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Dye- and quantum-dot-sensitized solar cells have attracted tremendous attention as one of the potential
low-cost alternatives for pen junction silicon solar cells. However, the conversion efficiencies of sensi-
tized solar cells are still lower than those of silicon-based solar cells. Numerous research efforts have
been made to enhance the sensitized solar cell efficiency over the past decades. Among the various
attempts to improve the photovoltaic properties, the control of interface for reducing the charge
recombination and the smart management of the light harvesting have proven to be most effective.
Moreover, the pen junction structure can offer higher open-circuit voltage than the conventional n-type
sensitized solar cell. In this review paper, recent developments in sensitized solar cells and the under-
lying mechanisms will be briefly introduced.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The vast uses of fossil fuels, causing environmental pollution
and global warming, have led us to focus on the renewable energy
sources for the future [1,2]. Among the renewable energy sources,
solar cells have attracted a great interest as a solution to this situ-
ation [3e5]. To date, the silicon-based photovoltaic devices have
power-conversion efficiencies over 20% [6]. However, the issues of
high cost and environmentally-harmful waste in the processing
technologies of silicon-based solar cells should be resolved [7].

Dye-sensitized solar cells (DSSCs) have been considered as one
of the most promising photovoltaic technologies because they are
generally made from inexpensive and nontoxic components, and
can be designed in a diversity of colors and transparencies [8e11].
Since the pioneering work of Grätzel and O’Regan in 1991 [9],
tremendous efforts have been made to improve the performance of
DSSCs. However, the development of DSSCs has been sluggish over
the last ten years, with the highest record of 12% ever reported [12].
To overcome the limited DSSCs efficiency, inorganic
semiconductors have been considered as ideal next-generation
sensitizers because of their bandgap tunability by controlling the
quantum-dot size and high absorption coefficient (105e106/M cm)
þ82 2 885 9671.
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[13e16]. Moreover, quantum dots can generate more than two
electrons from a single photon when they absorb light with higher
energy than the bandgap of quantum dot (multiple-carrier gener-
ation) [17]. This may open up the possibility for exceeding the
SchottkyeQueisser limit. Nevertheless, the achieved conversion
efficiencies of quantum-dot-sensitized solar cells (QDSCs) have
been w5% so far [18e21].

One of the main reasons for the efficiency deterioration in QDSC
is the charge recombination, caused by porous nature of working
electrode. In the conventional construction of sensitized solar cells,
the charge recombination takes place dominantly at three possible
interfaces: working electrode/electrolyte, quantum-dot-sensitizer/
electrolyte, and transparent-conducting oxide (TCO)/electrolyte.
Therefore, the control for these interfaces is the key issue for
enhancing charge collection efficiencies. To reduce interfacial
recombination, nanoscale coating with various materials on the
surface of working electrode [22e33], quantum-dot semiconductor
[34e38], and/or TCO [39e55] has been proven as an effective
method. These nanoscale-passivation ideas have been effectively
explored in the field of Li-ion batteries [56e84] and low-
temperature fuel cells [85e98].

Another approach to improve efficiency of solar cell is light
managements by utilizing light scatterers [99e105] and surface-
plasmon resonances [106e111]. The scattering component mod-
ifies the photon paths, and extends the traveling distance of the
incident light in the photoelectrodes, thereby enhancing the
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probability of photons being captured by the sensitizers. Metal
nanoparticles can also contribute to the effective light absorption,
both by field enhancement through the localized surface-plasmon
resonance and by light scattering leading to prolonged optical-
path lengths [112e115].

Meanwhile, p-type sensitized solar cell, which is the inverse
mode of n-type counterpart, has attracted much attention as a
component for the tandem DSSCs [116e120]. The combination of
an n-type photoanode (TiO2) with a p-type photocathode (NiO), in a
tandem configuration can offer improved open-circuit voltage (Voc).
Generally, theoretical efficiency of tandem DSSCs is reported to be
w43%, well beyond that of single-junction DSSCs (w31%) [121e
123].

This paper highlights recent progresses in sensitized solar cell in
pursuit of the high conversion efficiency. Especially, this article
focuses mainly on the nanoscale surface modification with various
materials, light-harvesting management with scattering layer and
surface-plasmon resonance, and tandem-sensitized solar cells.
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Fig. 2. (a) Experimental decay results of Voc for the bare and compact-layer coated
DSSCs. (b) Electron lifetimes as a function of voltage. Reprinted with permission from
B. Park et al. [41]. Copyright 2012, Elsevier.
2. Interface control for reducing charge recombination

2.1. Transparent-conducting-oxide/electrolyte interface

In DSSCs and QDSCs, the TiO2 compact layer has been used to
prevent the backward electron transfer from TCO to the electrolyte
[41e47]. My group reported the correlations between photovoltaic
properties and TiCl4-treated compact-layer thickness in DSSCs
system [41]. The physically-blocked FTO/electrolyte interface
effectively prohibits injected electrons in FTO from recombining
with the redox couple in electrolyte. As shown in Fig. 1, higher Voc is
obtained compared to the bare cell, and the short-circuit current
(Jsc) is also increased. In particular, the 25 nm-deposited cell ex-
hibits w32% increase in power-conversion efficiency compared to
the bare cell. In case of the thicker compact layer, however, the
power-conversion efficiency is decreased. The trap states present in
the thicker TiO2 compact layer account for this phenomenon
because these trap states tend to block the pathway of photoexcited
electrons from the nanoporous TiO2 layer to the FTO electrode
[124,125].

The suppressed charge recombination at the FTO/electrolyte
interface was analyzed by the open-circuit voltage decay, as shown
in Fig. 2(a). The slow decay responses of the TiO2 compact layer
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Fig. 1. Photocurrentevoltage curves of DSSCs with various TiO2 compact-layer thick-
nesses. The inset shows power-conversion efficiency of DSSCs as a function of the
compact-layer thickness. Reprinted with permission from B. Park et al. [41]. Copyright
2012, Elsevier.
indicates that the recombination between electrons in the FTO and
I3� in the electrolyte is drastically reduced by the TiO2 compact layer.
From the voltage decay curves, the electron-carrier lifetime (s) can
be calculated as a function of voltage [126,127], and the corre-
sponding electron-carrier lifetime of DSSCs is shown in Fig. 2(b). At
all voltages, electron-carrier lifetime of the 25 nm-deposited cell is
approximately five times higher compared with the bare cell.

In the case of QDSCs system, the compact layer can also effec-
tively reduce the backward reaction at the FTO/polysulfide-
electrolyte interface. However, different from DSSCs system,
asymmetric enhancement of incident photon-to-current conver-
sion efficiency (IPCE) is observed for the thicker compact-layer cell
(Fig. 3) [53]. In the case of DSSCs, an IPCE near the UV region is
mainly affected by the absorption from TiO2 electrode, because of
higher molar absorption coefficient of TiO2 than that of dye mole-
cules (w104/M cm) [128]. In contrast, the CdS quantum dots have
similar molar absorption coefficients (105e106/M cm), therefore,
the values of the IPCE are represented by the sum of the CdS and
TiO2 responses in the UV region. As a result, the thicker compact-
layer cell shows lower IPCE value below the w390 nm region
compared to the bare cell. Furthermore, the slopes of the IPCE
spectra become steeper below the bandgap energy (middle region),
since more trap states exist in the thicker compact layer meaning
increased absorption near the conduction band. In the higher
wavelength region, symmetric enhancement of the IPCE is
observed because the absorption through the TiO2 compact layer
becomes negligible, and electron recombination at the FTO/



Fig. 3. Incident photon-to-current conversion efficiency (IPCE) spectra of QDSCs with
various blocking-layer thicknesses. The IPCE of TiO2 nanoparticles without CdS
sensitizer is shown as a dotted line. Reprinted with permission from B. Park et al. [53].
Copyright 2011, Elsevier.

Fig. 5. Schematic views of interfaces in the DSSC device and the electron transfer of
the FTO/Nb2O5/TiO2 electrode. Reprinted with permission from S. Yanagida et al. [48].
Copyright 2007, Royal Society of Chemistry.
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electrolyte interfaces is effectively suppressed. The thickness effects
of TiO2 compact layer in QDSCs are summarized in Fig. 4.

Another approach to minimize leakage electrons at TCO/elec-
trolyte interface is to introduce potential-barrier layer such as
Nb2O5, as shown in Fig. 5. Yanagida’s group reported that nanoscale
Nb2O5 layer worked as a remarkable blocking layer when deposited
by rf magnetron sputtering [48]. Fig. 6 presents the JeV curve of the
interface-optimized DSSCs by Nb2O5 blocking layer under AM 1.5
illumination. The metal oxide blocking layer can remarkably
decrease the dark current (without illumination), resulting in
higher Voc and Jsc under AM 1.5 compared with the bare cell.

2.2. TiO2-nanoparticle-electrode/electrolyte and quantum-dot-
sensitizer/electrolyte interfaces

For the efficient operation of DSSCs and QDSCs, recombination
pathways occurring at the TiO2/sensitizer/electrolyte interface
should also be minimized. The energy band structure at the TiO2/
dye-sensitizer interface is illustrated in Fig. 7 where charge sepa-
ration processes take place in DSSCs. The generated electrons are
able to recombine either with oxidized dye (path (3)) or redox
couple (path (5)). In order to reduce these backward reactions, the
passivation layer should have wide bandgap and conduction
Fig. 4. Schematic figures of the TiO2 blocking-layer effects on the performance of CdS-
sensitized solar cells. Reprinted with permission from B. Park et al. [53]. Copyright
2011, Elsevier.
bandedge above that of TiO2. At the same time, the surface charge
of passivation layer is also important for the attachment of dye.
Considering electrostatic interactions between dye and the
passivation layer makes several metal oxides (e.g., ZnO, CaCO3,
MgO, and Al2O3) more charming, because they bear more positive
surface charges than TiO2, as shown in Fig. 8(a) [22e28].

The effect of Al2O3 coating layer thickness on the device per-
formance was examined by varying the number of ALD cycles [27].
The high-resolution transmission electron microscope (HR-TEM)
images of ALD samples after 20 and 40 cycles are shown in Fig. 9,
respectively. These reveal the uniform shell formation around TiO2
nanoparticles with a relatively-uniform alumina layer. With
increasing number of Al2O3 coating cycles, a large increase in Jsc, Voc,
and the fill factor, thus enhancement in efficiency is observed up to
20 cycles (Fig. 10(a)). The increase in efficiency is likely to arise from
an abundant adsorption of dye (Fig. 8(b)), and reduced carrier
recombination at the TiO2/dye/electrolyte interface.
Fig. 6. JeV curves of cells employing Z-907 sensitized FTO/TiO2 (solid line) and FTO/
Nb2O5/TiO2 electrodes (dashed line) under AM 1.5 illumination. Reprinted with
permission from S. Yanagida et al. [48]. Copyright 2007, Royal Society of Chemistry.



Fig. 7. Schematic diagram of band structure including interfacial charge-transfer
processes occurring at TiO2/dye/electrolyte interface in DSSCs. Reprinted with
permission from S.-W. Rhee et al. [27]. Copyright 2010, Elsevier.
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The improvement in photo-voltage is attributed to a reduction
in dark current of the cells with Al2O3 layers, as shown in Fig. 10(b).
The Jsc and Voc, however, drop sharply as the coating thickness in-
creases. This clearly indicates that the thickness of Al2O3 has
Fig. 8. (a) Graphical representation of isoelectric point and bandgap of various oxide
materials. (b) Absorbance spectra of dye desorbed from bare and alumina-coated TiO2

samples using 0.1 M NaOH. Alumina was deposited by ALD process with deposition
cycles between 10 and 40. Reprinted with permission from S.-W. Rhee et al. [27].
Copyright 2010, Elsevier.

Fig. 9. High-resolution TEM images of TiO2 porous layer covered with ALD alumina
deposited with (a) 20 cycles and (b) 40 cycles. Reprinted with permission from S.-W.
Rhee et al. [27]. Copyright 2010, Elsevier.
exceeded the tunneling thickness (w2 nm), and thereby leads to a
decrease in device performance. Although the amount of dye
adsorption is higher in the thicker Al2O3 layer (w4 nm), it results in
the poor cell performance because the thick Al2O3-barrier blocks
electron transport into TiO2.

In case of the QDSCs system, surface modification of the TiO2/
electrolyte and quantum-dot/electrolyte interfaces is also crucial
for high efficiency. My group reported the role of nanoscale TiO2
passivation on the TiO2-nanoparticle electrode for the performance
of CdSeQDSCs [32]. As shown in Fig. 11, the optimized coating layer
enhances the power-conversion efficiency byw40% comparedwith
the bare CdS-sensitized solar cell. The enhanced efficiency by TiO2

passivation on the TiO2 electrode is attributed to the reduction of
charge recombination at the TiO2/CdS/polysulfide-electrolyte in-
terfaces by passivating the surface defects on the TiO2-nanoparticle
layer, as shown in Fig. 12. The effective suppression of recombina-
tion was confirmed by impedance analysis at the open-circuit
voltage under AM 1.5 illumination (Fig. 13(a)). The charge-
transfer resistance shows higher values with TiCl4 treatment,



Fig. 10. (a) JeV characteristics of solar cell with bare and alumina-coated TiO2 samples
measured under one sun illumination. (b) JeV curves of bare TiO2 and 20 cycles
alumina-coated sample measured in dark. Reprinted with permission from S.-W. Rhee
et al. [27]. Copyright 2010, Elsevier.

Fig. 12. Schematic figures of the TiCl4-treatment effects on the performance of CdS-
sensitized solar cells. Reprinted with permission from B. Park et al. [32]. Copyright
2012, Elsevier.
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which means that the TiO2-coating layer effectively suppresses
charge transfer at the TiO2/electrolyte interface.

As distinct from DSSCs, electrolyte diffusion is one of the factors
to consider for the performance of QDSCs. This is because the
diffusivity of polysulfide electrolyte without TiO2 nanoparticles
(w10�6 cm2/s) is approximately 2 orders of magnitude lower than
that of the iodide electrolyte typically used in DSSCs (w10�4 cm2/s)
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Fig. 11. Photocurrentevoltage curves of CdS quantum-dot-sensitized solar cells with
various TiO2-coating times. The inset shows power-conversion efficiency of QDSCs as a
function of the coating time. Reprinted with permission from B. Park et al. [32].
Copyright 2012, Elsevier.
[129], and the size of quantum-dot sensitizer (2e6 nm) is larger
than that of a dye molecule (w1 nm) [128]. From the impedance
measured under dark condition [130,131], the diffusivity of elec-
trolyte through the nanoporous TiO2 electrode was obtained
(Fig. 13(b)). The decrease in the diffusivity is associated with the
increasing amount of TiO2 on the nanoparticle electrode because
the amount of layer scales with the TiO2-passivation time. As a
result, the pore size within TiO2-nanoparticle film decreases and,
therefore, the electrolyte diffusion through nanopores becomes
inevitably difficult. This result is consistent with the increase of
series resistance at Voc for thicker TiO2-coated cell (Fig. 11).

A great improvement in photocurrent and conversion efficiency
was also reported for QDSCs when the CdS/CdSe-sensitized mes-
oporous TiO2 electrode was passivated by ZnS. Lee et al. reported
that ZnS layer coated on the TiO2/CdS/CdSe photoelectrode showed
enhanced photovoltaic performance (Fig.14), due to the passivation
of CdSe surface states from the photocorrosion [20]. It was
furthermore argued that ZnS layer was able to inhibit the recom-
bination of excited electron at the quantum-dot/electrolyte inter-
face. It should be noted that in order to enhance chemical stability
and photovoltaic in QDSCs, the use of nanoscale coatings on the
quantum-dot sensitizer is also essential, and further research is
necessary for better understanding of the interfacial charge-
transport mechanisms.
Fig. 13. (a) Electrochemical impedance spectra measured under AM 1.5 illumination,
and (b) Bode and Nyquist plots measured under dark conditions with various TiO2-
passivation conditions at Voc. Reprinted with permission from B. Park et al. [32].
Copyright 2012, Elsevier.



Fig. 14. (a) Effects of ZnS passivation layer and counter electrode on the JeV charac-
teristics of the TiO2/CdS/CdSe electrode. (b) Incident photon-to-current conversion
efficiency spectra measured as a function of wavelength. Reproduced with permission
from Y.-L. Lee and Y.-S. Lo [20]. Copyright 2009, Wiley-VCH.

Fig. 15. (a) Schematic of light scattering and photon localization within a film con-
sisting of submicrometer-sized aggregates. (b) Photovoltaic behavior of N3-dye-
adsorbed ZnO-film samples with differences in the degree of nanocrystallite aggre-
gates. Reproduced with permission from G. Cao et al. [103]. Copyright 2009, Wiley-
VCH.

Fig. 16. (a) Films made of nanocrystallite aggregates for both high surface area and
light scattering, and (b) with mixed nanoparticles and nanocrystallite aggregates for
increased surface area and light scattering. Reprinted with permission from G. Cao
et al. [105]. Copyright 2011, Elsevier.
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3. Improving light-harvesting efficiency

3.1. Light-scattering effect

Optical effects generated by nanostructures provide opportu-
nities for increasing the performance of sensitized solar cell. The
light scattering is considered as another approach that can make an
impact on the light-harvesting capability of the photoelectrode by
utilizing optical enhancement effects. There have been many
studies on enhancing the light-harvesting efficiency of photo-
electrodes by adding submicrometer-scale particles as light scat-
terers, resulting in a significant advance in DSSCs. However, the
introduction of large-sized particles into nanocrystalline films has
unavoidable effect of lowering the internal surface area of the
photoelectrode film [101].

Recently, submicrometer-sized polydisperse aggregates con-
sisting of nanosized crystallites have been utilized for efficient
scatterers [100e103], while the nanocrystallites provide the films
with the necessary nanoporous structure and large surface area, as
shown in Fig.15(a). From the JeV curves in Fig.15(b), the conversion
efficiency of 5.4% is observed for submicrometer-sized polydisperse
aggregates, whereas that of 2.4% is observed for ZnO nanoparticles
without submicrometer-sized scatterers. This improved perfor-
mance of DSSCs can be explained with the significantly extended
traveling distance of light within the photoelectrode film.

However, the size of aggregates creates large voids between
aggregates in photoelectrode (Fig. 16(a)), and these large voids may
result in low connectivity for charge transfer and a decreased
electron-diffusion length [132]. Thus, more charge recombination
can occur, leading to reduced conversion efficiency. In this respect,
Cao’s group suggested the use of aggregate/nanoparticle mixtures,
as shown in Fig. 16(b) [105]. They have systemically investigated
the influences of the aggregate/nanoparticle ratio on the perfor-
mance of DSSCs. The admixing of TiO2 aggregates with nano-
particles exhibits an obvious improvement on the performance of
DSSCs compared to both pure TiO2 aggregates (5.35%) and pure
TiO2 nanoparticles (5.80%), as shown in Fig. 17. The TiO2



Fig. 17. (a) JeV curves of DSSCs with mixed photoelectrodes. (b) Comparison of the
short-circuit current density and power-conversion efficiency as a function of TiO2

nanoparticle (N) and aggregate (A) fraction. Reprinted with permission from G. Cao
et al. [105]. Copyright 2011, Elsevier.

Fig. 19. (a) JeV characteristics of DSSCs at various Au/TiO2 mass ratios. The inset shows
the power-conversion efficiency of DSSCs with respect to the Au/TiO2 mass ratio. (b)
Incident photon-to-current conversion efficiency spectra of DSSCs at various Au/TiO2

mass ratios. The IPCE enhancement ratios are also shown compared with the bare
DSSC (Au/TiO2 ¼ 0) in the inset. Reprinted with permission from B. Park et al. [111].
Copyright 2011, American Institute of Physics.
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nanoparticles filling large voids among the aggregates lead to the
increased amount of dye loading as well as the better connectivity
for carrier transport.

3.2. Surface-plasmon resonance

The light-harvesting properties can also be amplified by
employing surface-plasmon resonance. Surface plasmons are
created when incident light excites oscillations of free electrons in
Fig. 18. (a) Incident photon-to-current conversion efficiency spectra of the DSSCs with
silver nanoparticles and dye. (b) Configuration of solar cells containing silver nano-
particles and dye. From Ref. [107].
metal nanoparticles, such as gold, aluminum, and silver. Hupp’s
group investigated the plasmon-enhanced absorption of the dyes
by introducing silver nanoparticles [107]. Because the silver nano-
particles are corrosive in iodide electrolyte, they are conformably
coatedwith a protective layer of TiO2 by ALD (Fig.18). From the IPCE
measurement shown in Fig. 18(a), the cell with both dye and silver
Fig. 20. Schematic figure representing the enhancement of Au/TiO2-DSSC. Field
enhancement near the Au nanoparticles is depicted as orange-color regions. Reprinted
with permission from B. Park et al. [111]. Copyright 2011, American Institute of Physics.



Fig. 21. Scheme for the electron-transfer processes occurring in the tandem-sensitized
solar cell. Reprinted with permission from U. Bach et al. [116]. Copyright 2010, Nature
Publishing Group.

Fig. 23. (a) JeV characteristics of p-type DSSCs based on NiO and NiO/graphene
composite films. (b) Nyquist plots of p-type DSSCs based on NiO and NiO/graphene
composite electrodes. The inset displays the equivalent circuit of the devices. From
Ref. [118].
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nanoparticles exhibits higher IPCE peak value (w1.4%) compared to
that made of the only dye (w0.2%) or only silver (w0%) samples.
These results clearly confirm that spectra overlap between the dye
and surface plasmon can give rise to an effective light absorption by
the field-enhancement effect.

Recently, less-corrosive gold nanoparticles, as light-harvesting
component, are incorporated to DSSCs system, and as a case
study, the effects of 100-nm-diameter Au nanoparticles on the solar
cell performance were investigated [111]. As shown in Fig. 19, the
conversion efficiencies of Au/TiO2 mixed cells are enhanced, which
is mainly attributed to the increased current density. The IPCE
enhancement ratio also reveals that the Au/TiO2 mixed cell absorbs
much more photons than the bare cell, particularly in the longer
wavelength region (Fig. 19(b)). The electric field of incident light is
strongly amplified by the oscillating surface charges in Au nano-
particles, yielding increased light absorption [133,134]. Therefore,
more light can be absorbed by dye sensitizers, and more photo-
current can be generated in DSSCs, as shown in Fig. 20.
Fig. 22. JeV characteristics of a tandem solar cell (black) as well as p-type DSSCs (red)
and n-type DSSCs (green) under illumination (solid lines) and in the dark (dashed
lines). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.) Reprinted with permission from U. Bach
et al. [116]. Copyright 2010, Nature Publishing Group.
4. p-type sensitized solar cell

4.1. pen junction sensitized solar cell for high open-circuit voltage

Sensitized solar cell systems are generally composed of a
nanoporous n-type semiconductors, such as TiO2 and ZnO, coated
with photosensitizers acting as an electron donor upon light exci-
tation. In contrast, there is the limited number of studies on the
sensitization of p-type semiconductors. The photoinjected hole
transports into the valence band of the p-type semiconductor, of
which the operating principle is just inverse scheme of the coun-
terpart (n-type). The investigation of p-type sensitized solar cells is
especially vital for the construction of tandem-sensitized solar cells
(DSSCs and QDSCs). A scheme of tandem structure with the
approximate energy levels is shown in Fig. 21. The tandem cell
consists of a photoanode (n-type) and a photocathode (p-type) in a
sandwich configuration with an intermediate electrolyte [116].

In tandem DSSCs, the maximum open-circuit voltage is deter-
mined by the difference between the conduction bandedge of the
photoanode and the valence bandedge of the photocathode. The
tandem (0.8 mm TiO2 and 3.3 mm NiO) DSSC structure exhibits the
Voc ofw1.08 V, closely matching the sum of Voc for n-type DSSC and
p-type DSSC with similar short-circuit current to that of the n-type
DSSC (Fig. 22). Therefore, the overall efficiency of tandem cell
clearly exceeds that of the only n-type DSSC. However, the overall
tandem efficiencies [116,121] are still considerably lower than those
of conventional TiO2-based DSSCs [9,10].
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4.2. Modifications in p-type sensitized solar cell

The efficiencies of only p-type DSSCs are far below 0.5%, which
limits the efficiency of tandem DSSCs drastically. Therefore, opti-
mizing the power-conversion efficiency of p-type DSSCs is a key
issue. As a photocathode, NiO has been widely adopted in that it is
known as a large bandgap (3.5 eV) semiconductor with p-type
nature as synthesized [135e137]. The main reason for the low ef-
ficiency in p-type DSSCs is that NiO has a low hole diffusivity
(w10�8 cm2/s), which may limit the diffusion length of the hole
carriers resulting in the loss of photogenerated holes through
recombination [138,139]. Several investigations to reduce fast
charge recombination in NiO are currently underway as it is one of
the major issues for increasing the performance of p-type DSSCs
[118e120,123].

To improve the charge-transport properties, Yang et al. sug-
gested the NiO/graphene nanocomposite film [118]. Then, the
injected holes in the NiO photocathode can be transferred more
rapidly through the graphene nanosheets. The enhanced hole
transport by graphene gives rise to the improved Jsc and Voc, as
shown in Fig. 23(a). They analyzed the charge-transfer kinetics in
the NiO/graphene nanocomposite films: the semicircle in the
middle frequencies (1e102 Hz) of the Nyquist plot can be assigned
Fig. 24. (a) Schematic representation of the interfacial electron-transfer processes by
the alumina-coating effect. (b) IPCE plots of p-type DSSCs fabricated from untreated
NiO film and from a NiO film treated with 1 ALD cycle of alumina. From Ref. [120].
to the hole-transport resistance in the nanoporous NiO electrode
[140]. As shown in Fig. 23(b), the semicircles for the NiO/graphene
electrodes are smaller than those of the bare NiO electrode, con-
firming that the carrier recombination of the composite-based p-
type DSSCs is significantly suppressed due to the enhanced hole
transport by the presence of conducting graphene.

Another approach for reducing hole recombination is the sur-
face modification of NiO electrode with a nanoscale blocking layer
of a wide bandgap material (Fig. 24(a)). In this respect, Wu’s group
coated porous NiO electrodes with Al2O3 by ALD. Even though the
amount of adsorbed dye on the NiOeAl2O3 film is slightly lower
than that on the bare NiO film (different from the DSSCs system
with Al2O3 coating), Al2O3-coated NiO cell exhibits higher collec-
tion efficiency of injected holes compared to the bare cell
(Fig. 24(b)). This nanoscale Al2O3 layer has effectively reduced the
hole recombination at the NiO/electrolyte interface.

5. Conclusions

This paper has mainly focused on the various approaches in
pursuit of developing highly efficient sensitized solar cells, most of
which are devoted to nanoscale surface passivation and tailoring
desired nanostructures for light-harvesting efficiency. The basic
tactics of enhanced photovoltaic properties rely on the reduced
carrier recombination at the various interfaces, improved light
absorption by photon management, and construction of tandem
structures. It is obvious that exploiting intelligent nanoscience/
nanotechnology to overcome these prohibitive issues will be the
essential for the future work of quantum-dot- and dye-sensitized
solar cells.
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