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Abstract

In this paper we report our research on building FEATURES - an intelligent web search engine that
is able to perform real-time adaptive feature (i.e., keyword) and document learning. Not only does
FEATURES learn from the user’s document relevance feedback, but also automatically extracts and suggests
indexing keywords relevant to a search query and learns from the user’s keyword relevance feedback so
that it is able to speed up its search process and to enhance its search performance. We design two efficient
and mutual-benefiting learning algorithms that work concurrently, one for feature learning and the other
for document learning. FEATURES employs these algorithms together with an internal index database
and a real-time meta-searcher so to perform adaptive real-time learning to find desired documents with
as little relevance feedback from the user as possible. The architecture and performance of FEATURES are
also discussed.

1 Introduction

As the world wide web rapidly evolves and grows, web search has come to provide an interface between
the human users and the vast information of the web in people’s daily life. There have been a number of
popular and successful general-purpose or meta search engines such as AltaVista[l], Yahoo! [2], Google [3],
MetaCrawler [4], Dogpile [5], and Inference Find [6]. Many of the existing engines support personalization
(or customization) with the help of predefined user profiles or a collection of customizable parameters such as
suggestions about keywords to include or exclude, language choices, document locations, etc. These functions
can help a search engine find more relevant documents for the user. User profiles are often automatically
created by means of cookies, client-side digital traces or tracking of user’s browsing patterns (e.g., [5, 27, 21],
or manually created by users themselves. Profiles can be used either at the server side or client side. In most



cases the collection of customizable parameters is fixed. In other cases some of those parameters can be
automatically generated by tracking the recent browsing processes of a user. For example, a search engine
can compile a list of suggested keywords based on its internal ranking and the user’s most recent browsing
contents for use in future search. In essence, the nature of the personalization (or customization) are static
in the sense that it is defined before a search process and is not able to support real-time adaptive learning
from the user’s relevance feedback through interactive refinements.

One approach for the next generation intelligent search engines is that they be built on top of ex-
isting search engine design and implementation techniques. They may be built by integrating intelligent
components with one general-purpose search engine or with a collection of general-purpose search engines
through meta-searching. An intelligent search engine would use the search results of the general-purpose
search engines as its starting search space, from which it would adaptively learn from the user’s feedback
to boost and to enhance the search performance and the relevance accuracy. It may use feature extraction,
document clustering and filtering, and other methods to help an adaptive learning process. Recent research
on web communities [17, 13, 7] has used a short list of hits returned by a search engine as a starting set for
further expansion of search. There have been considerable efforts applying machine learning to web search
related applications, for example, scientific article locating and user profiling [4, 5, 18], focused crawling
[23], collaborative filtering [22, 3], and user preference boosting [12]. An adaptive real-time search algorithm
without an index, which is basically a focused search starting at some given url and crawling within some
neighboring documents, is given in [15],

FEATURES is part of our research on building an intelligent search engine [10, 8]. In this paper, document
features are limited to keywords that are used to index documents, but our approach may be applied to
other cases of document features. Given a search engine S, we use two new concepts, dynamic features
and dynamic vector space, to explore the search result R(q,u) returned by S for any query ¢ and any user
u. Our strategy is that we use the dynamic features that are relevant to the query ¢ to map the whole
document search space to a substantially smaller subspace - the dynamic vector space - that is relevant to
the query. We present a feature learning algorithm that extracts a small set of the dynamic features, i.e.,
the most relevant indexing keywords to the search query at the moment, and suggests those keywords to
the user for her to judge whether they are indeed relevant or not. The feature learning algorithm works
concurrently with the document learning algorithm operating on relevance judgments to retrieve relevant
documents for the user. Both learning algorithms help each other to speed up the search process and enhance
search performance. An internal index database is used in which each document is indexed using about 300
keywords. We also design and implement a meta-searcher for FEATURES through real-time meta-searching,
parsing, and indexing. FEATURES uses an internal index database, a real-time meta-searcher, and learning
algorithms to perform real-time adaptive learning for web search and retrieve relevant documents requiring
the least possible feedback.

2 Dynamic Features vs. Dynamic Vector Space

In spite of the World Wide Web’s size and the high dimensionality of web document indexing features,
the traditional vector space model in information retrieval [26, 24, 2] has been used for web document
representation and search. However, to implement real-time adaptive learning with limited computing
resource, here, an Ultra one Sun workstation, we cannot apply the traditional vector space model directly.
Recall that back in 1998, the AltaVista system was running on 20 multi-processor machines, all of them
having more than 130 Giga-Bytes of RAM and over 500 Giga-Bytes of disk space [2]. We need a new model



that is efficient enough both in time and space for FEATURES and other web search implementations with
limited computing resources. The new model may also be used to enhance the computing performance of a
web search system even if enough computing resources are available.

We now examine indexing in web search. Again, in this paper we use keywords as document indexing
features. Let X denote the set of all indexing keywords for the whole web (or, practically, a portion of the
whole web). Given any web document d, let I(d) denote the set of all indexing keywords in X that are used
to index d with non-zero values. Then, we have the following two properties:

(a) The size of I(d) is substantially smaller than the size of X. Practically, I(d) can be bounded by a
constant. The rationale behind this is that in the simplest case we do not need to use all the keywords
in d to index it. In our implementation of FEATURES, we use about 300 keywords to index documents in
its internal database and at most 64 automatically generated keywords to index a document retrieved
through meta-search.

(b) For any search process related to the search query ¢, let D(q) denote the collection of all the documents
that match ¢, then the set of indexing keywords relevant to g, denoted by F(q), is

Flg = {J I(d).

deD(q)

Although the size of F(q) varies from different queries, it is still substantially smaller than the size of
X, and might be bounded by a few hundreds or a few thousands in practice.

Definition 2.1. Given any search query q, we define F(q), which is given in (b) above, as the set of
dynamic features relevant to the search query q.

Definition 2.2. Given any search query q, the dynamic vector space V(q) relevant to q is defined as
the vector space that is constructed with all the documents in D(q) (as given in (b) above) such that each of
those document is indexed by the dynamic features in F(q).

For any query ¢ FEATURES first finds the set of documents D(q) that match the query ¢. It finds
D(q) with the help of a general-purpose search strategy through searching its internal database, or through
meta-searching AltaVista [1] when no matches are found within its internal database. It then finds the
set of dynamic features F(q), and later constructs the dynamic vector space V(q). Once D(q), F(q) and
V(q) have been found, FEATURES starts its adaptive learning process from the user’s document and feature
relevance feedback. More precisely, it uses two learning algorithms in parallel to achieve its goal of learning:
One algorithm adaptively learns from the documents judged by the user as relevant or irrelevant examples;
the other extracts and suggests a small set of keywords that are most relevant to the search query up to the
moment, and learns from the keywords judged by the user as relevant or irrelevant. The feature learning
algorithm helps the document learning algorithm to increase the ranks of relevant documents, while the
document learning algorithm helps the feature learning algorithm to increase the ranks of the relevant
features.

3 Feature Learning and Document Learning

As we have investigated in [9, 10, 8], intelligent web search can be modeled approximately as an adaptive
learning process such as on-line learning [1, 20], when the search engine acts as a learner and the user as a



teacher. The user sends a query to the engine, the engine uses the query to search the index database, and
returns a list of document url’s that are ranked according to a ranking function. Then, the user provides
relevance feedback, and the engine uses the feedback to improve its next search and returns a refined list of
document url’s. The learning (or search) process ends when the engine finds the desired documents for the
user. Conceptually, a query entered by the user can be understood as the logical expression of the collection
of the documents the user wants. A list of document url’s returned by the engine can be interpreted as an
approximation to the collection of the desired documents.

Rocchio’s similarity-based relevance feedback algorithm, one of the most popular query reformation
method in information retrieval [16, 14, 24, 2], is in essence adaptive supervised learning from examples
[25, 19]. we showed in [11] that for any of the four typical similarity measurements (inner product, co-
sine coefficient, dice coefficient, and Jaccard coefficient) listed in [24], Rocchio’s similarity-based relevance
feedback algorithm has a lower bound that is at least linear in the dimensionality of the Boolean vector
space. Our linear lower bounds hold for arbitrary zero-one initial query vectors, and for arbitrary classi-
fication threshold and updating coefficients used at each step of the algorithm. Because the linear lower
bounds were proved based on the worst case analysis, they may not affect the effective applicability of the
similarity-based relevance feedback algorithm. On the other hand, the lower bounds help us understand the
algorithm so that we may find new strategies to improve its performance or design new learning algorithms
with better performance.

3.1 The General Setting of Learning

For each particular search query ¢, with the help of certain general-purpose search strategy FEATURES first
finds the three sets, the general matching document set D(q), the dynamic feature set F'(q), and the dynamic
vector space V' (q). Let F(q) = {K1,..., Ky} such that each K; denotes a dynamic feature (i.e., an indexing
keyword). The two learning algorithms of FEATURES maintain a common weight vector w = (wy,...,wy,)
for dynamic features in F(¢). The components of w have non-negative real values. The feature learning
algorithm uses w to extract and learn the most relevant features. The document learning algorithm also
uses w to classify documents in D(q) as relevant or irrelevant.

One should note that during the learning process both learning algorithms update the common weight
vector w concurrently. Of course, both algorithms need to be equipped with efficient ranking functions.
Moreover, we also need to provide a good strategy to simulate the equivalence query for the document
learning algorithm, because the user in reality cannot serve as a real teacher as modeled in on-line learning.

3.2 The Feature Learning Algorithm FEX (Feature EXtraction)

For any dynamic feature K; € F(q) with 1 < i < n, we define the rank of K; as
h(Kl) = hg(KZ) + w;.

ho(Kj;) is the initial rank for K;. Recall that K; is some indexing keyword. With the feature ranking function
h and common weight vector w, FEX extracts and learns the most relevant features as follows.

Algorithm FEX. At stage s > 0, it first sorts all the dynamic features in F(q) with the ranking function
h and extracts 10 top-ranked features and suggests them to the user for her to judge their relevance to the
query q. When it receives the feature relevance feedback from the user, then for each feature K; judged by



the user as relevant it promote K; by setting w; = pw;; for each feature judged by the user as irrelevant
it demotes it by setting w; = w;/d. Here, both p and d are respectively feature promotion and demotion
parameters, and they are tunable.

3.3 The Document Learning Algorithm TW2

The algorithm TW2, a tailored version of Winnow2 [20], was designed and successfully implemented in
our recent projects WebSail and Yarrow [10, 8]. Winnow2 sets all initial weights to 1, but TW2 sets all
initial weights to 0 and has a different promotion strategy accordingly. The rationale behind setting all the
initial weights to 0 is not as simple as it looks. The motivation is to focus attention on the propagation of
the influence of the relevant documents, and use irrelevant documents to adjust the focused search space.
Moreover, this approach is computationally feasible because existing effective document ranking mechanisms
can be coupled with the learning process.

Algorithm TW2 (The tailored Winnow2). TW2 uses the common weight vector w and a real-valued
threshold 0 to classify documents in D(q). Initially, all weights have value 0. Let o > 1 be the promotion
and demotion factor. TW2 classifies documents whose vectors x = (x1,...,2,) satisfy Y i w;x; > 6 as
relevant, and all others as irrelevant. If the user provides a document that contradicts to the classification
of TW2, then we say that TW2 makes a mistake. Let w;p and w;, denote the weight w; before the current
update and after, respectively. When the user responds with a document which contradicts to the current
classification, TW2 updates the weights in the following two ways:

e Promotion: For a document judged by the user as relevant with vector x = (z1,...,xy), for i =
1,...,n, set
wip, if T =0,
Wig = 4§ if z; =1 and w;p =0,
aw;py, if v; =1 and w;y # 0.

e Demotion: For a document judged by the user as irrelevant with vector x = (x1,...,xzy), for i =
1,...,n, set wi, = <=t

In contrast to the linear lower bounds proved for Rocchio’s similarity-based relevance feedback algorithm
[11], the above learning algorithm has surprisingly small mistake bounds for learning any collection of
documents represented by a disjunction of a small number of relevant features. The mistake bounds are
independent of the dimensionality of the indexing features. For example,

e To learn a collection of documents represented by a disjunction of at most k relevant features (or
indexing keywords) over the n-dimensional boolean vector space, TW2 makes at most (cf‘_z—f)a + (a+

1)k Ing 0 — a mistakes, where A is the number of dynamic features occurred in the learning process.

e When in average | out of k relevant features (or indexing keywords) appear as dynamic features for
any relevant d(qzcument Jjudged by the user during the learning process, the bound in Theorem 4.3.1 is
improved to ((10‘7‘14)0 + (a—sl)k Iny 0 — o in average, where A is the number of dynamic features occurred

in the learning process.

Theoretical analysis of the above mistake bounds is left to the full version of this paper. The actual
implementation of the learning algorithm TW2 requires the help of document ranking and equivalence
query simulation given in the following two subsections.
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3.4 Document Ranking

Let g be a ranking function independent of TW2 and FEX. We define the ranking function f for TW2 as
follows. For any web document d € D(q) with vector x4 = (z1,...,%,) € V(q),

F(d) = valg(d) + Ba) + 3" wias

=1

g remains constant for each document d during the learning process of TW2. Various strategies can be used
to define g, for example, PageRank [6], classical tf-idf scheme, vector spread, or cited-based rankings [28].
The two additional tuning parameters are used to do individual document promotions or demotions of the
documents that have been judged by the user as feedback. Initially, let 53 > 0 and v4 = 1. 74 and Sy can
be updated in the similar fashion as w; is updated by TW2.

3.5 Equivalence Query Simulation

The DocumentRanker of FEATURES uses the ranking function f to rank the documents and the HtmlCon-
structor returns the top 10 ranked documents to the user. These top 10 ranked documents represent an
approximation to the classification made by TW2. The quantity 10 can be replaced by, say, say, 25 or 50.
But it should not be too large for two reasons: The user may only be interested in a very small number of
top ranked documents; and the display space is limited for visualization. The user can examine the short
list of documents and can end the search process, or if some documents are judged misclassified, document
relevance feedback can be provided. Sometimes, in addition to the top 10 ranked documents the system
may also provide the user a short list of other documents below the top 10. Documents in the second short
list may be selected randomly. The motivation for the second list is to give the user some better view of the
classification made by the learning algorithm.

4 The FEATURES
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Figure 2: Interface of FEATURES
4.1 The Architecture

FEATURES is implemented on an Ultra one Sun Workstation with a storage of 27 Giga-bytes hard disk on
an IBM R6000 workstation. It is a multi-threaded program coded in C4++. Its architecture is shown in
Figure 1. FEATURES maintains an internal index database with about 834,000 documents, each of which is
indexed with about 300 indexing keywords. Besides its internal index database, it has a MetaSearcher that
queries AltaVisa when needed. The documents retrieved through meta-search are parsed and indexed by
the DocumentParser and the DocumentIndexer that work in real-time. The two learning algorithms FEX
and TW2 update the common weight vector w concurrently. The major components and their functions
are explained in the next subsection.

4.2 How FEATURES Works

FEATURES has an interface as shown in Figure 2. Using this interface, the user can enter a query and specify
the number of document urls to be returned. Having entered query information, she then starts FEATURES.
FEATURES invokes its Query/FeedbackParser to parse the query information, document relevance feedback,
or feature relevance feedback. Then, Dispatcher decides whether the current task is an initial search process
or a learning process. If it is an initial search process, Dispatcher first calls QuerySearcher to find the
relevant documents within its internal index database. The relevant documents found by QuerySearcher
are then passed to DocumentRanker, which ranks the documents and sends them to HtmlConstructor.
HtmlConstructor finally generates html content to be shown to the user.

If QuerySearcher fails to find any documents relevant to the query within IndexDataBase, FEATURES
calls its MetaSearcher to query AltaVista and retrieve a list of documents. The length of the list is determined
by the user. Once the list of the top matched documents is retrieved, FEATURES calls its DocumentParser
and DocumentIndexer to parse retrieved documents, collate them, and index them with at most 64 indexing
keywords. The indexing keywords are automatically extracted from the retrieved documents by Document-
Parser. The indexed documents will be cached in IndexDataBase and also sent to DocumentRanker and
later to HtmlConstructor to be displayed to the user.

Usually, HtmlConstructor shows the top 10 ranked documents, plus the top 10 ranked features, to
the user for her to judge the document relevance and the feature relevance. But, for the initial search
HtmlConstructor shows only the top ranked documents. The format of presenting the top 10 ranked
documents together with the top 10 ranked features is shown in Figure 3. In this format, each document
url and each feature are preceded by radio buttons for the user to indicate whether the document or the



feature is relevant'. The clickable urls may be selected to view the documents so that the user can make her
judgment more accurately. After provides relevance feedback, she can submit the feedback to FEATURES,
view all the document urls, or enter a new query to start a new search process.
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Figure 3: Initial Query Result for “colt”

If the current task is a learning process from the user’s document and feature relevance feedback,
Dispatcher sends the feature relevance feedback information to the feature learner FEX and the document
relevance feedback information to the document learner TW2. FEX uses the relevant and irrelevant features
as judged by the user to promote and demote the related feature weights in the common weight vector w.
TW2 uses the relevant and irrelevant documents judged by the user as positive and negative examples to
promote and demote the weight vector. TW2 also performs individual document promotion or demotion
for those judged documents. Once FEX and TW2 have finished promotions and demotions, the updated
weight vector w is sent to QuerySearcher and to FeatureRanker. FeatureRanker re-ranks all the dynamic
features that are then sent to HtmlConstructor. QuerySearcher searches IndexDataBase to find the matched
documents that are then sent to DocumentRanker. DocumentRanker re-ranks the matched documents and
then sends them to HtmlConstructor to select documents and features to be displayed.

4.3 The Performance: FEATURES vs. AltaVista

We have made FEATURES open for public access. Interested readers can access it via the url given at the end
of the paper and check its performance. Although FEATURES is still in its early stages, its actual performance
is promising. In order to provide some measure of system performance we have made a comparison between
AltaVista [1] and FEATURES. Our evaluation is based on the following approach similar to Recall and
Precision.

For a search query ¢, let A denote the set of documents returned by the search engine (either AltaVista
or FEATURES), and let R denote the set of documents in A that are relevant to ¢. For any integer m with

!The search process shown in Figures 3 and 4 was performed on March 7, 2000. The query word is ”colt” and the desired web
documents are those related to ”computational learning theory”. After two interactions with a total of 4 relevant and irrelevant
documents and 5 relevant and irrelevant features judged by the user as feedback, all the ”"colt” related web documents among
the initial 100 matched documents were moved to the top 10 positions.



1 < m < |4, define R,, to be the set of documents in R that are among the top m ranked documents
according to the search engine. Now, we define the relative Recall R,¢.; and the relative Precision Rpecision
as follows.

R

Ryccay = |Tm|
R

Rprecision = Tm|

We have conducted experiments for 100 search queries, each of which was sent to both AltaVista and
FEATURES. The results returned from the two engines were examined manually to calculate R;q.qy and
Rprecision- We summarize the the average relative Recall R,..qy and the average relative Precision Ry ecision
in the following tables. One may notice that FEATURES has better performance.

Rprecision | (50,10) | (50,20) | (100,10) | (100,20) | (150,10) | (150,20) | (200,10) | (200,20)

AltaVista | 0.36 | 0.30 0.36 0.30 0.36 0.30 0.36 0.30
FEATURES | 0.48 | 0.40 0.51 0.44 0.52 0.46 0.52 0.46
Ryocal | (50,10 | (50,20) | (100,10) | (100,20) | (150,10) | (150,20) | (200,10) | (200,20)
AltaVista | 0.37 | 0.51 0.30 0.42 0.29 0.39 0.29 0.39
FEATURES | 0.67 | 0.96 0.42 0.80 0.37 0.71 0.37 0.67

In the above table, each column is labeled by a pair of integers (|]A|,m), where A is the total number of
documents retrieved by the engine for the given search query and m is used to define the relative Recall
and Precision. Because of the non-adaptive nature of AltaVista, it is obvious that AltaVista has the same
relative Precision for each query when the value of m is the same. The average relative Recall and Precision
values are calculated for FEATURES after an average of 5 interactive refinements.
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Figure 4: Result for “colt” after 2 Interactions, 4 Examples and 5 Features Judged

5 Concluding Remarks

As part of our efforts towards building an intelligent search engine, we have designed and implemented
FEATURES. It utilizes two adaptive learning algorithms that work concurrently in real-time, one of which
extracts and learns the most relevant dynamic features from the user’s feature relevance judgments, and the



other learns the most relevant documents from the user’s document relevance judgments. FEATURES is still
in its early stages and needs to be improved and enhanced in many aspects. For example, in the near future
we plan to improve its learning algorithms with some real-time clustering methods.

URL References:
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