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A tis t r ac t 

This paper considers a chaotic microwave 
transmitter consisting of a quasi-optical 
antenna array. When the coupling strength 
between array elemeints is too small to allow 
phase-locking, the antenna arrays exhibit low- 
dimensional chaos. These arrays show 
potential for use in inexpensive, high-power 
and high-speed wireless communication 
channels. 

Introduction 

Quasi-optical oscillator arrays overcome many 
of the limitations of traditional power 
combining schemes. In these oscillator arrays, 
a set of antenna-loaded, single-device 
oscillators are fabricated in an array and 
coupled together through a transmission line 
network. This coupling permits 
synchroniLation tlxough mutual iri-jection 
locking. Although oscillator arrays are 
typically operated in the phase-locked regime, 
we propose that quasi-optical oscillator arrays 
are idcal platforms for chaotic communication 
systems. When the coupling strength between 
array elements is too small to allow phase 
locking, the antenna arrays exhibit low- 
dimensional chaos. 

These chaotic arrays can be used as 
transmitters by employing a high speed 
microelectronic circuit to control t lx high 
power chaoLic array. The lree-running power 
stage is chaotic as the array 'switches' between 
various unstable periodic orbits; an infinite 
numbcr  o f  unstable periodic states typically 
coexist with any chaotic state. Since the 
chaotic state is arbitra.rily close to any u.nstable 

periodic state, a small control perturbation can 
cause the (normally chaotic) signal from the 
power stage to follow an 'orbit' whose sequence 
represents the information to be communicated 
[ 11. The strict separation of the power stage 
and the high speed electronics may allow for 
the fabrication of inexpensive, high Ispeed 
wireless communication channels. 

Control and modulation of a chaotic system 
requires thorough characterization of the 
system dynamics. In this paper, we obtain 
measures of the complexity and predictability 
of the system's dynamics. The Lyapunov 
exponents and the Kolmogorov-Sinai entropy 
are introduced and estimated. As a first step 
towards communications with chaotic antenna 
arrays, we employ the method of occasional 
proportional feedback (OPF) to stabilize the 
output of an oscillator array while it is in the 
chaotic regime. 

Coupled Oscillator Simulations 

The theory of coupled microwave oscillators 
has been treated in previous work [2], leading 
to a set of differential equations for the time 
evolution of the amplitude and phase of each 
oscillator. For exploring chaotic behavior we 
are primarily interested in the case of weak 
coupling where the oscillators are unablle to 
acheve a phase-locked state. In this limit the 
amplitude variations are insignificant, and the 
dynamics are governed by the phase equations; 

If' 
where 8, is the phase of the ith oscjillator 
output voltage and w and Q are the free- 
running oscillator frequency and quality 
factor, respectively. Note also that one of the 
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Figure 1. The far-field power radiated by a four element array. The power is plotted as a 
function of the time and as a function of its time derivative. Figure 1 (a), (b) and (e) 
correspond to coupling strengths of 0.025, 0.020, and 0.015, respectively. 
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phase variables is arbitrary and can be set to  
x r o :  an M-oscillator system has o n l y  M-  I 
t l ~ y r ~ e s  ot' Irccdom. The ability to 
predetermine the nu iiiber 01. dynamic !variables 
in the coupled oscillator systems niakes this 
system an ideal candidate Tor chaos coiitrol. 

The power transmitted by the antenna array is 
the natural variable for monitoring chaos in the 
coupled oscillators, and can be relate'd to the 
parameters in Eq. 1 by a superposition of the 
field patterns for the individual antennas. In 
addition lo the far-1-ield power it is necessary 
thar wt' monitor the signal locally for input to 
the control circuil. An obvious choice for 
local variable is the real parl of the impedance 
in to  Ihc antenna array. 

In this paper, we use the coupling str'ength as 
the relevant control parameter. High-speed 
modulation of the coupling strength may be 
accomplished by introducing active 'elements 
in tlhe coupling network of a transmis,sion line 
coupled oscillator array. For example, 
integration of a FET into the coupling network 
would allow us tcr attenuate the coupling 
between neighboring elements simply by 
varying the gate bias. 

Thc lime series lor thc radiated power and the 
'phase portrait' are shown in Fig. 1 for four 
values of the coupling strength. 'The time 
series is calculated for a four oscillator array 
with a frequency distribution of (9.988, 9.996, 
10.004 and 10.012 GHz). For clarity, the 10 
GHz carrier frequency has been removed from 
the time series data. Figure 2 shows a density 
plol of the numerical time series as a function 
of the coupling strength; the frequency of 
occureiice ior a given derivative of the 
rad'lated power is indicated by brightness. 
Three distinct regions can be identifie.d in this 
I'igtirc. Coupling strengths p a t e r  than 
K =: 0.064 are the phase-locked regime. Below 
K =: 0.020 the dynamics appear chaotic. In the 

transition regime, the time series is quasi- 
periodic, but this periodicity is intermittently 
interrupted by large signal bursts. As the 
coupling strength is reduced tow;xds the 
chaotic regime, the time between bursts 
becoincs shorter until it is impossible to discern 
any clear periodicity. The transition to  chaos 
docs n ol  lo I low the famili ar period - do u bl i ng 
roulc lo chaos. Similar intermittancy 
transitions to apparently chaotic behavior have 
been observcd in fluid transport, heat 
c onv ecl i 0 n and clieiiiiic a1 re acti om. 
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Figure 2. The global dynamics of the a foui- 
element coupled os Allator array. 

Analysis of Chaotic Time Series 

Despite the apparent randomness, chaos refer!; 
to a specific, deterministic type of dynamics. 
There are rigid constraints on the predictability 
and complexity of a chaotic system's evolution. 

The set of L,yapunov exponents provides an 
intuitively appealing and yet powerful measure 
of sensitivity to initial conditions (SIC) and 
dissipation, both of which are required for i i  

chaotic system. The set of 1, originates from 
a linear stability analysis, where the set of 
coupled differential equations (Eq. 1) are 
approximated by a first order Taylor 
expansion. In this approximation, all solutions 
are of the form exp(Alt), i = 1.. N , where N is 
the number of degrees of freedom. If one of 
the exponents is larger than 0, the distance 
between two initially nearby trajectories will 
increase exponentially with time in this 
direction; this exponential divergence is 
responsible for the SIC. The Lyapunov 
exponents [3] for the calculated time series arts 
approximately +2, 0 and -6 (in units of th? 
sampling time). 

Kolmogorov-Sinai entropy is a second 
important measure of the system dynamics. 
The entropy represents the rate at which 
information is 'created' in the system. Consider 
a computer that tracks the state of dynamical 
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sysleiiis and stores tllis information in a finite 
s i ~ e  ineniory. Two initial stales of a chaotic 
sysleni [hat are indistinguishable due to the 
liniilcd precision of' the rneniory become 
distinguishable as the trajectories diverge due 
to SIC. Therefore the amount of information 
needed to track a chaotic system is always 
increasing; the entropy is positive for a chaotic 
system; a periodic system will have an entropy 
of zero and a noise-driven system has an 
entropy that approaches infinity. The 
calculated estimate for the entropy in our 
oscillator arrays 141 is 2 (in units of tlie 
sampling time). Note that that the entropy is 
approxirnatdy equal to  the positive Lyapunov 
exponent; this is not surprising given tlie 
rdal ionship between the rate of information 
creation and the sensitivity to intial conditions. 

Comniunication with these oscillator arrays 
requires that we control tlie output power from 
the oscillator arrays. Since the entropy was 
positive, the array is chaotic and we believe that 
there are an infinite number of unstable 
periodic orbits that are accessible by small 
perturbations on the coupling strength. In 
addition. the 1,yapunov exponent gives us an 
estimate for the frequency of control 
perturbations needed to stabilize complex 
signal patterns. We have employed the method 
of occasional proportional feedback (OPF) [SI 
t o  modulate the coupling strength between 
oscillator elements. Modulation of the 
oscillator strength by a small fraction of its 
'free-running' state has been used to stabilize a 
periodic oscillation of the radiated power. 

Coupled Oscillator Experiments 

The complex dynamics of antenna arrays has 
also been investigated experimentally. 
Preliminary experiments with a tlvee element 
and a four element oscillator array demonstrate 
complex apcriodic wavet'orms. The oscillators 
in the experiments consisted of MESFET 
loaded devices that were coupled by a 
transinission line network. These oscillators 
were used to drive four patch antennas. The 
center frequency of the radiation from the 
individual antennas and oscillators was 
approximately 8 GHz. Figure 3 shows the 
power detected by a horn antenna and 
digitizing oscilloscope along the broad side 
direction of' the array. The fluctuations in the 
output power are clearly aperiodic. These 
prel i mi n ar y e xperi nients show great pro mise 
for  chaos i n  Iugh trequency coupled oscillator 
arrays, 
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Figure 3. The experimental time series for a 
three element oscillator array with free- 
running frequency of 8 Ghz. 

To summarize, we have characterized the 
dynamics of coupled antenna arrays with weak 
coupling between oscillator elements. The 
array dynamics have been demonstrated to 
exhibit chaos. In addition, controlling the 
output from these arrays by small control 
perturbations indicates the potential of such 
oscillator arrays for chaotic communications. 
The simplicity of the oscillator model is a good 
indication that these results apply to nearly all 
oscillator arrays regardless of load device our 
coupling geometry. Finally, the experiments 
with antenna arrays demonstrate the complex, 
aperiodic dynamics predicted by the theory. 
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