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Abstract

Many interesting issues are posed by synchronisation of cycles. In this
paper we define synchronisation and show how the degree of synchronisa-
tion can be measured. We propose tests of the hypotheses that cycles are
either unsynchronised or perfectly synchronized. Unlike previous tests of
synchronization in the literature our procedures are robust to heteroscedas-
ticity and serial correlation in the random variables making up the test
statistic.

Tests of synchronization are performed using data on industrial produc-
tion, on monthly stock indices and on series that are used to construct the
reference cycle for the United States and Australia.

Where synchronisation is found interest focuses on extracting the com-
mon cycle. We discuss the relationship between various definitions of com-
mon cycles that have been proposed based on parametric models. Then an
algorithm is detailed which utilizes NBER dating procedures for identifying
the common cycle that they identify as the reference cycle. This algorithm
is used to extract a the reference cycle for the United States and Australia.
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1. Introduction

A viewing of the graphs of many specific series have often suggested to researchers
that the cycles seen in them are synchronized, in the sense that their turning
points occur at either roughly the same points in time or differ by intervals that
are roughly constant i.e. the turning points “cluster together”. Such clustering of
turning points was a major theme in the work of Burns and Mitchell (1946). In
particular it underpinned their idea of a “reference cycle”.! The question of syn-
chronization is of interest since many actions that are contemplated often require
an answer as to whether it is present e.g. when countries are considering forming
a monetary union the question of whether their business cycles are coordinated
arises. Apart from economic activity, there are also many other series which
exhibit cycles and which encourage questions regarding synchronization e.g. do
‘bull’ and ‘bear’ markets align either in different stock market indices in a single
country (e.g. the NASDAQ vs the Dow) or across countries?

Basic to any investigation of the question of synchronization of cycles is a
description of how one is to recognize a cycle. Broadly speaking we can find three
suggestions in the literature. Each involves the construction of a set of indicators
of a cycle from the information available on a continuous random variable ;.
In the oldest tradition the indicators are turning points in ¥y, with the output
being formally described as a binary random variable S; which shows when the
economy is in the different phases that are separated by the turning points e.g. an
expansion in the business cycle can be associated with S; = 1 while a contraction
is indicated by S; = 0.

The other two suggestions proceed in a different way. Common to both is the
prior transformation of y; so as to remove a permanent component, leaving only a
transitory one, z;. It is the cycle in z; rather than g, that is then examined, with
the requisite indicators being derived from observations on z;. With the z; in hand,
the first of these two traditions then defines the cycle indicator as the presence
or absence of complex roots in an AR fitted to z; or, more generally, a peak in
the spectral density of z;. Such an indicator is often mentioned in undergraduate

1Tt is important not to overstate the extent to which Burns and Mitchell focused on syn-
chronization. Burns and Mitchell (1946 p 70), for example, observe that at any point in time
‘some activities [are] in an expanding phase, some beginning to recede from their peaks, some
contracting, and some beginning to revive from their troughs’. Nevertheless, they observe from
their studies ‘that at any one time one phase is dominant’.



textbooks. In contrast, the second tradition adopts the proposal set out in Blinder
and Fischer (1981, p 277), who say that a cycle is indicated by “serially correlated
deviations of output from trend” i.e. for a cycle to exist in z; there should be serial
correlation in 2.2 It is important to note that it is the existence of a cycle which is
checked for by these measures. In all cases the resulting indicators of the existence
of a cycle are quite distinct from the underlying series, whether it is y; or z; the
latter are not the cycle, although their nature will determine the characteristics
of the cycle.?

The turning points view of a cycle is widespread in media and policy analysis
and is implicitly invoked whenever lectures and textbooks either show graphs
of y; or quote the dates of recessions such as those established by the NBER.
Cycle characteristics established via the turning points in y; are determined by
the nature of the process Ay,. Of course one might also be interested in the cycle
in z; found by examining the turning points in that series. If the emphasis is in
fact shifted to cycles in z;, then one might compare the three definitions using
a common base. Doing so reveals that there is little relation between the first
and second views, since the duration of time between the turning points in z; has
no close relation to the length of any periodic cycle indicated by the position of
the peak of the spectral density of z;. Moreover, one does not need any complex
roots in an AR process in order to generate a turning point cycle in z;. Turning
to the relation between the first and third views, it was shown in Harding and
Pagan (2002) that it was not necessary to have serial correlation in the z, process
in order to produce a cycle. Moreover, that paper also showed that the nature
of the second order moments of Az; influenced the type of cycle that would be
seen in z; - since the probability of encountering a turning point in z; could be
expressed in terms of the second-order moments of the Az; process. Because the
second order moments of Az, are just transformations of those for z; it is clear
that the two views work with the same inputs but focus on different outputs.

As the diversity of viewpoints would indicate there is probably no right or
wrong way of defining a cycle. But even a cursory reading of the financial press
would point to the fact that the turning point view seems to be what is meant
by a cycle when one reads economic and policy commentary. So it seems natural

2They define a “detrending” operation as removal of a permanent component.

31f 9, is a vector then one can provide equivalent concepts. Thus the extension of the turning
point view is the “reference cycle” which we will explain later, while a complex root in an AR
becomes a complex eigenvalue in a VAR etc.



to adopt such a definition. At the very least one should subject it to academic
analysis rather than simply moving on to work with different views. If it turned
out that the analysis with a turning point view of cycles was intractable, then
there would be a good case for moving to some other framework, but in our mind
this has never been established.

Given our orientation towards turning points, the issues we deal with in this
paper are how to define and measure synchronization of cycles, when these are
defined through their turning points; how to test hypotheses about the extent of
any synchronization; and how to extract and talk about the “common cycle” that
arises when synchronization is found. Formally, synchronization will be viewed
as the phenomenon whereby turning points in specific cycles cluster at particular
dates. Section 2 briefly outlines how the specific cycles associated with n variables
Yit, -, Yt Will be represented by binary time series Sj;.

We show, in section 3, that for the bivariate case synchronization can be
defined in terms of the joint density of (Su,Sy:) and establish links between
this definition and definitions based on the correlation between (S, Sy¢) and the
proportion of time S;; and S, are in the same state. Then, for the multivariate
case, we propose to measure synchronization via the correlation matrix of the
vector (Si¢,..Spt). We then show how our concept of synchronization is linked to
the notion of ”co-movement” that is widely used in the literature.

Section 4 concentrates upon defining a “common cycle” in a set of variables.
There are two ways one might do this. One is the parametric approach, which
constructs parametric models of the series and then extracts a continuous factor
whose cycle will be taken to represent the common cycle. Again, the factor itself
is not the cycle. There is a literature on such a parametric approach, which varies
according to the nature of the underlying factor and the way it is extracted.
Examples would be Vahid and Engle’s (1993) common cycles and the common
factor approach of Stock and Watson (1991), Chauvet (1998) and Forni et al
(1999). This methodology essentially constructs an aggregate and then locates
the turning points in it. An alternative approach works in a non-parametric way
and aggregates the specific cycle turning points into a single set of turning points.
For this latter task we develop an algorithm which yields a common cycle that
is closely related to the reference cycle produced by NBER business cycle dating
techniques. In this sense the algorithm formalizes the methods of Burns and
Mitchell and their followers such as Boehm and Moore (1984).



Section 5 turns to testing for the presence and degree of synchronization. Here,
attention is focused on three facets of testing for synchronization. The first of these
is the necessity to correct for serial correlation and heteroscedasticity in the Sj
in order to make valid inference. In two applications we show that correcting
for these features of the data can modify the conclusions drawn about the extent
of synchronization. The second issue is that testing for perfect synchronization
involves testing on the boundary of the parameter space. We develop tests that
are appropriate for this case. The section concludes by providing an illustration
of how the testing procedures and our analysis of synchronization can be used
to guide practitioners in constructing NBER-like reference cycles. In this regard
we bring the construction of NBER-like reference cycles into the econometric
mainstream.

Section 6 develops the non parametric approach to extracting common cycles.
The method is calibrated against the Australian reference cycle which is known
to be determined using the NBER methodology. The non parametric approach is
then evaluated in terms of its capacity to match the NBER reference cycle (an out
of sample test) and it is then applied to extract the common cycle in industrial
production and stock market cycles across countries. Conclusions are presented
in section 7.

2. Measuring specific cycles

Specific cycles refer to the cycles in individual series Y; as expressed though their
turning points; the latter being local maxima and minima in the sample path of
the time series. It is convenient to work with y; = In(Y;) rather than Y;, mainly
because many empirical models fitted to series use such a transformation. Turning
points in y; and Y; are identical so that the transformation loses no information.

A standard “turning points” definition of a cycle in quarterly data is provided
by the following rules that are the basis of the NBER procedures summarized in
the Bry and Boschan (1971) program:*

peak at t = {2 <Y, Y1 < Y5 Yt > Y1, Yt > Yero}

4For monthly data 3; must exceed y;+5 for there to be a peak and must be less than these
for a trough. We will retain the quarterly emphasis. Other rules could be adopted.
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(2.1)
trough at t = {Yi—2 > Yo, Ys—1 > Yt: Yt < Yes1, Yt < Yes2}-

This rule is supplemented by censoring procedures used in NBER dating meth-
ods which ensure that phases of the cycle have a required minimum duration of six
months and that completed cycles have a minimum duration of fifteen months.
Further details on the algorithms that are used to find turning points in this
manner can be found in Harding and Pagan (2002).

The discussion above has focussed on cycles in the levels of a series y;. These
are commonly referred to as classical cycles. Classical cycle peaks are points at
which a series moves from positive growth rates to negative growth rates and
classical cycle troughs are points at which a series moves from negative growth
rates back to positive growth rates. As mentioned in the introduction the classical
cycle is not the only cycle that has been investigated. It may sometimes be
desirable to study cycles in series from which a permanent component has been
removed. We designate such a series as z;.° The cycles established through turning
points in z; are often referred to as growth cycles but this name is potentially
misleading; dewviation cycle might be a better description.

Once we have identified the phases of the cycle we can associate them with
a binary random variable S; that takes the values unity and zero. We will refer
to S; as being the specific cycle in a designated variable. It might be asked
why one wants to focus upon the binary variable S; rather than y, itself? A
simple justification is that the binary classification underpins a great deal of the
discussion over developments in the level of economic activity. One simply needs
to follow the concerns in the past few years over whether economies were likely to
go into recession or to have a “double-dip” recession to see that great emphasis
is placed upon events summarized by the binary indicator. As the definition of
a recession implied from the rules above involves a sustained reduction in the
level of activity, and it is a well known fact from the psychological literature
that agents are loss averse, it may well be that this accounts for the marked
concentration upon the binary outcomes. In passing it might be noted that other

5We do not like referring to z; as a “de-trended” series since the permanent component in y;
is an important factor in determining the nature of the cycle in y;, and so it is not possible to
produce a meaningful “trend/cycle” decomposition. Generally it is better to refer to what has
been removed from the series in typical “de-trending” operations such as Hodrick-Prescott and
Band-Width filtering as the “permanent” rather than “trend” component.



research topics e.g. those looking at the predictability of “crises”, also convert
continuous random variables into binary ones before analysis. Finally, there are
some pragmatic reasons for needing a framework for the analysis of binary random
variables. One of these is simply that the data often comes only in this form e.g.
the NBER business cycle dates are presented with only general indications of the
behavior of the specific continuous series used to determine them.

What are the properties of S; i.e. what is its DGP? It is clear that the DGP
of S; depends on the nature of the rule to identify a cycle and the nature of
the series Ay, that enters into the dating rules. In general S; is a high order
stationary and ergodic Markov Chain. To illustrate this, if Ay; is a mean-zero
stationary Gaussian process, and phases are identified with the rule that S; =
1(Ay, > 0), Kedem(1980, p34) sets out the relation between the autocorrelations
of the Ay, and S(t) processes. Letting ra,(k) = corr (Ay,, Ay,—x) and rg(k) =
corr (Sg, S_k) , he determines that

2
rs(k) = —arcsin (ray(k)) - (2.2)

7r
Thus, given an estimate of 7a,(k), we can immediately find an estimate of
rs(k) and vice versa. It is clear from the nature of these autocorrelations that

(say) an AR(1) process for Ay, will imply a much more complex DGP for S; than
an AR(1).

As the dating rule differs the nature of the DGP for S; will also change. In
Harding and Pagan (2001) we work through the case where the dating rule is
that a recession involves two successive quarters of negative growth and y; is a
random walk with drift. We show that there is substantial serial correlation in
the S; even when there is none in Ay,. Thus, in general there will be extensive
serial correlation in S;, and this must be allowed for when S; appears in any test
statistic.

3. Defining and Measuring Synchronization

3.1. Density Measures for Bivariate Cycles

It is useful to start a discussion of synchronization by concentrating upon the
relations between the unconditional densities of two cycles S;; and Sy;. It seems
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natural to define strong perfect positive synchronization (SPPS) as the case when
the two random variables S;; and S,; are identical. Because of the binary na-
ture of the random variables, necessary and sufficient conditions for this type of
synchronization are

(a) Pr(Sy; = 1,8, =0)=0 (3.1)
(b) Pr(Sy; = 0,8 =1)=0. (3.2)

In the same vein strong perfect negative synchronization (SPNS) will obtain when

Pr(Syt = O7 Sxt = 1) =1 (33)
PI‘(Syt == ]_, Smt == 0) =1. (34)

We will couch our discussion in terms of positive synchronization since it is easy to
translate the requisite tests to the other case and, in most instances, it is positive
synchronization that is of most interest. Cycles that are strongly non-synchronized
(SNS) might then be regarded as the case when S;; and S, are independent i.e.
the joint probability function for S;; and S, factorizes into the product of the
marginal probability functions.

Because S,; and S, are binary indicators it is easily seen that the probabilities
in (3.1) and (3.2) can be expressed as expectations and doing so yields the follow-
ing moment conditions that need to hold under the two null hypotheses relating
to synchronization mentioned above.

SPPS (a) L B(Sy(1— Spt)) = E(Sy) — E(SsSy) =0 (3.5)
SPSS (b) L B(Sut(1— Sy2)) = E(Sut) — E(SuSy) =0 (3.6)
SNS . E(SutSyt) — E(Su)E(Sy) = 0 (3.7)

By subtracting the two conditions in (SPPS) from each other one could get
equivalent moment conditions

SPPS(i) . E(Sy) — E(Sw) =0 (3.8)
SPPS(ii) © E(Su) — E(SuSy) =0 (3.9)

These are useful since the first implies that the unconditional densities of S,; and
Sy are identical while the second is a property of the conditional density. Indeed
we can express SPPS(ii) as

Hs, —USZUSypS+MSZM5y :0, (310)
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where pg, = E(Su),pg, = E(Sy) and pg is the correlation coefficient between
Su and S,,. When SPPS(i) holds E(Sy) = E(Su) = 15 and 0%, = E(Su)(1 —
E(Sz)) = 0%, so that (3.10) becomes

(1= pg)ps(l = pg) =0, (3.11)

which implies that pg = 1. Thus when testing perfect synchronization we can test
if pg, = pg, and pg = 1. Although it is clear that, when pg = 1 it has to be
the case that g, = pg , our examples later show the value in performing the
tests sequentially, since this is more informative about the reasons for any failure
of perfect synchronization. When testing (SN.S) we have 0g,05,p5 = 0 and so
pg = 0 is required. By concentrating upon pg we are therefore able to provide a
natural measure of the degree of synchronization.

The discussion above also leads to the following quantities which might be the
basis of test statistics,

SPPSG) ¢ s, — s,
SPSS(ii) : pg—1
SNS : pg

For later reference it should be noted that perfect synchronization between S,
and S;; only occurs when Sy, is identical to Sy, and so one could have derived the
moment conditions in (3.8) and (3.9) directly from that equality. This alternative
interpretation is useful when looking at multivariate issues.

3.2. Measures Based Upon Phase States for Binary Cycles

Rather than focus directly upon turning points a different way of measuring the
degree of synchronization of cycles is to ask what fraction of time the cycles
are in the same phase. This concordance index, which is the sample analog of
Pr (S = Sy:), was advocated in Harding and Pagan (2002) and has the form
(for two series y; and z; and a sample size of T)

i — %{ZTj S+ 31— Su)(1— Sy} (3.12)

There are close connections between this index and those advanced in the mete-
orological literature to assess forecast accuracy, see Granger and Pesaran (2000).
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Artis et al (1997) and Artis et al. (1999) use a modified version of I that is
transformed to lie between zero and 100.

It useful to re-write and re-parameterize this index in a different way

. 2 I A A
I = 1+ T > SutSy — fis, — fis, (3.13)
i=1
= 1+420s,s, +2tg,fbs, — fts, — is, (3.14)

where 75,5, is the estimated covariance between Sg; and Sy;. For the discussion

that follows it will be convenient to write (3.14) as

I'=1+2pg(frs, (1 — fig,)*(ug, (1 — frg,))"/? + 2fig, frg, — frg, — frg,  (3.15)

where pg is the estimated correlation coefficient between Sy and S,;. Because of
the binary nature of S;; and Sy, the estimated standard deviations have the form

(frg, — ,&%I) Now the concordance index has a maximum value of unity when
Szt = Sy and zero when S, = (1 — Sy;). Consequently, it is easily shown that,
when either of these holds, 65,65, = 6%2, and so the value of pg = 1 corresponds
to a concordance index of one and pg = —1 to a concordance index of zero. Since
the concordance index is also monotonic in pg, it is natural to shift attention away
from the former to the latter i.e. to focus upon the correlation between the two
states Sy and Sy Consequently, the tests based on pg laid out in the previous
section will be those employed in the paper, although it can sometimes be useful
to reinterpret the value of pg as a value for I. 6

6 A problem with looking at the value of I can be seen when when pg = 0. Then E (f ) =
14+2pg, s, — ps, — fs, SO that E(I) = .5 only if ts, = -5, pg, = .5. Since pg, is the probability
of z; being in an expansion, for the business cycle it is likely that it will be closer to .9 than
.5. In that case E(f ) =~ .82 and so one could easily think that the cycles are synchronized even
though there is no relation between them. Of course a policy maker may not be too concerned
with that fact, as they may only be interested in the fraction of time that (say) two economies
are in the same phase and not the reason for it. But the example points to how what might
appear to be a high degree of association between cycles can be quite misleading, as it is simply
an artifact of expansions lasting for long periods of time relative to the sample. If one is to use
I as a test statistic it is necessary to mean correct it, and that is essentially what happens when

one uses Pg.

11



3.3. Multivariate Synchronization

Turning to the general case where there are n series xy, ..., ,; which will have
associated specific cycles Sy, 7 = 1,...,n, we will refer to the hypothesis where
all pairs (S, Sk) j # k are strongly non- synchronized as strong multivariate
non-synchronization (SMNS) We can test for whether there is SMNS by asking
if the correlation matrix of the Sj; is diagonal i.e. all the pairwise correlations
pfgj are tested for whether they are zero. For perfect synchronization we observe
that the cycles to which this pertains must have pg = ps; Vi.j =1..n and that

all pairwise correlations plg] are unity. In many instances there will be an obvious
choice of numeraire e.g. the US would often be that for business cycle analysis.
In such an instance, let it be the first series, in which case we would then test
Ho:p;—py =0,5=2,..,n. Notice that the numeraire does not matter for this
test as test statistics will be invariant to it, since the vector of mean differences
with (say) the second series as a numeraire is a non-singular transformation of
that with the first. The situation is less clear for the test that all pqu are unity.
However, if the null hypothesis Hy : pl9 = 1V is accepted (rejected) it implies
that S;; and Sj are identical (non-identical) so that p = 1(3 1) must hold for
all (some) i.

3.4. Co-Movement of Cycles

Loosely speaking, if variables have cycles which are synchronized we would like to
say that they possess a common cycle. To be more precise about this concept we
need to examine the determinants of pg in the two series case. From the definition

Of Ps,
E(Sxtsyt) — [E(Swt)E(Syt)]
VE(S:t) (1= B(S20))y/E(Sy) (1 = E(Sy)
Pr(S; =1,8,=1) — [Pr(Sy =1)Pr(S,, = 1)

— \/Pr(Smt = 1) Pr(Sy = 0) ¢pr( Sy — 1) Pr(Sy, — 0) (3.16)

Ps =

and we see that the degree of synchronization of cycles depends upon two items:
the characteristics of the specific cycles which are determined by Pr(S, = 1)
and Pr(S,; = 1) and the probability of the event {S; = 1,S,; = 1}. The latter
event is more likely to occur when the turning points in both cycles are located at
the same point in time i.e. turning points cluster around a given date. From the
expression for pg it is clear that, given individual cycle characteristics summarized
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by Pr(S,; = 1) and Pr(S,; = 1), the higher is pg the greater will be the probability
that turning points will occur together, and so the greater will be the chance of
observing synchronized cycles.

Now the Pr(S;: = 1) and Pr(S,; = 1) are characteristics of the marginal
densities of S;; and Sy, respectively and these derive from the marginal densities
of z; and y;. The joint density of z; and y; will be involved in determining Pr(S,; =
1,5, = 1). If we keep Pr(S;; = 1) and Pr(S,, = 1) unchanged then, as Pr(S,, =
1, S, = 1) changes, so will pg. Consider then the case when Az, and Ay, are
jointly normal with expected values j, = E(Ax), p, = E(Ay,),variances o2 and
Jf/ and correlation p. If the marginal density parameters are held constant it is
clear that Pr(S;, = 1,5, = 1) varies directly with p and so pg and p are related.

This connection is useful since it shows how our concept of synchronization
relates to that used in most of the literature on cyclical “co-movement”, as it is
the latter which has been the focus of attention of RBC researchers. That group
studies the correlation among series from which the permanent component has
been removed through some form of filtering, and so it is effectively studying the
growth cycle. Examples of this methodology applied to a single economy include
Cooley and Prescott (1995) and Cooley and Hansen (1995) and involves the cor-
relation between variables such as GDP, consumption, investment, employment,
unemployment, hours worked and prices from which permanent components have
been removed. There are also several papers that study correlation between the z
from different countries, including Backus et al (1992), Canova and Dellas (1992),
Canova (1993), Engle and Kozicki (1993) and Artis and Zhang (1997). The au-
tocorrelations and cross correlations between the z, of different countries can be
used to reconstruct the equivalent quantities for Az;, and it is the latter which
will be important to the nature and existence of growth cycles. However it is
the correlation of Az; and Ay, that is the appropriate quantity to study synchro-
nization of classical cycles. The latter cycle depends upon all the second order
moments of Az, and Ay,, although in a very complex way, since pg also depends
on what determines the marginal probabilities like Pr(S,; = 1) as well as the joint
probability.” Consequently the moments of the series Az; and Ay, as well as
their covariance, will determine pg. Studying any individual moment, such as the
covariance, will not be very informative about synchronization.

TOf course it is really the joint density of Ay, and Ax; which determines the cycle charac-
terictics rather than the second moments per se.
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4. Defining and extracting a Common Cycle

4.1. Through Parametric Models

Now what is a common cycle? Firstly, we might define a common cycle as oc-
curring when there is perfect positive synchronization i.e. when pg = 1. This
turns out to be the definition used by Vahid and Engle (1993), at least when the
cycles being examined are growth cycles. To see this, note that they propose a
test statistic for a common cycle by writing

Y = ayTBN,y,t+zyt (41)

Ty = a/:BTBN7;m‘, + Zyts (42

where Ty, is the Beveridge-Nelson “trend” decomposition, and then test for
a linear relation between z,; and z, (dropping the BN identifiers). A “common
cycle” is said to exist if z,; = dzz. Since the emphasis is upon z; it is clear
that it is a common growth cycle that is being tested for. As shown in those
papers, when a “common cycle” exists among the z; cycles, one can write each
z; as a multiple of a factor f; (see Vahid and Engle (1993,p344)). Consequently,
provided the factors of proportionality have the same sign, the turning points in
each of the series z,; and z,; are identical, simply being those of f;. Because the
growth cycles in z,; and z,; are identical there is therefore perfect synchronization
between them.

More precisely, the test supplied by Vahid and Engle is a test of whether what
might be termed “Beveridge-Nelson growth cycles” are perfectly synchronized.
There are no implications from this test for whether there is synchronization of
the classical cycles in y; and x;. To see this, we note that, if the test statistic
indicates that the null hypothesis of a BN common cycle is accepted between two
series y, and x, then z, = g, f; and z,; = ¢, f; and, after differencing (4.1) and
(4.2), one can write

Ay, = ayey + g,Af (4.3)

A'CEt = aw£wt+gwAft (44)

where €, and e, are the innovations into the permanent component of each
series (the assumption in the BN framework being that all series are I(1)). Thus
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the series will generally have different classical cycles since the nature of the
autocorrelation in Ay, and Az, will depend upon the relative variances of the two
elements in each equation, and there is no reason for these to be the same, unless
ay = g, gy = g, and var(e,) = var(e,). Even if the series are co-integrated, as in
Vahid and Engle’s analyses, so that e,; = ¢, are the innovations into a common
trend, there will likely be a disparity in the specific cycle lengths.® It should be
noted that, in the co-integration case, there will be error correction terms entering
into Ay; and Ax;, and these may assist in producing common factors in the levels
of the series.

Now the Engle-Vahid common cycle model implies that the series Ay; and
Ax; are driven by common factors and, in fact, since the underlying framework
for their analysis is that y; and z; follow a VAR, the factor must also have such
a structure. More generally one might have non-linear models for the series and,
hence, the factors. Thus one might have Ay, (or Af;) following a Markov Switch-
ing process as in Hamilton (1989) or Chauvet (1998), or even some other non-linear
structure.? But all of these are just different models for Ay, and Ax; and they
do not determine the existence or non-existence of a common cycle, which is our
focus. However, they will certainly be important for the nature of the cycle, as
we will now illustrate.

Consider defining a common cycle from the viewpoint of a lack of synchroniza-
tion. The simplest instance of this would be when Az, and Ay, are independent,
so that S;; and Sy are independent, and pg = 0. From this perspective a common
cycle would exist whenever pg # 0. Now to make this more precise let us follow
the common factor literature and assume that there is a factor driving Ay, and
Az;. Then

Ay = ayfit+eyp (4.5)
A.’Et = a:pft+5:pt (46)

8There is also an issue of the drift in each series i.e. t, and p,. Unless these are the same
the classical cycles will have to be of different length i.e. the series need to co-trend as well as
co-integrate.

9 A referee argued that the difference between our approach and Hamilton’s was that the latter
made Ay; depend on S; while we had S; being dependent on Ay,. This claim is misleading for
two reasons. First, the S; we construct are not the latent states £, that the Markov switching
model contains. Indeed our S; are the equivalent of the cycle dates ¢, that Hamilton produces
by using the dating rule ¢, = 1(Pr(¢, = 1|Ays, Ayss_1,...) — .5). Secondly, there is nothing in
our approach which says that Ay, cannot be a function of S;_;(j > 1). If this was true one
would just have a model for Ay, that featured non-linear dependence.
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where €., €, are independently distributed (of one another) and the correlation
between Ay, and Ax; is p. This correlation clearly depends upon the effect of
the factor f; upon the Ay, and Az, i.e. the magnitude of the loadings. Provided
these are non-zero it natural to say that a common cycle exists within this model
and that it can be extracted from f;. The degree of synchronization will of course
depend upon pg, which will be a function of many things - the relative magnitudes
of the factor loadings, the relative variances of f; to e, and e, the type of serial
correlation in the idiosyncratic shocks, whether there is drift etc. Unless one has
a completely specified parametric model it is hard to be precise about the degree
of synchronization in the series and how important the common cycle is.

4.2. A Non-parametric Approach

A final approach is to focus directly upon the turning points in the specific se-
ries when considering the construction of a common cycle. This leads to a non-
parametric method for common cycle extraction or, as it would be known in the
NBER typology, the reference cycle. Burns and Mitchell (1946, p13) provide a
starting point for a definition of what constitutes a set of synchronized cycles with
the observation that:

At an early stage of the investigation we thought it prudent to
compare the specific cycles in numerous series. Rough tabulations
of specific cycle turns suggested that they clustered around certain
months, which usually came in years when business annals reported a
recession or revival.

Figure 4.1 is a stylized version of the worksheet used by Ernst Boehm to date
the Australian Business cycle: it shows the location of turning points in seven
Australian series.!’ Clusters of turning points are marked on the chart, mak-
ing the phenomenon very apparent. The median date of each cluster determined
the Australian reference cycle chronology. The visual evidence for the seven Aus-
tralian series being synchronized is that almost all of the turning points fall within
seven clusters. Later, we will formalize this eye-ball test, thereby providing a way
of measuring synchronized cycles.

0The series are real GDP (GDPR), real non-farm product (NFPR), real household income
(HH INC), industrial production (IP), employment (EMP) and minus the unemployment rate
(UNEMP).
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Figure 4.1: Clustering of turning points in the Australian classical business cycle

O O O
4]
R4
[
(4]
o
<o
%) A
5
5 X
o
=
=
[e)

Feb-48 Feb 53 Feb 58 Feb 63 Feb 68 Feb 73 Feb 78 Feb 83 Feb 88 Feb 93 Feb 98

0 GDPR ¢ NFPR & HH_INC x IP x RETAIL - EMP o UNEMP

The notion of clusters of turning points is visually appealing but requires
careful definition in order to precisely quantify the phenomenon that the eye
identifies. Burns and Mitchell had, and their followers at the NBER business
cycle dating committee have, a long history of interpreting such visual information.
Harding (2003) shows that the implicit rules used to construct the NBER business
cycle chronology have changed over time and in particular the implicit dating rule
used to construct the pre-WWII chronology differs from that used to construct
the post WWII chronology. He also shows that starting from about 1959.1 the
NBER seems to have used approximately the same rule to locate turning points.
We have therefore sought to extract and codify the rules implicit in the NBER
procedures used to construct the post 1959.1 chronology.

The NBER has increased the amount of information that it provides about
its dating procedures (see http://www.nber.org/cycles/main.html) but it remains
the case that there is insufficient information provided by the NBER to allow their
dating procedures to be replicated from the information they provide. However,
the late Geoffrey Moore (1983), a colleague of Burns and Mitchell and long time
member of the NBER Dating Committee, and Boehm and Moore (1984), who use
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these procedures to obtain an NBER-like reference cycle for Australia, provide a
description of the NBER procedures that is sufficient to enable us to write down
an algorithm. Their procedures can be summarized in the following steps:

e Find a set of series that are believed to be roughly coincident.

e Adjust those series so that they are all pro-cyclical i.e. positively synchro-
nized.

e Identify the turning points in each of those series via peak and trough dating.

e Visually identify clusters of turning points by seeking to minimize the dis-
tance between the turning points in each cluster.

e Construct a coincident index as the weighted sum of the set of coincident
series and then find the turning points of the coincident index.

e Obtain the candidate reference cycle as the consensus of the turning points
in each cluster.

These steps contain the essence of what Boehm and Moore, and by extension
the NBER dating committee, consider to be the defining features of synchroniza-
tion and the associated common cycle. Inspection of the Boehm and Moore article
suggests that the last two steps are of minor significance. The second step is a
normalization that is avoided by assuming, for the moment, that all series are
pro-cyclical. The third step can be achieved via some dating algorithm, such as
Harding and Pagan’s (2002) quarterly adaptation of the Bry and Boschan (1971)
procedures. This suggests that the main unresolved issue is to codify step four
above. This asserts that the defining feature of synchronization is a formal de-
scription of the minimum distance between the nearest turning points of the same
type in a vector of specific cycles. We will later describe an algorithm that can be
used to implement these steps and will use an updated version of the Boehm and
Moore (1984) Australian reference cycle data to calibrate the algorithm. This
means that, when we apply the algorithm to US data later in the paper, and
compare the chronology with that of the NBER, we are effectively performing
an out-of-sample test - something that is not true of other procedures that are
calibrated directly on the NBER data.
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5. Testing Synchronization

5.1. Test Statistics
5.1.1. Bivariate Tests

In the case of bivariate cycles we have proposed that SPPS(i) be tested by
considering whether
E(Syt - S:m‘,) - 0

This involves testing if two sample means are equal and is easily done. GMM
methods can be employed to produce a robust standard error.

For testing non-synchronization we recommended the correlation between S,
and Sy, pg. To estimate pg we have the moment condition

Elog, (Sat — 154)05, (Syt — tsy) — ps] =0 (5.1)
and the estimator generating equation is just

1 & o . .
ngzl(swt - MSx)US;(Syt - MSy) —pg =0. (5.2)

Since we need to find estimates of the means and variances of S;; and Sy in
order to compute pg, the estimated correlation coefficient is a sequential method
of moments estimator, to use Newey’s (1984) term. The moment condition can
be written as

E[mt(ea Sat, Syt) - PS] =0, (5-3)

omy

where 0 = [g,,0s,, lLg,, 0s,]. Now, because E{%} = 0 under the null hypothe-
sis that pg = 0, the fact that 0 has been estimated from the data does not impact
upon the asymptotic distribution of TV/2(pg — pg).

Testing for the second criterion used in perfect synchronization (SPPS(i7)) is a
little more complex. When testing (SNS) it would be expected that T%/2p¢ would
be asymptotically N(0,v), and so T25~/2p4 would be N(0,1) asymptotically.
One cannot be entirely precise about the stationarity properties of the states S,
Syt , since they depend upon the dating rule employed, but, for standard ones, like
the NBER rule, these states follow stationary Markov Chains. It is conceivable
that there do exist some dating rules for which this might not be true. However,
the proposed SPSS(ii) test involves testing on the boundary of the parameter
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space since |pg| < 1. There is a literature on the distribution of 7"/20=1/2(pg — 1)
in that case. As Chant (1974) and Andrews (2001) point out it is asymptotically
a half normal. Since the series S;; and S, are serially correlated the value of
v will not be unity and will need to be estimated by using a robust covariance
estimator. In this scalar case it is simply a matter of doing a one tail rather than
two tail test. One could also generate p values numerically from the empirical
density of T'29~1/2(1(pg < 0)pg — 1), where pg are drawn from an N(1,T7'9)
density.

Although method of moments is an obvious way to perform estimation and
inference about pg it is often useful to recognize that pg can be found from the
regression

G, Syt = a1+ pgO, Se + s, (5.4)

since this makes clear difficulties that can arise with some procedures advocated
in the existing literature. In particular, the critical role played by their implicit
assumption that wu; is 7.i.d. Thus both the market timing test of Pesaran and
Timmermann (1992) and its close relative, Pearson’s test of independence in a
contingency table (see Artis et al (1997)), effectively make this assumption. Artis
et.al. (1997) and Artis et.al. (1999), who work with transformations of the con-
cordance index, derive statistics for independence of cycles that effectively assume
the state Sy to be i.i.d.

As one can see from the regression, when the null pg = 0 holds the error
term inherits the serial correlation properties of S,;. We have seen that Sy is
strongly positively serially correlated and, as is well known, positive serial corre-
lation sharply increases the chance of rejecting the null that pg = 0, unless infer-
ences are made robust to the serial correlation as well as to any heteroskedasticity
in the errors, as can be easily done within the method of moments framework.
Thus in applications below we report the ¢ ratios for testing if pg = 0 using the
method of moments estimator and with inferences that do and do not make an al-
lowance for serial correlation and heteroskedasticity. Notice that an advantage of
the method of moments approach over the regression model is that we are making
no assumptions about which of S, and S;; are “exogenous”.

The regression interpretation is also useful for looking at questions about
whether the degree of synchronization has changed over time. It is possible to
compute pg recursively and to study its evolution over time. For formal testing
of parameter stability one can utilize the methods in Sowell (1996).
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5.1.2. Tests of multivariate synchronization

To test for multivariate non-synchronization (SM N S) we can also use the GMM
estimator based on the following n(n 4 1)/2 moment conditions

Esjt:;u'Sj jzl,..,n

S — s )(Si — s, s
gl Gnpe)azps) j=1,m, Q>

\/Msj (1 - Msj) Hs; (1 - .Usi)

Let 0/ = {,usl, ol PSS ..,p’;(”‘” be a vector of parameters and S; be the

1 x n matrix with typical element Sj;. Then we can write the stacked moment
conditions as hy(0, S;) as follows

S — pg,

Snt = B,
(S1t—pig, ) (Sat—ps, ) _ p12 T 1 T

S
ht(97 St) = \/usl(lfusl)uSQ(lquQ) and g (97 {S}tzl) = T Z ht(ea St)
t=1
(S(n—l)tfﬂsnil)(ST;tfl'LSn) (n—)n
— Ps
\/“S(n—n <1*Ms<n_1)>ﬂsn (1*lisn)

Let § = {ﬁsu T ﬁ’;@*” be the vector of sample means and sample

pair wise correlations for the S;;. Then

V:foJrf:ll—mLH} T+ 1),

k=1

Where,



is a consistent estimate of the covariance matrix for v/Tg (9, {S }thl) . Letting
0y = {,usl, 77 N 0} be the restricted parameter vector for the SMNS case (ie
pf; = 0), under the SMNS null the statistic,

Wsuns = VTg (90, {S}?:J,‘A/_lﬁg (‘907 {S}f=1)

has an asymptotic Xi(n_n /2 distribution. In applying this test we need to choose
a value for m the window width. Unlike the regression case we don’t have an
automatic procedure for doing this and have chosen to set m equal to the integer

part of (T — n(n —1)/2)7 .

Testing the necessary condition for perfect synchronization among a number
of series can be done by testing if pug = pg, = ... = pg,. As we observed early
we can convert this into an (n — 1) x 1 vector of differences by relating all the
ps; to pg, and the choice of the series to normalize upon is irrelevant. The GMM
approach just described then provides a standard way of effecting such a joint
test. It also motivates a test of the second criterion SPPS(ii). Again we have a
boundary value problem and now the distribution of the joint test for a number
of correlation coefficients being unity is complex. The standard test statistic of
Hy : pg = pgo would be to form

T(ps — pso)'V ™" (s — Pso)s
where pg would be the nx1) vector of correlations and V would be the asymp-
totic variance of TV/2(pg—pgp). Now pgp is a vector of ones and it is known that the
true density in these circumstances would be a weighted average of x? densities,
see Gourieroux et al (1982), but getting the weights is complex, and it seems
simplest to generate it by simulation methods viz. by drawing realizations of p'
from an N(i,, V') density, where i,, is an n x 1 vector of ones, and then forming
the standard test statistic, but discarding draws of i)fj that exceed unity when
computing the empirical p value. This is the analogue of what would be done in
the scalar case.

5.2. Some Applications

Our first two investigations of synchronization of cycles are with industrial pro-
duction and stock prices. In this investigation our focus is on the extent to which
serial correlation and heteroscedasticity distort inferences about synchronization.
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We then turn to the data used by Boehm and Moore (1984) to construct the
Australian reference cycle and by the NBER to construct the reference cycle for
the United States. Investigation of synchronization in these data sets serves two
purposes. First, it illustrates how the methods developed in this paper can be
used by practitioners seeking to construct NBER-like reference cycles. Second, it
is a precursor to later sections where we use this data to calibrate and test the
non-parametric procedure that is employed in extracting a common cycle.

5.2.1. Industrial Production

Our first investigation of synchronization of cycles is with the data on industrial
production for the twelve countries in Artis et al (1997, Table 2). We first focus

on the statistics {f . Ps, ﬁs} that are presented in Table 5.1, where the countries

are ranked according to the magnitude of fig; the concordance statistic T is above
the diagonal while pg is below the diagonal and jig is in the bottom two rows of
the table. Reported values of I are large suggesting that industrial production
in these 12 countries spends much of the time in the same state of the classical
cycle. However, the pair wise correlations pg are typically small which, together
with (3.15), suggests that it is the high values for fig rather than a strong cor-
relation between industrial production in different countries that lies behind the
high degree of concordance. This effect is most evident for the UK, which shows
concordance with other countries in the range of 0.58 to 0.71; yet it only shows
correlations in the range of -0.04 to 0.31.

There is extensive serial correlation in the states. For example, the first order
serial correlation coefficient in Sgrr+ is .95, so that there will need to be a serial
correlation correction performed to get the correct ¢ ratio for pg. Consequently,
we use a heteroskedastic and autocorrelation consistent (HACC) standard error
with Bartlett weights to account for the serial correlation. We set the number of
lags to be the integer part of 4T %, where 7 is estimated using the procedures in
Newey and West (1994).! Other estimators might be used to improve the power
of the test e.g. the method outlined in Kiefer and Vogelsang (2002) and Phillips
et. al (2003). Results are in Table 5.2, where the uncorrected t-statistics are
above the diagonal, while those based on HACC standard errors are below the
diagonal. The robust ¢-ratio shows that the evidence for the null hypothesis of

U Estimated values of « for each pair of countries are available from the authors on request.
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Table 5.1: Concordance indexes and correlations of cycles in industrial production
for selected countries

UK CAN LUX ITA NET GER BEL US JAP FRA SPA IRE

UK 0.61 062 058 062 066 068 065 058 063 067 0.71
CAN 0.11 . 0.56 056 0.68 062 064 083 070 066 0.66 0.72
LUX 0.12 -0.04 "-. 0.70 064 076 074 062 072 075 074 0.74
ITA 0.02 -0.05 027 °"-. 084 083 082 0.67 079 084 0.77 0.73
NET 0.12 023 011 059 . 083 0.8 077 0.8 081 084 0.75
GER 0.20 0.08 040 0.57 057 . 081 0.74 084 0.83 0.80 0.80
BEL 0.23 0.07 030 053 061 047 . 075 081 0.88 091 0.85
us 0.14 0.60 -0.04 009 036 026 020 “-. 076 075 079 0.83
JAP -0.04 0.22 023 042 046 055 039 020 . 0.84 086 0.81
FRA 0.05 0.11 032 059 049 050 0.61 0.13 043 . 0.86 0.88
SPA  0.16 0.09 027 039 056 040 069 022 046 042 . 0.84

IRE 031 027 025 019 024 041 044 029 020 046 0.12

g 066 0.68 071 072 0.72 0.74 0.80 0.82 0.82 0.84 0.87 0.92
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no association is quite strong; something that was not true of the test performed
with the uncorrected t ratios.

Table 5.2: Standard and robust t-statistics for the null hypothesis of no correlation
of classical cycle states in industrial production for selected countries

UK CAN LUX ITA NET GER BEL US JAP FRA SPA IRE
UK . 4.0 4.3 0.9 46 8.1 106 6.6 -2.0 2.7 9.2 241
CAN 06 . -1.6 2.0 &8 3.3 3.1 349 106 5.3 5.0 204
LUX 05 -0.2 . 10.6 4.3 16.9 140 -19 11.1 169 153 19.1
ITA 01 -03 1.2 o279 269 277 43 219 36.0 23.0 14.2
NET 0.53 1.0 0.5 3.5 . 271 345 181 246 28.0 375 181
GER 09 04 1.6 29 31 23.8 123 31.1 289 242 331
BEL 12 04 1.5 3.5 6.3 2.0 96 201 386 517 36.2
us 0.6 69 0.2 04 1.7 1.1 1.2 .97 6.6 12.4 224
JAP -0.2 0.9 1.0 1.9 22 3.3 1.7 06 . 23.5 286 148
FRA 02 04 1.8 44 34 2.8 4.4 0.7 1.6 25.7 38.2
SPA 0.7 04 1.0 1.3 5.8 2.2 104 08 1.8 1.6 8.9

IRE 29 21 1.4 0.8 1.5 3.9 4.7 1.8 09 33 0.5

It is worth testing for the necessary condition for perfect synchronization. To
do this we define the vector of moment conditions h;(S;) implied by that condition
as

R | Sk s
ht(St) = |: _Z.n—l ]n—l } and g <{S}f:1) = T th(St)
SIRE =

wherei, 1 is an (n — 1 x 1) vector of ones and I,,_; is an (n — 1 x n — 1) identity
matrix. Under the null of SPPS(i) the statistic

Wes =75 ({SH_y) Vimd ({SH-y)

where Vp,, is a HACC estimate of the covariance matrix estimated with Bartlett
weights and lag length m, is asymptotically distributed as x* (n — 1) . Using the
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information on specific cycles in industrial production, Wpg = 34.4 with p-value
0.0003, leading to a rejection of perfect synchronization.

5.2.2. Stock prices

Another example of cycles that are possibly synchronized relates to international
stock market movements. We examine data on monthly stock price indices for
three countries - Australia, the United Kingdom and the U.S. The data sets were
used in Pagan (1998) and the rules to determine the phases of the cycles are
described there (with a short description for the US data being available in Pagan
and Sossonouv (2002)). Two sample periods are provided; from 1875/1- 1997/5
and the “post-WW2” period of 1945/1-1997/5. A striking feature of these data,
seen in Table 5.3, is that, while the means of the stock states (fig) were quite
different in the pre-WWII era, they became close in the post-WWII era, and we
cannot reject the null hypothesis that they satisfy the necessary condition for
perfect positive synchronization in that era. We can however reject the second
of the SPPS conditions since the robust ¢ ratio for testing if pgms/ UK was unity
would be 4.2 which, when referred to the half normal density, would provide a
strong rejection. Nevertheless, even though not perfectly synchronized, there is
strong evidence that the cycles are highly correlated, although the robust t ratios
do dampen the strength of this evidence.

Table 5.3: Evidence on the necessary conditions for perfect synchronization across
three stock markets

L
Australia | United Kingdom | United States | Wpg | p-value
1875/1-1997/5 0.68 0.56 0.61 9.5 0.009
1945/1-1997/5 0.67 0.64 0.64 0.9 0.65

5.2.3. Components of the Australian reference cycle

Perhaps the best known example of synchronization relates to the NBER reference
cycle. Previously investigation of that phenomena has largely been considered to
be outside of the scope of econometrics. As an example of how our methods can
be used to redress this situation we apply the techniques developed in this paper
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Table 5.4: Concordance Indices and Correlations of Cycles in Equity Prices

UK/US Aust/US Aust /UK

1875/1-1997/5

I 0.66 0.61 .70
b 0.29 0.16 .39
t 18.8 10.2 24.5
robust ¢ 3.9 2.0 4.9
o 1.6 0.4 1.7
1945/1-1997/5

I 0.67 0.69 0.79
D 0.28 0.33 0.54
t 12.3 14.3 27.0
robust ¢ 2.4 2.7 5.0
o 1.1 0.3 2.0

to investigate the synchronization between the component series that Boehm and
Moore (1984) used to define the Australian reference cycle. The dates of specific
cycle peaks in the component series and the Boehm and Moore reference cycle
peaks are in Table 5.5, while the information on troughs is in Table 5.6.

We first comment on the statistics {ﬁs, ty AcC, s} that are presented in Table

5.7. Here pg is above the diagonal, t; 4cc is the heteroscedasticity and autocorre-
lation robust t-statistic for the SNS hypothesis reported below the diagonal and
[Lg is in the bottom row of the table. Reported values of the pair-wise correlations
pg are often small, which might be of some concern to those who use this data
to construct the Australian reference cycle. The generally high values of ig, to-
gether with (3.15), suggests that it is the high values for fig, rather than a strong
correlation between the components of the Australian reference cycle, that creates
strong concordance between the specific cycles for those variables. Inspection of
the final column of Table 5.7 points to the fact that inclusion of the unemploy-
ment rate in the set of variables used to construct the reference cycle may not be
justified, since its specific cycle is weakly correlated with the other components.
The test statistic for the null hypothesis of the necessary condition for perfect
synchronization takes the value 37.8 (p-value 1.3¢7%), and so we can emphatically
reject it for the Australian data. Inspection of the last row in Table 5.7 shows that
the unemployment rate is the culprit as it spends too little time in expansions
(ig = 0.48) to be perfectly synchronized with the other series. This suggests
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Table 5.5: Peaks in the components of the Australian reference cycle

Real Real non | Real Real in- | Real re- | Employment | Unemployment Boehm
GDP farm house- dustrial | tail sales | (Emp) rate (Un- | and
(GDPR) | product | hold pro- (Retail) emp) Moore
(NFPR) | income | duction Refer-
(HH INQ)(IP) ence
Cycle
(Ref)
52.02 57.02 51.05 51.09 60.05 50.08 50.12 51.04
55.11 60.08 57.05 60.12 75.04 60.02 55.08 56.12
60.08 71.08 75.08 71.07 78.09 74.06 60.09 60.09
81.01 75.05 77.05 74.07 81.08 82.01 65.04 74.07
90.02 76.11 82.05 76.01 86.05 90.07 68.10 76.08
81.01 90.08 82.05 89.12 74.02 81.09
90.02 85.08 95.12 76.05 89.12
90.05 81.06
86.06
89.12
95.06
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Table 5.6: Troughs in the components of the Australian reference cycle

Real Real non | Real Real in- | Real re- | Employment | Unemployment Boehm
GDP farm house- dustrial | tail sales | (Emp) rate (Un- | and
(GDPR) | product | hold pro- (Retail) emp) Moore
(NFPR) | income | duction Refer-
(HH INQ)(IP) ence
Cycle
(Ref)
92.02 92.08 ol.11 52.09 92.08 92.11 52.11 52.09
56.05 56.08 57.11 61.09 61.05 61.09 58.10 57.12
61.08 61.08 76.02 72.03 76.04 75.01 61.09 61.09
83.02 72.02 77.11 75.05 79.09 83.04 67.06 75.10
91.05 75.11 83.05 7711 82.02 93.02 72.11 77.10
77.08 91.05 83.02 86.11 75.10 83.05
83.02 86.05 90.12 79.04 92.12
91.05 91.11 96.09 83.09
87.03
92.12
97.05
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that the unemployment rate is unsuitable for inclusion in the construction of a
reference cycle for Australia.

Table 5.7: Bivariate correlations and robust t-statistics for null hypothesis of
strong non synchronization between components of the United States reference
cycle

Unemp | NFPR | Retail | TP | Emp | GDPR | HH INC
Unemp 0.33 022 1031 0.35 0.29 0.22
NFPR 2.5 . 0.59 | 0.43 | 0.33 0.57 0.32
Retail 1.7 4.5 . 0.07 | 0.09 0.24 0.11
1P 2.0 3.6 0.5 .| 0.57 0.45 0.35
Emp 2.0 2.2 0.7 4.5 . 0.52 0.32
GDPR 2.0 2.2 1.5 21 | 2.8 0.31
HH INC 2.3 3.0 0.8 1.6 | 1.5 14 .

g 0.48 0.80 0.80 | 0.85 | 0.87 0.91 0.93

In this paper our interest is in using the Australian reference cycle data to
calibrate our algorithm for extracting a reference cycle against the procedures
used by Boehm and Moore. Thus we continue to include the unemployment rate
in the set of series from which a common cycle is extracted. Given this focus
we need to check whether a common cycle exists. The x3, test statistic for the
SMNS null hypothesis takes the value 37 with p-value 0.02. Consequently, there
is reasonably strong evidence for synchronization among the components of the
Australian reference cycle when taken as a whole, although Table 5.7 hints that
the specific cycle in household income is only weakly correlated with the other
specific cycles. Most importantly, the discussion above suggests that practitioners
should select the specific cycles that are to be used in constructing a reference
cycle by first selecting only the subset of variables where pg = ps, and then
selecting from the subset of specific cycles that are highly correlated.

5.2.4. Components of the United States reference cycle
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The NBER business cycle dating committee pays particular attention to four
series viz, Total Nonfarm Employment; Industrial production; Manufacturing and
trade sales; and Personal income less transfer payments.!? Specific cycle turning
points for these four series are shown in Table 5.8 for the period 1959.1 to 2002.4.
The specific cycle turning points were found using a version of the Bry Boschan
algorithm and agree closely with those on Robert Hall’s NBER spreadsheets.

Table 5.8: Specific cycle turningpoints for industrial production, employment,
sales and income, United States, 1959.1 to 2002.4

Industrial Production Employment Sales Income
Trough Peak Trough  Peak  Trough  Peak  Trough  Peak
1960.1 1960.4 1960.1 np
1961.2 1967.1 1961.2 np 1961.1 np nt np
1967.7 1969.10 nt 1970.3 nt 1969.10 nt np

1970.11 1973.11 1970.11 1974.10 1970.11 1973.11 nt 1973.11
1975.3 1979.6 1975.3 np 1975.3  1979.3 19754 1979.12

1980.7 1981.7 nt 1981.7  1981.1 nt 1980.7  1981.8

1982.12 1984.7 1982.11 np np nt nt np

1985.12 np nt np np nt nt np
nt 1990.9 nt 1990.6 nt 1990.8 nt 1990.7

1991.3 2000.6 1992.2  2001.3 1991.1 2001.9 1991.2 np

Here our investigation of this data is to meet a referee’s request to evaluate the
algorithm developed in section 6 in terms of its capacity to generate the NBER
reference cycle. Thus, the information in table 5.8 is presented to ensure our work
is replicable.!® Given, our focus of interest we will not investigate whether the
component series used to construct the reference cycle are well chosen. However,
we do need to check whether there is a common cycle in the four series used by
the NBER to construct the reference cycle. The value of the x2 test statistic for
SMNS in the components of the NBER reference cycle is 20 with p-value 0.003.
Thus, there is strong evidence for the existence of a common cycle in these four
series. In a later section we extract that common cycle and compare it to the
NBER reference cycle.

12The data was obtained from the spreadsheet constructed by Robert Hall that is available
from the NBER home page http:www.nber.org/cycles/hall.xlw.
13 A more extensive analyis of this data is given in Harding (2003).

31



6. A Non-parametric Method for Extracting the Common
Cycle

6.1. The Algorithm

There is an extensive literature on the extraction of dynamic common factors from
time series and, as mentioned earlier, the factors are normally used to construct
series whose turning points can be dated with specific cycle dating techniques.
Because of this literature on the construction of common cycles using parametric
models we will focus upon the relatively neglected non-parametric approach.

Implementing the non-parametric method requires some definitions of the key
concepts appearing in it. The first of these is the definition of a function 77(t)
that measures the distance from ¢ to the nearest peak in the i specific cycle.'*

Definition 1. Distance to nearest turning points. Let t and tI' be vectors
containing the dates to peaks and troughs respectively in the i'® specific cycle,i =
1,..,n. Let d(.) be a measure of distance and 7F(t) = mind (tf — t) be the

distance to the nearest peak in the i specific cycle.

The next step is to define a function 7% (¢) that measures the “average” distance
from ¢ to the set of nearest peaks. Local minima in 77(¢) define the central dates
of clusters of peaks; these comprise dates at which the distance in time to the set
of nearest peaks is minimized.

Definition 2. Centres of clusters of turning points. Let g() be a function
that measures the centre of tendency of the distances to the nearest turning point
for a collection of specific cycles.*> Define 7¥(t) = g (Tf (t),.., ¢ (t)) to be the

centre of tendency of the distances to the peaks nearest to date t.. Define M* as
the vector of dates of local minima in 7 (t). Formally,

MY ={te1, TIr"(t+At) > 7"(t)  forall Atsuchthat A <6}, (6.1)

14One proceeds in the same way for troughs.
B Typically, g(.) will be selected from either the family of generalized means or from the
median.
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where 6 is some positive constant used to define “local” and MY is the vector
containing the central date of the clusters of peaks. The vector containing the
central dates of the cluster of troughs, M”, can be defined in a similar fashion.

Once the centre of each cluster is located, attention turns to determining, for
each specific cycle, whether or not the peak nearest to the centre of that cluster
is in that cluster. The rule used in the definition below is that, for each specific
cycle, the nearest peak to the centre of a cluster is in that cluster if two conditions
are met

1. It is not nearer to the centre of another cluster; and

2. Tt is less than d from the centre of the cluster.

Definition 3. Cluster of turning points. Let mf be the j** element of M

and C' mf ) represent the cluster of peaks centered on mf .C (mf ) is defined as
follows

J

C (mP) = {tjl- € (tf, ..,tf) |d (mf,tﬁ) <d (mkp,tﬁ) forallk # j; and d (mf’,tﬁ) < E},
where d is a constant. Clusters of troughs can be defined in a similar way.

Thus to implement the algorithm one needs to make choices about:

1. A function d(.) to measure the distance between turning points.

2. A function g(.) used to measure the centre of tendency of turning points in
a cluster.

3. A constant d that determines the maximum width of a cluster.
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We have adopted the choices made by Boehm and Moore (1984); specifically
we use d(t1,t3) = |t; — ta| and choose the median as the measure of the centre
of tendency (g(.)). Boehm and Moore do not make a recommendation for the
choice of d, but, inspection of Ernst Boehm’s worksheets suggests that d was
never chosen to be greater than 24 months and, in several instances, clusters were
chosen with the distance from the median date to the furthest date in the cluster
being 20, 21 and 22 months respectively. This suggests that a choice of d = 24
for monthly data (8 for quarterly data) would provide a good approximation to
their procedures.

Described in words the algorithm proceeds in the following three stages

1. At date t find the number of months to the nearest peak (trough) for each
series. This gives a vector of dimension n. The median of the elements in
this vector is then found. The interpretation of this median is that, at time
t, it is the median distance to the nearest peak. Designate this item at time
t by m;.

2. Step 1 is done for each ¢, producing my(t = 1,...,T). The series m; is then
examined and, wherever a local minimum is encountered, this is taken to
be a candidate for a turning point in the reference cycle.

3. The candidate turning points are then modified in two ways. First, owing
to the fact that m, is discrete, it may be necessary to break ties e.g. m 4
and m; may be equal, and one has to decide whether it is J or J + 1 that is
the turning point. In this situation the algorithm looks at higher percentiles
than the median until a unique local minimum is found. We feel this appeal
to clustering in higher order percentiles is a natural way to resolve any non-
uniqueness of the local median. Second, turning points may need to be
censored so that peaks and troughs alternate and to maintain the NBER
criteria regarding minimum completed phase and cycle durations. Here we
use the censoring procedure described in Harding and Pagan (2002).

6.2. Calibration

The algorithm described above was applied to the Australian data used by Ernst
Boehm to identify the Australian reference cycle. Our objective is to check
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whether the choice of d = 24 to calibrate the algorithm yielded a reference cycle
for Australia that was a good approximation to that obtained by Boehm and
Moore using the NBER procedures. The results are presented in Table 6.1 The
first four columns of the table relate to peaks and the second four columns relate
to troughs. The columns headed “B&M” give the dates of the centre point (me-
dian) of clusters of specific cycle peaks and troughs as identified in Ernst Boehm’s
spreadsheets. These represent the patterns of reference cycle turning points data
that the algorithm is seeking to match. The columns headed “ALG” give the cen-
tre point (median) of clusters of specific cycle peaks and troughs as identified by
the algorithm. The column labeled “Difference” contains the difference in months
between the turning point date identified by Boehm and that identified by the
algorithm — this comparison is made feasible because the algorithm identifies the
same number of turning points as does Boehm. It is evident that the algorithm
does quite a good job at matching turning points, with the largest difference be-
ing 7 months and the median difference being zero for peaks and one month for
troughs. But here we remark that it is the finding just cited regarding the median
distance between B&M'’s turning points and those located by the algorithm which
validate our calibration of d = 24. We will use this calibrated value later when we
apply the algorithm to the NBER reference cycle. The column headed “Cluster
tightness” measures the median distance between specific cycle turning points in
the cluster around the reference cycle turning point. Overall, the clusters are tight
with a median distance between specific cycle turning points of 5 months at peaks
and 3 months at troughs.

In summary, while the algorithm does not perfectly replicate the Australian
reference cycle constructed by Boehm and Moore, we feel that it provides an
extremely good approximation, given that it is an automated selection method.

6.3. Application to the NBER reference cycle

It is of interest to investigate how well the algorithm developed earlier and cal-
ibrated on Australian data in the preceding section can replicate the decisions
of the NBER Business Cycle Dating Committee. The algorithm aggregates the
specific cycle turning points in Industrial Production, Employment, Sales and In-
come that are reported in Table 5.8 to yield reference cycle peaks and troughs
that are reported in Table 6.2. This table has the same structure as Table 6.1, the
only difference being that the columns in Table 6.2 headed “NBER” reports the
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Table 6.1: Comparison of chronologies for two methods of dating the Australian
reference cycle

Peaks Troughs
B&M | ALG | Difference Cluster B&M | ALG | Difference Cluster
(ALG- tightness (ALG- tightness
B&M) B&M)
51.08 | 51.10 2 5 52.08 | 52.08 0 1
55.12 | 56.07 7 11 57.04 | 57.08 4 15
60.08 | 60.07 -1 2 61.09 | 61.08 -1 1
74.12 | 74.12 0 6 75.10 | 76.01 3
76.11 | 76.11 0 6 77.11 | 78.06 7 10
81.11 | 81.08 -3 3 83.02 | 83.03 1 1
90.02 | 90.01 -1 1 91.05 | 91.02 -3
Sum 4 34 Sum 11 34
Average 0.6 4.9 Average 1.6 4.9
Median 0 ) Median 1 3

reference cycle dates as determined by the NBER. Looking at the four columns
related to troughs it is evident that the algorithm does very well in providing
exact matches for four out of the six troughs, differing by one month either way
in the date of the two remaining troughs, and yielding an average (and median)
difference between the algorithm and the NBER of one half of one month. The
clusters of specific cycles at troughs are very tight, with median distance between
specific cycle troughs being one-half of one month.

On average, the algorithm locates peaks 2.7 months before the NBER dating
committee, with a median distance of 2 months. The clusters of specific cycle
peaks are relatively tight with an average distance between specific cycle peaks
and the reference cycle peak of 2 months and a median distance of 1.5 months.
It is important to observe that the capacity of the algorithm to match the NBER
dating committee is not a result of over-fitting. Indeed, no parameters to calibrate
the algorithm were chosen by reference to US data. Rather, as described earlier
the parameters of the algorithm were selected to replicate an NBER-like reference
cycle for Australia. As such it provides very strong evidence in support of the
hypothesis that the algorithm effectively summarizes the main aspects of the
decisions of the NBER dating committee.
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Table 6.2: Comparison of chronologies for two methods of dating the United States
reference cycle

Peaks Troughs

NBER | ALG Difference | Cluster | NBER | ALG Difference | Cluster

(NBER- | tight- (NBER- | tight-

ALG) ness ALG) ness
1960.04 | 1960.01 | -3 1.5 1961.02 | 61.02 0 0.5
1969.12 | 1969.10 | -2 2.5 1970.11 | 1970.11 | O 0.0
1973.11 | 1973.11 | O 0.0 1975.03 | 1975.03 | O 0.5
1980.01 | 1979.05 | -8 4.5 1980.07 | 1980.07 | O 0.5
1981.07 | 1981.07 | O 0.5 1982.11 | 1982.12 | 1 0.5
1990.07 | 1990.08 | 1 1.0 1991.03 | 1991.02 | -1 1.0
2001.03 | 2000.08 | -7 4.5
Sum -19 14.5 Sum 0 3.0
Average -2.7 2.0 Average 0 0.5
Median -2 1.5 Median 0 0.5

Of course, one would not expect the algorithm to exactly replicate the decisions
of that committee. One reason for this is that the composition of the committee
has changed over time. The most recent change resulted from the death of Dr
Geoffrey Moore and it may be that the procedures of that committee have changed
since his death. Such changes to the composition of the dating committee provide
a rationale for using algorithms of the type developed in this paper to provide a
consistent method of combining turning points to construct a reference cycle.

7. Conclusion

In this paper we have defined synchronization of cycles, related that definition to
the existing literature on common cycles, and shown how to test for synchroniza-
tion, allowing for the complications caused by serial correlation and heteroscedas-
ticity in cycle states. Applying this test we found weak evidence of synchronization
in industrial production and strong evidence in stock prices. We have also devel-
oped and applied an algorithm to extract the common (reference) cycle. The
attractiveness of the algorithm lies in the fact that it yields an automatic method
for identifying the reference cycle from a given set of specific cycles and therefore
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formalizes the informal procedures used by the NBER.
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