
Features: Real-time Adaptive Feature Learning andDocument Learning for Web SearchZhixiang Chen�x Xiannong Meng� Richard H. Fowler� Binhai Zhuy�Department of Computer Science, University of Texas { Pan American1201 West University Drive, Edinburg, TX 78539{2999, USAchen@cs.panam.edu, meng@cs.panam.edu, fowler@panam.eduy Department of Computer Science, City University of Hong KongKowloon, Hong Kong. bhz@cs.cityu.edu.hkxContact Information: Department of Computer ScienceUniversity of Texas{Pan American, 1201 West University DriveEdinburg, TX 78539{2999, USA. Email: chen@cs.panam.eduPhone: (956)381-2667. Fax: (956)384-5099
AbstractIn this paper we report our research on building Features - an intelligent web search engine thatis able to perform real-time adaptive feature (i.e., keyword) and document learning. Not only doesFeatures learn from the user's document relevance feedback, but also automatically extracts and suggestsindexing keywords relevant to a search query and learns from the user's keyword relevance feedback sothat it is able to speed up its search process and to enhance its search performance. We design two e�cientand mutual-bene�ting learning algorithms that work concurrently, one for feature learning and the otherfor document learning. Features employs these algorithms together with an internal index databaseand a real-time meta-searcher so to perform adaptive real-time learning to �nd desired documents withas little relevance feedback from the user as possible. The architecture and performance of Features arealso discussed.1 IntroductionAs the world wide web rapidly evolves and grows, web search has come to provide an interface betweenthe human users and the vast information of the web in people's daily life. There have been a number ofpopular and successful general-purpose or meta search engines such as AltaVista[1], Yahoo! [2], Google [3],MetaCrawler [4], Dogpile [5], and Inference Find [6]. Many of the existing engines support personalization(or customization) with the help of prede�ned user pro�les or a collection of customizable parameters such assuggestions about keywords to include or exclude, language choices, document locations, etc. These functionscan help a search engine �nd more relevant documents for the user. User pro�les are often automaticallycreated by means of cookies, client-side digital traces or tracking of user's browsing patterns (e.g., [5, 27, 21],or manually created by users themselves. Pro�les can be used either at the server side or client side. In most1



cases the collection of customizable parameters is �xed. In other cases some of those parameters can beautomatically generated by tracking the recent browsing processes of a user. For example, a search enginecan compile a list of suggested keywords based on its internal ranking and the user's most recent browsingcontents for use in future search. In essence, the nature of the personalization (or customization) are staticin the sense that it is de�ned before a search process and is not able to support real-time adaptive learningfrom the user's relevance feedback through interactive re�nements.One approach for the next generation intelligent search engines is that they be built on top of ex-isting search engine design and implementation techniques. They may be built by integrating intelligentcomponents with one general-purpose search engine or with a collection of general-purpose search enginesthrough meta-searching. An intelligent search engine would use the search results of the general-purposesearch engines as its starting search space, from which it would adaptively learn from the user's feedbackto boost and to enhance the search performance and the relevance accuracy. It may use feature extraction,document clustering and �ltering, and other methods to help an adaptive learning process. Recent researchon web communities [17, 13, 7] has used a short list of hits returned by a search engine as a starting set forfurther expansion of search. There have been considerable e�orts applying machine learning to web searchrelated applications, for example, scienti�c article locating and user pro�ling [4, 5, 18], focused crawling[23], collaborative �ltering [22, 3], and user preference boosting [12]. An adaptive real-time search algorithmwithout an index, which is basically a focused search starting at some given url and crawling within someneighboring documents, is given in [15],Features is part of our research on building an intelligent search engine [10, 8]. In this paper, documentfeatures are limited to keywords that are used to index documents, but our approach may be applied toother cases of document features. Given a search engine S, we use two new concepts, dynamic featuresand dynamic vector space, to explore the search result R(q; u) returned by S for any query q and any useru. Our strategy is that we use the dynamic features that are relevant to the query q to map the wholedocument search space to a substantially smaller subspace - the dynamic vector space - that is relevant tothe query. We present a feature learning algorithm that extracts a small set of the dynamic features, i.e.,the most relevant indexing keywords to the search query at the moment, and suggests those keywords tothe user for her to judge whether they are indeed relevant or not. The feature learning algorithm worksconcurrently with the document learning algorithm operating on relevance judgments to retrieve relevantdocuments for the user. Both learning algorithms help each other to speed up the search process and enhancesearch performance. An internal index database is used in which each document is indexed using about 300keywords. We also design and implement a meta-searcher for Features through real-time meta-searching,parsing, and indexing. Features uses an internal index database, a real-time meta-searcher, and learningalgorithms to perform real-time adaptive learning for web search and retrieve relevant documents requiringthe least possible feedback.2 Dynamic Features vs. Dynamic Vector SpaceIn spite of the World Wide Web's size and the high dimensionality of web document indexing features,the traditional vector space model in information retrieval [26, 24, 2] has been used for web documentrepresentation and search. However, to implement real-time adaptive learning with limited computingresource, here, an Ultra one Sun workstation, we cannot apply the traditional vector space model directly.Recall that back in 1998, the AltaVista system was running on 20 multi-processor machines, all of themhaving more than 130 Giga-Bytes of RAM and over 500 Giga-Bytes of disk space [2]. We need a new model2



that is e�cient enough both in time and space for Features and other web search implementations withlimited computing resources. The new model may also be used to enhance the computing performance of aweb search system even if enough computing resources are available.We now examine indexing in web search. Again, in this paper we use keywords as document indexingfeatures. Let X denote the set of all indexing keywords for the whole web (or, practically, a portion of thewhole web). Given any web document d, let I(d) denote the set of all indexing keywords in X that are usedto index d with non-zero values. Then, we have the following two properties:(a) The size of I(d) is substantially smaller than the size of X. Practically, I(d) can be bounded by aconstant. The rationale behind this is that in the simplest case we do not need to use all the keywordsin d to index it. In our implementation of Features, we use about 300 keywords to index documents inits internal database and at most 64 automatically generated keywords to index a document retrievedthrough meta-search.(b) For any search process related to the search query q, let D(q) denote the collection of all the documentsthat match q, then the set of indexing keywords relevant to q, denoted by F (q), isF (q) = [d2D(q) I(d):Although the size of F (q) varies from di�erent queries, it is still substantially smaller than the size ofX, and might be bounded by a few hundreds or a few thousands in practice.De�nition 2.1. Given any search query q, we de�ne F (q), which is given in (b) above, as the set ofdynamic features relevant to the search query q.De�nition 2.2. Given any search query q, the dynamic vector space V (q) relevant to q is de�ned asthe vector space that is constructed with all the documents in D(q) (as given in (b) above) such that each ofthose document is indexed by the dynamic features in F (q).For any query q Features �rst �nds the set of documents D(q) that match the query q. It �ndsD(q) with the help of a general-purpose search strategy through searching its internal database, or throughmeta-searching AltaVista [1] when no matches are found within its internal database. It then �nds theset of dynamic features F (q), and later constructs the dynamic vector space V (q). Once D(q); F (q) andV (q) have been found, Features starts its adaptive learning process from the user's document and featurerelevance feedback. More precisely, it uses two learning algorithms in parallel to achieve its goal of learning:One algorithm adaptively learns from the documents judged by the user as relevant or irrelevant examples;the other extracts and suggests a small set of keywords that are most relevant to the search query up to themoment, and learns from the keywords judged by the user as relevant or irrelevant. The feature learningalgorithm helps the document learning algorithm to increase the ranks of relevant documents, while thedocument learning algorithm helps the feature learning algorithm to increase the ranks of the relevantfeatures.3 Feature Learning and Document LearningAs we have investigated in [9, 10, 8], intelligent web search can be modeled approximately as an adaptivelearning process such as on-line learning [1, 20], when the search engine acts as a learner and the user as a3



teacher. The user sends a query to the engine, the engine uses the query to search the index database, andreturns a list of document url's that are ranked according to a ranking function. Then, the user providesrelevance feedback, and the engine uses the feedback to improve its next search and returns a re�ned list ofdocument url's. The learning (or search) process ends when the engine �nds the desired documents for theuser. Conceptually, a query entered by the user can be understood as the logical expression of the collectionof the documents the user wants. A list of document url's returned by the engine can be interpreted as anapproximation to the collection of the desired documents.Rocchio's similarity-based relevance feedback algorithm, one of the most popular query reformationmethod in information retrieval [16, 14, 24, 2], is in essence adaptive supervised learning from examples[25, 19]. we showed in [11] that for any of the four typical similarity measurements (inner product, co-sine coe�cient, dice coe�cient, and Jaccard coe�cient) listed in [24], Rocchio's similarity-based relevancefeedback algorithm has a lower bound that is at least linear in the dimensionality of the Boolean vectorspace. Our linear lower bounds hold for arbitrary zero-one initial query vectors, and for arbitrary classi-�cation threshold and updating coe�cients used at each step of the algorithm. Because the linear lowerbounds were proved based on the worst case analysis, they may not a�ect the e�ective applicability of thesimilarity-based relevance feedback algorithm. On the other hand, the lower bounds help us understand thealgorithm so that we may �nd new strategies to improve its performance or design new learning algorithmswith better performance.3.1 The General Setting of LearningFor each particular search query q, with the help of certain general-purpose search strategy Features �rst�nds the three sets, the general matching document set D(q), the dynamic feature set F (q), and the dynamicvector space V (q). Let F (q) = fK1; : : : ;Kng such that each Ki denotes a dynamic feature (i.e., an indexingkeyword). The two learning algorithms of Features maintain a common weight vector w = (w1; : : : ; wn)for dynamic features in F (q). The components of w have non-negative real values. The feature learningalgorithm uses w to extract and learn the most relevant features. The document learning algorithm alsouses w to classify documents in D(q) as relevant or irrelevant.One should note that during the learning process both learning algorithms update the common weightvector w concurrently. Of course, both algorithms need to be equipped with e�cient ranking functions.Moreover, we also need to provide a good strategy to simulate the equivalence query for the documentlearning algorithm, because the user in reality cannot serve as a real teacher as modeled in on-line learning.3.2 The Feature Learning Algorithm FEX (Feature EXtraction)For any dynamic feature Ki 2 F (q) with 1 � i � n, we de�ne the rank of Ki ash(Ki) = h0(Ki) + wi:h0(Ki) is the initial rank forKi. Recall that Ki is some indexing keyword. With the feature ranking functionh and common weight vector w, FEX extracts and learns the most relevant features as follows.Algorithm FEX. At stage s � 0, it �rst sorts all the dynamic features in F (q) with the ranking functionh and extracts 10 top-ranked features and suggests them to the user for her to judge their relevance to thequery q. When it receives the feature relevance feedback from the user, then for each feature Ki judged by4



the user as relevant it promote Ki by setting wi = pwi; for each feature judged by the user as irrelevantit demotes it by setting wi = wi=d. Here, both p and d are respectively feature promotion and demotionparameters, and they are tunable.3.3 The Document Learning Algorithm TW2The algorithm TW2, a tailored version of Winnow2 [20], was designed and successfully implemented inour recent projects WebSail and Yarrow [10, 8]. Winnow2 sets all initial weights to 1, but TW2 sets allinitial weights to 0 and has a di�erent promotion strategy accordingly. The rationale behind setting all theinitial weights to 0 is not as simple as it looks. The motivation is to focus attention on the propagation ofthe inuence of the relevant documents, and use irrelevant documents to adjust the focused search space.Moreover, this approach is computationally feasible because existing e�ective document ranking mechanismscan be coupled with the learning process.Algorithm TW2 (The tailored Winnow2). TW2 uses the common weight vector w and a real-valuedthreshold � to classify documents in D(q). Initially, all weights have value 0. Let � > 1 be the promotionand demotion factor. TW2 classi�es documents whose vectors x = (x1; : : : ; xn) satisfy Pni=1 wixi > � asrelevant, and all others as irrelevant. If the user provides a document that contradicts to the classi�cationof TW2, then we say that TW2 makes a mistake. Let wi;b and wi;a denote the weight wi before the currentupdate and after, respectively. When the user responds with a document which contradicts to the currentclassi�cation, TW2 updates the weights in the following two ways:� Promotion: For a document judged by the user as relevant with vector x = (x1; : : : ; xn), for i =1; : : : ; n, set wi;a = 8><>: wi;b; if xi = 0;�; if xi = 1 and wi;b = 0;�wi;b; if xi = 1 and wi;b 6= 0:� Demotion: For a document judged by the user as irrelevant with vector x = (x1; : : : ; xn), for i =1; : : : ; n, set wi;a = wi;b� .In contrast to the linear lower bounds proved for Rocchio's similarity-based relevance feedback algorithm[11], the above learning algorithm has surprisingly small mistake bounds for learning any collection ofdocuments represented by a disjunction of a small number of relevant features. The mistake bounds areindependent of the dimensionality of the indexing features. For example,� To learn a collection of documents represented by a disjunction of at most k relevant features (orindexing keywords) over the n-dimensional boolean vector space, TW2 makes at most �2A(��1)� + (� +1)k ln� � � � mistakes, where A is the number of dynamic features occurred in the learning process.� When in average l out of k relevant features (or indexing keywords) appear as dynamic features forany relevant document judged by the user during the learning process, the bound in Theorem 4.3.1 isimproved to �2A(��1)� + (�+1)kl ln� �� � in average, where A is the number of dynamic features occurredin the learning process.Theoretical analysis of the above mistake bounds is left to the full version of this paper. The actualimplementation of the learning algorithm TW2 requires the help of document ranking and equivalencequery simulation given in the following two subsections.5



Interface

Query/FeedbackParser

Dispatcher
Web

MetaSearcher

IndexDataBase

FEX TW2

QuerySearcher

DocumentParserDocumentIndexer

FeatureRanker

DocumentRanker

HtmlConstructor

User

Figure 1: Architecture of Features3.4 Document RankingLet g be a ranking function independent of TW2 and FEX. We de�ne the ranking function f for TW2 asfollows. For any web document d 2 D(q) with vector xd = (x1; : : : ; xn) 2 V (q),f(d) = d[g(d) + �d] + nXi=1wixi:g remains constant for each document d during the learning process of TW2. Various strategies can be usedto de�ne g, for example, PageRank [6], classical tf-idf scheme, vector spread, or cited-based rankings [28].The two additional tuning parameters are used to do individual document promotions or demotions of thedocuments that have been judged by the user as feedback. Initially, let �d � 0 and d = 1. d and �d canbe updated in the similar fashion as wi is updated by TW2.3.5 Equivalence Query SimulationThe DocumentRanker of Features uses the ranking function f to rank the documents and the HtmlCon-structor returns the top 10 ranked documents to the user. These top 10 ranked documents represent anapproximation to the classi�cation made by TW2. The quantity 10 can be replaced by, say, say, 25 or 50.But it should not be too large for two reasons: The user may only be interested in a very small number oftop ranked documents; and the display space is limited for visualization. The user can examine the shortlist of documents and can end the search process, or if some documents are judged misclassi�ed, documentrelevance feedback can be provided. Sometimes, in addition to the top 10 ranked documents the systemmay also provide the user a short list of other documents below the top 10. Documents in the second shortlist may be selected randomly. The motivation for the second list is to give the user some better view of theclassi�cation made by the learning algorithm.4 The Features 6



Figure 2: Interface of Features4.1 The ArchitectureFeatures is implemented on an Ultra one Sun Workstation with a storage of 27 Giga-bytes hard disk onan IBM R6000 workstation. It is a multi-threaded program coded in C++. Its architecture is shown inFigure 1. Features maintains an internal index database with about 834,000 documents, each of which isindexed with about 300 indexing keywords. Besides its internal index database, it has a MetaSearcher thatqueries AltaVisa when needed. The documents retrieved through meta-search are parsed and indexed bythe DocumentParser and the DocumentIndexer that work in real-time. The two learning algorithms FEXand TW2 update the common weight vector w concurrently. The major components and their functionsare explained in the next subsection.4.2 How Features WorksFeatures has an interface as shown in Figure 2. Using this interface, the user can enter a query and specifythe number of document urls to be returned. Having entered query information, she then starts Features.Features invokes its Query/FeedbackParser to parse the query information, document relevance feedback,or feature relevance feedback. Then, Dispatcher decides whether the current task is an initial search processor a learning process. If it is an initial search process, Dispatcher �rst calls QuerySearcher to �nd therelevant documents within its internal index database. The relevant documents found by QuerySearcherare then passed to DocumentRanker, which ranks the documents and sends them to HtmlConstructor.HtmlConstructor �nally generates html content to be shown to the user.If QuerySearcher fails to �nd any documents relevant to the query within IndexDataBase, Featurescalls its MetaSearcher to query AltaVista and retrieve a list of documents. The length of the list is determinedby the user. Once the list of the top matched documents is retrieved, Features calls its DocumentParserand DocumentIndexer to parse retrieved documents, collate them, and index them with at most 64 indexingkeywords. The indexing keywords are automatically extracted from the retrieved documents by Document-Parser. The indexed documents will be cached in IndexDataBase and also sent to DocumentRanker andlater to HtmlConstructor to be displayed to the user.Usually, HtmlConstructor shows the top 10 ranked documents, plus the top 10 ranked features, tothe user for her to judge the document relevance and the feature relevance. But, for the initial searchHtmlConstructor shows only the top ranked documents. The format of presenting the top 10 rankeddocuments together with the top 10 ranked features is shown in Figure 3. In this format, each documenturl and each feature are preceded by radio buttons for the user to indicate whether the document or the7



feature is relevant1. The clickable urls may be selected to view the documents so that the user can make herjudgment more accurately. After provides relevance feedback, she can submit the feedback to Features,view all the document urls, or enter a new query to start a new search process.

Figure 3: Initial Query Result for \colt"If the current task is a learning process from the user's document and feature relevance feedback,Dispatcher sends the feature relevance feedback information to the feature learner FEX and the documentrelevance feedback information to the document learner TW2. FEX uses the relevant and irrelevant featuresas judged by the user to promote and demote the related feature weights in the common weight vector w.TW2 uses the relevant and irrelevant documents judged by the user as positive and negative examples topromote and demote the weight vector. TW2 also performs individual document promotion or demotionfor those judged documents. Once FEX and TW2 have �nished promotions and demotions, the updatedweight vector w is sent to QuerySearcher and to FeatureRanker. FeatureRanker re-ranks all the dynamicfeatures that are then sent to HtmlConstructor. QuerySearcher searches IndexDataBase to �nd the matcheddocuments that are then sent to DocumentRanker. DocumentRanker re-ranks the matched documents andthen sends them to HtmlConstructor to select documents and features to be displayed.4.3 The Performance: Features vs. AltaVistaWe have made Features open for public access. Interested readers can access it via the url given at the endof the paper and check its performance. Although Features is still in its early stages, its actual performanceis promising. In order to provide some measure of system performance we have made a comparison betweenAltaVista [1] and Features. Our evaluation is based on the following approach similar to Recall andPrecision.For a search query q, let A denote the set of documents returned by the search engine (either AltaVistaor Features), and let R denote the set of documents in A that are relevant to q. For any integer m with1The search process shown in Figures 3 and 4 was performed on March 7, 2000. The query word is "colt" and the desired webdocuments are those related to "computational learning theory". After two interactions with a total of 4 relevant and irrelevantdocuments and 5 relevant and irrelevant features judged by the user as feedback, all the "colt" related web documents amongthe initial 100 matched documents were moved to the top 10 positions.8



1 � m � jAj, de�ne Rm to be the set of documents in R that are among the top m ranked documentsaccording to the search engine. Now, we de�ne the relative Recall Rrecall and the relative Precision Rprecisionas follows. Rrecall = jRmjjRjRprecision = jRmjmWe have conducted experiments for 100 search queries, each of which was sent to both AltaVista andFeatures. The results returned from the two engines were examined manually to calculate Rrecall andRprecision. We summarize the the average relative Recall Rrecall and the average relative Precision Rprecisionin the following tables. One may notice that Features has better performance.Rprecision (50,10) (50,20) (100,10) (100,20) (150,10) (150,20) (200,10) (200,20)AltaVista 0.36 0.30 0.36 0.30 0.36 0.30 0.36 0.30Features 0.48 0.40 0.51 0.44 0.52 0.46 0.52 0.46Rrecall (50,10) (50,20) (100,10) (100,20) (150,10) (150,20) (200,10) (200,20)AltaVista 0.37 0.51 0.30 0.42 0.29 0.39 0.29 0.39Features 0.67 0.96 0.42 0.80 0.37 0.71 0.37 0.67In the above table, each column is labeled by a pair of integers (jAj;m), where A is the total number ofdocuments retrieved by the engine for the given search query and m is used to de�ne the relative Recalland Precision. Because of the non-adaptive nature of AltaVista, it is obvious that AltaVista has the samerelative Precision for each query when the value of m is the same. The average relative Recall and Precisionvalues are calculated for Features after an average of 5 interactive re�nements.

Figure 4: Result for \colt" after 2 Interactions, 4 Examples and 5 Features Judged5 Concluding RemarksAs part of our e�orts towards building an intelligent search engine, we have designed and implementedFeatures. It utilizes two adaptive learning algorithms that work concurrently in real-time, one of whichextracts and learns the most relevant dynamic features from the user's feature relevance judgments, and the9



other learns the most relevant documents from the user's document relevance judgments. Features is stillin its early stages and needs to be improved and enhanced in many aspects. For example, in the near futurewe plan to improve its learning algorithms with some real-time clustering methods.URL References:[1] AltaVista: www.altavista.com. [2] Yahoo!: www.yahoo.com.[3] Google: www.google.com. [4] MetaCrawler: www.metacrawler.com.[5] Inference Find: www.in�nd.com. [6] Dogpile: www.dogpile.com.[7] WebSail: www.cs.panam.edu/chen/WebSearch/WebSail.html.[8] Yarrow: www.cs.panam.edu/chen/WebSearch/Yarrow.html.[9] Features: www.cs.panam.edu/chen/WebSearch/Features.html.References[1] D. Angluin. Queries and concept learning. Machine Learning, 2:319{432, 1987.[2] R. Baeza-Yates and B. Riberiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.[3] D. Billsus and M. J. Pazzani. Learning collaborative information �lters. In Proceedings of the FifteenthInternational Conference on Machine Learning, 1998.[4] K. Bollacker, S. Lawrence, and C. Lee Giles. Citeseer: An autonomous web agent for automatic retrievaland identi�cation of interesting publications. In Proceedings of the Second International Conference onAutonomous Agents, pages 116{113, New York, 1998. ACM Press.[5] K. Bollacker, S. Lawrence, and C. Lee Giles. A system for automatic personalized tracking of scienti�cliterature on the web. In Proceedings of the Fourth ACM Conference on Digital Libraries, pages 105{113,New York, 1999. ACM Press.[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proceedings ofthe Seventh World Wide Web Conference, 1998.[7] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D. Gibson, and J. Kleinberg. Automatic resourcecompilation by analyzing hyperlink structure and associated text. In Proceedings of the Seventh WorldWide Web Conference, pages 65{74, 1998.[8] Z. Chen and X. Meng. Yarrow: A real-time client site meta search learner. accepted by the AAAI 2000Workshop on Arti�cial Intelligence for Web Search, July 2000.[9] Z. Chen, X. Meng, and R. H. Fowler. Searching the web with queries. Knowledge and InformationSystems, 1:369{375, 1999.[10] Z. Chen, X. Meng, B. Zhu, and R. Fowler. Websail: From on-line learning to web search. accepted bythe 2000 International Conference on Web Information Systems Engineering, June 2000.[11] Z. Chen and B. Zhu. Some formal analysis of the rocchio's similarity-based relevance feedback algorithm.Technical Report CS-00-22, Dept. of Computer Science, University of Texas-Pan American, March 2000.[12] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An e�cient boosting algorithm for combining prefer-ences. In Machine Learning: Proceedings of the Fifteenth International Conference, 1998.10



[13] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web communities from link topology. In Proceedingsof the Ninth ACM Conference on Hypertext and Hypermedia, 1998.[14] E. Ide. New experiments in relevance feedback. In G. Salton, editor, The Smart System - Experimentsin Automatic Document Processing, pages 337{354, Englewood Cli�s, NJ, 1971. Prentice-Hall Inc.[15] A. Ikeji and F. Fotouhi. An adaptive real-time web search engine. In Proceedings of the ACM CIKM'99Workshop on Web Information and Data Management, 1999.[16] Jr. J.J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor, The Smart RetrievalSystem - Experiments in Automatic Document Processing, pages 313{323, Englewood Cli�s, NJ, 1971.Prentice-Hall, Inc.[17] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of ACM, 46(5):604{632,1999.[18] S. Lawrence, K. Bollacker, and C. Lee Giles. Indexing and retrieval of scienti�c literature. In Proceedingsof the Eighth ACM International Conference on Information and Knowledge Management, 1999.[19] D. Lewis. Learning in intelligent information retrieval. In Proceedings of the Eighth InternationalWorkshop on Machine Learning, pages 235{239, 1991.[20] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.Machine Learning, 2:285{318, 1988.[21] X. Meng and Z. Chen. Personalize web search using information on client's side. In Advances inComputer Science and Technologies, pages 985{992. International Academic Publishers, 1999.[22] A. Nakamura and N. Abe. Collaborative �ltering using weighted majority prediction algorithms. InMachine Learning: Proceedings of the Fifteenth International Conference, 1998.[23] J. Rennie and A. McCallum. Using reinforcement learning to spider the web e�ciently. In Proceedingsof the Sixteenth International Conference on Machine Learning, 1999.[24] G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information byComputer. Addison-Wesley, 1989.[25] G. Salton and C. Buckley. Improving retrieval performance by relevance feedback. Journal of theAmerican Society for Information Science, 41(4):288{297, 1990.[26] G. Salton, A. Wong, and C.S. Yang. A vector space model for automatic indexing. Comm. of ACM,18(11):613{620, 1975.[27] D.H. Widyantoro, T.R. Ioerger, and J. Yu. An adaptive algorithm for learning changes in user interests.In Proceedings of the Eight ACM International Conference on Information and Knowledge Management,pages 405{412, 1999.[28] B. Yuwono and D.L. Lee. Search and ranking algorithms for locating resources on the world wide web.In Proceedings of the International Conference on Data Engineering, pages 164{171, New Orleans, USA,1996.
11


