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SUMMARY

The conventional TCP tends to suffer from performance degradation due to packet corruptions in the
wireless lossy channels, since any corruption event is regarded as an indication of network congestion.
This paper proposes a TCP error and congestion control scheme using corruption-aware adaptive increase
and adaptive decrease algorithm to improve TCP performance over wireless networks. In the proposed
scheme, the available network bandwidth is estimated based on the amount of the received integral data as
well as the received corrupted data. The slow start threshold is updated only when a lost but not corrupted
segment is detected by sender, since the corrupted packets still arrive at the TCP receiver. In the proposed
scheme, the duplicated ACKs are processed differently by sender depending on whether there are any
lost but not corrupted segments at present. Simulation results show that the proposed scheme could
significantly improve TCP throughput over the heterogeneous wired and wireless networks with a high bit
error rate, compared with the existing TCP and its variants. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The conventional TCP [1] performs the flow and congestion control algorithms based on the
sliding window and additive increase multiplicative decrease (AIMD) algorithms [2, 3]. The sliding
window-based flow control mechanism allows the sender to advance the transmission window upon
reception of an acknowledgment (ACK) indicating that the last in-order packet has been received
successfully by the receiver. When a packet loss occurs on a congested link, the sender will receive
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more than three duplicated ACKs (DUPACK) in a row or the sender’s retransmission timeout
(RTO) timer will expire. These events activate the sender’s congestion control mechanism, in which
the sender reduces the size of the congestion window (cwnd) to relieve the network congestion.

The congestion control scheme of the conventional TCP can well perform in the wired networks
where the bit errors can be negligible. However, wireless networks are generally featured by both
high bit error rate (BER) and high packet loss rate, compared with the wired networks. As a
result, the conventional TCP tends to give a poor performance in the heterogeneous network with
both wired and wireless links, since the sender interprets the packet losses and corruptions as an
indication of the network congestion in the same way, and then blindly halves its cwnd.

To improve the TCP performance with AIMD algorithm over wireless links, TCP Westwood [4]
proposes an additive increase and adaptive decrease (AIAD) algorithm instead of the AIMD
algorithm for congestion control. In the scheme, a TCP sender estimates the available network
bandwidth of a connection by measuring the rate of returning ACKs. This estimation is used to
set the slow start threshold (ssthresh) and to adjust cwnd in the face of the receipt of consecu-
tive triple DUPACKs or the coarse expiration of retransmission timer. It is well known that the
AIAD algorithm can achieve higher-bandwidth utilization over lossy links, compared with the
conventional TCP.

As an innovative attempt, the TCP Vegas [5] tries to escape from the loss-driven paradigm
of congestion control by performing a mechanism of congestion avoidance before packet losses
occur. In particular, when the sender receives an ACK, it calculates the difference (diff) between
the expected sending rate (cwnd/RTTmin) and the actual sending rate (cwnd/RTT), where RTT is
the round trip time and RTTmin is the minimum of the measured RTTs. When diff is less than one,
Vegas will increase cwnd linearly during the next RTT; whereas when diff is larger than three,
Vegas decreases the cwnd linearly during the next RTT; otherwise Vegas leaves cwnd unchanged.

This paper proposes a corruption-aware error and congestion control scheme, which considers a
non-negligible amount of corrupted packets in wireless environments and uses a corruption-aware
adaptive increase and adaptive increase (CAIAD) algorithm. In the proposed scheme, the corrupted
segments will be further processed by the transport layer of the receiver, and a duplicate ACK is
used to explicitly indicate whether there is any pending corrupted (not lost) segment that has not
been recovered so far. By this, the sender can increase cwnd instead of entering the fast recovery
phase.

Note that most of the existing studies evaluate their proposals based on the assumption that TCP
suffers from performance degradation due to either packet loss or packet corruption. However, the
packet loss and corruption events may occur concurrently. Accordingly, we need to consider the
network environment in which the packet loss and packet corruption coexist. Thus, we also need
to distinguish a packet corruption from a packet loss in such networks.

The remainder of this paper is organized as follows. Section 2 briefly reviews the related works.
In Section 3, we describe the proposed scheme with the mechanism that can be used to handle
the corruption events. Section 4 shows simulation results using the ns-2 simulator. Finally, we
conclude this paper in Section 5.

2. RELATED WORKS

A number of studies have so far been devoted to improve TCP performance over wireless links.
I-TCP [6] splits a TCP connection between a fixed host and a mobile host into the two separate
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connections, and it hides the TCP source from the wireless link by using a protocol optimized for
wireless link. The Snoop TCP [7] installs a dedicated agent in the base station and employs a local
retransmission scheme for wireless link error, so that only packet losses caused by congestion can
be detected by the source. The explicit loss notification (ELN) scheme [8] uses ELN signals to
distinguish corruption from congestion. In this scheme, a TCP-aware agent is requested to monitor
the passing packets at the base station. When the corruption is detected over the wireless link,
the agent sets the ELN bit in the ACK’s header to notify the sender not to invoke the normal
congestion control. Thus, it can avoid the degradation of TCP performance at a certain extent.

TCP SACK [9] selectively acknowledges up to three non-contiguous blocks of data, so as to
improve TCP performance when multiple segments are lost from a single window. TCP Newreno
[10] revises TCP Reno [1] in the fast recovery scheme in which the partial ACK is considered as a
part of the previous congestion event and the sender does not leave the fast recovery phase, but just
retransmits the first unacknowledged segment. Like the TCP SACK, the TCP Newreno can also
prevent performance degradation from multiple segments’ losses within one transmission window.

Although the TCP Westwood [4] can better utilize the bandwidth of a single wireless link, it
tends to overestimate the available bandwidth in the presence of ACK compression [11, 12]. The
undesired feature may accelerate network collapse as the network goes into congestion. To avoid
this behavior, TCP Westwood+ [12] proposes a new bandwidth estimation algorithm that relies
on the data amount of the received integral segments, Dk (k=1,2,3. . .), for every RTT interval
Tk (k=1,2,3. . .). TCP Westwood+ really improves TCP performance, compared with its earlier
version. It can work properly even in the presence of ACK compression.

TCP HACK [13] employs the two additional TCP options for data segment at the sender side
and for special DUPACK at the receiver side. In detail, the former is the header checksum option,
which covers the TCP header and the pseudo-IP header. The later is the ACK option, which is
generated by the TCP receiver, in response to a packet corruption. On reception of a data segment,
TCP receiver first verifies the integrity of a whole segment by checking the original overall
checksum in TCP base header. In case that the segment is corrupted, the receiver then identifies the
integrity of the segment’s header portion by verifying the additional header checksum contained
in the TCP option field. In this way, once a corruption occurs only in the packet’s payload, the
receiver can recover the available sequence numbers from the integrated segment’s header, and
timely report the corruption event to the TCP sender without deflating its cwnd. Therefore, in the
wireless environments with a high BER, the TCP HACK can be used to improve the performance
of wireless TCP.

As another feasible solution against link-level errors, forward error correction (FEC) scheme
[14] has attracted more and more attention due to substantial underlying error conditions over
wireless channel and has been suggested for satellite link [15]. The drawback of FEC is that it
consumes some extra bandwidth to transmit the redundant information. Therefore, increasing the
level of FEC redundancy has dual effects on TCP throughput performance. On the one hand, it
increases the achievable TCP goodput since the goodput is a monotonic increasing function of
the level of FEC redundancy. On the other hand, it decreases the effective channel bandwidth
because the effective channel bandwidth is opposite to that level. Hence TCP goodput is maximized
when the effective channel bandwidth becomes equal to the achievable TCP goodput. The studies
in [14, 16] also show that there is an optimal amount of redundancy to add, above which the
end-to-end performance degrades instead of improving.

In the recent studies, LT-TCP [17] presents an end–end mechanism to separate the conges-
tion indications from the wireless packet erasures by exploiting explicit congestion notification
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(ECN) [18], which is built on top of TCP SACK and depends on SACK, and a dynamically
adaptive FEC scheme is used so that redundancy is added in the form of proactive FEC, which
tunes itself to the measured error rate. In addition, the scheme dynamically changes the maximum
segment size (MSS) to tailor the number of segments in the window for optimal performance.

Because FEC consumes some extra bandwidth to transmit the redundant information and ARQ
usually retransmits a complete packet to correct a small piece of error data so as to increase the
RTT (but consumes extra bandwidth only when packets are lost), the study in [19] introduces a
hybrid model at the link-level combining FEC, ARQ-SR (Automatic Repeat Request with Selective
Repeat) and an in-order delivery of packets to IP.

The study in [20] investigates the performance of an adaptive end-to-end packet-level FEC for
recovering losses, which calculates the optimal ratio of redundancy according to the state of the
connection. Thus this scheme consequently avoids the TCP back-off behavior.

Taking one with another, I-TCP [6], Snoop-TCP [7], and ELN [8] violate the end-to-end
semantics in a strict sense, and TCP HACK [13] cannot be reliable all the time, since it uses a
‘real-time’ retransmission mechanism and the reverse path could also experience corruption as well
as congestion on the way. What is more serious is that TCP HACK [13] may produce a negative
action when corruption and congestion occur in a row, because TCP sender cannot be aware of
the subsequent congestion so as to keep its cwnd unchanged instead of reducing it, since all the
DUPACKs have the same value in the ACK field. Otherwise, TCP Vegas [5] has friendliness as
well as fairness problems and both TCP Westwood+ [12] and Newreno [10] cannot handle the
corruption events. LT-TCP strongly depends on ECN messages and requests that all intermediate
nodes along the path are the ECN-capable routers. Barakat and Fawal [19] report that the ARQ
mechanisms interfere with TCP timeouts and RTO estimation. ARQ is proved to fail for high-
erasure conditions, despite the persistent retries. Though the link-level hybrid ARQ/FEC scheme
is better than either FEC or ARQ alone, its performance significantly degrades for higher-loss
rates (5% or more). Compared with Westwood+, the performance of the end-to-end packet-level
FEC scheme [20] is not improved, and hence the authors suggest a direct modification of TCP
congestion control.

Moreover, with the increased usage of wireless devices all over the worldwide, the faster
and cheaper link-level (e.g. 802.11) mechanisms have tended to be simple (e.g. 802.11’s ARQ
mechanism). This trend results in a high and variable residual erasure rate (e.g. 10–50% erasure
rate observed by Aguayo et al. [21]) that needs to be ultimately handled end to end [17].

3. PROPOSED SCHEME

In this paper we propose a CAIAD algorithm to enhance the TCP error and congestion controls.
The proposed scheme is based on the precondition that the receiver can distinguish corruption
from loss in the TCP connection. In the scheme, the receiver will report the corruption event
and congestion state to the sender via ACK packets, and the sender will count the amount of the
corrupted segments per RTT and increases its cwnd aggressively when light corruption happens,
or conservatively when heavy corruption occurs if only the feedback shows that there is No
Congestion to occur. In addition, the proposed error and congestion control scheme is based on
the estimation of the available network bandwidth.

To ensure the proposed CAIAD algorithm to work in transport layer, we need to employ the
following two techniques: the first one is to prevent the corrupted packets from being discarded
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by the link layer Cyclic Redundancy Check (CRC) checksums, and the other one is to distinguish
the segment loss by corruption from the segment loss by congestion in the transport layer. The
first issue in the link layer will be addressed here, and the second issue will be described in the
succeeding subsection.

Usually, the corruption of a frame can be detected in link layer when the ‘frame check sequence
(FCS)’ field of a MAC frame fails. In [22], a scheme was proposed to forward the MAC frame with
the integral header but corrupted payload to the upper layer. This scheme ensures the proposed
CAIAD protocol to be performed against the link-layer error events. In detail, when an MAC frame
carries a special flag in its header portion, the link layer CRC mechanism can only verify the FCS
field within the header coverage but not a whole MAC frame. With the help of this mechanism,
the corrupted MAC frame can be delivered to the upper layer for further processing, as done in
the proposed scheme.

3.1. Explicit indications of corruption and loss

In the TCP HACK [13], an additional header checksum is carried by every data segment. On
reception of a segment, the receiver will first verify the integrity of the whole segment by checking
the overall checksum in the TCP base header. In case that the segment is corrupted, the receiver
will then verify the integrity of the header portion by investigating the additional header checksum
contained in the TCP option. If the header checksum is not correct, the receiver will discard this
segment since the header may contain wrong information. On the other hand, the correct header
checksum means that a corruption only occurs in the data payload, and thus the receiver will report
the associated sequence number to the sender so as to trigger the prompt retransmission without
deflation of cwnd.

In this scheme, we employ the HACK mechanism used to detect a corruption and to report
the corruption information to the sender. However, differently from the TCP HACK, the receiver
is also required to determine whether there is any loss but not corrupted segment. Based on the
corruption and loss information, the receiver will inform the status of network congestion to the
sender by using other additional options.

Figure 1 shows the TCP options used for indicating a corruption event and ‘No-Congestion’
advertisement, which will be included in the TCP option field of the DUPACK segment transmitted
by the receiver to the sender. It is noted that the option of Figure 1(a) was already described in the
existing HACK scheme [13], whereas the option of Figure 1(b) is newly proposed in this paper.

In this scheme, the whole active period of TCP connection is divided into several unequal cycles.
Every cycle will be defined from the moment when the sequence gap of receiver disappears till

Figure 1. TCP options for corruption with/without congestion.
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Figure 2. Four cases with various DUPACKs.

the moment when the sequence gap disappears again. Within each cycle, the receiver will classify
all the received integral and corrupted segments into two classes: new segment and retransmitted
segments. For the new segments, we use an additional pointer to point the highest in-order sequence
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number of all the received integral and corrupted segments (called ‘highest in-order pointer’). If
the sequence number of the just received new data segment is next to the highest in-order pointer
in sequence, then we can determine that there is No Congestion in the network, if only neither
out-of-order segment nor out-of-order retransmitted segment is received before.

For the retransmitted segments within each cycle period, we use the other pointer to point
the highest in-order sequence number of all the received retransmitted segments (called ‘highest
in-order retransmission pointer’), where the in-order sequence numbers exclude the ones of already
received integral segments. For example, for two separated sequence numbers, if the sequence
numbers between them belong to the already received integral segments, then we regard these
two sequence numbers as ‘in-order’ retransmitted segments. Also, if the sequence number of
the received retransmitted data segment is next to the highest in-order retransmission pointer in
sequence, we also can determine that there is No Congestion in the network, if only neither
out-of-order segment nor out-of-order retransmitted segment is received before.

In the two cases mentioned above, when the receiver sends a DUPACK to the sender, if the
DUPACK is triggered by a corrupted segment with the valid header, then the corruption option
(Figure 1(a)) will be added. Likewise, if there is no uncovered ‘lost segment’ the ‘No-Congestion’
option (Figure 1(b)) will also be added in the DUPACK segment. In other words, any DUPACK
without ‘No-Congestion’ option (i.e. a normal DUPACK) means that packet losses may happen
and the fast recovery algorithm should be invoked at the sender side.

All the cases that may happen in the receiving buffer can be classified into the four scenarios,
which are roughly illustrated in Figure 2.

Figure 2 illustrates the four scenarios for segment corruption and loss that may happen in the
receiving buffer. In the figure, the leftward arrows indicate the DUPACKs triggered by either
integral or corrupted segments. The rectangles represent the integral segments that are cached in
the receiving buffer. The empty spaces pointed by downward arrow mean lost segments, and other
empty spaces denote corrupted segments.

In Figure 2(a), only corrupted segments have not been recovered. If the DUPACK is triggered
by a corrupted segment, both options should be included in the DUPACK. On the other hand,
if the DUPACK is triggered by an integral segment, which follows any corrupted ones, only
‘No-Congestion’ option should be carried by the DUPACK.

In the normal DUPACKs that are triggered by the integral segments following any lost ones,
neither of the options will be included, as shown in Figure 2(b).

In the other two cases, if a corrupted packet is received when all lost segments have not
been totally recovered, the receiver will trigger a DUPACK with only the corruption option (see
Figure 2(c)). On the other hand, if a loss event occurs between corrupted packets, all the DUPACKs
that are triggered before the loss event should carry ‘No-Congestion’ option, while the option will
be omitted in any DUPACK that is triggered after the loss event (see Figure 2(d)).

3.2. New bandwidth estimation algorithm

The TCP Westwood+ scheme [12] was proposed to estimate the available network bandwidth
based on the integral data amount per RTT, which does not consider the corrupted segments
that may frequently occur in wireless links. Nevertheless, the non-negligible amount of corrupted
segments can still arrive at the receiver side and thus they should also reflect the network bandwidth
at a certain extent. Therefore, we propose here a new bandwidth estimation algorithm, in which
the sender estimates the available network bandwidth based on the amount of the integral data
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(Dk) as well as the amount of the corrupted data (Ck) for each RTT period k as follows:

�= Dk

Dk +Ck
(1)

Then, the sampled (measured) bandwidth bwek will be computed by using formula (2):

bwek = Dk+�×Ck

Tk
(2)

where Tk represents the time duration of kth RTT. This sampled bandwidth is further smoothed
to obtain the estimated bandwidth (BWEk) by a ‘low-pass filter’ using Tustin approximation [12]
as follows:

BWEk = 2�− tk
2�+ tk

×BWEk−1+ tk× bwek+bwek−1

2�+ tk
(3)

where BWEk−1 is the estimated bandwidth in the previous RTT, 1/� is the filter cut-off frequency
(a typical value of � is 0.5 s) [12], and tk is the recent ACK interval [23].

As per the proposed congestion control scheme, if the sender detects a packet loss (but not
corrupted) or the expiration of RTO timer, it will calculate a new ssthresh to reflect its estimated
bandwidth-delay product as follows:

ssthresh= BWE×RTTmin

MSS
(4)

where BWE is the most recently estimated bandwidth, RTTmin is the minimum of RTTs that have
been measured so far, and MSS represents the maximum segment size.

3.3. Proposed CAIAD algorithm

Based on the TCP options described in Section 3.1 and the bandwidth estimation algorithm
described in Section 3.2, we proposed a CAIAD algorithm for TCP error recovery and congestion
control. That is, after receiving DUPACKs with ‘No-Congestion’ option, the sender will increase
its cwnd adaptively, based on the current density of integral segments, �.

The high-level description of the proposed CAIAD algorithm is given below:

<<Algorithm: CAIAD>>

When the current RTT is larger than the minimum RTT:
reestimate � by formular (1);
reestimate BWEk by formular (2) and (3);
reset Ck and Dk to zero;

When an ACK/DUPACK arrives at the sender:
For a normal ACK (Case 1):
reset the counter of DUPACK to zero;
update the amount of the integral data (Dk);
apply the normal additive increase algorithm (�=1);
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For a DUPACK with neither of options (Case 2):
increase the counter of DUPACK by 1;
update the amount of integral data (Dk) by Dk+MSS;
if ((the counter of DUPACK=3) and (the first missing segment is not
corrupted one)) {
retransmit the missing segment;
apply the adaptive decrease algorithm of TCP Westwood+ [12] as follows:

ssthresh=(BWE∗RTTmin)/MSS;
if (cwnd>ssthresh) cwnd=ssthresh;

}
if ((the counter of DUPACK=3) and (the first missing segment is corrupted
one)) {
reset the counter of DUPACK to zero;

}

For a DUPACK with a ‘Corruption’ option (Case 3):
retransmit the indicated data segment immediately;
update the amount of corrupted data (Ck) by Ck+MSS;

For a DUPACK with ‘No-Congestion’ option (Case 4):
reset the counter of DUPACK to zero;
update the amount of integral data (Dk) by Dk+MSS;
for (every other DUPACK with ‘No-Congestion’ option) {
apply the proposed adaptive increase algorithm (�<1):
if (cwnd<ssthresh) cwnd=cwnd+�;
else cwnd=cwnd+�/cwnd;

}

It is noted that if a DUPACK contains the both additional options, cases 3 and 4 will be executed
together.

4. SIMULATION RESULTS

We evaluate the proposed scheme using the ns-2 network simulator [24] for the heterogeneous
networks with packet corruption as well as packet loss. We developed the ns-2 simulation model
for the proposed scheme based on the TCP Westwood+ module [23]. For each experiment, we
perform the file transfer application over 100 s and compare the goodput (kbps) of the proposed
scheme with those of Westwood+ [12], Westwood [4], Newreno [10], Reno [1], and Vegas [5].

4.1. Performance for packet corruption

First, we compare the goodputs over a single link with packet corruption, as shown in Figure 3. In
the figure, the wired link has the link bandwidth of 100Mbps and the transmission delay of 35ms,
whereas the wireless link has the bandwidth of 5Mbps and the transmission delay of 1ms. We
also set TCP receiving window to 100 segments, and set the maximum cwnd to 2000 segments.
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Figure 3. Single link topology with corruption only.

Figure 4. Goodput vs corruption rate.

In addition, we set the queue size of the base station’s buffer to the pipe size in all experiments
for emulating congestion phenomena:

q size= bneck bw×RTD

p size×8
(5)

where q size is the queue size (packets) of the base station’s buffer, bneck bw is the bottleneck
bandwidth (bps), RTD is the round trip delay (s), and p size is the packet’s size (bytes). In the
simulations, each packet has a size of 1040 bytes and the queue size of base station is set to 43
packets.

In the experiments, we only introduce a random uniform error model over the wireless link to
generate the packet corruption rate ranging from 0 to 0.1. We modified the related error model in
ns2 to mark each corrupted packet with a corruption flag instead of dropping it since corrupted
packet can still arrive at the receiver. Furthermore, at the receiver side, depending on the proportion
between the header size (IP header+TCP header) and the packet size, some corrupted packets are
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Figure 5. Bandwidth utilization for 1% packet corruption rate.

dropped without recovering their sequence numbers in the proposed scheme in order to emulate
the scenarios where corruption occurs in the packet header. On the contrary, all the corrupted
packets are dropped by the receivers of other TCP variants forcibly.

Figure 4 shows the TCP average goodputs during 100 s by the proposed scheme (for short,
‘CAIAD’ in the figure), Westwood+ [12], Westwood [4], Newreno [10], Reno [1], and Vegas [5]
with different corruption rates. Figure 5 shows the traces of bandwidth utilization of TCP variants
for experiments with 1% packet corruption rate. Notice that 1% packet corruption rate corresponds
to approximately 1.2×10−6 BER.

In the figure, it is noted that all the schemes provide a similar performance for the corruption
rate of 0.01% below. However, for corruption rates ranged between 0.01 and 0.1%, the proposed
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Figure 6. Traces of cwnd and ssthresh for 1% corruption rate.
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scheme and TCP Westwood+ [12] give higher goodputs than the other existing schemes. It is
noted that for corruption rates of 0.1% above, the proposed scheme starts to provide a significantly
better performance than the other TCP schemes. Especially, when a wireless link experiences the
packet corruption rates of 1%, it seems that the proposed scheme can almost fully utilize the link
bandwidth, while the other schemes only reach a half of the performance of the proposed scheme
(see Figure 5).

In addition, Figure 6 also shows both cwnd and ssthresh for the six TCP variants with 1%
corruption rate only. In the figure, we can see that cwnd of the proposed scheme mainly fluctuates
within the range of between 40 and 80 segments, and no timeout occurs, except once serious
congestion around the time of 80 s. On the contrary, the cwnd values of other TCP variants cannot
exceed 40 segments, among which the cwnds of Reno/Newreno fluctuate around 20 segments
only. More seriously, frequent timeouts may happen, especially in the case of TCP Westwood.

Such performance gain of the proposed scheme can be anticipated because (1) only single TCP
connection is considered in each experiment (the simulations with multiple connections will be
introduced in Sections 4.3 and 4.4); (2) the segment corruptions occur in the segment header
with a lower probability. In this case, the receiver cannot recover its sequence number and has
to regard this corrupted segment as a lost one. Thus the TCP sender will decrease cwnd based
on adaptive decrease algorithm in this case, and this will further alleviate network congestion;
(3) if corruption does not occur in the segment header (as done in the most cases), the proposed
scheme still increases cwnd based on adaptive increase algorithm by intelligently distinguishing
packet corruptions from network congestion. On the contrary, the other TCP variants interpret all
the triple consecutive DUPACKs as an indication of network congestion and blindly reduce their
cwnds repeatedly.

4.2. Performance for corruption and loss

We next evaluate the performance of the proposed scheme with both corruption and loss by
introducing the Gilbert model [25] over wireless channel for packet loss in addition to 1% packet
corruption rate, as shown in Figures 7 and 8.

In short, the Gilbert model has two states of ‘good’ and ‘bad’, which are expressed in terms
of average error rates � and �, transition probabilities p and q , and average ‘good’ period of t1
seconds and ‘bad’ period of t2 seconds. If the link is in a ‘good’ state at present, it will continue
to stay in the ‘good’ state with probability p, or transfer to the ‘bad’ state with a probability 1− p
at the next instance. In the Gilbert model, ‘good’ state means zero error probability. Also, if the
link is in a ‘bad’ state at the current instance, then it will continue to stay in the ‘bad’ state with
probability q , or transfer to the ‘good’ state with a probability 1−q at the next instance. When

Figure 7. Single link topology with corruption as well as loss.
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Figure 8. Gilbert model.

Table I. Parameter values of Gilbert model.

State Good Bad

Average period t1=0.1s t2=0.1s
Transition probability p=1− p=0.5 q=1−q=0.5
Packet loss rate �=0 �=0–20%

Figure 9. Goodputs for fix corruption rate and various loss rates.

the link is in the ‘bad’ state, a TCP packet experiences a packet loss in the network with the
probability �. Table I summarizes the parameter values used for the related experiments.

In the experiments, we fix packet corruption rate to 1% and vary random packet loss rate of
bad state in the Gilbert model between 0 and 20% in order to evaluate the performance of the
proposed scheme in the worst case where the burst of packet losses may be caused by congestion.
Also, we still set packet size to 1040 byte, TCP receiving window to 100 segments, the maximum
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cwnd to 2000 segments and the base station’s buffer size to 43 packets. The link bandwidth and
transmission delay are the same with those of Section 4.1. That is, the wired link has the link
bandwidth of 100Mbps and the transmission delay of 35ms, whereas the wireless link has the
bandwidth of 5Mbps and the transmission delay of 1ms. Each experiment runs 100 s and Figure 9
shows the average goodput’s curves of the six TCP variants within this period.

In Figure 9, we can see that the proposed scheme can still give a better goodput performance
over the other TCP variants in the wireless environments with the � value of 5% below. On the
other hand, it is shown that a high-packet loss rate tends to induce a significant degradation of
the goodput for all the TCP variants, including the proposed one. Furthermore, from the traces
of both cwnd and ssthresh as shown in Figure 10, we can see that in the most periods the
cwnd of the proposed scheme is above 10 segments and timeouts occur only four times. On the
contrary, the cwnds of other TCP variants are frequently decreased down below 10 segments,
together with occurrence of more frequent and serious timeouts, especially TCP Westwood and
TCP Reno. Notice that although TCP Vegas causes timeouts only for three times, the lower cwnd
limits its goodput performance. This is because the performance of the proposed scheme is mainly
impacted by loss event, while the other TCP variants are impacted by both loss and corruption
events.

4.3. Friendliness

Friendliness is an important evaluation of TCP performance. A friendly TCP scheme should be able
to coexist with other TCP variants without starvation. To verify the friendliness of the proposed
scheme, we construct a heterogeneous network as shown in Figure 11, where 30 connections
have been established over one bottleneck wireless link of 5Mbps and each TCP variant has five
connections. Moreover, the packet corruption rate, the packet loss rate and queue size of base
station are still set to 1, 0–20%, and 43 packets, respectively.

Because the bottleneck link is almost in the saturated state with 30 connections, each connection
should do best to fairly share the bottleneck link ideally. Nevertheless, the simulation results show
that the performance of TCP Vegas decreases drastically with the increase in �-value, as shown
in Figure 12. This is because when Vegas competes with the other TCP variants over a bottleneck
link, TCP Vegas uses a conservative buffer policy that lets Vegas perform better than the other TCP
variants as the intermediate node’s buffer space is scarce and worse in the opposite case. Thus, as
the value of � gets a little smaller, the queue size of base station 1 (BS1) seems to be scarce for 30
connections. It gives TCP Vegas an obvious advantage in bandwidth competition. However, with
the increase in �, the queue size becomes large enough because of the low throughput of each
connection. Hence, the other TCP variants can use the spare space of buffer to lead the back-off of
TCP Vegas. Moreover, TCP Vegas basically assumes that the packets go in order. If they received
the out-of-order packets, unnecessary retransmissions may result. Thus, a higher-packet loss rate
will influence TCP Vegas much more than the other TCP variants.

Compared with the TCP Vegas, TCP Westwood can waste more bandwidth resources when
the value of the parameter � increases. This is because TCP Westwood tends to overestimate the
available bandwidth when multiple connections share a bottleneck link. Therefore, when � is rather
smaller, the Westwood sender injects more packets into the network and results in the frequent
congestions. On the other hand, with the increase in �, other TCP variants cannot keep their prior
bandwidth resources. It lets TCP Westwood consume more and more bandwidth and inflate its
cwnd aggressively. To verify the conclusion, we count the total unrepeated packets received by
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Figure 10. Traces of cwnd and ssthresh for corruption and loss.
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Figure 11. Multiple links topology for friendliness.

Figure 12. Average throughput per connection vs �.

the same TCP variant’s receivers as well as the total packets transmitted by their senders, and
summarize their efficiency by the proportion between them in Table II.

From the table, it is noted that the transmission efficiency of TCP Westwood significantly
deviates from those of other TCP variants when the value of � is smaller than 15%. This further
proves that the Westwood sender indeed injects too many packets into network and accelerates the
network congestion.

Simulation results also show that the proposed scheme not only possesses the reasonable trans-
mission efficiencies in all the cases, but also can use bandwidth resources reasonably all the time
under the competition with other TCP variants. Thus, from the overall perspective, the proposed
scheme could provide a better performance in wireless networks with a high corruption rate,
compared with the other TCP variants. On the contrary, although TCP Westwood+ looks better
than TCP Newreno for a single connection (see Figures 4 and 9), it cannot outperform TCP
Newreno in the bandwidth competition when multiple connections share a lossy link.
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Table II. Average transmission efficiency.

� CAIAD West+ West Newreno Reno Vegas

0.0 0.892 0.889 0.724 0.893 0.884 0.954
0.5 0.906 0.894 0.727 0.898 0.895 0.941
1 0.889 0.896 0.726 0.893 0.897 0.945
3 0.898 0.881 0.752 0.899 0.891 0.932
5 0.890 0.893 0.751 0.894 0.882 0.909
7 0.880 0.886 0.755 0.896 0.888 0.907
10 0.873 0.874 0.767 0.887 0.878 0.891
15 0.863 0.863 0.815 0.871 0.868 0.868
20 0.834 0.835 0.843 0.855 0.853 0.846

Figure 13. Multiple links topology for fairness.

4.4. Fairness

Fairness is another important evaluation of TCP performance by which we can know whether a set
of connections of the same TCP variant can share a bottleneck link reasonably. In this paper, we
evaluate each TCP variant’s fairness performance using both the average goodput and the fairness
index function defined in [26] as

F(x)= (
∑n

i=1 xi )
2

n(
∑n

i=1 x
2
i )

(6)

where xi is the goodput of the i th TCP connection, n is the total number of TCP connections
over the bottleneck link. The fairness index ranges from 1/n to 1.0, and 1.0 indicates a perfectly
fair bandwidth allocation. We estimate the fairness indexes of the six TCP variants based on 10
connections over the heterogeneous network as shown in Figure 13, where all parameters are
the same with those of the previous subsection. Moreover, the goodput results are illustrated in
Figure 14.

The simulation results show that the fairness index of TCP Vegas is the worst for all the sampled
TCP variants and the fairness indices of other variants are close to each other The simulation
results also show that the fairness of TCP Reno is not sufficient yet. This is because TCP Reno
cannot utilize the bottleneck bandwidth fairly and reasonably while � gets higher.
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Figure 14. Average goodput per connection.

Figure 15. A single connection with reverse traffics.

On the other hand, from the simulation results, it is noted that the proposed scheme can give
rather satisfactory fairness index all the time and also fair share bottleneck bandwidth for all cases,
compared with the other sampled variants. At the same time, it is noted that TCP Westwood still
overestimates the bottleneck bandwidth, which results in the poor performance.

4.5. Performance with reverse traffics

Since the proposed scheme highly relies on the option information contained in DUPACKs, we
have to consider the impact of ACK compression phenomenon that is induced by the reverse
path’s congestion. For this purpose, we construct a single evaluated TCP connection’s forward
traffic along with multiple Reno connections’ reverse traffic, as depicted in Figure 15, where other
parameters are the same with those of Section 4.1, and the bidirectional buffer spaces of each base
station are set to 43 packets in a similar way.
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In the experiments, all TCP connections are persistent and inject traffic into network. In particular,
the reversed Reno connections generate reverse traffic to provoke congestion along the ACK path.
In the mean time, the forward link suffers from packet corruption with 1% packet corruption rate.
We evaluate the impact of the reverse traffics for each TCP variant by formula (7), respectively,
and the results are listed in Table III

impactn =1− goodputn
goodput0

(7)

where goodput0 is the goodput without reverse traffic, goodputn is the goodput with n reverse Reno
connections, and impactn is the impact of n reverse Reno connections imposing on the evaluated
TCP variant. Apparently, the higher impactn means the more critical impact of n connections’
reverse traffic.

From Table III, we can see that the performance of TCP Vegas is affected most enormously by the
reverse traffic, and TCP Reno/Newreno suit suffers from the lighter performance degradation from
ACK compression. Moreover, all the TCP variants are sensitive to the reverse traffics more or less.

Finally, in Figure 16, we compare the goodput for different number of connections so as to
prove the efficiency of the proposed scheme.

Table III. Impact of reverse traffics.

n CAIAD West+ West Newreno Reno Vegas

1 0.40 0.47 0.42 0.15 0.16 0.61
5 0.42 0.59 0.52 0.29 0.32 0.76
10 0.41 0.68 0.57 0.38 0.39 0.85

Figure 16. Goodputs for forward connections with reverse traffics.
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From the figure, it is noted that when the forward traffic suffers packet corruption only, the
proposed scheme can still provide a significant performance gain over other TCP variants, even if
ACK compression incurs the heavy performance degradation.

5. CONCLUSIONS

In this paper, we present a corruption-aware adaptive increase and adaptive decrease (CAIAD)
algorithm based on new bandwidth estimation to improve TCP performance over wireless networks.
Our first contribution is to estimate the available network bandwidth based on the amount of
integral data as well as the amount of corrupted data as per RTT interval. In the proposed scheme,
ssthresh is reset only when a loss but no corruption occurs. Our second contribution is to propose
a novel CAIAD algorithm by which the sender processes DUPACKs differently depending on
whether there are any lost but no corrupted segments at present.

From simulation results, we see that the proposed scheme can significantly improve the TCP
performance in most cases, compared with the existing TCP and its variants, with the help of an
explicit indication of packet corruption and loss, along with an appropriate estimation of network
bandwidth.
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