penalties under VMI when the retailer has specified

Z and Z + δ, respectively. If there exists Ṽ (Z + δ) < V (Z), then we should be able to

reduce the ȳ∗ and y∗n values chosen in V (Z + δ) by δ such that Ṽ (Z) < V (Z) (where Ṽ (Z)
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is the cost associated with the new ȳ∗ and y∗n values). But, this is a contradiction as V (Z) is

defined as the minimum cost if the retailer specifies Z. Therefore, V (Z) = V (Z +δ), and the

supplier’s costs (because of contractual penalties) are the same under case (a) and case (b). 2

Proof of Lemma 4 The proof is by a sample path argument. Consider the effect of

changing Z to Z + δ (δ > 0). From Lemma 3 the production quantity for Z + δ, q∗VMI(Z + δ),

is equivalent to q∗VMI(Z) + δ, and similarly from Lemma 2, the replenish up-to levels satisfy

ȳ∗(Z + δ) = ȳ∗(Z) + δ and y∗n(Z + δ) = y∗n(Z) + δ. Thus, by a simple induction it is possible

to show that in each period the actual payment made by the supplier to the retailer is the

same, regardless of the value of Z. First, notice that in the first period, before demand is

realized, that the retailer’s inventory is ȳ∗(Z) if the retailer chooses Z, and ȳ∗(Z) + δ if the

retailer chooses Z + δ, and that the resulting inventory at the supplier is the same for Z and

Z + δ (since q∗VMI(Z)− ȳ∗(Z) = q∗VMI(Z) + δ − (ȳ∗(Z) + δ)). Clearly, the retailer’s inventory

at the end of the period when he chooses Z is ȳ∗(Z)−Dn, and is ȳ∗(Z)−Dn + δ when the

retailer chooses Z + δ (where Dn is the realization of demand in period n). In each of the

following periods, if the retailer chooses Z, he can only reach the inventory level of ȳ∗(Z) if

a retailer choosing Z + δ could reach an inventory level of ȳ∗(Z) + δ. If that level cannot

be reached, then the retailer’s inventory level under Z + δ is clearly δ more than the retailer

choosing Z since the same amount of inventory is available at the supplier. This implies that

the supplier where the retailer chooses Z and the supplier where the retailer chooses Z + δ

will run out of inventory in the same period. A similar argument applies in analyzing the

outsourcing replenish up-to values (y∗n). Therefore, once the retailer begins outsourcing, his

inventory levels after demand satisfy y∗n(Z)−Dn under Z, and y∗n(Z)−Dn + δ under Z + δ.

Thus, the payments under the two scenarios are equal. 2
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