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Abstract

This paper studies the survival over time of cooperative behavior in the con-
text of strategic interactions such as those modeled in the Prisoner’s Dilemma.
In our model, agents are characterized by a ‘cooperative’ or a ‘non-cooperative’
preference trait, and rationally take costly actions to socialize their children to
their own trait. We then study the implications of this cultural transmission
mechanism for the population dynamics of preference traits. In particular, we
ask whether ‘cooperative’ agents survive in the long run, when they interact
strategically with agents who do not cooperate.
In contrast to the evolutionary game theory literature, we find that our cul-

tural selection mechanism generally leads to long run polymorphic populations,
in which cooperation can be sustained. This is because parents of the minority
cultural trait have higher incentives to spend resources to socialize their off-
spring, than parents in majority groups. This result holds both under complete
and incomplete information in the matching process.
Keywords: Cultural transmission, cooperation, endogenous preferences,

evolutionary selection mechanisms.
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In various real economic and social environments in which interactions are such that
collectively beneficial actions are not supported by the non-cooperative equilibrium
behavior of rational individual agents, agents in fact often do nonetheless cooperate
to sustain collective benefits. Examples include the adherence to collective norms of
behavior in families, firms, and most social groups at large. Cooperative behavior
in e.g., the Prisoner’s Dilemma has been also frequently reproduced in experimental
exercises.1

While this observation is consistent with the functionalist tradition in sociology,
it is not consistent with methodological individualism. Consequently, explaining the
emergence of norms of behavior in general, and cooperative behavior in particular,
in terms of rational agent theory has become one of the most fundamental problems
addressed in economics and in social sciences.
A large literature exists on the issue.2 Since the early Folk Theorem results (Fried-

man (1971)), it is well known that cooperative behavior can be enforced by rational
agents engaging in infinitely repeated relationships.3 A complementary literature looks
at the problem of emergence of cooperative behavior from the different perspective of
evolutionary game theory. Instead of asking, Why is it that cooperative behavior oc-
curs when rational agents play non-cooperative games ? this literature postulates that
some agents play cooperatively even if not rational for them to do so, and asks instead
the question, How can agents who play cooperatively survive evolutionary selection
when they interact strategically with agents who do not cooperate ?4

This paper attempts to contribute to the literature on the emergence of cooperative
behavior by analyzing it from a perspective which is related but distinct from that of
evolutionary game theory. In our context, agents might play cooperatively (e.g., in
the Prisoner’s Dilemma) because, we postulate, they receive a psychological payoff
from doing so.5 We then ask, how can these agents survive a cultural rather than
evolutionary selection mechanism when they interact strategically with agents who do
not cooperate?
In other words, we study the implications of a model of inter-generational transmis-

sion of preferences for the population dynamics of preferences which favor cooperation
per se. In our set-up in particular, agents are randomly matched to interact once

1A recent survey of this literature, centered around the original contribution by Axelrod (1984), is
contained in Axelrod-D’ambrosio (1996).

2See Hechter-Opp (2001) for recent surveys within a multi-disciplinary perspective.
3These results have been extended in many directions; see Fudenberg-Tirole (1991).
4Evolutionary arguments in the study of cooperative behavior and altruism have been put forward

by economists, e.g., Becker (1970), Kockesen-Ok-Sethi (2000), Stark (1999), sociologists, e.g., Axelrod
(1984), Cohen-Riolo-Axelrod (2000), Bendor-Swistak (2001), biologists, e.g., Maynard Smith (1982),
and anthropologists, e.g., Rogers (1988).

5In a similar spirit Becker-Madrigal (1995) study cooperation which is induced by habitual behav-
ior: agents gain psychological payoffs by playing cooperatively repeatedly.
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in a life-time, and hence no Folk theorem repeated-games considerations apply. We
build on population dynamics models of cultural transmission used in biology and cul-
tural anthropology (Cavalli-Sforza-Feldman (1981), Boyd-Richerson (1983)), and on
the work on socialization by Coleman (1994). With respect to this literature, though,
the cultural selection mechanism we adopt has the added fundamental property that
parents rationally take costly actions to socialize their children to some preference spec-
ification (Bisin-Verdier (2000)). For instance parents spend time with their children
and invest resources (e.g., in the form of private school’s tuition) to socialize them to
their preferred social norms. Some parents may favor cooperative norms, prescribing
caring socially conscious behavior, while others may favor more competitive individ-
ualistic norms. We assume that parents who socialize their children do so motivated
by altruism, but we assume altruism is not perfect in the sense that parents evaluate
their children payoffs with their own preferences (i.e., parents which gain subjective
psychological utility when cooperating, also gain subjective psychological utility out of
their children cooperation, even though their children might not).
A first contribution of the paper is therefore to provide a cultural selection mech-

anism of preferences to investigate how such a mechanism affects the evolution of
cooperation. We can therefore compare cultural transmission with the common evo-
lutionary selection mechanisms selection, like the replicator dynamics (see Weibull
(1995)), adopted by most of the evolutionary game theory literature.6

Indeed the implications of cultural and evolutionary selection for the evolution of co-
operation are at odds. In our approach in fact, cultural transmission generally leads to
long run polymorphic populations of preferences in which cooperation can be sustained
(a positive fraction of the steady state population of agents will play cooperatively in
equilibrium); while, on the contrary, only non-cooperative behavior is evolutionary
stable under random matching and replicator dynamics (see Weibull (1995), example
2.1, pg. 39). Two crucial aspects of cultural transmission processes account for such
a difference. First, the selection criterion is not based on objective (or purely mate-
rial) payoffs but on payoffs as perceived by cultural parents according to their own
preferences and values: hence an ’imperfect empathy bias’ in the cultural transmission
process. Though sometimes counterbalanced by the logic of material payoffs, this im-
perfect empathy bias induces cultural parents to take actions to transmit preferably
their own preferences to the next generation. In particular, it induces cooperative par-
ents to value per se the transmission of the cooperative trait in their children. Second,
cultural parents are rational in their socialization decisions and therefore react opti-
mally to changes in the cultural environment in which their children are immersed and
may be socialized. The implications is the fact that parents in minority cultural groups

6Such comparison is meaningful because material constraints are not stringent for biological sur-
vival, the concept of fitness in the replicator dynamics is generally understood as metaphor for some
social selection mechanism (learning, imitation, socialization, economic competition).
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have, everything else being equal, higher incentives to spend resources to socialize their
children to their own preferences than parents in majority cultural groups. These two
features introduce therefore a persistence effect which allows for the stability of mi-
nority cultural groups and the existence of polymorphic populations. In the present
context, it allows cooperative preferences to survive culturally, even though they would
be associated generally with lower purely material payoffs.
Such different implications for the dynamics of cooperation of cultural and evo-

lutionary mechanisms in our analysis emphasize the importance of taking explicitly
into account the nature of the social selection mechanism at work in the evolution of
behaviors and preferences.
The Prisoner’s Dilemma has become the paradigm to study cooperation in abstract

settings of social interaction, and therefore we follow the literature and restrict our
analysis to this game. The other main component of the social interaction is the in-
formation structure in matchings. We distinguish two cases, complete and incomplete
information. In the first case preferences and payoffs of each player in a match are
common knowledge. This setting therefore captures in an abstract manner social re-
lationships which are well established, like relationships with friends, peers and family
members (but, recall, we do not consider infinitely repeated relationships). When in-
formation is incomplete, instead, players do not know their matches’ relevant traits,
like preferences and payoffs, and must infer those from the aggregate population distri-
bution of such traits. This setting is meant to capture, again abstractly, more casual
relationships across agents in society.
We characterize the conditions under which cooperation is favored both under

complete information, and under incomplete information. Interestingly, we show that
matching under incomplete information may in some circumstances promote more co-
operation in the long run than matching under complete perfect information.

1 Cultural transmission and evolution of coopera-

tion.

Consider overlapping generations of two period lived (young and adult) agents. Re-
production is asexual and fertility is exogenous: each adult at time t has a child who
is young at time t+ 1. Adult agents are randomly matched to play the standard Pris-
oner’s Dilemma with ‘objective’ payoffs represented by the following symmetric matrix:

[Prisoner’s Dilemma table for NC players table here]

with T , R,V > 0.
Since the payoffs when both players do not cooperate, play nc, is normalized to
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zero, the parameter T represents the gains from cooperation. R represents instead
the cost associated to cooperating, playing c when the other player does not; while V
represents the gains associated to not cooperating when the other player in the match
does. We restrict ourselves to games where cooperation (c, c) is efficient from a social
surplus point of view namely, T > V −R.
Players with ‘non-cooperative’ preferences (NC players for short) have payoffs as

in the payoff matrix above.7 On the other hand, players with ‘cooperative’ preferences
(C players) receive d > 0 extra units of subjective psychological payoff any time they
play cooperatively (choose action c) independently of the other player’s action.8 Let
qCt denote the fraction of C players in the population at time t. Also, let q

NC
t denote

the fraction of NC Players. Of course qCt + q
NC
t = 1.

Young agents are born with no well-defined preferences. Parents with preferences
of type i ∈ {C,NC} choose effort τ i to socialize their children to their own preferences,
at cost H(τ i). 9

The socialization mechanism works as follows. Consider a parent with i preferences.
His child is first directly exposed to the parent’s preferences (and is socialized with
probability τ i chosen by the parent); if this direct socialization is not successful, with
probability 1− τ i, he is socialized to the preferences of a role model picked at random
in the population, that is to preferences i with probability qi and to preferences j 6= i
with probability qj = 1− qi.
Formally, parents with preferences of type i at time t will then have children with

their own same preferences with probability

πiit = τ i + (1− τ i)qit,

while they will have children with different preferences with probability

πijt = (1− τ i)(1− qit)
As a consequence the dynamics of the fraction of C players in the population is governed
by the difference equation:

qCt+1 − qCt = qCt (1− qCt )(τC − τNC) (1)

The probability of direct socialization of each population group, τ i, i ∈ {C,NC} is
determined as the optimal choice of each parent with trait i. We assume in fact that

7We use the wordings NC player, NC agent, agent with NC preferences, interchangeably; the
same for C player, etc.

8Our analysis is unchanged if we model C preferences with a psychological cost to play non-
cooperatively.

9Parents have no technology to socialize their children to preferences different to their own, even if
they might want to do so. The assumption can be relaxed at some cost without changing qualitative
results.
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parents are altruistic, and altruism motivates the transmission of culture. But we
assume parents evaluate their children payoff from playing the game with their own
(the parents’) preferences. For instance a parent who is a C player derives utility from
his child playing c, even if the child does not.10

The parents’ socialization problem is

maxτ i π
ii
t V

ii([qCt+1]
e) + πijt V

ij([qCt+1]
e)−H(τ i)

where V ij([qCt+1]
e) represents the type i parent’s evaluation of his child’s payoff from

playing the prisoner’s dilemma in period t + 1, if the child has preferences of type
j ∈ {C,NC} and the expected fraction of agents in the population with preferences of
type C is [qCt+1]

e.
We assume socialization costs are quadratic, H(τ i) = 1

2
(τ i)2. This is just for sim-

plicity, as it allows closed form solutions, but our qualitative results are preserved for
more general convex costs. The solution of the socialization problem is then simply
given by:

τ i(qit, [q
C
t+1]

e) = (1− qit)∆V i([qCt+1]e) (2)

where ∆V i([qCt+1]
e) = V ii([qCt+1]

e)− V ij([qCt+1]e).11
We are looking for dynamic cultural processes such that the time path {qCt }t≥0 is

a rational expectation path with [qCt+1]
e = qCt+1, so that our analysis does not depend

on any systematic mistake in the agents prediction of the dynamics of the distribution
of the population with respect to preferences. The dynamics of the fraction of the
population with trait C, in equation (1), can then be written as

qCt+1 − qCt = qCt (1− qCt )
³
τC(qCt , q

C
t+1)− τNC(1− qCt , qCt+1)

´
(3)

A first informal discussion of some of the general properties of the dynamics of our
model of cultural transmission may be useful to interpret our results. Suppose, for the
sake of illustration, that the gains from socialization, ∆V i are constant (independent
of qCt+1) and positive, for both traits i. Then, from equation (2), τ i only depends
on qit, and it is decreasing. Moreover in this case τ i is 0 if qit = 1. In other words,
perfect majorities do not socialize their children, because they are freely socialized to
the majority trait by society at large. Minorities on the other hand do socialize their
children. In fact the direct probability of socialization of group i, τ i, is decreasing in
the fraction of the population with trait i. By equation (3), then, homomorphic steady

10Some evidence for this form of ‘paternalistic’ altruism (or ‘imperfect empathy’) is discussed in
Bisin-Verdier (2000), while a justification in terms of natural selection in sufficiently rapidly changing
environments is provided by Bisin-Verdier (2001).
11We implicitly normalize the parameters of the model, i.e., the payoffs R, V, d, so that τ i ≤ 1, for

any qCt , [q
C
t+1]

e. This is necessary, since τ i is a probability.
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states, in which qi is either 1 or 0, are not stable, and a unique polymorphic steady
state, qi∗ ∈ (0, 1) is dynamically stable (with the whole (0, 1) as basin of attraction).12
In the strategic environment at study, in which agents are randomly matched to play

the Prisoner’s Dilemma, the gains from socialization, ∆V i, are not constant, though:
an agent with a preference for cooperation will generally gain more from transmitting
this preference to his children when the fraction of cooperative agents in society is
large, since in this case his children will more often avoid the costly interactions with
non-cooperative agents. Socialization rates will therefore depend in general on the
distribution of the population in terms of preferences.
Moreover, how costly is the interaction with a non-cooperative agent for a cooper-

ative agent will depend on the information structure of the game: if a non-cooperative
agent is known to be such in the match, then cooperative agents might adopt condi-
tional strategies, e.g., play c with C agents and nc with NC agents.
In general, homomorphic steady states are unstable as long as³

τ i(qit, q
i
t+1)− τ j(1− qit, qit+1)

´
qit=0

, for i 6= j,

Therefore, the crucial aspect of the analysis, which will determine whether homo-
morphic or polymorphic population will survive in the long run, will consist of char-
acterizing the endogenous gains from socialization for very small minorities, that is
populations of agents with common preferences i where qi is close to 0. In particular
it will be important to understand how such endogenous gains from socialization are
a function of the payoff, the information structure of the game, and the properties of
the matching mechanism. This will allow us to derive implications for the dynamics of
the distribution of traits in the population.

1.1 Matching with complete information

In this section we study the case in which players can observe the preference type of
the opponent after having been matched to play the game.
A characterization of the Nash equilibria of the one-shot prisoner’s dilemma, for

various configuration of the parameters, is straightforward and is reported in the fol-
lowing table.

12We will look for simplicity at the continuous time limit of the dynamics of qCt , by assuming that
socialization is instantaneous. In other words, we will consider a discrete time model with periods
of length h letting then h → 0. The dynamics reduces to the following form (see the proofs of the
Propositions):

q̇Ct = q
C
t (1− qCt )

¡
τC(qCt , q

C
t+h)− τNC(1− qCt , qCt+h)

¢
(4)

and we can derive explicit closed form solutions in terms of parameters R, d, V .
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[Nash Equilibria (complete information) table here]

Playing nc is a dominant strategy for an NC player, independently of which type of
player he is matched with. The equilibrium action of C players depends instead from
the parameters of the game.
An environment in which the psychological gains from cooperation are small enough,

d < min{V,R}, is one where nc is a dominant strategy for both NC and C players,
in any match. In this case then NC and C players are indistinguishable in terms
of equilibrium actions. We exclude this trivial uninteresting case from the analysis
and restrict ourselves to the case in which d > min{V,R}. We distinguish the three
remaining region of the parameters:

the environment in which d > max{R,V } is one where the preferences for cooperation
of C agents, their psychological gains from cooperating, are very intense;

the environment in which V < d < R is one where non cooperating in a match in
which one agent plays c and the other nc is associated to small gains, but possibly
imposes large costs on a cooperating player; while

the environment in which instead R < d < V is one where non cooperating in a
match in which one agent plays c and the other nc is associated to large gains
but imposes small costs.

If d > max{V,R}, c is a dominant strategy for C players. If min{R,V } < d <
max{R,V }, on the other hand, each type C agent’s equilibrium action may be con-
tingent on the type of the agent he is matched with. In this case multiple equilibria
exists. Fortunately a natural selection of equilibrium exist and we study the dynamics
of the population distribution of traits, represented by qCt for such a selection:

agents of type C play action c when matched with a C agent in the parameter region
V < d < R; otherwise, trivially, this parameters’ region is undistinguishable from
the region in which d > max{V,R};

each agent of type C plays action c one-half of the times he is matched with a C agent
in the parameter region R < d < V , for symmetry.

Proposition 1 There exists a unique stable stationary state of the population dynam-
ics; this state is polymorphic for d > max{V,R) and R < d < V ; it is monomorphic
at qC ∗ = 1 for V < d < R, .
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Consider first the environment in which non cooperating imposes big costs and has
small gains, V < d < R. In this case our cultural transmission process gives rise to
a stable monomorphism with full cooperation: in the limit the whole population is
composed of agents with preferences for cooperation. How is this possible ? When non
cooperating imposes big costs and has small gains players with a preference for cooper-
ation in equilibrium adopt a strategy of conditional cooperation: they cooperate when
they match agents with their same preferences and they do not cooperate otherwise.
We could also call this strategy reciprocation. This strategy is obviously quite effective,
as it allows agents with cooperative preferences to avoid the cost R of cooperation with
non cooperators.13 But the reason why such a strategy is so successful in terms of our
cultural selection mechanism is that parents with non cooperative preferences have no
incentives to socialize their kids to their own preferences in this case. While parents
with non cooperative preferences, in fact, only care about the ’objective’ payoffs of the
game, conditional cooperation fares very well in terms of objective payoffs, actually
better than the strategy of non cooperation that their children would adopt if social-
ized. Parents with preferences for cooperation, on the other hand, always socialize their
children because they gain psychologically if they cooperate. Consequently, in this en-
vironment, parents with preferences for cooperation have higher incentives to socialize
their children to their own preferences than parents with non cooperative preferences,
and hence cultural transmission will select the ’cooperative ’ preference trait.
The pure cultural transmission mechanism which, as we have seen, favors the so-

cialization of minorities, is responsible instead for the polymorphic stationary state
when d > max{V,R) and R < d < V , and players with preferences for cooperation
do in fact cooperate in equilibrium when matched with agents with non cooperative
preferences also.

1.2 Matching with incomplete information

In this section we study the case in which players cannot observe the preference type
of the opponent after having been matched to play the game.
The appropriate equilibrium concept in this case is Bayesian Nash equilibrium (see

Myerson (1997)). A characterization of the Bayesian Nash equilibria of the one-shot
prisoner’s dilemma, for various configuration of the parameters, is reported in the fol-
lowing table.

[Bayesian Nash Equilibria (incomplete information) table here]

13Evolutionary biologists have noted early on such selective advantages of these class of strategies;
see Trivers (1971).
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Playing nc is a dominant strategy for an NC player, for any distribution of pref-
erence types in the population. If the psychological gains from cooperation are small
enough, d < min{V,R}, nc is also a dominant strategy for C players, for any distribu-
tion of types. As in the complete information case, then, for d < min{V,R}, NC and
C players are indistinguishable in terms of play; and again we restrict the analysis to
the interesting case in which d > min{V,R}. If d > max{V,R}, C agents always play
c, as in the case of complete information. In this region of the parameters also, then,
the dynamics of qCt are as in the case of complete information.
The most interesting cases are in the region of the parameters in which min{R, V } <

d < max{V,R}. In this case in fact, with complete information, C agents choose actions
contingent on the type of the match, whereas this is not possible with incomplete
information. With incomplete information C agents can only condition their action in
equilibrium on the fraction of agents of type C in the population, qCt .

14

The interesting question we address in this environment is whether incomplete
information helps or hinders the evolution of cooperation in the population. Consider
the two cases in turn: V < d < R first, and then R < d < V .

Proposition 2 If V < d < R, there exists a cutoff population distribution qC = R−d
R−V

such that:
- any initial distribution qC0 < q

C is a stable stationary state;
- qC is a dynamically stable stationary state, with basin of attraction [qC , 1].

With complete information, in this case, agents with preferences for cooperation
adopt the conditional strategy of playing c only when facing a C agent in equilibrium;
as a consequence, in the limit all of the population is composed of agents with a
preference of cooperation, qct → 1. With incomplete information, instead, agents of
type C can only condition their action in equilibrium on the fraction of agents of type
C in the population, qCt . In equilibrium they in fact play c only when the fraction
of agents with cooperative preferences in the population is large enough (above the
cutoff). As a consequence, when C agents are a majority in the population, and they
play c in all matches, agents with non-cooperative preferences have some incentive to
socialize their children to their own preferences, to avoid them bearing cost R in any
match with NC agents. This contrast with the complete information case in which
non-cooperative parents have no incentive to socialize their children when C parents
are a majority. The dynamics of the population reflects this reduced advantage of
C agents with incomplete information when cooperation is associated with big costs
and small gains, that is when V < d < R. We conclude that in this case incomplete
information unambiguously hinders the evolution of cooperation.
Consider now instead the case in which R < d < V .

14As in the previous analysis of complete information, multiple equilibria arise and equilibrium
selection is necessary; we adopt the same selection mechanism with incomplete information.
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Proposition 3 If R < d < V , there exists a unique stable stationary state of the
population dynamics, qC = d−R

d−R+V whose basin of attraction is (0, 1).

With complete information, in this case, there also exists a unique stable stationary
state of the population dynamics whose basin of attraction is (0, 1). The composition
of the population at the stationary state is different in the complete and incomplete
information cases: with complete information qc = d−R

1
2
(T+d−R+V ) while with incomplete

information qC = d−R
d−R+V .

In this region of the parameters it is therefore possible that incomplete information
favors rather than hinders cooperation. If in fact T > d−R+V , incomplete information
is associated with a higher fraction of agents with preferences for cooperation at the
stationary state. The intuition of this result is rather subtle. The disadvantage of
agents with a preference for cooperation when information is complete follows from
the fact that in this case NC agents have strong socialization incentives even if they
represent a relatively large share of the population. This because in this case C agents
actually play the conditional strategy of cooperating in matches with NC agents, and
randomize in matches with other cooperative agents. When instead information is
incomplete, such conditional strategies are not possible, and C agents randomize when
they represent a large enough fraction of the population. This strategy is not as costly
from the point of view of NC agents relying on objective payoffs only.
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Appendix

Proposition 1: Proof. We compute the parent’s expected evaluation of the future
payoff of his child and analyze the dynamics of qCt for any parameter configuration of
the game.
Case 1: d > max{V,R}. In this case, the subjective flow gains per unit of time can be
computed as:

V C,C(qCt+h) = qCt+h(T + d) + (1− qCt+h)(−R+ d)
V C,NC(qCt+h) = qCt+h(T + V )
V NC,NC(qCt+h) = qCt+h(T + V )
V NC,C(qCt+h) = qCt+hT + (1− qCt+h)(−R)

Let ∆V C(qCt+h) = V C,C(qCt+h) − V C,NC(qCt+h), and ∆V NC(qCt+h) = V NC,NC(qCt+h) −
V NC,C(qCt+h). Then, we have

∆V C(qCt+h) = qCt+h(d− V ) + (1− qCt+h)(d−R) > 0
∆V NC(qCt+h) = qCt+hV + (1− qCt+h)R > 0

From this and 2, it follows that τC and τNC are always strictly positive for (qCt ; q
C
t+h) ∈

(0, 1)× [0, 1]. Substituting 2 into 1 the difference equation becomes

qCt+h − qCt = hqCt (1− qCt )
[d−R− qCt (d+ V −R)]
1− hqCt (1− qCt )[R− V ]

Taking the limit h→ 0, one gets the differential equation for qCt as

q̇Ct = q
C
t (1− qCt )[d−R− qCt (d+ V −R)]

As a consequence, the homomorphic steady states qC = 0 and qC = 1 are dynamically

unstable and the unique polymorphic steady state qC∗= d−R
d−R+V is dynamically stable

(its basin of attraction is (0, 1)).
Case 2: V < d < R. As type C agents play C when faced with a type C agent (and
NC when faced with a NC agent). The ‘subjective’ flow gains per unit of time are:

V C,C(qCt+h) = qCt+h(T + d)
V C,NC(qCt+h) = 0
V NC,NC(qCt+h) = 0
V NC,C(qCt+h) = qCt+hT

and

∆V C(qCt+h) = qCt+h(T + d) > 0

∆V NC(qCt+h) = −qCt+hT < 0

12



From this and 2, it follows that τC is positive and that τNC = 0 for (qCt ; q
C
t+h) ∈

(0, 1)× [0, 1]. Substituting 2 into1 and reorganizing, one gets

qCt+h − qCt = h
(qCt )

2(1− qCt )2(T + d)
1− hqCt (1− qCt )2[T + d]

and taking the continuous time limit gives:

q̇Ct = (q
C
t )

2(1− qCt )2(T + d) > 0
As a consequence, the homomorphic steady states qC = 1 is dynamically stable with a
basin of attraction (0, 1)).
Case 3: R < d < V . We compute the ‘subjective’ flow gains per unit of time as:

V C,C(qCt+h) = qCt+h.
1
2
(T + V + d−R) + (1− qCt+h)(d−R)

V C,NC(qCt+h) = qCt+h(T + V )
V NC,NC(qCt+h) = qCt+h(T + V )
V NC,C(qCt+h) = qCt+h :

1
2
(T + V −R)− (1− qCt+h)R

and

∆V C(qCt+h) = −1
2
qCt+h(T + V + d−R) + (d−R)

∆V NC(qCt+h) = qCt+h
1

2
(T + V +R) + (1− qCt+h)R > 0

Note that, for qCt+h close to 1, ∆V
C(qCt+h) < 0. Agents of type C do not want to socialize

children as C players.15 Formally then

τC = (1− qCt ) max{0,∆V C(qCt+h)}
and τC = 0 for qCt+h >

d−R
1
2
(T+V+d−R) .

Let us note for convenience,

g0(q, h) =
q + hq(1− q)[d−R− dq]

1 + 1
2
hq(1− q)[T + V + d−R− dq]

g1(q, h) =
q − hq2(1− q)R

1 + 1
2
h[q2(1− q)](T + V −R)

g0(q) (resp. g1(q)) characterizes the evolution of the time path of q
C
t when τC > 0

(resp. τC = 0). More precisely, denoting qγ =
d−R

1
2
(T+V+d−R) :

qCt+h = g0(q
C
t , h) when q

C
t+h ≤ qγ

qCt+h = g1(q
C
t , h) when q

C
t+h > qγ

15If we allowed agents of type C to socialize their children to trait NC, they would, for qCt+h close

to 1. Qualitative results are though unchanged.
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Lemma 1 There exists a qC(h) ∈ [qγ, 1) such that: i) the dynamics of the system is
described by: qCt+h = g0(q

C
t , h) when q

C
t ≤ qC(h) and qCt+h = g1(qCt , h) when qCt > qC(h)

with limh→0 qC(h) = qγ.

Proof. i) Consider first that we have qCt+h > qγ =
d−R

1
2
(T+V+d−R) , then the rational

expectation path is given by qCt+h = g1(q
C
t , h) and the domain of validity of this dy-

namic equation should satisfy g1(q
C
t , h) > qγ. Substitution of the expression of g1(q

C
t , h)

provides the following inequality:

Ψ(q, h) = −hd(T + V )q
2(1− q)
2

+
1

2
(T + V + d−R)q − (d−R) ≥ 0

One can see that Ψ0(q, h) = −dh(T + V )[q(1 − q) − q2

2
] + 1

2
(T + V + d − R) and

Ψ”(q, h) = −dh(T +V )[1−3q]. Hence Ψ0(q, h) has a minimum at q = 1
3
and Ψ0(1

3
, h) =

1
2
[(d − R) + (T + V )(1

3
− dh)] > 0 when dh < 1

3
. Hence for h small enough Ψ0(q, h) is

positive for all q ∈ [0, 1] and Ψ(q, h) is increasing with Ψ(0, h) = −(d − R) < 0 and
Ψ(1, h) = 1

2
(T + V + +R − d) > 0 (as V > d). Hence there exists a unique qC(h)

such that Ψ(qC(h), h) = 0 and that Ψ(q, h) ≥ 0 if and only if q ≥ qC(h). Moreover as
Ψ(qγ) = −

h
dh(T + V )q

2(1−q)
2

i
q=qγ

≤ 0 it follows that qC(h) ≥ qγ = d−R
1
2
(T+V+d−R) and

that limh→0 qC(h) = qγ
Consider now that qCt+h < qγ, then the rational expectation path is given by q

C
t+h =

g0(q
C
t , h) and the domain of validity of this dynamic equation should satisfy g0(q

C
t , h) >

qγ. Substitution of the expression of g0(q
C
t , h) provides the inequality:

Ψ(q, h) = −dhK(T + V )q
2(1− q)
2

+
1

2
(T + V + d−R)q − (d−R) < 0

Hence q < qC(h). Thus the characterization of the dynamics qCt+h = g0(q
C
t , h) when

qCt ≤ qC(h) and qCt+h = g1(qCt , h) when qCt > qC(h).
When qCt ≤ qC(h), this can be rewritten as:

qCt+h − qCt =
hqCt (1− qCt )[d−R− qCt d− 1

2
qCt (T + V + d−R) + 1

2

³
qCt
´2
]

1 + 1
2
hqCt (1− qCt )[T + V −R+ d− dqCt ]

which gives at the limit h→ 0 :

q̇Ct = q
C
t (1−qCt )

"
d
(qCt )

2

2
− dqCt − qCt

T + V + d−R
2

+ (d−R)
#
when qCt ≤ lim

h→0
qC(h) = qγ

In order to characterize the dynamics in this case we need to study the sign of the
second order polynomial P (qCt , q

C
t ) given by:

P (qCt , q
C
t ) = [d−R− dqCt −

1

2
qCt (T + V + d−R) +

1

2
d
³
qCt
´2
]
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With some algebra we re-write

P (qCt , q
C
t ) =

·
qCt [
1

2
qCt d−

1

2
(T + V + d−R)] + (d−R− qCt d)

¸
Note that P (qCt , q

C
t ) > 0 (resp. < 0) iff

qCt d
µ
1

2
qCt − 1

¶
>
1

2
qCt (T + V + d−R)− (d−R) ( resp. < 0) (5)

Consider the function Θ(q) = qd
³
1
2
q − 1

´
− 1

2
q(T +V +d−R)+(d−R). This function

is decreasing in q for q ∈ [0, 1] and Θ(0) = d − R > 0 and Θ(1) = −T+V−R
2
− R < 0.

Hence there is unique polymorphic solution qC∗ ∈ (0, 1) such thatΘ(qC∗) = 0.Moreover
Θ( d−R

1
2
(T+V+d−R)) = −2d(d−R)(T+V )(T+V+d−R)2 < 0. Hence q

C∗ < qγ. It is also easy to see that q̇Ct > 0

(resp. < 0) when qCt < q
C∗ (resp.qC∗ < qCt < qγ).

One can finally check that, at the limit h→ 0, when qCt > q
C(h),

q̇Ct = −qCt (1− qCt )
·
qCt R+

1

2
(qCt )

2(T + V −R)
¸
< 0 for qCt > lim

h→0
qC(h) = qγ

Therefore the qualitative dynamics has unstable corner solutions qC = 0 and qC = 1
and that qC∗ < qγ. is a stable interior stationary state with a basin of attraction (0, 1).

Taking the limit h→ 0, the dynamic system becomes

q̇Ct = qCt (1− qCt )
"
d
(qCt )

2

2
− dqCt − qCt

T + V + d−R
2

+ (d−R)
#
when qCt ≤ qγ

= −qCt (1− qCt )
·
qCt R+

1

2
(qCt )

2(T + V −R)
¸
< 0 when qCt > qγ

There is then a unique dynamically stable polymorphic steady state qC∗ ∈ (0, qγ)
(whose basin of attraction is (0, 1) and the homomorphic states q = 0 and q = 1 are
dynamically unstable.
Case 4: d < min{V,R} In this case trivially

∆V C(qCt+h) = τC(qCt , q
C
t+h) = ∆V NC(qCt+h) = τNC(1− qCt , qCt+h) = 0

As a consequence any initial condition for qCt is maintained over time (as a stable sta-
tionary point).

Proposition 2: Proof. Agents of type C play c iff

qCt+h(T + d) + (1− qCt+h)(d−R) > qCt+h(T + V )
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i.e., iff

qCt+h >
R− d
R− V < 1 (6)

If (6) is satisfied then

τC(.) = (1− qCt )
³
d−R+ qCt+h(R− V )

´
which is positive for qCt+h >

R−d
R−V , is = 0 for q

C
t+h =

R−d
R−V and q

C
t = 1.

Also, for qCt+h >
R−d
R−V ,

τNC(.) = qCt
³
R− qCt+h(R− V )

´
,

and hence is strictly positive and decreasing in qCt+h, for q
C
t+h >

R−d
R−V . For q

C
t+h ≤ R−d

R−V ,
instead, τNC(.) = 0. From this, the dynamics of qCt can be described as :

qCt+h =
qCt + hq

C
t (1− qCt )

h
−R+ (1− qCt )d

i
1− hqCt (1− qCt )(R− V )

for qCt+h >
R− d
R− V

= qCt otherwise

which gives

qCt+h − qCt =
hqCt (1− qCt )

h
−(R− d) + qCt (R− V − d)

i
1− hqCt (1− qCt )(R− V )

for qCt+h >
R− d
R− V

= 0 otherwise

As −(R − d) + qCt (R − V − d) ≤ 0 for all qCt ∈ [0, 1] and taking the limit h → 0,
the characterization of the dynamics then follows immediately.

Proposition 3: Proof. Agents of type C play c iff

qCt+h(T + d) + (1− qCt+h)(d−R) > qCt+h(T + V )
i.e., iff

qCt+h <
d−R
V −R < 1 (7)

If (7) is satisfied then

τC(.) = (1− qCt )
³
d−R− qCt+h(V −R)

´
which is decreasing in qCt and q

C
t+h and is = 0 at the cutoff q

C
t+h = q

C = d−R
V−R . If (7) is

not satisfied, then τC(.) = 0.
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Also, for any (qCt , q
C
t+h) ∈ (0, 1)× [0, 1], τNC > 0. Also,

τNC(.) = qCt
³
qCt+h(V −R) +R

´
if (7) is satisfied, and hence is increasing in qCt and q

C
t+h, is > 0 for q

C
t > 0, and is = 0

for qCt = 0. From this, we get the following dynamics

qCt+h − qCt =
hqCt (1− qCt )

h
d−R− qCt (d−R+ V )

i
1− hqCt (1− qCt )(R− V )

for qCt+h <
d−R
V −R

< 0 otherwise

Taking the limit h→ 0, the characterization of the dynamics is then

.

qCt = qCt (1− qCt )
h
d−R− qCt (d−R+ V )

i
for qCt <

d−R
V −R

< 0 otherwise

From this, it is straightforward to get the characterization of the dynamics as given in
the proposition.
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