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Diamond, Ivan, and Adrienne S. Gordon. Cellular and Molecular Neuroscience of Alcoholism. Physiol. Rev. 77: 
l-20, 1997.-Recent advances in neuroscience have made it possible to investigate the pathophysiology of alcohol- 
ism at a cellular and molecular level. Evidence indicates that ethanol affects hormone- and neurotransmitter- 
activated signal transduction, leading to short-term changes in regulation of cellular functions and long-term changes 
in gene expression. Such changes in the brain probably underlie many of the acute and chronic neurological events 
in alcoholism. In addition, genetic vulnerability also plays a role in alcoholism and, perhaps, in alcoholic medical 
disorders. 

I. INTRODUCTION 

Alcoholism, alcohol abuse, and the medical complica- 
tions of excessive drinking are major world-wide health 
problems. In the United States, -7% of adults are alcohol- 
ics, and >20% of hospitalized patients have a medical 
disorder related to heavy drinking (72). Recent advances 
in neuroscience have made it possible to investigate the 
pathophysiology of alcoholism at a cellular and molecular 
level. Evidence indicates ethanol affects hormone- and 
neurotransmitter-activated signal transduction, leading to 
short-term changes in regulation of cellular functions and 
long-term changes in gene expression. Such changes in 
the brain probably underlie many of the acute and chronic 

neurological events in alcoholism (202). In addition, ge- 
netic vulnerability also plays a role in alcoholism and, 
perhaps, in alcoholic medical disorders. 

II. ACUTE AND CHRONIC RESPONSES 
TO ETHANOL 

There are two major central nervous system (CNS) 
responses to alcohol abuse: severe intoxication and adap- 
tive changes that develop in alcoholics because of pro- 
longed drinking. Ethanol is both water soluble and lipid 
soluble and is readily distributed into the cytoplasm and 
lipid membranes of all cells in the body. There is no blood- 
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brain barrier for ethanol; nuclear magnetic resonance 
studies in animals (265) and human volunteers (198) show 
that alcohol can be detected in the brain within a few 
minutes after drinking. Acute ethanol intercalates into cell 
membranes (297) and increases membrane fluidity (105), 
while chronic ethanol alters the lipid composition of cell 
membranes (323,329). However, it is has never been clear 
how ethanol-induced disturbances in membrane order 
(104, 120, 298, 350) produce the characteristic short-term 
and long-term CNS effects of heavy drinking (201). These 
include such reversible clinical events as intoxication, 
memory loss during binge drinking (blackouts), tolerance 
to the intoxicating effects of ethanol in alcoholics, addic- 
tion (continued drinking despite adverse medical and so- 
cioeconomic complications), and a characteristic hyper- 
excitable alcohol withdrawal syndrome when alcohol 
abuse is discontinued (evidence of physical dependence). 

Almost all of the important pathophysiological tar- 
gets for ethanol in neural cells appear to be specific mem- 
brane proteins that mediate signal transduction (92, 201, 
358). Ethanol does not appear to alter the activity of most 
soluble proteins. Not all membrane proteins are affected, 
but some signal transduction cascades are highly sensi- 
tive. Targets include certain ion channels, transporters, 
neurotransmitter receptors, G proteins, and enzymes that 
produce second messengers; interaction of ethanol with 
these target proteins leads to changes in activity of many 
enzymes, chaperones, and regulators of gene expression. 
In this review we consider first several membrane pro- 
teins that are specifically sensitive to ethanol, particularly 
because they have relevance for important clinical events 
in alcoholism and alcohol abuse. Then we discuss other 
regulatory signaling pathways that are also altered by eth- 
anol and that may play a role in these events. It is also 
possible that over prolonged periods of time these etha- 
nol-induced molecular changes contribute to the develop- 
ment of several alcoholic neurological disorders. Apart 
from the role of thiamine deficiency in Wernicke’s disease, 
however, the pathogenesis of the neurologic disorders in 
alcoholism is not well understood (41, 71), but today, 
alcohol toxicity appears to be more important than nutri- 
tional deficiency. 

III. ETHANOL AND MEMBRANE PROTEINS 

AIcohols with increasing carbon chain length have 
increasing solubility in cell membranes. Nevertheless, 
there is a “cut-off’ in the biologic effect when alcohols of 
increasing chain length are studied in the same system 
(90, 164). Peoples and Weight (262) have recently shown 
that shorter chain length alcohols were increasingly po- 
tent inhibitors of neuronal N-methyl-D-aspartate (NMDA) 
receptor activated ion currents, but longer chain alcohols 
had no effect, despite greater solubility in membranes. 

These results suggest that there is a hydrophobic pocket 
in ethanol-sensitive membrane proteins. Because the cut- 
off response varies with different neurotransmitter recep- 
tor systems (164,262), these hydrophobic sites are proba- 
bly of different size in different membrane proteins. This 
is consistent with pioneering work by Franks and Lieb 
(92), who called attention to the molecular cut-off effects 
(90) and later documented highly specific hydrophobic 
binding sites on proteins that discriminate between opti- 
cal isomers of anesthetic agents with identical lipid solu- 
bility (91). Taken together, these findings suggest the pos- 
sibility of designing new drugs to compete with ethanol 
at selected hydrophobic sites to block or reverse specific 
adverse effects without affecting the function of other 
membrane proteins. 

IV. N-METHYL-D-ASPARTATE RECEPTORS 

The NMDA receptor is one of several major receptors 
for glutamate (155), the principal excitatory neurotrans- 
mitter in the brain. N-methyl-D-aspartate receptors in the 
hippocampus are involved in learning and memory (300) 
and are critical for long-term potentiation (LTP) and long- 
term depression (LTD) in models of synaptic plasticity 
(183). Specific NMDA receptor subunits mediate these 
NMDA receptor responses (89, 156, 300). N-methyl-D- 
aspartate receptor activation by glutamate promotes cal- 
cium influx through an ion channel that is part of the 
receptor (27). Calcium, in turn, regulates synaptic signal- 
ing (47) via activation of protein kinases, phosphatases, 
and proteases. Ethanol inhibits LTP (222), perhaps by sup- 
pressing its induction (103). Lovinger et al. (174) were the 
first among several investigators (78, 126, 165) to discover 
that ethanol inhibi,ts NMDA receptor activation at intox- 
icating blood alcohol levels. In Xenopus oocyte expres- 
sion systems, ethanol inhibition is modulated by glycine 
(26) and may (26, 45, 188) or may not (218) vary with 
NMDA receptor subunit composition. Ethanol also inhib- 
its kainate (79, 187) and DL-cu-amino-%hydroxy-&methyl- 
isoxazole-propionic acid (172, 187) responses, suggesting 
that non-NMDA receptors are also sensitive to ethanol 
(172). Indeed, ethanol modulates metabotropic glutamate 
receptors coupled to second messengers in cerebellar 
Purkinje cells (242). There is differential sensitivity to eth- 
anol among NMDA receptor isoforms in the brain (211) 
or when expressed in Xenopus oocytes (218), and ethanol 
inhibition of NMDA receptor activation (188, 243, 262) 
appears to play a role in ethanol intoxication. For exam- 
ple, it is likely that ethanol inhibition of NMDA receptors 
accounts for alcoholic “blackouts” that occur during 
heavy drinking. These startling episodes are characterized 
by hours of amnesia for events that occurred while intoxi- 
cated; they are best explained by transient ethanol inhibi- 
tion of NMDA receptors in the hippocampus. Several 
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agents prevent ethanol inhibition of LTP (43, 290, 322, 
355, 375) and raise the possibility of new treatments for 
ethanol-induced memory loss in humans. AIso, an agent 
like acamprosate, which appears to enhance NMDA re- 
ceptor function (182), might also be useful. Perhaps this 
is related to the clinical impression that acamprosate 
helps to sustain abstinence in human alcoholics (253). 

One of the adaptive CNS responses to chronic expo- 
sure to ethanol is an upregulation of NMDA receptors 
in human alcoholics (210) and in rats, particularly the 
hippocampus, measured by ligand binding (112, 304,319) 
and NMDA receptor subunit immunoreactivity (334). Eth- 
anol-induced upregulation could have serious neuropath- 
ological consequences (171) because overactivity of 
NMDA receptors appears to cause “excitotoxic” neuronal 
cell damage in several neurological disorders including 
ischemic strokes, hypoglycemia, and prolonged seizures 
(296). This was confirmed recently by demonstrating that 
antisense oligonucleotides to an NMDA receptor subunit 
protect specific neurons from excitotoxic cell death and 
reduce ischemic infarcts in the brain (344). Consistent 
with these findings, chronic exposure to ethanol causes 
increased NMDA receptor-mediated calcium flux (2, 134) 
and greater NMDA excitotoxicity in cultured neurons (2, 
35,125). These results suggest the possibility that memory 
deficits and neuronal cell loss in chronic alcoholics (118) 
might be due, in part, to chronic ethanol-induced upregu- 
lation of NMDA receptors. Unrestrained NMDA receptor 
activation is also implicated in alcohol withdrawal sei- 
zures because these receptors play a role in the pathogen- 
esis of convulsions (150, 229). Therefore, new therapies 
directed against excessive glutamate release (294) and 
activation of NMDA receptors (289,290) might prevent or 
reverse some complications of chronic alcohol abuse and 
withdrawal. 

Paradoxically, ethanol inhibition of NMDA receptors 
might be of protective value for ischemic stroke in nonal- 
coholics where excitotoxic amino acids cause brain dam- 
age. Recent experiments show that ethanol can attenuate 
excitotoxic neuronal damage (36, 177, 356), presumably 
by blocking NMDA receptor activation and calcium influx 
(178, 356), leading to attenuation of stress-induced c-fos 
expression in vulnerable neurons as in the hippocampus 
(161,299). However, unacceptably high concentrations of 
ethanol might be required for a protective effect in pa- 
tients. Further research on agents, like ifenprodil (169), 
that mimic the acute interaction of ethanol with NMDA 
receptors might generate more effective anti-ischemic 
agents than available today. 

V. p4MINOBUTYRIC ACID RECEPTORS 

y-Aminobutyric acid (GABA) is a major inhibitory 
neurotransmitter in the brain, activating GABA* and 

GABAB receptors. The GABA* receptor is an oligomeric 
protein complex containing a receptor-operated chloride 
channel and specific allosteric binding sites for benzodiaz- 
epines, barbiturates, and other agents (248, 318). The 
function of GABA* receptors is potentiated at intoxicating 
concentrations of ethanol in heterogeneous neural prepa- 
rations and cells stably transfected with GABA receptor 
subunits (122). Also, there is cross-tolerance between eth- 
anol, benzodiazepines, and barbiturates (196, 325). Thus 
benzodiazepines are very helpful in treating the alcohol 
withdrawal syndrome (72) by substituting for alcohol. On 
the other hand, benzodiazepine inverse agonists such as 
the imidazobenzodiazepine Ro 15-4513 prevent the intox- 
icating effects of ethanol in rodents apparently by antago- 
nizing ethanol potentiation of GABA* receptors (25, 196, 
254,324). Although Ro 15-4153 is not suitable for patients 
because it causes seizures, it is likely that new and safe 
drugs will be developed to block or reverse the acute 
intoxicating effects of ethanol by modulating GABA, 
receptor function. In addition, promising results with 
y-hydroxybutyrate suggest that novel agents affecting 
GABA function may be useful in treating alcohol depen- 
dence (95). 

The response of GABA receptors to ethanol varies in 
different regions of the brain (56, 272, 274, 286), but the 
molecular basis of this regional sensitivity is not well un- 
derstood. In hippocampus, ethanol enhances GABA* re- 
ceptor function only when GABAB receptors are blocked 
(347). In addition, molecular cloning has determined that 
the GABA* receptor complex is a multigene family (159, 
248). Genes for a variety of cy-, p-, y-, and b-subunits have 
been cloned, and GABA* receptors in brain appear to be 
assembled in multiple combinations of these subunits 
(159, 194). Moreover, the subunit composition of GABA* 
receptors changes under different biological conditions, 
introducing an additional element of GABA, receptor vari- 
ability. Differences in subunit composition may account 
for developmental changes in receptor properties with 
maturation (159), receptor localization in cells (263), and 
differences in receptor pharmacology in neurons (6, 85, 
122, 193). The role of specific subunits in determining 
ethanol sensitivity may best be studied in transfected cell 
lines (119, 336). It may be anticipated, therefore, that 
chronic ethanol-induced changes in GABA* receptor sub- 
units (56, 69, 124, 207-209, 223, 370) will have significant 
functional consequences in the brain. 

Ethanol potentiation of GABA-induced responses in 
cerebellar neurons (162) appears to be regulated by p- 
adrenergic receptor activation (166), suggesting a role for 
adenosine 3’,5’-cyclic monophosphate (CAMP)-dependent 
protein kinase (PKA) phosphorylation in modulating sen- 
sitivity to ethanol. Other studies with mouse GABA* re- 
ceptor subunits expressed in Xenopus oocytes by Wafford 
et al. (342) suggest that a specific y-subunit confers sensi- 
tivity to ethanol potentiation of receptor activation, al- 
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though this was not observed with y-subunits expressed 
in Xenopus oocytes (312) or human embryonic cells (186). 
Recent results with mouse and bovine subunits in a clonal 
cell line suggest that the y-subunit may be necessary but 
not sufficient for ethanol sensitivity (122). The yz-subunit 
exists as alternatively spliced short ( yZs) and long (yzl) 
forms; the long form contains 24 additional nucleotides 
that encode a phosphorylation site for protein kinase C 
(PKC) on an intracellular loop (342). Ethanol sensitivity 
appears to require PKC phosphorylation of the YZ1-subunit 
expressed in Xeno~~s oocytes (343), and perhaps, in hip- 
pocampal CA1 neurons (359). However, there is sugges- 
tive evidence that ethanol sensitivity of hippocampus 
GABA* receptors may also involve PKA (347). The GABA, 
receptors in mutant mice lacking the y-isoform of PKC 
show reduced sensitivity to ethanol (121), but this may 
be related to impaired cerebellar function in PKC-7 mu- 
tants (42, 139). These results are all consistent with stud- 
ies suggesting a critical role for phosphorylation in regu- 
lating the response of other membrane proteins to ethanol 
(see sect. IX, C-F). Further studies are needed to deter- 
mine the stoichiometry of GABA, receptor subunit ex- 
pression and the substrates for phosphorylation that con- 
fer ethanol sensitivity in the brain. Progress in this area 
will need to identify highly specific pharmacological tar- 
gets for the therapy of alcoholism. 

VI. SEROTONIN RECEPTORS 

The serotonin (5HT,) receptor (138) has increased 
mRNA expression in certain brain regions, particularly 
the hippocampus (330), and is structurally similar to the 
nicotinic acetylcholine and GABA* receptors. These three 
receptors are ligand-activated ion channels and are sensi- 
tive to ethanol (122, 175, 367). The 5HT3 receptor iono- 
phore conducts monovalent cations, and low concentra- 
tions of ethanol potentiate 5-HT3 receptor-stimulated cur- 
rents in several neural preparations (170, 173). Serotonin 
receptor antagonists block the ability to discriminate be- 
tween drinking water or ethanol in pigeons (111) and spe- 
cifically reduce ethanol drinking in conditioned and alco- 
hol-preferring rodents (135, 148,333). Serotonin receptors 
have also been implicated in the control of appetite, and 
5-HT,, receptor-deficient animals become overweight be- 
cause of abnormal feeding behavior (331). Moreover, se- 
lected regions of the brain in alcohol-preferring rats have 
fewer serotonin 5-HTz receptors (190) and increased 5- 
HTIA receptors (191). Furthermore, serotonergic neurons 
and their axons appear to degenerate in alcohol-preferring 
rats (116) and in chronic alcoholics (117). Although 5-HT2 
receptors have been implicated in alcohol preference in 
rodents (46), the effect of 5-HT2 antagonists on animal 
drinking behavior has been inconsistent (195,256). Never- 
theless, preliminary studies suggest that ondansetron, a 

serotonin receptor antagonist, reduces alcohol intake in 
normal men (137) and alcoholics with less severe drinking 
(311). These findings suggest that serotonin may play a 
role in alcohol intoxication and alcohol-seeking behavior. 
Because serotonin potentiates ethanol-induced excitation 
in the ventral tegmental area (21), pharmacological agents 
like ifenprodil (192), which react with specific sites on 
serotonin receptors, may be of value in treating craving 
in alcoholics. 

VII. VOLTAGE-DEPENDENT CHANNELS 

A. Calcium Channels 

In addition to receptor-activated calcium influx, intra- 
cellular concentrations of calcium are increased in neu- 
rons following depolarization through voltage-dependent 
calcium channels (284). At low concentrations, calcium 
ions are critical second messengers, but high concentra- 
tions lead to excitotoxicity and cell death (47). Recent 
evidence suggests that ethanol-induced upregulation of 
calcium channels may account for many features of the 
alcohol withdrawal syndrome, including intense neuronal 
hyperactivity and life-threatening seizures (201). 

Studies with isolated neural cells have identified mo- 
lecular mechanisms that may be responsible for these 
events. Voltage-dependent calcium channels consist of 
multi-subunit complexes characterized by pharmacologi- 
cal and neurophysiological criteria (12,34). Acute ethanol 
inhibits voltage-dependent Ltype calcium channels (19, 
44, 80, 114, 123, 199, 224, 225, 292, 315, 335, 353), N chan- 
nels (351, 352), and T channels (335) but has no effect on 
P-type calcium channels (115). Ethanol may act specifi- 
cally on the channel protein (353). Undifferentiated cells 
are most sensitive to ethanol inhibition (11,225); this may 
involve the inhibitory G protein, Gi (224). Chronic expo- 
sure of neural cells to ethanol, however, leads to increased 
depolarization-stimulated calcium influx (110, 199, 315) 
associated with an apparent increase in calcium channels 
measured by binding studies with labeled antagonists 
(82). Similar increases in brain calcium channel binding 
sites have also been found in alcohol-dependent animals 
(167) and Kupffer cells from the liver (109). This increase 
in voltage-dependent calcium channels requires PKC ac- 
tivity (205) and may be related to ethanol-induced in- 
creases in two PKC isoenzymes and PKC-mediated phos- 
phorylation (204). Ethanol-induced upregulation of cal- 
cium channels persists for - 16 h after ethanol is removed 
(199), coinciding with the time of greatest risk for alcohol 
withdrawal seizures after alcoholics stop drinking (339). 
Increased voltage-dependent calcium channel activity 
could induce withdrawal symptoms by promoting neuro- 
transmitter release (179), and enhancing NMDA receptor 
activation (363). Consistent with this hypothesis, treat- 
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ment with calcium channel blockers reduces alcohol with- 
drawal tremors, seizures, and mortality in animals (17, 
168) and human alcoholics (147). Moreover, treatment 
with some calcium channel blockers like nimodipine also 
reduces alcohol consumption in alcohol-preferring rats 
(65) . 

Ethanol regulation of calcium channels also appears 
to be under genetic control, producing selective upregula- 
tion in long-sleep mice (13 1). Ethanol-induced upregula- 
tion of calcium channels (18, 113) and voltage-activated 
calcium currents (264) is much greater in mice selectively 
bred for severe alcohol withdrawal seizures than in mice 
bred for mild signs of alcohol withdrawal. It remains to 
be determined whether genetic variation in ethanol regu- 
lation of calcium channels contributes to human alcohol 
withdrawal seizures and chronic alcoholic brain damage. 

B. Potassium Channels 

Ethanol appears to inhibit different kinds of potas- 
sium currents in a variety of neural preparations, but not 
all investigators agree (358). The expression of potassium 
channel subunits in the hippocampus has a spatial hetero- 
geneity that varies with development (184), suggesting 
the possibility that specific potassium channels may be 
targets for ethanol. In recent years, investigators have 
turned to expression systems to study the ethanol inhibi- 
tion of potassium channels (5). These results suggest that 
many voltage-gated potassium channels are insensitive to 
high concentrations of ethanol. Recently, four structurally 
homologous potassium channels cloned from DrosophiZa 
were investigated for sensitivity to ethanol, using a Xeno- 
pus oocyte expression system (52, 53). Only the Shaw 2 
channel was blocked by clinically relevant concentrations 
of ethanol. Inhibition occurs at a discrete saturable site 
(53), thus making it possible to now determine the molec- 
ular basis of ethanol inhibition of a specific target mem- 
brane protein. 

uptake is no longer inhibited by ethanol, and conse- 
quently, there is no increase in extracellular adenosine 
(231,236, 305). Tolerance of adenosine uptake to ethanol 
inhibition has also been produced in hepatocytes after 
chronic ethanol feeding (354). Our studies suggest that the 
ethanol sensitivity of the adenosine transporter appears 
to be regulated by PKA-mediated phosphorylation of the 
transporter or an associated regulatory component (50, 
231). Therefore, the nucleoside transporter may become 
insensitive (tolerant) to ethanol inhibition after chronic 
exposure to ethanol because of decreased CAMP levels 
(see sect. IXA) and reduced PKA phosphorylation (50). 

The same kinds of ethanol-induced changes in etha- 
nol sensitivity of adenosine transport also occur in cells 
from actively drinking alcoholics. We find that adenosine 
uptake in lymphocytes (107) and in sealed erythrocyte 
membranes from alcoholics is insensitive to ethanol, 
whereas uptake is inhibited by ethanol in erythrocyte 
membranes from nonalcoholic controls (unpublished ob- 
servations). These studies suggest that mechanisms iden- 
tified in cultured cell lines are relevant to cellular patho- 
physiology in human alcoholism. Such simple systems 
may make it possible to develop a sensitive bioassay for 
heavy drinking and to determine the relationship between 
phosphorylation and transporter insensitivity to ethanol 
in cells from alcoholics. 

IX. ETHANOL AND OTHER REGULATORY 
SIGNALING PATHWAYS 

The previous sections reviewed current information 
on the interaction of ethanol with specific identified mem- 
brane proteins. In addition, ethanol alters the activity of 
multiple signal transduction systems where the specific 
target is unknown. Here we review these ethanol-sensitive 
systems, since changes in the activity of second messen- 
gers and protein kinases in these pathways would be ex- 
pected to have profound short-term and long-term effects 
on many neuronal functions. 

VIII. ADENOSINE TRANSPORTERS 
A. CAMP Signal Transduction 

Adenosine is transported into mammalian cells by 
two different classes of transporters: one class character- 
ized by sodium-dependent uptake of adenosine and the 
other characterized by facilitative diffusion down a con- 
centration gradient (270). There are at least three different 
subtypes in each class. Recent work from our laboratory 
indicates that uptake by only one transporter, a subtype 
of facilitative transporter, is inhibited by ethanol; the oth- 
ers are unaffected (152). In naive cells, ethanol inhibition 
of the transporter results in the accumulation of extracel- 
lular adenosine (236). After prolonged exposure to etha- 
nol, however, the transporter becomes tolerant or insensi- 
tive to the acute inhibitory effects of ethanol; adenosine 

Ethanol affects receptor-mediated CAMP signal trans- 
duction in many biological preparations (108), which may 
vary with the expression of certain types of adenylyl cy- 
clases (374). Because CAMP regulates the activity of PKA, 
which in turn regulates various cellular functions, ethanol- 
induced changes in CAMP could account for many of the 
pleiotropic effects of ethanol. Most investigators find that 
brief exposure to ethanol potentiates receptor-activated 
CAMP production. In contrast, chronic exposure to etha- 
nol causes a decrease in receptor-stimulated CAMP pro- 
duction (108). This is well documented in cell culture 
where chronic treatment with ethanol decreases ,0-adren- 
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ergic receptor (16,279,280)-, adenosine receptor (40, 106, 
220, 237, 278, 279, 281-283)-, and prostaglandin receptor- 
dependent CAMP production (288). Decreased CAMP pro- 
duction appears to be a cellular model for ethanol depen- 
dence, since stimulated CAMP levels are abnormally low 
after alcohol withdrawal but return to normal levels when 
ethanol is added back to NG108-15 neural cell cultures 
(106). We (106, 220) and others (40, 281, 288) have also 
found that chronic exposure to ethanol reduces CAMP 
signal transduction for several receptors within the same 
cell. In many cell types, this appears to be due to an 
ethanol-induced heterologous desensitization of receptors 
coupled to the stimulator-y guanine nucleotide regulatory 
protein G,. In homogeneous NG108-15 cultures of neural 
cells, we find that this desensitization is correlated with 
a decrease in mRNA for the a-subunit of G, and a conse- 
quent reduction in G,cu protein and functional activity 
(220). Similar changes in G,cu mRNA or protein have been 
reported by others (40, 239, 281, 349), including an etha- 
nol-induced decrease in G,ac mRNA in developing rat hip- 
pocampus (64). However, an increase in Gia protein has 
also been described in some neural cells (40) and brain 
(348). This is consistent with neurophysiological evidence 
that different neurons have differential responses to etha- 
nol. Some investigators (260, 327) have not found signifi- 
cant ethanol-induced changes in G proteins in brain. How- 
ever, negative studies or variable results with crude brain 
preparations must be interpreted with caution because 
brain regions contain G proteins and adenylyl cyclases 
from diverse populations of neurons and glial cells, 
thereby masking specific ethanol-induced changes in cer- 
tain neurons. 

B. G Protein-Coupled Receptors 

1. Dopamine Dz receptors 

Dopamine has been implicated in brain mechanisms 
of reward, reinforcement, and addiction (276, 310), and 
drinking alcohol is associated with increased release of 
dopamine in the nucleus accumbens (144,360,373). Also, 
ethanol added to brain slices in vitro increases the firing 
rate of doparninergic neurons in the ventral tegmental 
area (20). In contrast, during ethanol withdrawal in rats, 
there is a decrease in dopamine release (295) and a reduc- 
tion in dopaminergic firing in the nucleus accumbens 
(32 l), which persists beyond the clinical manifestations 
of alcohol withdrawal (77). However, ethanol self-admin- 
istration restores withdrawal dopamine levels to normal 
in the nucleus accumbens, suggesting that decreased lev- 
els of dopamine may motivate ethanol-seeking behavior 
in dependent animals (361). However, others find that 
dopamine antagonists can reduce alcohol consumption in 
rats (255, 302). Nevertheless, in alcohol-preferring mice, 
low dopaminergic activity is associated with high alcohol 

consumption that can be reversed by increasing dopamine 
levels (102). Rats bred to prefer drinking alcohol will self- 
administer ethanol by intracranial infusion into the ventral 
tegmental area (97), suggesting genetic hypersensitivity 
to ethanol reinforcement of drinking in these animals, 
perhaps related to selectively reduced dopamine D2 recep- 
tors in their brain (189). In these alcohol-preferring rats, 
a dopamine Dz agonist reduces alcohol intake, whereas a 
D2 antagonist tends to increase drinking (84). The D1 li- 
gands also affected drinking (84), suggesting a role for 
both D1 and Dz receptors in reinforcing drinking in this 
line of rats (84). Consistent with these findings, ibogaine, 
presumably acting as a dopamine agonist, also attenuates 
drinking in alcohol-preferring rats (287). Serotonin (373) 
and opioid (364) receptors also appear to be involved in 
ethanol reinforcement in this brain circuit by affecting 
dopamine release, since activation of serotonin receptors 
stimulates dopamine release (14) and potentiates ethanol- 
induced release (29). Dopamine reuptake sites vary in 
violent and nonviolent alcoholics (332) so that ethanol- 
induced dopamine release may affect other complex be- 
haviors as well. Dopamine release induced by ethanol is 
blocked by serotonin (369) and opioid antagonists (1, lo), 
suggesting potential avenues for therapy in human alco- 
holism. 

2. Opioid receptors 

Acute ethanol inhibits opiate binding to the &opioid 
receptor (38, 39), but prolonged exposure to ethanol 
causes an increase in S-opioid receptor mRNA (37, 136), 
upregulation of the receptor (38, 39), and an increased 
response to opioid receptor ligands (39). Opioid receptors 
modulate ethanol-induced dopamine release in brain 
regions involved in craving (l), suggesting that alcohol 
craving may involve opioid receptors. Opioid receptor an- 
tagonists reduce alcohol consumption in experimental an- 
imals (3,94, 96, 185, 228, 301), perhaps reversing ethanol- 
induced decreases in glutamatergic synaptic transmission 
(243) in the nucleus accumbens by interfering with dopa- 
mine release in this nucleus (10). This may involve 
&-opioid receptors specifically (153, 154). Indeed, recent 
studies in alcoholics suggest that naltrexone, an opioid 
receptor antagonist, helps alcoholics to stop drinking. In 
two independent short-term studies, naltrexone in combi- 
nation with counseling significantly reduced craving for 
alcohol in abstinent alcoholics, with a 50% reduction in 
the relapse rate (250, 341). Naltrexone is not a cure for 
alcoholism but may be needed for long-term therapy with 
professional counseling to help some alcoholics remain 
abstinent (249). 

3. Muscarinic receptors 

Extensive information about the role of muscarinic 
receptors in mediating ethanol responses has been dis- 
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cussed recently (18 1). Ethanol inhibits muscarinic recep- 
tor activation of phosphoinositide metabolism in primary 
cortical cultures (149) and neural cell lines (158), as well 
as in several brain preparations (8, 30, 328). In contrast, 
long-term exposure to ethanol increases muscarinic re- 
ceptor gene expression in NG108-15 cells (130) and po- 
tentiates receptor inhibition of CAMP accumulation in 
PC12 cells (145). Nevertheless, recent evidence suggests 
that clinically intoxicating concentrations of ethanol actu- 
ally enhance muscarinic synaptic transmission in slices 
from hippocampus (181), an area that subserves learning 
and memory. This finding is consistent with intriguing 
clinical studies showing that acute alcohol consumption 
in naive subjects actually improved memory for events 
experienced before drinking (258). 

-4. Adenosine receptors 

Adenosine plays a role in many of the acute and long- 
term effects of ethanol in the nervous system (73). Adeno- 
sine appears to mediate acute ethanol-induced ataxia; 
adenosine receptor agonists increase ethanol-induced in- 
coordination and antagonists diminish this response (59- 
63). Sensitivity to adenosine agonists and antagonists cor- 
relates with acute alcohol sensitivity in mice bred selec- 
tively for differential responses to ethanol (273), and the 
intoxicating effects of ethanol are exacerbated by drugs 
that interfere with adenosine reuptake via the adenosine 
transporter (59). Also, there is cross-tolerance between 
adenosine agonists and ethanol after chronic exposure to 
either agent (62). 

We have found that adenosine mediates many acute 
and chronic effects of ethanol on CAMP signal transduc- 
tion in several cultured cell lines (73, 74, 108). Adding 
ethanol to cells leads to an immediate increase in extracel- 
lular adenosine levels (see sect. VIII) (237). This is due to 
ethanol inhibition of adenosine uptake (236). Extracellu- 
lar adenosine then reacts with adenosine A2 receptors to 
stimulate the production of CAMP (237). Acute increases 
in CAMP levels are followed by a heterologous desensitiza- 
tion of receptors coupled via G, to stimulation of adenylyl 
cyclase activity (40, 106, 220, 237). This adenosine recep- 
tor-mediated desensitization is characterized by a de- 
crease in mRNA, protein, and function for G,cu (220). 
Moreover, PKA appears to be necessary for ethanol-in- 
duced heterologous desensitization in S49 cells (231) and 
PC12 cells (281, 282). The implication of these findings is 
that a selective effect of ethanol on CAMP signal transduc- 
tion mediated by adenosine receptors may lead to diverse 
adaptive changes affecting many components of cellular 
function in different tissues and organs. 

Any metabolic event that increases extracellular 
adenosine levels should potentiate the acute effects of 
ethanol. Conversely, decreasing extracellular adenosine 
concentrations should attenuate the effects of ethanol. 

We have shown that coincubation of cells with ethanol 
and adenosine deaminase prevents both the acute and 
chronic effects of ethanol on CAMP signal transduction 
(237). We also found that the potent adenosine receptor 
antagonist BW-1434U blocks all of the acute and chronic 
effects of ethanol on CAMP signal transduction in NG108- 
15 cells, including initial increases in CAMP, decreases in 
G,a! protein, ethanol-induced heterologous desensitization 
of CAMP production, and loss of ethanol sensitivity of 
adenosine transport (305). However, other factors can 
also regulate CAMP responses to ethanol. For example, 
Rabin et al. (283) find in PC12 cells that adenosine may not 
be required for ethanol-induced desensitization of CAMP 
production. Also, if NGlO8-15 cells are studied while ac- 
tively dividing, there are some complex effects of ethanol 
on G proteins and mRNA that appear to be independent 
of adenosine (366), probably because under proliferating 
conditions, ethanol inhibits cell division and promotes 
differentiation (142). Thus ethanol-induced changes in sig- 
nal transduction appear to vary considerably with devel- 
opment, differentiation, and functional activity. In model 
cell culture systems, therefore, it is important to try to 
use nondividing neural cells to identify ethanol-induced 
responses that are relevant to neurons in the mature ner- 
vous system. 

Adenosine is a global inhibitory neuromodulator in 
the nervous system, acting through adenosine Al, AZ, and 
other receptor subtypes in the cell membrane (83). Adeno- 
sine modulates calcium channels (338, 371) and inhibits 
excitatory synaptic transmission by attenuating the re- 
lease of excitatory transmitters from presynaptic nerve 
endings (140, 176, 271, 285, 306,372). Adenosine also acts 
postsynaptically to diminish the response of dopamine 
(86) and acetylcholine receptors (51,269). The extracellu- 
lar concentration of adenosine increases with neural ac- 
tivity (268, 269), and blockers of adenosine uptake po- 
tentiate cellular responses to adenosine (59,232,233,236, 
244, 267), suggesting that the physiological effects of 
adenosine are terminated, in part, by reuptake into the 
cell. 

Neural responses mediated or modulated by adeno- 
sine vary depending on the kinds of adenosine transport- 
ers and receptors expressed in different brain regions and 
on different neurons. The ethanol-sensitive adenosine 
transporter is regionally distributed in the brain (13, 230), 
suggesting that adenosine will mediate responses to etha- 
nol only in selected neuronal populations expressing an 
ethanol-sensitive adenosine transporter. Also, these re- 
sponses are likely to depend on the kinds of adenosine 
receptors expressed on the target cells. Thus prolonged 
exposure to ethanol appears to cause heterologous desen- 
sitization of CAMP signal transduction in cells expressing 
adenosine A2 receptors, but experiments in liver cells ex- 
pressing A1 receptors (133, 234, 235) suggest that hyper- 
sensitization of CAMP production will develop in neurons 
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expressing only adenosine A1 receptors. Moreover, be- 
cause adenosine A1 and AZ receptors can also be ex- 
pressed in the same cells (4,217,227,247,275,368), possi- 
bly with functional and topographic separation in the 
same cell (163) and on different neurons in the same brain 
regions (22, 58), the relative expression and functional 
localization of A1 and A2 receptors would be expected to 
determine whether ethanol-induced increases in extracel- 
lular adenosine leads to desensitization, hypersensitiza- 
tion, or no change in CAMP signal transduction. 

Systemic factors also influence the role of adenosine 
receptors in mediating neural responses to ethanol. Studies 
by Israel and colleagues (31-33, 251) suggest that ethanol 
metabolism in the liver causes an accumulation of adeno- 
sine in blood that would be expected to exacerbate the 
acute effects of ethanol on adenosine receptors in the 
brain. They have reported significant increases in arterial 
acetate and adenosine levels following the presentation of 
ethanol to the liver from the gastrointestinal tract (252). 
The explanation for this observation is that acetate, pro- 
duced as a consequence of ethanol metabolism in the liver, 
is readily converted to acetyl CoA, consuming ATP in the 
process. Breakdown of ATP generates adenosine that is 
released into the circulation. In addition, they propose that 
the liver also releases large amounts of acetate that can be 
metabolized to acetyl CoA, thereby generating adenosine 
in the brain. Indeed, sedating effects of acetate are blocked 
by an adenosine receptor antagonist (31). Although the 
brain does not metabolize ethanol, the studies by Israel 
and colleagues suggest that the CNS could directly (and 
indirectly via acetate) be exposed to increased concentra- 
tions of adenosine as a consequence of alcohol metabolism 
in the liver. Because ethanol inhibits adenosine uptake in 
hepatic cells (233) and in nerve endings (271), and we find 
ethanol inhibition of adenosine uptake in cultured S49 cells 
(231,236), neural cells (231,236,305), human lymphocytes 
(107), and erythrocyte membrane vesicles (unpublished ob- 
servations), ethanol inhibition of adenosine uptake at syn- 
apses in many regions of the brain (66) would be expected 
to activate nearby adenosine Al, AZa and AZb receptors and 
potentiate the acute neurological effects of adenosine (and 
ethanol) in the brain. Consistent with this possibility are 
reports that ethanol, acetate, and adenosine produce identi- 
cal neurophysiological responses in hippocampal neurons 
that are all blocked by an adenosine receptor antagonist 
(57). Others do not find, however, that acetate affects aden- 
osine receptors in the hippocampus (23) or that an adeno- 
sine antagonist blocks acetate depression in neural cells 
(266). Nevertheless, ethanol potentiation of adenosine re- 
sponses has been confirmed in the same studies (266). 

C. Ethanol Sensitivity and 
Protein Phosphorylation 

A common theme emerging from recent studies is 
the possibility that phosphorylation regulates ethanol sen- 

sitivity of several proteins, particularly for the ethanol- 
sensitive adenosine transporter (50, 231), the GABA* re- 
ceptor (343), the kainate receptor (79), and the NMDA 
receptor (320). Other membrane proteins selectively af- 
fected by ethanol can be regulated by protein kinases, but 
the relationship of phosphorylation to ethanol sensitivity 
has not been determined. These include the opioid recep- 
tor (39, 206), the nicotinic acetylcholine receptor (127, 
367), a serotonin receptor (303), the GLUT1 glucose trans- 
porter (151), and certain calcium (199,226) and potassium 
channels (52, 54). The rich cascade of adenylyl cyclases, 
phospholipases C, protein kinases and phosphatases, and 
opportunities for “cross-talk” between second messenger 
pathways suggests that these regulatory mechanisms have 
the potential to account for diverse and pleiotropic effects 
of ethanol in many cell systems in the body. 

D. Protein Kinase A 

Adenosine 3’,5’-cyclic monophosphate-dependent 
protein kinase appears to mediate some of the acute and 
chronic cellular responses to ethanol. In cerebellar Pur- 
kinje cells, P-receptor stimulation, with presumed in- 
creases in PKA activity (166), or treatment with &bromo- 
CAMP (93) facilitates acute ethanol potentiation of GABA 
receptor responses. Also, PKA activity is required for etha- 
nol inhibition of adenosine uptake in S49 (231) and 
NG108-15 cells (50) and ethanol-induced heterologous de- 
sensitization of CAMP signaling (238, 282). Chronic etha- 
nol-induced heterologous desensitization is associated 
with a reduction of PKA activity in NG108-15 cells (50), 
and tolerance of the adenosine transporter to ethanol inhi- 
bition develops when CAMP-dependent phosphorylation 
is reduced (50) or absent (231). Recent evidence indicates 
that some of the chronic effects of ethanol may be due 
to ethanol-induced translocation of the PKA catalytic sub- 
unit, Ccr, to the nucleus of ethanol-treated cells (81). Car 
remains sequestered in the nucleus as long as ethanol 
is present. This may account for reduced PKA-mediated 
phosphorylation of cytoplasmic and membrane proteins 
and may contribute to the diverse changes in cellular func- 
tion and gene expression produced by ethanol. 

E. Protein Kinase C 

There is substantial evidence that PKC is involved in 
many cellular responses to ethanol. Protein kinase C has 
been implicated in the ethanol sensitivity of voltage-de- 
pendent calcium channels (19, ZOS), GABA* receptors 
(121, 180, 343, 359), 5-HTlc and muscarinic M1 receptors 
(303), glutamate receptors (79), and tolerance of the aden- 
osine transporter to ethanol inhibition (unpublished ob- 
servations). In addition, PKC appears to be required for 
a transient ethanol-induced decrease in CAMP levels in 
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human platelets (68) and for phospholipase C activation 
(146). Anesthetic agents and high concentrations of etha- 
nol inhibit PKC directly (317). The levels of two PKC 
isozymes, S and E, are increased in PC12 cells (292) and in 
NG108-15 cells (unpublished observations) after chronic 
exposure to ethanol. Increased activity of specific PKC 
isozymes may underlie some of the functional conse- 
quences of chronic ethanol exposure, as appears to be 
the case for ethanol’s effects on neurite outgrowth. 

F. Protein Kinase C-Dependent Neurite Outgrowth 

Prolonged exposure to ethanol increases the growth 
of dendrites and axons (neurites) in several brain regions 
of both adult and developing animals (28, 216, 261, 340, 
362). Increases in neurite length probably disturb neu- 
ronal function by delaying electrical conduction and by 
interfering with remodeling of synapses during develop- 
ment (277) and learning (7, 259). This kind of synaptic 
plasticity could contribute to the development of toler- 
ance and dependence (310) as well as cognitive dysfunc- 
tion in alcoholic adults with dementia and in children with 
the fetal alcohol syndrome. Using the neural cell line PC12 
to study mechanisms by which ethanol regulates neurite 
growth, Messing et al. (203) found that ethanol markedly 
enhances neurite outgrowth stimulated by nerve growth 
factor or basic fibroblast growth factor, apparently via a 
PKC-dependent stimulation of mitogen-activated protein 
kinases (291). This enhancement is prevented by inhibi- 
tors of PKC or by depleting cells of PKC (293). Chronic 
exposure to ethanol increases PKC-6 and PKC-E isoen- 
zymes, and selective overexpression of PKC-E mimics the 
effect of ethanol and promotes neurite outgrowth. Over- 
expression of PKC-S does not (132). In addition, expres- 
sion of a PKC-c-derived dominant-interfering peptide pre- 
vents enhancement of neurite outgrowth by ethanol 
(R. 0. Messing, unpublished observations). These findings 
suggest that enhancement of growth factor-induced neu- 
rite outgrowth is mediated by ethanol-induced increases 
in PKC-E. It remains to be determined whether upregula- 
tion of PKC-6 contributes to other cellular responses to 
chronic ethanol exposure, such as chronic ethanol-in- 
duced upregulation of calcium channels (see sect. WA). 

Current concepts suggest that specific translocation 
of protein kinases to anchoring proteins may determine 
the specificity of protein kinase-regulated events (219). 
Indeed, an important effect of ethanol probably involves 
PKA (81) and PKC translocation to specific phosphoryla- 
tion sites (67, 143,316). It is possible, therefore, that inhib- 
itors of the interaction between specific kinases and an- 
choring proteins could be developed as therapeutic agents 
to specifically block adverse CNS responses to ethanol 
and attenuate some of the neurological complications of 
alcoholism. 

G. Regulation of Gene Expression 

In addition to the acute effects of ethanol on cellular 
signaling, changes in second messengers and protein ki- 
nase activities also could be responsible for longer term 
regulation of cellular function by altering gene expression. 
Alcoholics acquire extraordinary tolerance to the intox- 
icating effects of ethanol, usually associated with physical 
dependence and uncontrolled craving to continue drink- 
ing. In addition, late manifestations of alcoholism include 
several neurological disorders. Therefore, investigators 
have begun to search for ethanol-induced changes in gene 
expression in the nervous system that might underlie 
some of these adaptive responses to heavy drinking. A 
reduction in the GTP binding subunit G,a, (220) and/or an 
increase in Gia (40) of the heterotrimeric GTP binding 
proteins appears to account for heterologous desensitiza- 
tion of CAMP signaling caused by chronic exposure to 
ethanol. Chronic ethanol exposure has also been reported 
to alter the expression of genes for the major histocompat- 
ibility complex antigen (257), proopiomelanocortin (58), 
glucose transporter (GLUTI) (314), and glial fibrillary 
acidic protein (88). Recently, Miles et al. (212) have identi- 
fied an ethanol-responsive gene for a phosducin-like pro- 
tein with the potential to modulate GTP-binding protein 
functions and signal transduction (307). Prolonged expo- 
sure to ethanol also results in increased expression of the 
6- and E-isoforms of PKC (292), another major signaling 
mechanism. In addition, chronic ethanol-induced de- 
creases in the a-subunit of the GABA* receptor (24, 124, 
141, 208, 221) and increases in opioid (37) and NMDA 
(334) receptors may contribute to tolerance and depen- 
dence. Chronic ethanol-induced increases in voltage-de- 
pendent calcium channels (199) and tyrosine hydroxylase 
(98), the rate-limiting enzyme in catecholamine biosynthe- 
sis, may account, in part, for CNS hyperactivity during 
alcohol withdrawal. 

Membrane proteins are important targets for ethanol 
in the nervous system (92, 201,358). Insertion of proteins 
into membranes requires specialized cellular mechanisms, 
including molecular chaperones that regulate protein traf- 
ficking. Miles and colleagues (129, 213-215, 365) have dis- 
covered that ethanol causes an increase in gene expres- 
sion for several molecular chaperones, suggesting that 
ethanol-induced changes in protein trafficking contribute 
to the adaptive response of the brain to alcohol. This 
hypothesis is supported by the recent finding that ethanol 
induces an increase in signal peptidase mRNA levels in 
brain (313). Specific sequences in the promoter region of 
ethanol-responsive genes appear to be required for etha- 
nol regulation of gene transcription (214, 346, 365), sug- 
gesting that a family of ethanol-responsive genes may be 
regulated by a common molecular mechanism. This will 
receive intense investigation as scientists use genetically 
manipulated animals to study ethanol’s actions (357). 
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These findings open new avenues for potential therapy of 
alcoholic neurological disorders and the identification of 
candidate genes that may be altered in genetic alcoholism. 

X. RELEVANCE OF STUDIES IN MODEL 
SYSTEMS TO ALCOHOLISM 

Ethanol-induced changes in cell culture have patho- 
physiological significance in human alcoholism. Circulat- 
ing lymphocytes from actively drinking alcoholics exhibit 
changes similar to those in NG108-15 cells chronically 
exposed to ethanol (106); there is a marked reduction in 
CAMP signal transduction in freshly isolated lymphocytes 
from chronic alcoholics when compared with cells from 
controls and patients with nonalcoholic liver disease (75). 
Consistent with these findings, there is decreased prosta- 
glandin El receptor-stimulated adenylyl cyclase in platelet 
membranes isolated from alcoholics (326) and reduced 
adenylyl cyclase activity in lymphocyte membranes from 
abstinent alcoholics (345). Also, Nakamura et al. (240) 
have found reduced G,a protein in erythrocyte mem- 
branes from alcoholics, and Wand and colleagues (345) 
have reported increased Gai-2 in lymphocyte membranes 
from abstinent alcoholics. 

In addition to heterologous desensitization of CAMP 
production in circulating lymphocytes (75), we find that 
adenosine uptake in lymphocytes (107) and sealed eryth- 
rocyte membranes (unpublished observations) from alco- 
holics is insensitive to ethanol, whereas uptake is inhib- 
ited by ethanol in nonalcoholic controls. These studies 
suggest that mechanisms identified in cultured cell lines 
are relevant to cellular pathophysiology in human alcohol- 
ism. Such simple systems may make it possible to develop 
a sensitive bioassay for heavy drinking. 

XI. GENETICS AND ALCOHOLISM 

Genetic factors play a role in the development of 
alcoholism (9). Alcoholism tends to run in families, and 
studies of identical twins, alcoholic parents and children, 
and offspring from alcoholic parents adopted into non- 
drinking families suggest a genetically transmitted suscep- 
tibility for alcoholism. Adoption studies of males who be- 
gin drinking at an early age provide the strongest evidence 
for the heritability of alcoholism. Here, alcoholism in the 
biologic father is a much greater predictor for alcoholism 
in the son than is the environment in which the boy is 
raised (49). Despite compelling clinical evidence, genes 
responsible for genetic forms of alcoholism have not been 
identified. An initial report linking alcoholism with a mi- 
nor allele of the dopamine D2 receptor gene (15) has been 
confirmed by others (245) but remains inconclusive be- 
cause the majority of investigators in the field have not 
replicated these results (48, 87, 100, 101, 128, 241, 337). 

Indeed, there is no structural mutation in the D2 receptor 
gene in alcoholism (99). Nevertheless, there is preliminary 
suggestive evidence that treatment with bromocriptine, a 
dopaminergic agonist, may benefit alcoholics carrying the 
minor allele (160). Studies of possible phenotypic markers 
for genetic alcoholism have been reviewed elsewhere 
(201). 

Schuckit (308) has found that young men with a posi- 
tive family history for alcoholism have a diminished ataxic 
response after drinking a test dose of alcohol. This appar- 
ent acute tolerance to alcohol appears to predict the de- 
velopment of alcoholism 8 years later (309), raising the 
possibility that genetic factors may contribute to complex 
adaptive responses to alcohol in human beings, as re- 
ported in many animal studies. All cellular and molecular 
functions in the brain are under genetic control, and new 
methodology is being developed to analyze the genetics 
of complex traits (157). For example, genetic mapping of 
quantitative trait loci is being used to identify chromo- 
somal locations of genes that influence alcohol-related 
behavior, such as drinking (197) and tolerance and physi- 
cal dependence (55). Moreover, selected regions of the 
brain in different lines of alcohol-preferring rats have 
fewer serotonin 5-HT2 receptors (190) and increased 
5-HT1* receptors (191) or changes in opioid binding (70) 
and prodynorphin and proenkephalin levels (246). Fur- 
thermore, genetically engineered mutant mice lacking the 
y-isoform of PKC show altered behavioral responses to 
alcohol thought to be related to diminished GABA* recep- 
tor sensitivity (12 1). 

Another approach is to mutate genes at random and 
search for subjects with altered responses to ethanol. Dro- 
sophila exhibit alcohol intoxication, tolerance, and with- 
drawal responses (U. Heberlein, unpublished observa- 
tions). Regulatory genes are major targets for ethanol, and 
many are conserved in flies and humans. Therefore, genes 
identified by random mutation studies in Drosophilu can 
be used to identify homologous genes in humans. Mutant 
flies with genetically induced changes in ethanol tolerance 
have been isolated, suggesting that the genes responsible 
for this phenotype will soon be isolated (Heberlein, un- 
published observations). Such studies are another excit- 
ing advance in our quest for candidate genes that control 
responses to alcohol and that may also be linked to ge- 
netic alcoholism. 

XII. CONCLUSION 

The most recent advances in alcohol research indi- 
cate that ethanol interacts with highly specific proteins 
in the membrane of neural cells, affecting ion channels, 
neurotransmitter receptors, transporters, and signal trans- 
duction pathways. Evidence is emerging that phosphory- 
lation of these target proteins may regulate their sensitiv- 
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ity to ethanol. In addition, ethanol-induced changes in 
gene expression have also been identified, and genes that 
regulate acute and chronic responses to ethanol are candi- 
dates for genetic alcoholism. Alcohol research has come 
of age, moving from phenomenology to molecular mecha- 
nisms of pathophysiological significance. The next few 
years will be highlighted by innovative new therapies di- 
rected at alcohol-induced changes in signal transduction 
and genetic alcoholism. 
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