A Survey of Research into Legacy System Migration

Jesus Bisbal, Deirdre Lawless

Bing Wu, Jane Grimson, Vincent Wade,

Trinity College, Dublin, Ireland.

1. INTRODUCTION

2. MIGRATION ISSUES

2.1. JUSTIFICATION

2.2. LEGACY SYSTEM UNDERSTANDING
2.3. TARGET SYSTEM DEVELOPMENT
2.4. TESTING

2.5. MIGRATION

3. LEGACY SYSTEM MIGRATION TOOL SUPPORT

3.1. JUSTIFICATION TOOLS
3.2. LEGACY SYSTEM UNDERSTANDING TOOLS
3.2.1. Program Understanding Tools
3.2.2. Database Understanding Tools
3.3. TARGET SYSTEM DEVELOPMENT TOOLS
3.3.1. Client/Server Development
3.3.2. Transaction Processing
3.3.3. Internet Based Technologies for Legacy Systems
3.4. TRANSITION SUPFORT TOOLS
3.4.1. Year 2000 Problem Tools
3.4.2. Integration Software
3.4.3. Consultancy Services
3.5. TESTING ToOLS
3.6. LIMITATIONS OF MIGRATION SUPFORT TOOLS

4. APPROACHES TO MIGRATION

4.1. THE BIG BANG APFROACH

4.2. THE DATABASE FIRST APFROACH

4.3. THE DATABASE LAST APFROACH

4.4. THE COMPOSITE DATABASE APFROACH
4.5. THE CHICKEN-LITTLE STRATEGY

4.6. THE BUTTERFLY METHODOLOGY

4.7. SCREEN SCRAPING

5. OPEN RESEARCH ISSUES

5.1. LEGACY SYSTEM UNDERSTANDING
5.2. TARGET SYSTEM DEVELOPMENT
5.3. DATA MIGRATION

5.4. MIGRATION TOOLS

5.5. MIGRATION APFROACHES

5.6. GENERAL MIGRATION ISSUES

6. SUMMARY
7. REFERENCES
APPENDIX | - ANALYSISOF CURRENT MIGRATION APPROACHES

APPENDIX Il - OPEN RESEARCH ISSUES

Ray Richardson, Donie O’ Sulli van,
Broadcom Eireann Reseach,
Dublin, Ireland.

Abstract

Legacy information systems typically form the
backbone of the information flow within an
organisation and are the main vehicle for
consolidating information about the business. As a
solution to the problems these systems pose -
brittleness, inflexibility, isolation, non-extensibility,
lack of openness etc. - many companies are
migrating their legacy systems to new environments
which allow the information system to more easily
adapt to new business requirements.

This paper presents a survey of research into
Migration of Legacy Information Systems. The main
problems that companies with legacy systems must
face are analysed, and the challenges possible
solutions must solve discussed. The paper provides
an overview of the most important currently

available solutions, and their main downsides are

identified. Finally, it defines the stages involved in any
migration process, and a set of tools to support each
one are outlined.

Index Terms - Legacy systems, migration
methodologies, migration steps, migration tools, re-

engineering.

1. Introduction

Legagy information systems' typicdly form the
badkbore of the information flow within an
organisation and are the main vehicle for consolidating
information about the business If one of these systems
stops working, the businessmay grind to a halt. These
misson criticd legacy information systems are
currently posing numerous and important problems to
their host organisations. In particular,

¢ these systems usualy run on olsolete hardware

which is dow and expensive to maintain;

¢ maintenance of software is generally expensive;

tradng faults is costly and time cnsuming dwe
to the ladk of documentation and a general ladk
of understanding o the internal workings of the
system;

e integration with ather systems is gredly

hampered bythe aésenceof clean interfaces;

‘A legacy information system can be defined as “any
information system that significantly resists modificaion and
evolution”, [Brod9§.

e evolution d legagy systems to provide new
functionality required by the organisation is
virtualy impossble.

The last point is particularly relevant in today’s
competitive environment where organisations must
perform their operations in the most cost-effedive and
efficient way ([25], [48], [29], [55]). Organisations are
constantly growing and changing business focus in
order to remain competitive. Mgjor changes in business
pradice inevitably require major changes to the
suppating information systems. However, legacy
systems are charaderised as being very brittle with
resped to change. Small modificaions or
enhancements can lead to urexpeded system failures
which are very difficult to trace in a largely
undacumented environment.

Many organisations now wish to move their legacy
systems to new environments which alow information
systems to be more eaily maintained and adapted to
new business requirements. The essnce of Legacgy
Information System Migration is to alow them to do
this, retaining the functionality of existing information
systems without having to completely redevelop them.

Of the airrently available, and generaly ad-hoc,
methods for legacy system migration, few have had,

limited, success ([11], [21]). In view of this, many

organisations are reluctant to migrate their legacy

systemsto newer techndogies and naw find themselves
in a ‘cach 22 dtuation: misdon criticd legacy
systems which onthe one hand provide life suppat to
the organisation are dso a maor impediment to
progress

Thus there is an wgent need to provide toadls,
methoddogies and tedhniques not only for accessng
the data which is locked inside these systems, but also
to provide astrategy which allows the migration d the
systems to new platforms and architedures. The
exigency of this requirement is al the more highlighted
by the “Yea 2000 poblem” which will render many
legacy systems pradicdly unwsable. All these isaies
have caused legagy information system migration to
become one of the major iswes in bah business and
acalemic reseach ([7], [59]).

This paper presents an owerview of the whoe
processof legacy system migration. It is divided into 6
sedions. The next sedion dscusses the issues involved
in any migration pojed. Sedion 3 oulines the
currently available tool suppat for migration. Sedion 4
detail s existing legacy system migration methoddogies.
A number of future reseach isaes are presented in

Sedion 5 The @ncluding sedion presents a summary

of findings.

2 Well known concept which refers to the problems that many
(misson criticd) information systems will suffer becaise the

2. Migration Issues

Legacy system migration encompasses many
reseach aress. A single migration projed could, quite
legitimately, address the aeas of reverse engineeing,
business schema

reengineeing, mapping and

trandation, data transformation, applicetion
development, human computer-interadion, and testing.
For the purposes of this paper, the following phases for
ageneric migration rocesshave been identified:

e Phase 1: Justificion

¢ Phase 2: Legacy System Understanding

e Phase 3: Target System Development

e Phase4: Testing

¢ Phase5: Migration

In this sedion eat of these phases will be discussed
with a view to providing a dea understanding d the
isaes involved in a migration. A genera description o
the objedives and expeded ouputs of ead phese is
provided. Sedion 3focuses on particular tools available

to suppat eah phese, and gves more detailed

descriptions of the expeded results.

2.1. Justification

Legacy system migration is a very expensive

procedure which caries a definite risk of failure.

date aithmetic they perform will be invalid at the change of
mill ennium, seesedion 44.1.

Consequently before any dedsion to migrate is taken,
an intensive study shoud be uncertaken to quantify the
risk and kenefits and fully justify the redevelopment of
the legacy system involved [49]. The primary outputs
of this investigation shoud be a ©st benefit analysis
and an estimation d the possbility of failure. Software
quality metrics can be used to estimate the level of
technicd difficulty involved. The legacy systems
contribution to profit and the significance of its
information shoud be used as measures of the systems
business value. Its business value combined with
estimations of its life epedancy and current
maintenance @sts could be used to arrive & afigure for
the posdble benefits redevelopment could bring. The
size, decomposability, relation to aher systems and
relative stability of the systems functionality combined
with the technicd difficulty involved in its migration
shoud gve a estimation d therisk involved. Gaining
ameasure of how easy software is to maintain by wsing
software maintainability metrics for example, can
identify patential reusable cmporents and provide a

qguantifiable method to determine comporents which

must be completely rewritten ([14], [59]).

2.2. Legacy System Understanding

Legacy system migration can be viewed as a

constrained problem solving adivity [56], the major

constraint being the legacy system. The system

resulting from a migration must med some
businesguser requirements but as the legacy system
already partially meds these requirements, it is essential
to the success of the migration to uncderstand the
functionality of the legacy system and haow it interads
with its domain.

Due to the fad that many legacy systems have poa,
if any, documentation, many reseach projeds have
chosen to focus onthe aeaof reaeding daumentation
from legacy code (see sedion 32). It has been found
that this processcanna be fully automated [9]. In order
to recover a relevant design and daumentation, much
interadion from a system expert is required. Once the
design and da:umentation have been constructed, they
gill have to be understood Reusable cmporents and
redundancies have to be identified before the
requirements for the target system can be produced. A
poa understanding d the legacy system will 1 ead to an
incorred spedfication d requirements for the target
system and utimately afailed migration projed.

Legacy system understanding can be aded by
reverse agineging. Reverse engineaing can be
defined as identifying the system's comporents and
their interrelationships and creae representations of the

system in another form or a a higher level of

abstradion [66].

As well as understanding legacy applicaions, the
structure of the legacy data must also be uncovered.
Many dfferent data models have been proposed and
implemented owver the yeas including the hierarchicd,
network, relational, extended relational, and obed-
oriented. These data models are different ways of
organising data. A general rule of thumb is that the
older the data model the more difficult it i s to rediscover
the legacy data structure. The situation is much more
complex for the still very prevalent standard fil e format,
for which there is no centralised description d the data
structures, but they are buried in the gplicaions code.
Individual source programs must be examined in order
to deted partial structures of files. Very often data
structures are hidden, optimisation constructs are
introduced (e.g. padding for addressalignment or record
splitting when the sizeis greaer than the page size), and
spedfications are left to be procedurally encoded.

Both standard files and ealy data models were not
powerful enoughto model certain data charaderistics
and the gplicaion developers had to hand-code these
fedures, (e.g. referential integrity constrains). This
leaves migration engineas having to wade through
complex code fragments in order to retrieve the legacy
data structures. As with applicaions, once the legacy
data structure is extraded it still has to be understood

A general lad of standardisation with regard to naming

and dtructuring d data dements combined with
implementation spedfic optimisation comporents
makes the understanding pocess very difficult to
automate. Once the structure has been understood
reduncancies have to be identified so that only
necessry data will be migrated. This data will then
have to be analysed and cleaned before migration. The
adage ‘ Garbage In - Garbage Out’ is most applicéble to
legacy system migration.

In addition, interadions between the legacy system
and aher information systems and resources must be
identified. Failure to do so can result in expensive
failures in related systems when a legacy system is
migrated [11]. Thisinteradionis often urclea from the
code or documentation, adding another source of
complexity to this phase.

Much of the existing reseach into the aeaof legacy
system migration hes focused on this understanding
phase ([12], [17], [31], [33], [45], [64]). Althoughthere
are many commercial tools which clam to automate
tasksin this phase (seesedion 32), most are spedfic to
particular types of application and require aparticular
code or data structure and all require extensive inpu

from the migration engineq.

2.3. Target System Development

Oncethe legacy system is understood a requirements
spedficaion can be prepared. A target system
developed acwrding to this pedficaion will have the
same functionality as the legacy system. Dedsions
have to be made with regard to the achitecure shoud
be chosen for the target system. Thisisa aucia stage
of any migration projed, the target environment chosen
must suppat the target applicaion requirements[43].

Most current systems are developed using a 3-tiered
client server architecture ([36], [13]). A primary design
is to fadlitate

intention o these achitedures

maintenance and extension in the future. Instead of
developing single mondithic gplicaions developers
are encouraged to separate the interface businesslogic
and cita comporents of an application; these represent
the three tiers of 3-tier client/server computing (see
sedion 33.1). Even within tiers autonomous
comporents are identified and separated ou. A
common Interface Definition Language (IDL) can be
used to describe the interfaces to the individualy
constructed comporents. Communicaion between
comporents is only posshle through these predefined
interfaces and comporents do nd neel to be avare of
This

how other comporents are implemented.

arrangement alows comporents to be modified and

extended withou affeding the operation d other

comporents. This extends the idea of data
independence, which is well known in the database
world, to the world of comporent appli cations.
Frameworks, such as CORBA, OLE/COM and DCE
([36],[37]), exist to fadlit ate the seamlessdistribution o
comporents. Services within these frameworks allow
comporents to dscover ead other and interoperate
aaosshetworks. The traditional interoperability barriers
of heterogeneous languages, operating systems, and
networks are dfedively overcome by this comporent
based dstributed framework architecure. An overview
of these techndogies and their relevance to systems re-
engineging and migration can be foundin [43]. There
can be no guarantees that applications developed using
this architedure will never become tomorrow’s legacy
systems. However, by choosing the most appropriate

architedure and methods, target applicaions that

fadlit ate change can be developed.

2.4. Testing

Testing is an ongang pocess throughou the
migration o alegacy system. Up to eighty percent of a
migration engineg’s time wuld qute legitimately be
spent testing [18]. Due to the high risk involved in any
migration projed, increased when the legacy system is

misgon criticd, it is imperative that there ae no

inconsistencies between the output of a legacy system
and that of its replacement system. By keeping the same
functionality, a dired comparison d outputs is
sufficient to determine the validity of the target system.

Sommerville has termed this process Back-to-back

testing [65], and is down in Fig. 1. Basicdly, the

Test Data
Legacy Program.
Functionality A

Difference Report

Fig. 1. Back-to-back Testing Strategy

existence of more than ore version d asystem, asisthe
cese for legacy system migration, is exploited for
testing. Seleded test data is presented to bah versions
of the system, and differences in the outputs probably
indicates the existence of software malfunctions. In the
case of legacy migration, where the outputs of the target
implementation do not correspond with its legacy
equivalent, the target system neals to be caefully
investigated.

The idea of badk-to-badk testing hes also been

reported and succesgully implemented by Beizer [5].

Fig. 2 represents his framework for testing rehosted
software, which can in fad be seen as a refinement of
Fig. 1. An adequate test suite [5] is sleded for testing

the legacy software, and the outcomes of this test suite

v
[Software Trangator)] — Legxy |}y
. Software Test
;uei?e Suite
Outcomes
Y Y

[Test Suite Trand aaorﬂ [Outcomes Trand atorﬂ

Y v Y
Rehosted Rehosted
Test Test

H Suite Outcomes
Actua
) B S
Outcomes Yes.” " No
» A
— input ‘ Rehosted Software Accepted | ‘ Debug Translators
..... > ouput

Fig. 2. Testing Framework for Rehosted Software

are recorded. Idedly, this test data shoud be that which
was used when developing the legacy software,
although this information would be rarely available.
Following this framework, the legacy software is
trandated into the target environment. The test suite is
also trandlated so that it can be used asinpu for the new
rehosted software. Finaly the test suite outcomes are
trandated as well, in order compare them with the
outcomes of the rehosted software, named Actua
Rehosted Outcomes in Fig. 2. If differences between
the

adual and rehosted oucomes are deteded,

trandators (of software, test suite, or outcomes) must be

debugaed, otherwise the software will be considered as
being succesully rehosted.

It must be noted that this framework assumes that an
adequate test suite for the legacy software will becane
an adequate test suite of the rehosted software (after
trandation), which is not always true. In fad, this test
suite is the minimum test which shoud be performed
against the target system during a migration projed, in
order to test its functionality. Additional testing may be
required depending onthe spedfic target environment.
For example, additional performance testing will be
imperative when migrating from a mainframe based to a
client and server environment.

The badk-to-bad testing strategy works under the
premise that both versions of the software being tested
implement the same functionality. For this reason it is
not advisable to introduce new functionality to the
target system as part of the migration projed ([11], [5]).
However, inredity it islikely that in order to justify the
expense of amigration projed, the target system will be
required to offer new functionality. In this case, the
legacy system shoud be migrated, withou any
enhancement, first. New functiondlity can be

incorporated into the target system after the initia

migration has been performed.

2.5. Migration

The migration plese is concerned with the ait over
from the legacy system to the target system. Deding
with misson-criticd legagy systems means that this cut
over must cause & little disruption to the business
environment as possble. Therefore, a naive gproach of
simply switching df alegacy system and turning ona
new fedure-rich replacement is, in many cases, not a
redistic option [11]. Also, cutting owr to the target
system in ore single step, as ow Fig. 3(a), represents
too Hgharisk for many organisations asit resultsin the
whole information flow would be managed by a system

which has never been operational, and thus necessarily

untrusted.
Target Application(s) Modules
Legacy
Information
System
Legacy
Data
Target Database(s)
@
Actual Information System
Legacy
Environment Taget
T Environment
=2 St d
Information (Partial) Legacy /
System Inform. System

Legacy ’ Legagy/Target
Data Data

(b)

Fig. 3 Cutting Over the Legacy Information System

Idedly, to reduce the risk involved in this phase, the
cut over must be performed incrementally, and by small

steps. Each step shoud result in the replacament only a

few legacy comporents (applicdions or data) by

correspondng target comporents. The eample
illustrated in Fig. 3(b) represents a step where only a
small part of the legacy functionality has been cut over
to the target, the rest remains in the legagy. An
additional modue has been introduced, termed gateway,
to integrate both the target and the legacy environments,
which together form the adual information system the
organisation will use during migration. Further steps
will be required to migrate more functionality from the
legacy to the target systems. When the complete legacy
system has been migrated to the target environment, a
gateway will be nolonger required.

The incremental migration described abowve is a
potentially highly complex process For this method to
be succesdul, it must be posshle to split the legacy
applicaionsin functionally separate modues. However,
thisis not always possble for legagy systems, the vast
majority of which are badly structured. The same
problem arises if the legacy data is also incrementally
migrated. It could be difficult, if not impossble, to find
out which pations of the data can be migrated
independently. In addition, the management of the
whole processwould na be an easy task.

The onstruction d the gateway could also be

extremely difficult as it may involve deding with

heterogeneous environments, distributed applicaions

and dstributed databases. Each of these fields is dill an
open reseach areaisale and results may not be mature
enoughto be used in amisson-criticd migration.

Migrating a legacy system in an incremental fashion
is designed to reduce the risk of the migration phese.
However, its inherent complexity caries with it a high
risk why may adually result in increassing the risk
involved in migration. These two sources of risk must
be balanced if the migration plese is to succeel. This
phase is central to every migration pojed and much
reseach is gill required inthisarea

Sedion 4analyses diff erent approacdhes to migration.
Eadh ore aims to med a different trade-off between the
risk introduced by its complexity (sedion 45) and the
risk introduced if the migration is performed in a non

incremental fashion (sedion 41).

3. Legacy System Migration Tool Support
Migrating a legacy information system is a long,
high-risk process typicdly lasting fiveto ten yeas[11].
Migration toals can considerably reduce the duration o
a migration projed, helping the migration enginee in
tedious, time-consuming and error-prone tasks. This
sedionis not intended to be a céaogue of al tods, or
types of tods, available, rather it presents sme
examples of the tods currently avail able to assst in the
migration process and ill ustrates what kind o suppat

migration enginea's can exped from such toadls.

Legacy Information System Migration Tools

‘ Jutification

Legacy System
Understanding

Target System
Development

Transition Support

Testing ’

Program

Understanding

Database
Understanding

Year 2000
Problem

Transadion
Processng

Integration
Software

Consultancy
Services

Internet-Based

Client/Server
Techrologies

Development

Data Integration Middleware Solution

Fig. 4. Migration Tools Hierarchy

Following the migration isales discussd in sedion
2, ead tod is classfied acording to which phase of the
processit is intended to suppat, as own in Fig. 4.
Sedion 31 oulines me toals that help to justify the
migration o alegacy system. Tods analysed in sedion
3.2 help provide a better understanding d a legacy
system. Sedion 33 describes tools which provide
automated suppat for engineas building open systems,
the preferred target systems for legacy migration.
Sedion 34 lists a miscdlaneous =t of services and
tods which include partia solutions to migration,
software to suppat enterprise wide gplicaions and
consultancy companies concerned with managing
migration projeds. Sedion 35 relates a migration
projed to the testing reeded in any software

engineaing projed, and lists osme tools which can help

in this process

3.1. Justification Tools

The genera justificaion process for migration
projeds can be related to the planning plase of any
application development. CASE tods and software
metrics [14] are thus reaily available to suppat this
process

The RENAISSANCE projedt [42] started in 1996
plans to develop methods for asessng cost, risks and
benefits of migration and will it self be suppated by
existing CASE todls. It will aso produce CASE toolkit

extensions to asdst in reverse engineaing the design o

system famili es written in the C programming languege.

3.2. Legacy System Understanding Tools

Asdiscussd in sedion 22, understanding the legacy
information system is esential to the success of a
migration projed. A growing number of tods are
becoming available to aid migration enginees in the
legacy system understanding phese. Although these
tods can considerably reduce the amourt of time
needed to understand a migrating system, the automated
understanding d a system’'s dructure is gill far from
being achieved [9]. Legacy system understanding toodls
can clealy be subdvided into those which analyse the
application's code and those that anadlyse the data
structure. The following two subsedions are based on

this classficaion.

10

A more detailed list of toolsto asdst in this phase

can befoundin ([33], [64]).

3.2.1. Program Under standing Tools

The general aim of program understanding toolsisto
develop mental models of a software system’s intended
architedure, meaning and kehaviour [33]. These models
make understanding easier for the enginee.

Legacy systems typicdly have poa if any
documentation (seesedion 22). The research prototype
cdled Rigi ([60], [45]), isan example of atod which to
asdst in the remnstruction o system documentation.
Rigi claims to parse legacy code and produce useful
documentation on haev it performs its functiondity.
Other such tools are offered by companies like
Computer Asociates, I1BM, Compuware, Intersolv,
Microfocus, and Bachman. All these companies offer
tods to isolate the data information in COBOL
applications and help separate the cde into more useful
and readable segments.

Reasoning Systems offers Software Refinery a
reverse engineaing tools generator [41], one of the
most mature reengineaing poduwcts known to the
authors. Using a grammar of the language to be
analysed, this tod creaes a parser that builds a high
level representation o the structure of the legacy

program. The user can manipulate this treestyle

representation instead of using the mde itself. Software
Refinery provides symbolic computations which ease
the reengineaing process This company also provides
some tools’ constructed using Software Refinery that
suppat the key tasks when working with legacy
systems implemented using spedfic languages. They
help in tasks such as: understanding code structure,
analysing the impad of changes, generating
documentation, and reengineeing.

The DECODE reseach projed [12] aims to develop
a Co-operative Program Understanding Environment.
The main ideais to use an algorithm to automaticaly
extraad part of the program design and then co-operate
with the user to improve and extend this design. The
user can crede ahierarchy of design comporents. Then
it is posgbleto link operations to comporents, and code
to the operation that it implements. These hierarchies
abstrad the internal structure of the mde and allow the
user to navigate throughit.

A different approach was followed in [31] to
construct COGEN, a knowledge-based system for
reengineeing alegacy system. It involved restructuring
the user interface re-writing database transadions, and
trandating language feaures. The knowledge base is

ad-hoc built, and its quality depends on the cmplexity

of the legacy system. However, it is estimated that when

11

trandating general languege feaures the aitomated
conversion was nealy 100%. The goa of this g/stem
was not to increase the understanding o the legagy
applicaion, but to trandate it into the target system in a
way as automated as possble. Althoughthis objediveis
different from the general aim of creaing models of the
legacy program, this approach shoud be mnsidered for
some migration pojeds. The main dsadvantage of
COGEN isthat it is highly spedfic to the legacy system
it works with, but at the same time this results in a
highly automated process its grongest feaure. The
knowledge base is only appliceble for one spedfic
legacy environment (DG COBOL) and ore spedfic
target environment (IBM’s CICS). Thus its ladk of
generality is obvious, even if some rules could be
common a quite similar for other environments.
However, as program understanding, trandation, etc.
are very difficult tasks, high automation levels will only
be adieved using heuristic methods and ad-hoc
solutions. COGEN exploits techniques from artificial
intelligence (Al) and applies them to legacy system
understanding.

Finally, a novel approach is propcsed in [44]
whereby Case Based Reasoning and damain spedfic

ontologies are employed to understand legacy systems

* Refinery/Cobd,
Refinery/C.

Refinery/Ada, Refinery/Fortran, and

and to lean from experience This is ancther example

of amarriage between Al and legacy understanding.

3.2.2. Database Under standing Tools

Other legacy system understanding todls include
those for database reverse engineaing. The Badhman
Re-Engineaing Produwct Set [3] and the DB-MAIN
CASE tod [24] both concentrate on recaturing the
semantics of physicd database designs. Little suppat is
provided for extrading the data structure but once this
is available, both todls provide mnsiderable suppat in
comprehending the structure.

A reseach prototype cdled SeeData [2] employs
computer graphics to produce very elegant and easy to
understand representations of an underlying relational
legagy database structure.

Finally, the INCASE Software Code Interviewer
(SCI) ([4€], [47]) isastatic analysis reverse engineeing
tod that examines an applicaion's urce ®de. SCI
aims to discover an applicaion's data mode from
existing COBOL source @mde and Job Control Language
statements. This oftware parses the gplicaion’s code
and loads the SCI Acquisition Database (ADB). The
ADB represents appli cation componrents that are needed
in the discovery process as for example COBOL source
code, COBOL statements and statements arguments,

etc. Once the ADB contains this low-level information,

12

pre-defined and wser-defined rules are used to seach the
database for major entities and attributes of entities

which will constitute the data model.

3.3. Target System Development Tools

The main gaal in a migration projed is to buld a
fully operative, functionally equivalent system into a
target open environment. An essential requirement of
legacy system migration is that the newly developed
target systems dodd na bewmme tomorrow’s legacy
systems. Currently, it is believed that client/server
architedures lead to open applicaions which will not
suffer the same deficiencies that current legacy
applicaions (see sedion 1), making these the desired
target architedures. Also, due to the misgon criticd
nature of many legacy systems, transadion suppat will
be abasic requirement for the target, enterprise-wide
applicaions. These gplicdions £&k a seare and
distributed environment, where many users can acces
simultaneously and efficiently a diversity of data
sources and applicaions. Finally, giving the growing
importance that the World Wide Web has in the way
companies do business the target architedure shoud
fadlit ate WWW’ s integration within the enterprise wide
information system. The following subsedions provide

an owrview of tools that provide suppat for

developing applications which fulfil these requirements.

A more detail ed discusson can be foundin [43].

3.3.1. Client/Server Development

Client/Server computing is the arrent development
paradigm. It is to this techndogy that many existing
legacy systems will be migrated. This sdion examines
todls available to aid in the development of client/server

applicaions, focusing, in particular, on the suppat

these tools provide for migrating/integrating legacy

applicaions.
Tier-1 Tier-2
[e CLIENT | lq Mot o SERVER | |:0ureece
(@
Tier-3
e Tie:2 oows
/
| g Service) >
o T manRavEs
Presentation Business Logic

Data/ Resources

(b)

Fig. 5. Two-Tier(a) and Three-Tier(b) Client/Server
Architectures

Theinitial generation d client/server computing was
motivated by the proliferation o cheg PC computing
power. Users demanded that information systems make
use of this chegoer computing paver. This resulted in
user-friendly interfaces being incorporated into
information systems with much more locd processng

and control, seeFig. 5(a). A primary downside of this

13

swing from the centralised mainframe to the PC was
maintenance problems. Businesslogic now resided on
the PC clients, referred to as “Fat Clients’ [36], so any
updates or extensions had to be replicated onall clients
resulting in enormous versioning and operationa
headaches. The next generation d client server
computing, referred to as 3-tier client/server, aims to
eliminate these problems by abstrading the business
logic into a third ‘middleware’ layer. The three layers
are thus the interfacelayer, the gplication logic layer,
and the resource servers layer [36], seeFig. 5(b).

First generation (or two-tier) client server application

development feaures two types of tod :

e Graphicd toadsthat focus on client side database
access These aitomate database accasbut can
lead to the “Fat Client” syndrome. Examples of
these todls include Power Soft’ s PowerBuil der,
Semantics Enterprise Developer, and Compare's
Uniface

e Todsthat combine visual screen bulderswith
traditional third generation langueges. These
include Microsoft’s Visual Basic and Visual
C++, Borland s Delphi, etc.

The greaest and most cost effedive benefit of both

types of tod lies in developing small, uncomplicaed
applicaions that do nd require broad deployment and

high vdumes of users. Unfortunately, the typicd

legacy system is by definition complex, used by large
numbers of users, and deployed aaoss the entire
enterprise. Besides this, first generation toodls are not
developed to hande cmplex development functions
like transadion management, locking models, and
multiple database acces These functions are centra
to the operation d any legacy system. Situations where
first generation toadls find application in the migration
processcan be seen in the aeaof “screen scraping’, i.e.
the replacament of charader based legacy system front
ends with graphicd user interfaces (seesedion 47).
3-tier client/server tools address application
scdability for high vdume transadion suppat and
expanding vdumes of users. The main players in this
arena ae Visons Unify produwct, Forté from Forté
Software Inc., and Dynasty from Dynasty Techndogies.
The main fedure that distingushes these products from
others is their automatic partitioning mechanism. This
automaticdly analyses an application and deddes which
tier of the 3-tier client server architedure various
applicaion comporents $houd reside on. This removes
any buwsiness functions from the dient and ensures

bulky unprocessed data is no longer shipped aaoss an

overloaded network.

14

3.3.2. Transaction Processing

Most misgon criticd systems are data intensive and
require substantial transadion processng suppat. This
type of suppat was traditionaly only associated with
large scde mainframe based DBMSs. Desktop
transadion processng suppat through triggers and
stored procedures is regarded as “TP lite” and nd
suitable for misdon critica enterprise wide gplications.
However, new suppat for transadions on the desktop is
now provided in the form of Transadion Procesing
(TP) monitors.

Examples of such todls are Transarc’s Encina [27],
Tandem’'s Tuxedo TP monitor [54] and NCR's TOP
END [34]. They provide Distributed Transadion
Processng (DTP) and also aim to help in some aspeds
of 3-tiered applicaion development. Other services

commonly provided by these kinds of tools are load

balancing and appli cation repli cation management.

3.3.3. Internet Based Technologiesfor Legacy

Systems

The rapid growth in use of Internet and Intranet
software in the mid nineties has mainly been dwe to the
prevalence of World Wide Web (WWW) techndogy.
The main motivation for this techndogy's deg
penetration into the distributed software market has

principally been the aility to deliver and render

graphics, hyper-text information, audio, video and
animation onclient macdines networked to servers (via
HTTP over IP protocol) and poviding simple
information retrieval mechanisms[8].

Perrochon oulines how WWW techndogy could be
used in accessng legacy information systems [39].
Gateways, built using Common Gateway
Interfac€CGl) or Server Side Include(SS) scripts, are
used to accessthe legacy data from web based clients.
Using the Web in this way provides a unified interface
to legacy systems for a patentially unlimited audience
As with screen scraping (see sedion 47), the isale of
legacy migrationis not addressed. Insteal the eanphasis
ison providing accessto legacy data stored in obsolete
formats and locked inside dosed systems. The use of
CGI and SS to buld these gateways could prove to be

quite difficult, any serious data

espedaly if
trandation/manipulation is required. A more suitable
tod for the task might be the Java programming
language from Sun, ([22], [23]).

Developed by Sun Microsystems Inc, Java is the
name of a spedfic techndogy wsed to crede and run
adive documents and davnloadable programs. It
consists of the Java programming language (which can
be used much as a mnventional Objed Oriented

Language & well as for writing adive WWW based

documents cdl ed applets), Runtime Environment which

15

provides the fadliti es needed to run a Java program, and
Classlibrary which makes Jva gplets easier to write
[15]. There ae severa development environments
which aid implementation d Java programs namely Sun
Microsystem’'s Jva Development Environment (JDE)
and Semantec s Café. Javatechndogy hes been applied
to providing dstributed accessto databases[26], [50].
WWW products and techndogies are not yet widely
used in legagy systems migration. However the éove
approaches are being used to allow distributed accessto
existing information systems and as such are candidates
for either interim/target platform environments on

which to migrate systems.

3.4. Transition Support Tools

Legacgy system migrationis avery rapidly expanding
commercial field. For this reason many companies
claim to dffer ‘legacy migration services athoughthey
may nad suppat the cmplete migration process The
services avail able can beroughy clasdgfied asfollows:

e Addressngthe Yea 2000 poblem

e Integrating dfferent software that buil ds the

global information system of a company

¢ Providing consultancy duringamigration

projed.

This dion oulines these kinds of services.

3.4.1. Year 2000 Problem Tools

As the yea 2000 approaches many aress of the
computer indwstry face the potential failure of the
standard date format: MM/DD/YY. To save storage
space in the past, and perhaps reduce the number of
keystrokes necessary to enter a yea, many IS groups
have only allocated two dgits to the yea. For example,
“1996 is dored as “96" in the data files, and “2000
will be stored as “00’. This two-digit date dfeds data
manipulation, primarily subtradions and comparisons.

Many software systems may either crash or produce
garbage with the advent of the yea 2000[32]. The st
of modifying these legacy systems is enormous, the
whole problem relates badk to the undacumented nature
of legacy information systems, discussed in sedion 22.
The simple ad¢ of determining hov many systemsin an
organisation will be dfeded can easily require many
man months of effort aone. The deadlline for
commencing reengineeing pojeds to ded with the
yea 2000 poblem is thus fast approaching for many
large organisations. Unlike other motivating fadors for
system reengineeing such as the requirement for
Business Process Reengineeing, or faster processng,
there ae no doults abou the mnsequences of inadion
for the yea 2000 poblem.

In response to the Yea 2000problem alarge number

of companies have produced products to assst. An

16

extense and very comprehensive guide of tools which

asdst on solving this problem can be foundin [63].

3.4.2. Integration Software

Some mmpanies focus more on integrating legacy
systems with newer techndogy applicaions rather than
acdually migrating legacy systems to new architedures.
Not all the integration processes have the same purpose.
Some set out to integrate their data sources, or
incorporate new data management techndogy. A more
complex approac is to creae aframework where dl
applicaions in the @mpany, legacy and rewly
developed, are mutually accessble. These options are

analysed in the next two subsedions.

3.4.2.1. Data Integration

This =dion oulines mMe tools focused on
integrating cdata sources or incorporating rew
management techndogy.

Acucobd is a @mmpany which concentrates on
bringing COBOL applications into the ‘ Open-Systems
market. One of its produwcts, AcudGL [1], claims to
provide aseanlessinterfacefrom COBOL to relational
database management systems (RDBMS). This product
exeautes COBOL Inpu/Output (1/0) operations by
automaticdly generating SQL statements, so that

applicaions do nd have to be modified and wsers do

not need to lean SQL. This is possble becaise &l

Acucobd 1/0 passs througha generic file hander, and
whenever it encourters an input or output to a file that
must be managed by a RDBMS, the request is passed to
the Acu4GL interface which in turn accesses the
database.

Persistence Software [40], in contrast, does not
provide accssto new data management but aims to
interface objed-oriented developed applicaions with
relational database management systems, i.e. new
applicaions accessng legacy data. The development of
an application with Persistence Software starts by
spedfying the gplications data model. Persistence
then generates database objeds which manage the
mapping to relational tables. Another comporent of
Persistence provides an oljed-oriented interface
between application oljeds and relational data. Finally,
a different comporent is concerned with retrieving the
data, ensuring integrity and ogimising performance

UniData [57] was originally a relational database
vendar. It has now branched ou into the aeaof legacy
system migration. The angle of its particular relational
RDBMS isin the storage, retrieval, and manipulation o
nested data and repeding goups as well as traditional
data. This fedure gredly reduces the complexity of
migrating data from network and herarchicd databases

to arelational database format. This provided UniData

with an instant advantage in the fast growing world of

17

legacy data migration. They subsequently developed a
suite of tools to address the larger problem of legacy
system migration, such as a screen scraper (seesedion
4.7), a COBOL code aalyser to extrad applicaion's
data model, and a fourth generation languege for
developing client/server applicaions. UniData
concentrates on providing a relational database solution
to legacy systems. It addresses the requirements of those
legacy systems whaose information reels to be
leveraged onthe desktop bu who are not themselves in
urgent need of migration.

Apertus Enterprise/Integrator [20] is an example of
atod designed to integrate the different data sources of
an enterprise. It offers arich set of feaures that address
the full life gycle of the data integration process Some
notable fadlities provided by Enterprise/Integrator
include suppat for bath the detedion o redundant data
and what is known as value conflict resolution. Rules
can be defined by the user to identify logicdly
redundant data. These rules might insped combination
of attribute values to determine if two oljeds are
logicdly equivalent (redundant data). The need for
value nflict resolution arises because it is not
uncommon that information representing the same red
world entity, coming from different sources, have

conflicting values. A separate set of rules, Property

Value Conflict Resolution (PVCR) rules, aim to solve

these kinds of conflicts, dedding which value to use to

popuate the integrated data store.

3.4.2.2. Middlewar e Solution

In the padt, different departmentsin a cmpany have
built their information systems independently of ead
other. There is a neal to integrate these disparate
information systems, to preserve the investment in
legacy systems, and to incorporate new techndogy.
This stuation hes led many companies to develop
prodwcts to suppat

integration o heterogeneous

environments that will result in what is cdled
Enterprise-wide | nformation Systems.

Open Horizon's Conredion [35] is an example of
this kind d product. It could best be described as a
proprietary Objed Request Broker (ORB) [36]. The
particular goal of Conredion is to provide a seaure
conredion for any end wser application to the database
server tier and the gplicdion server tier in a 3-tier
client server applicaion. The product provides many of
the fadlities proposed by CORBA, a distributed
communicaion

infrastructure, seaurity services,

diredory services, and dyramic binding. It achieves
most of this by being bult ontop d the OSFsDCE. In

addition, OpenHorizon alows for a single sign on so

that users only have to present their credentials once

18

and are then freeto access al database servers on the
network.

Enterprise/Access[19] is anather such product. Itisa
middleware tod that enables the deployment of second
generation (see sedion 33.1), enterprise-strength

client/server applications and provides a ontrolled,

cost-eff edive migration path off legacy systems.

3.4.3. Consultancy Services

This sdion oulines the services provided by some
companies that provide suppat for the whole processof
migrating alegacy information system.

[-Cube [28] is a consultancy firm which provides
advice ad contrading services for managing a
migration projed. No spedfic migration tods are
produced by I-Cube.

LexiBridge [30] in contrast provides a todkit for the
migration process The todkit is made up d three
comporents : the Workbench, the Repository, and the
Databridge. The Workbench dvides the legacy system
into four layers: the User Interface the Process Model,
the Data model, and the Physicd Model. PowerBuil der,
refer to sedion 33.1, windows are aitomaticdly
generated to replacethe charader based user interface
(effedively an internal screen scraper). LexiBridge
relies on the use of triggers and stored procedures to

replace the original legacy /0. Legacy data is

converted into Sybase, Orade, or DB2 formats.
Scrubbing medhanisms are provided for cleaning datato
eliminate inconsistencies and redundancies. Finaly a
code optimiser is used to eliminate deal code,
restructure we&k logic, and rescope program variables.
Sedor 7 [52] has developed a methoddogy for
migration based on five steps. asessnent, planning,
porting, validation, and productizetion. It spedalises in
VMS to Unix and NT system migration. Sedor 7 also
offers a wide range of tods to suppat most stages of a
migration pojed. Sedor 7's methoddogy is too

general to be used in any particular migration projed.

3.5. Testing Tools

As mentioned in sedion 24, it is important that
functionality is not added to the target system as part of
the migration projed [11]. If the functionality does not
change, commercia todls can be used to automaticaly
producetest environments to systematicaly vali date the
corredness of the target system. The genera testing
process of a migration projed can be related to the
testing ptese of any software engineaing projed. Tools
are thus redily available when testing a migration
process

Sedor 7 and Performance Software [53] are
examples of companies that provide suppat for
automated testing. Another company, Cyrano [16],

offers a set of prodicts, known colledively as Cyrano

19

Suite, spedalised in testing client/server based

applicaions.

3.6. Limitations of Migration Support Tools

From the previous dions, it is clea that thereisno
complete solution a even agreal approach to the
migration problem. Those mmercia/reseach
products that are available tend to address the isaue
from a number of varying angles. Some of them focus
on avery narrow areaof the process (database or code
understanding, integration, etc.), and require a high
level of user involvement.

Others address the overal legacy migration isae,
but they offer a too general methoddogy which daoes
not address the spedfics of particular migration
projeds.

Ancther limitation o the majority of commercial
solutionsis that they focus almost exclusively onlegacy
systemswritten in COBOL. The most widely suppated
platform is IBM runnng MVS and wsing the IMS
hierarchicd database management system. A large
number of legacy systemsin the computer industry as a
whole do orerate with this configuration. However,
there ae till a lot of legacy systems written in ather
languages, (Fortran, C, Plex), running on dfferent

platforms, (Digital, Bull, Data General),and using

different database management systems, (standard file,

network, relational). The migration a integration o

these systemsislargely unsuppated.

4. Approachesto Migration

Given the scde, complexity and risk of failure of
legacy system migration projeds, it is clea that a well-
defined, detailed approach that can be ealy
implemented is eseential to their success In this ®dion
currently available legacy system migration approaches
are discussd. Although legacy information system
migration is a maor reseach isae, there ae few
comprehensive migration methoddogies available.
Those that are documented are ather so genera that
they omit many of the spedfics or, they are centred
around articular tools and are so spedfic to a particular
phase that users might be in danger of overlooking aher
significant phases. This ®dion pesents 6 of those
currently available:

¢ BigBangApproach

e Database First Approach

e Database Last Approach

¢ Composite Database Approach

¢ Chicken Little Strategy

¢ Butterfly Methoddogy

Each approach hes its advantages and dsadvantages
and some ae more suitable for use in ore particular

migration projed than in another. When considering

20

legacy system migration, an intensive study reeds to be
undertaken to find the most appropriate method d
solving the problemsit pases.

Sedion 47 briefly discuses a mmmon approac to
‘migration’ adopted in industry.

A summary of how eat dof these gproadces fulfil
the aeas a migration projed must address (see sedion

2) ispresented in Appendix I.

4.1. The Big Bang Appr oach

The Big Bang approac [4], also referred to as the
Cold Turkey Strategy [10], involves redeveloping a
legacy system from scratch wsing a modern
architedure, tools and databases, runnng on a new
hardware platform. For any reasonably sized system it
is clea that thisis a huge undertaking. In redity, the
risk of faillureisusually too ged for this approach to be
serioudly contemplated. In order to justify adopting
this approad, it is usually necessry to guarantee that
the redeveloped system will include not only al the
functionality provided by the original legacy system but
also many new additional feaures. This adds gredly to
the complexity of the migration and further increases
therisk of failure.

Before migration can start, it is necessry to
the Often

understand fully.

legacy system

documentation for the legacy system at worst does not

exist or, at best isincomplete or is out of date. Thus the
functionality must be extraded from the code and the
underlying data structures and undrstood tefore
redevelopment begins. This adds bath to the duration
and the complexity of the projed and can gealy
increase the risk of failureif this processis flawed. The
situation is further complicaed by the fad that legacy
systems do nd generally operate in isolation. They
often interad with other legacy systems and resources.
In pradicethis interadion is often na clea from either
the @mde or documentation. A dedsion to redevelop
one legacy system from scratch could trigger failuresin
other dependent information systems.

Apart from the failure risks, ancther very red
concern arises from the constantly changing techndogy
and business requirements. Any projed of this <de
could take several yeas to complete. While the legacy
system redevelopment proceeals, techndogy will
continue to evolve ad, more significantly, an
organisation's business focus could change. Thus
organisations could find themselves in a position where
the redeveloped system no longer meds their business
neeads and the techndogy wsed is already ou-of-date
before it ever becomes operational .

It seans clea that it is not advisable to use the Big
Bang approach for al legacy system migrations.

However, where legacy systems have awell defined,

21

stable functionality, are not misson criticd and are

relatively small in sizethis approach could be used.

4.2. The Database First Approach

The Database First approach [4], aso cdled the
Forward Migration Method [10Q], invalves the initial
migration d legacy data to a modern, probably
relational, Database Management System (DBMS) and
then incrementally migrating the legacy applicéions
andinterfaces.

While legacy applications and interfaces are being
redeveloped, the legacy system remains operable. This
methoddogy falls within a group d methoddogies
which allow for the interoperability between bah the
legacy and target systems (sedions 2.2 to 25). This
interoperability is provided by a modue known as
Gateway: a software modue introduced between
comporents to mediate between them [11]. Gateways
can play several roles in migration, insulating certain
comporents from changes being made to cathers,
trandating requests and data between comporents or
co-ordinating queries and updites between
comporents..

The wncrete gateway used by the Database First
approach is cdled Forward Gateway. It enables the

legacy applications to accessthe database environment

in the target side of the migration process as gown in

Fig. 6. Thisgateway translates and redireds these cdls
forward to the new database service Results returned
by the new database service ae similarly trandated for

used by legacy applicaions.

S|1| U|1| S|J| ul, |
| | | |
0, I - I

Forward Gateway

[j L egacy Component Sl system Interface
Ul User Interface
Target Component
- g P M Application Module

Fig. 6. Database First Approach

The main advantage of this approach is that oncethe
legacy data has been migrated, the latest fourth
generation language and reporting todls can be used to
access the data providing immediate productivity
benefits. The legacy system can remain operationa
while legacy applicaions and interfaces are rebuilt and
migrated to the target system one-by-one. When the
migration is complete, the gateway will no longer be
required and can be decommissoned as the old legacy
systemis sut down.

There ae several disadvantages to this approad, in

particular, it is only applicéble to fully decomposable

22

legacy systems' where a d¢ean interfaceto the legacy
database service «ists. Also, before migration can start,
the new database structure must be defined. The major
risk with this adivity is that the structure of the legacy
database may adversely influence the structure of the
new database. The Forward Gateway employed can be
very difficult, and sometimes even impassble, to
construct due to the diff erences between the source and
the target in tedindogy, in database structure,
constraints etc..

Overdll thisis arather simplistic gpproach to legacy
system migration. The migration d the legacy data may
take a significant amount of time during which the
legacy system will be inaccessble. When deding with
misdon criticd information systems this may be
unacceptable.

An enhancement to this method is proposed by
Menhoud and Ou-Halima [67]. Using this method,
migration is caried ou through several small
migration steps. At ead step ore or more files are
migrated, following a predefined order. An applicaion
modue is migrated only when all the files it accesses

have drealy been migrated. Therefore, there will never

be amodue in the target system which needs to access

4

A fully decomposable IS is one where aplicaions,
interfaces and dhtabases are nsidered to be distinct
comporents with clealy defined interfaces. Applicaions
must be independent of ead ather and interad only with the
database service[Brod9§

afile stored in the legacy system. Modues in the legacy
system may access files (tables, once migrated) in the
target system, thus a forward database gateway is
required.

An example of this migration is down in Fig. 7.
Fig. 7(a) represents the set of modues (M) and chta
files (F) that constitute the legacy system. The
asaumption is that the migration sequence defined by
the method states that firstly F, must be migrated, then
F,, and finally F,. Once file F, has been migrated into
table T,, modue M, only accesses data stored in the
target system, thus it must be dso migrated. This
situationis $rownin Fig. 7(b). Then file F, is migrated,
as $own in Fig. 7(c), after that modue M, is aso

migrated, Fig. 7(d).

Legacy Legacy
System System
Forward
database
gateway 'V
Target
T System
@ (b)
Forward Forward)’Q
database database

gateway o — V.

gateway

Fig. 7. Intermediate Steps of a Migration Process

23

The key of the methodrelies on the way in which the
migration sequence is determined. It is based on the
principle of minimizing the danges required to the
legacy modues when some files or modues are
migrated. The main idea is to analyse the
interdependencies between legacy data files, which
leads to a partial order between these files. Due to space
limitation is not possble to detail the whole process for
more detail srefer to [67].

The method could be thougtt as being excessvely
simplistic, for example, the @aamptions made
regarding the type of legacy system target systems, (file
based and relational based, respedively), and the
posshility of clealy uncovering the set of
interdependencies between data files, do nd aways
hod when fadng a generic legacy problem. The
method, however, offers a most important contribution
to the aea of legacy system migration in that it
addresses the problem from a very pradicd (and
necessrily spedfic) point of view. Most of the
available methoddoges for legacy migration are
defined at a very abstrad level, and do not address

many of the pradicd problems to facewhen an adua

migration is being implemented.

4.3. The Database L ast Approach

The Database Last approach [4], aso cdled the
Reverse Migration Method [10], is based on a similar
concept to the Database First approach and is aso
suitable only for fully decomposable legacy systems.
Legacy applicaions are gradually migrated to the target
platform while the legacy database remains on the
origina platform. The legacy database migration is the
fina step of the migration pocess As with the
Database First approach, a gateway is used to allow for
the interoperability of both information systems. In this
case aReverse Gateway enables target applications to
access the legacy data management environment. It is
employed to convert cdls from the newly creded

applications and redired them to the legacy database

service as diown in Fig. 8.

Sy | Ul Sl | Ul,
M, Tt My Rever se Gateway
L egacy Database Service
D Legacy Component L Sl system Interface
- Sgacy Ul User Interface
Terget Component 5 Data \ M Application Module

Fig. 8. Database Last Migration Approach

24

If the legacy database serviceis to be migrated to a
relational database management service, then the target
applicaions will be developed completely with SQL
cdls to the data service It is these cdls that are
cgptured by the Reverse Gateway and converted to the
equivalent legagy cdls. The Database Last approach
has a lot in common with the dient/server paradigm.
The legacy database takes on the role of a database
server with the target applicaions operating as clients.
There ae @mmercia prodwcts available which
effedively ad as reverse gateways, eg. Sybase's
OmniConred and DiredConned products.

The Database Last approach is not withou its
problems however. Performance isales can be raised
with regard to the gateway. The Reverse Gateway will
be resporsible for mapping the target database schema
to the legacy database. This mapping can be complex
and slow which will affed the new applications. Also
many o the a@mplex feaures found in relationa
databases (integrity, consistency constraints, triggers
etc.), may nat be foundin the achaic legacy database,
and hence caana be exploited bythe new application.

This approach is probably more @mmercially
accetable than the Database First approac as legacy
applicaions can cortinue to operate normally while
being redeveloped. However, the migration d the

legacy data will still require that the legacy system be

inaccesgble for a significant amourt of time. When
deding with misson criticd information systems, this

may be unacceptable.

4.4. The Composite Database Approach

The Compasite Database gproach oulined in [10] is
applicable to fully decomposable, semi-decomposable’
and nonrdemmposable’ legacy systems. In redity, few
legacy systems fit easily into a single cdegory. Most
legacy systems have some demmposable comporents,
some which are semi-decomposable and ahers which
are non-demmposable, i.e. what is known as a Hybrid
Information System architedure.

In Composite Database @proadch, the

legacy
information system and its target information system are
operated in parallel throughou the migration projed.
The target applicaions are gradualy rebuilt on the
target platform using modern tools and techndogy.
Initially the target system will be quite small but will
grow as the migration progresss. Eventually the target
system shoud perform all the functionality of the
legacy system and the old legacy system can beretired.

During the migration, the old legacy system and its

target system form a cmposite information system, as

® A semi-decompasable IS is one where only the user and
system interfaces are separate cmporents. The gplicaions
and database service ae not separable.[Brod95g

® A non-decomposable IS is one where no functional
comporents are separable.[Brod95

25

shown in Fig. 9 (modified from [10]), employing a
combination d forward and reverse gateways. The
approach may involve data being dugi cated aaossboth
the legacy database and the target database. To
maintain data integrity, a Transadion Co-ordinator is
employed which intercepts al update requests, from
legacy or target applicaions, and proceses them to
identify whether they refer to data replicated in bah
databases. If they do, the updete is propagated to bah
databases using a two-phase commit protocol as for
distributed database systems [6].

Analysing nonrdemmposable legacy comporents
can be very difficult. In the worst case the comporent
must be treaed as a bladk box The best that can be
adhieved isto discover its functionality and try to elicit
as much legacy data & posdble. Sometimes using
existing legacy applicdions, (eg., database query,
report generation, and accessroutines), is the only way
to extrad the legacy data. Once the functionality has
been ascertained, the comporent can be re-developed
from scratch. It can often be very difficult to identify
when legacy data or functions are independent; in many
cases they may ssimply have to be replicated and target
copies co-ordinated urtil the entire legacy system can
be safely retired.

The Composite Database gproach eliminates the

need for a single large migration o legacy data &

! !- s: Ullk°°°SI U-I SIUI !! !!

’ Co-Ordinator

— > I
’ Reverse Gateway ’ ’ Forward Gateway ’
Legacy Data/
Database Service
] Legacy Component Sl System Interface
Ul User Interface
I Tar get Component M Application Module

Fig. 9. Composite Database Migration Approach

required in the Database First and Database Last
approaches. This is ggnificant in a misdon criticd
environment. However, this approach suffers from the
overheal na only of the other two approaches but also

the alded complexity introduced bythe c-ordinator.

4.5. The Chicken-Little Strategy

The Chicken Little strategy oulined in [11] is a
refinement of the Composite Database gproach.
Chicken Little proposes migration solutions for fully-,
semi- and nordecmposable legacy systems by using a
variety of gateways. The diff erence between these kinds
of gateways relies on where in the system they are
placed, and onthe amourt of functiondlity they provide.
All of them have the same goal, however, i.e. to mediate
between operation software comporents, as sid in

sedion 42. The types of gateways referred to in

26

sedions 4.2 and 43 will
gateways to dstinguish them from the others.

For afully decomposable legacy system a database
gateway, either forward or reverse is used and is
positioned between the gplicaion modues and the
database service An application gateway is used for a
semi-decomposable legagy information systems. This
gateway takes the form of the gateway ill ustrated in
Fig. 9 and is paositioned between the separable user
and system interfaces and the legacy database service
For non-decompasable systems an information system
gateway is positioned between the end-user and aher
infformation systems and the legacy information
system. This gateway also takes the form shown in Fig.
9, but it is expeded to be much more complex than an
applicaion gpteway. An information system gateway
has to encapsulate the whole functionality of the legacy
system, while an applicaion gateway encgpsulates only
from application modues down.

As well as database, applicaion, and information
system gateways, the mncept of an interface gateway,
as down in Fig. 10, is also proposed for non
demmposable legacy systems. The ideais to insulate
end wers from al underlying pocesses in the
migration. The interface gateway cegptures user and
system interface cllsto some gplicaions and redireds

them to ahers. It dso accets the rrespondng

here be cdled database

resporses and trandlates, integrates and dreds them to

the cdlinginterface

External End
Information Systems Users

I nterface Gateway

S, | Ul ... S, UL

L egacy Information System

D L egacy Component S| System Interface
Ul User Interface
- Target Component M Application Module

Fig. 10. Interface Gateway

Chicken Little dso proposes an 11 step plan to be
followed in any migration projed, shown in Fig. 11
Each step handles a particular asped of migration, e.g.
migrating the database or migrating the gplicaion. The

method can be alapted to fit individual legacy systems

Step 1: Incrementally analyse the legacy information
system

Step 2: Incrementally decompose the legacy
information system structure

Step 3: Incrementally design the target Interfaces
Step 4: Incrementally design the target applications
Step 5: Incrementally design the target database

Step 6: Incrementally install the target environment

Step 7: Incrementally creae andinstall the
necessry gateways

Step 8: Incrementally migrate the legacy databases

Step 9: Incrementally migrate the legacy

applicaions
Step 10: Incrementally migrate the legagy interfaces
Step 11: Incrementally cut over to the target
information system.

Fig. 11. Chicken Little Migration Steps

27

migration requirements. Steps do nd have to be
performed in sequence ad several steps can be
performed in perallel.

The method is designed to be incrementa i.e. the
legacy system(s) are migrated to the target system(s)
one mmporent at atime. Gateways are then used to
alow the legacy and target systems to interoperate.
Using Chicken Little datais gored in bah the migrating
legacy and the growing target system. In most cases,
gateway co-ordinators haveto beintroduced to maintain
data mnsistency. As Brodie ad Stonebraker
themselves point out “update nsistency aaoss
heterogeneous information systems is a much more

complex technicd problem with no general solution yet

advised, and it is gill an open reseach challenge” [11].

ever-changing legacy data that is crucial, but rather its

semantics or schema(s). Thus, the Butterfly
Methoddogy separates the target system development
and data migration pleses, thereby eliminating the need
for gateways.

Using the Butterfly Methoddogy, when the legacy
data migration begins, the legacy datastore is frozen to
become a read-only store. All manipulations on the
legacy data ae redireded by a modue cdled the Data-
Access-Allocator (DAA), see Fig. 12. The results of
these manipulations are stored in a series of auxiliary
datastores: TempStores (TS). The DAA effedively stores

the results of manipulations in the latest TempStore.

CATERPILLAR SYSTEM

Graphic User Interfaces

Legacy Interface

CHRYSALIS SYSTEM

5
Legacy Applications Turned on,

Thus it seams that to apply Chicken Little approach

un
for
Development

! Devel
N £—7) ya—— i and Testing
Target] Tavget Target] H
App, App, AppP,, H

Database Services

addition, the strategy does not include atesting-step (see

. Legacy Legacy
sedion 24), which is clealy esential and avita part of __ o)

Pupa DataStore

would be abig challenge to any migration enginee. In

Read Only

the process before aitting on the target information

system.

4.6. The Butterily Methodology Fig. 12. Butterfly Methodology, Migrating the Data in
TempStore TSn

The Butterfly Methoddogy is based on the When legagy applicaions access data, DAA retrieves

assimption that the data of a legacy system islogicdly datafrom the corred source e.g. the legagy datastore or
the most important part of the system and that, from the the mrrea TempStore.

viewpoint of the target system development it is not the

28

A Data-Transformer, named Chrysaliser in Fig. 12,
is employed to migrate, in turn, the data in the legacy
system as well as in the TempStores to the target
system. While Chrysaliser is migrating the legacy
datastore dl manipulations are stored in the first
TempStore (TS); when migrating data in TS, all
manipulations are stored in TS,; and so on

If the time taken to migrate a TempStore is faster
than that taken to buld the next one, the size of eath
TempStore will decease & ead iteration. When the
amourt of datain TS, is sufficiently small, the legacy
system can be brough down and the data in the last
TempStore migrated to the target system, withou
causing any serious inconvenience to the wre business
Thiswill result in an upto-date target database and the
target system can be made operative. Thus using the
Butterfly Methoddogy, at no time during the migration
process will the legagy system by inaccessble for a
significant amourt of time.

Fig. 12 shows a scenario duing the legacy data
migration. It can be seen that the cmbination d the
DAA and Chrysaliser serve & a legacy data migration
engine.

Using the Butterfly methoddogy, Target
SampleData, which is based uponthe target system data
model, is dored in a Sample DataStore. Target

SampleData is transformed from Legacy SampleData, a

representative subset of the data in the legacy data store.
The Sample DataStore is employed to suppat the initial
development and testing d all comporents (except for
data) of the target system.

The Butterfly methoddogy is a novel approach to
handing legacy system migration. Target applicaions
can be exhaustively tested against adual data held in the
Sample Datastore. Each step of the Buitterfly
methoddogy can be completely tested and the legacy
database can be rolled badk at any stage. The legacy
system can continue to operate as normal throughou the
migration urtil the last TempStore has readed the pre-
determined size

From a pragmatic point of view, the main fador

which will determine whether or naot this methoddogy
is usable, is the value of iy (where u is the speed of

Chrysaliser transforming the data, and v is the speed of
the DAA building up rew TempStores). If v =0 (i.e
the DAA does not build the TempStores), the
methoddogy reverts to a ‘Big Bang migration (see
sedion 41). If v > u (i.e. the sizes of the TempStores
do nd deaese & ead iteration), then the migration
processwill never finish.

Fadors relevant to the success of the methoddogy
include:

e athorough undrstanding d the legacy and

target systems

29

e anacarate and concise sample datastore
¢ afast chrysaliser

* an efficient Data-AccessAllocaor.

4.7. Screen Scraping

Few organisations have as yet attempted a full-scde
migration projed. Many attempt to implement solution
which allows them to gain some of the benefits of new
techndogy withou having to interrupt their misson
criticd legacy system. One particularly popuar
approach is Screen Scraping.

Screen scraping is the process of repladng the
charader based front end o a legacy information
system with a PC client based graphicd user interface
Putting a graphicd user interfaceonto a legacy system
is a cheg and effedive method d leveraging legacy
data on the desktop. Users are freeto use the graphicd
data manipulation and inpu toos common on the
desktopto input data and processthe system outpuit.

At present there ae a large number of products
available to perform screen scraping. Some of the
better known include MultiSoft's WCL/QFG toalkit,
Client Server Techndogy's GUISys, and Co*STAR
from CleaView. These products depend onthe use of a
terminal emulator for the communicdions link to the
host mainframe legacy system. Most include their own

emulators but some rely on third party vendars sich as

Systems Synchronous Incorporated. The user builds the
graphicd user interface in a structured interadive
sesson. The processnglogic for the host screen is then
spedfied. The resulting PC client applicationis usualy
in the form of some aitomaticdly generated first
generation client server toadl, (in nealy all cases either
Microsoft’s Visual Basic or PowerSoft’s PowerBuil der).

Despite the cmommercia successof screen scraping it
is gill very much a short term solution. Pladng a
graphicd interface onto a legacy system does not
address many of the serious problems faced by legacy
systems. Problems of overloading, inability to evolve to
provide new functions, and inordinately high
maintenance osts are dl ignaed. Screen scraping
simply provides an easy to use interfacefor the legacy
system. At best it reduces training costs for new
employees and alows an interfaceto the legacy system
on the desktop. There is no reading of the legacy
system so no rew functiondlity is provided, also all
procesdng till takes place on the mainframe thus not
easing the burden on the overloaded mainframe or
reducing operational costs by uwsing the degper
computing powver of the desktop.

In many cases <reen scraping nd only fails to
provide an adequate solution but adually serves to

compound an organisations maintenance problems.

Wrapping legacy system access with screen scraping

30

software adds a functionally superfluous layer to the
legacy system, which itself will have to be maintained

in future systems maintenance procedures.

5. Open Research I ssues

While some phases of migration, such as legacy
system understanding, have been the subjeda of
reseach for a number of yeas, others, such as
migration, have remained relatively untouched urtil
recently. This ®dion provides a brief outline of some

of the major areas in which reseach is gill required.

These isaues are summarised in Appendix Il.

5.1. Legacy System Under standing

This area has been the subjed of much reseach in
recant yeas and hes resulted in a number of tools and
techniques to assst in bah program and data
understanding tasks, see sedion 32. However, to a
large extent the problems encountered in this phase
have remained ursolved and are worthy of further
reseach.
¢ Application Understanding

The majority of reseach in this area has
concentrated on legacy systems written on COBOL.
Althoughthis is the language of alot, perhaps even the
majority, of legacy systems, it is by nomeans the only
language used. Tods and techniques for understanding

systems written in ather langueges are required. In

addition, as poa programming [radice and
documentation, is not limited to legacy systems,
reseach nead na be limited to typicd legacy languages
such as COBOL and FORTRAN, languages sich as C,
and even C++ and Java, shoud also be mnsidered.
Within this area the dfed of which verson d a
language was used to implement systems also needs to
be investigated . For example, does COBOL 85 reed a
completely different too than COBOL 74.
« Data Understanding

Reseach in this area has mainly concentrated on
providing toadls and techniques to graphicdly represent
and undrstand database/file schemas, seesedion 32.2.
Little reseach has concentrated on extrading the data
structure from existing code axd deta, one of the most
difficult tasks in legacy system migration. Again the
majority of reseach has focused on legacy systems
written in COBOL using flat files, relationa or
hierarchicd databases. Many legacy systems use other
relational databases for which todls are required. As
with applicaion undrstanding, the dfeda of which
version d a database was used to implement systems
also requiresinvestigation.
» Legacy System Understanding

Many legagy systems lve ommon problems. The
majority of large organisations would have legacy

systems which ded with personrel and payroll isaues

31

andit islogicd to assume that there is alot of common
ground in most. Investigating the subjed areas of
legacy systems could aid understanding. For example,
it seans logicd all medicd administration systems
shoudd have a oncept of a patient record, patient
history etc. ldentifying a set of key concepts to search
for could be useful in bah applicaion and cita
understanding.
e Al Support for Understanding

The mgjority of understanding tools developed to
date, see sedion 32, reguire extensive input from an
expert in the migrating legacy system. To alarge extent
the available tods automate the understanding o
relatively straight-forward aspeds of legacy systems,
e.g. identifying access to fileg/tables, identifying
separation o functionality in the form of functions or
procedures, and rely on the legacy system expert to
provide diredion and information to overcome more
difficult problems, eg. identifying the full database
schema, identifying reduncdant data. The knowledge of a
system expert is crucial. The gplicaion o Al reseach
in thisarea ould be most useful. For example, a novel
approach, worthy of more serious investigation, has
been proposed by Richardson et a [44], in which Case
Based Reasoning is used to unckrstand legacy systems

and lean from experience of maintaining legacy

systems.

5.2. Target System Development

When considering legacy system migration,
developing the replacament target system would appea
to be one of the simplest tasks. There ae, however,
significant difficulties which must be overcome, see
sedion 23, and require reseach.
¢ Validating Target Functionality

The new target system must exploit the target
architedure to offer new benefits while retaining the
tried and trusted functionality of the legacy system. In
addition, it must do so as ©onas cut-over has occurred.
Testing the target system is therefore more aucial for a
migration pojed than for a traditional systems
development projed. Ensuring that the target system
produces the same results as the legacy can be
extremely difficult. As with any systems development
projed errors and anissons may na befoundthe target
system is operational. How to corred such errors is
extremely significant in a migration projed where,
depending onthe methoddogy wsed, part of misson
criticd information system may be operating in the
target environment and part in the legacy environment.

Tedhniques are required to corredly elicit the core
legacy system functionality and to validate that this has
been incorporated succesqully into the target system.

The Butterfly methoddogy, see sedion 46, has

proposed using a sample datastore ntaining a sample

32

of adual legagy data to test the newly developed target

system before it is deployed. Tedhniques for
constructing and ensuring the mrredness of this data
arerequired.
« Enterprise Computing

In the past, individual departments have developed
their computer systems independently. This has been
recogrnised as a mistake and the am for many
organisations is to develop an enterprise-wide
computing culture. With this in mind, a migrating
system canna be wnsidered in isolation. While it is
migrating, other systems may require accestoit. Once
it has been migrated, it may require accesto systems
which are undergoing migration. Investigation is needed
into hov migrating systems can interoperate with athers
within the enterprise.
e Methodsfor Reuse

A primary reason for migrating a legacy system
rather than simply redeveloping it from scratch is to
retain legacy system functionality in the new target
system. There ae few methods available to identify
potential candidates. Similarly, the primary method for
reusing a @mporent has been to wrap it in an additional
layer of software which allowsit to be used in its new
environment [51].

Reseach is required into other

techniques for reuse.

5.3. Data Migration

Legagy data is perhaps the most important asped of
any legacgy system yet the issues involved in migrating it
to anew environment have not been widely considered.
e Efficient Real-time Data Migration Engine

As yet there ae few approaches for migrating
missontcriticd legacy data. Allowing the target and
legacy systems to interoperate via a gateway, see
sedion 42 to 45, offers an aternative to migrating
legacy data in a one massve step. However, using
gateways can result in a cmplex target architedure in
which gateways can never be diminated. As mentioned
in sedion 45, maintaining dita nsistency aaoss
heterogeneous g/stems is a highly complex technicd
problem and into which research is required.

The Butterfly methoddogy, see sedion 46, offers
an alternative gpproach to migrating legacy data using a
series of temporary stores to store results of
manipulations on legacy data while this is being
migrated to the target system. This approach dffers an
aternative to the bulk of existing research into this areg
but it hasyet to betried in pradice

¢ Determining Data for Migration

Dedding exadly what legacy data to migrate is also
an arearequiring reseach. For example, one migration
projed found that 80% of access to data in a
particular legacy system were read-only [11]. In such a

cese, it may nat be necessary to migrate dl the legacy

33

data & one time. Research into identifying which legacy
data is crucial for the initial target system operation
coud significantly reduce migration timescdes.
Methods for handing exceptions within the target
system, such as requests to unmigrated data, are dso
required.
« Dirty Data

The ondtion d the legagy data is also an important
isaie. Not al legacy data can be dassfied as good
quality data [38]. Methods for dedding what data is
dirty and for cleaning legacy data prior to, or after,

migration are required.

5.4. Migration Tools

Asdiscussed in sedion 3 numerous tools to asgst in
the migration process have drealy been developed.
There is however, the potential for more reseach into
thisarea
e General Tool-kit Framework

The magjority of tools which could be used in a
migration projed are developed in isolation and are not
generally designed to co-operate. Developing tod-kits
or suppat environments for software development
projeds has been an area of reseach for a number of
yeas. Investigating the suppat a migration pojed
reseach into software

requires and existing

development environments could be &plied to

migration would be useful.

e Individual Migration Tool Development
Although nmerous tools have dready been
developed, as has already been dscussed in this ®dion
and sedion 3 there ae still many areas in which todls
are required. In particular the aeas of target system
development, testing and migration have been largely

unsuppated to date.

5.5. Migration Approaches

To date few migration approaches have been
proposed, seesedion 4 Those that have been proposed
have few, if any, pradicd results to suppat them. A
safe, comprehensive migration approach is anecessty.
e General Migration Approach

The few approaches that have been developed, see
sedion 4 have adopted widely varying solutions to the
problems of migration. It is unlikely that a single
migration approach, be suitable for every posshble type
of legacy system will emerge. The migration
requirements of all types of information system, legacy
or otherwise, neal to be investigated and approaches
developed. Some @apeds of migration, such as
developing and testing the target system, the sequence
in which tasks soud be performed, shoud be
sufficiently similar for all projeds to allow a model of
migration, such as that proposed in sedion 2 to be
developed.

¢ Refinement of Current Approaches

34

Existing approaches have generally been presented at
a very high level. Each proposed step encompasses
many important tasks. For example, The Chicken Little
approach includes a step “Incrementally design the
target database”. Thisis clealy nat a simple task and

needs friousinvestigation.

5.6. General Migration Issues

The previous dions have presented issues which
clealy fall within particular areas. This ®dion oulines
some more genera isues for migration.
« Managing Migration

The management of software development projeds
has long keen the subjed of reseach. A migration
projed is in many respeds dmilar to a software
development projed and therefore it could be
considered that the management issues are similar. It
coud also be mnsidered that the isues unique to
migration, such as the reuse of legacy comporents,
migration d data, provide a much more dallenging
prosped. Expanding existing migration approaches and
building a general model of migration shoud provide a
cleaer view of exadly what a migration pojed
involves and from this a management perspedive can
be derived. In addition, the management of the system
resulting from migration must ensure that as few of the
problems which effeded the legacy system are

experienced in the future.

o Justifying Migration

As mentioned in sedion 21, a migration projed
represents a huge undertaking for any arganisation. It is
avery expensive undertaking and carries a serious risk
of failure. Methods to identify fadors which affed the
level of risk and to quantify this risk are required.
Metrics have been developed to identify the risk
involved in software development projeds ([14], [59]),
similar metrics are required for migration.

e Target Environment Selection

A major pre-requisite for justifyingthe commitment
of the necessary time and resources a migration projed
requires must be that the target environment offer
substantial immediate and longterm benefits. In today’s
competitive and fast-changing business and
techndogicd world, no aganisation shoud be willi ng
to expend a large anourt of resources on migrating to a
target platform which will bemme obsolete in a
relatively short time.

Althoughit isimpaossble to predict the techndogicd
advances the future will bring, it can be predicted with
ressonable cetainty that choosing the most applicable
architedure for an applicaion can help lessn, or even
avert, many o the problems -currently being
experienced by legacy system users. There anumerous

potential target architedures and tools which could be

used to develop the target system, see sedion 3

35

Reseach into gudelines for choasing appropriate
architeaures would be most useful.
¢ Managing Human Aspects of Migration

The development of the target system is a aucial
asped of migration. It may be best to use &isting staff
or employ new staff for this gedfic task. The skills
required by those resporsible for developing such a
system nedl to be investigated.

It must also be remembered that the target system
will be deployed in a ‘legacy’ culture. Those
resporsible for maintaining the legacy may also be
resporsible for maintaining the target. This will,
perhaps, invove a omplete cange of working
pradice Reseach into hav best manage this change is
required.

e Practical Experience Reports

Few organisations have dtempted migration
projeds. Much of the reseach into the aeaof legacy
system migration is thus unsuppated by pradicd
results. As the yea 2000 approadhesit is to be hoped
that many organisations may take the oppatunity of

migrating their legacy systems rather than enhancing

them to cope with the yea 200Q

6. Summary

Legagy Information Systems Migration is currently

the focus of much attention from both business and

reseach communities. The problems posed by legacy
systems are a roadblock to progress for many
organisations. Legacy systems are in danger of reducing
their host organisation’s competitiveness This paper
has presented an owerview of the problems posed by
legacy system and the dialenges that possble
solutions must addressto overcome them.

The most significant proposed approaches to legacy
migration have been dscussed. It has been concluded
that adua methoddogies are dther too general to be
applied in pradice or too spedfic to gude a omplete
migration projed and are suppated by few pradicd
results. Current approaches fail even to agree in what
phases must involve ageneric migration process This
paper has outlined a set of phases any succesdul
migration process $ioud include. Each phese has been
detailed and the dallenges to owercome and the
expeded ouputs of eat have been clealy identified.

A set of tools to suppat ead phase of migration has
been identified. From the discusson d these todls, it
has been found that most available tods are those
needed in a any software engineaing pocess (i.e.
(target) system development, and testing). Spedfic todls

for legacy migration are still to come (i.e. justificaion,

target system cut-over, and understanding).

36

Legagy information system is becoming an area of
increasing importance in bah indwstry and acalemia

and requires alot more reseach.

7. References

[1] Acucobd, "Acu4GL: Interfacesto Relationa Database
Management Systems",http://www.acaucobd.com/Produ
ctgAcudGL/A4GL11genWP.html, 1996

[2] J. M. Antis, S. G. Eick and J.D. Pyrce "Visualising The
Structure of Large Relational Databases', IEEE Software,
pp. 72-79, Jan. 1996

[3] Bachmann, "A CASE for Reverse Engineeaing’,
Datamation, pp. 49-56, July 1988

[4] A.Bateman andJ. Murphy, "Migration d Legacy
Systems', Schod of Computer Applications, Dublin City
University, Working Paper CA-2894
http://mww.compapp.dcu.ie/CA_Working_Papers, 1994

[5] B. Beizier, "Software Testing Techniques', Second
Edition, Van Nostrand Reinhdd, New Y ork, 1990

[6] D.Beéll andJ. Grimson, "Distributed Database Systems”,
Addison-Wesley, 1992

[7] K. Bennet, "Legagy Systems: Coping with success', IEEE
Software, pp. 19-22, Jan. 1995

[8] H.Berghel, "The Client’s sde of the World Wide Web",
Communications of the ACM, 39(1), pp. 30-40,

Jan. 1996

[9] T.J. Biggerstaff, "Design Remvery for Maintenance and
Reuse", IEEE Software, pp. 36-49, July 1989

[10]M. Brodieand M. Stonebraker, "DARWIN: On the
Incremental Migration Legacy Information Systems",
TR-022-10-92-165GTE Labs Inc., http://info.gte.com/
ftp/doc/tech-reportgtech-reports.html, Mar. 1993

[11]M. Brodieand M. Stonebraker, "Migrating Legacy
Systems: Gateways, Interfaces and the Incremental
Approadch, Morgan Kaufmann. USA, 1995

[12)D. N. Chinand A. Quilici, "DECODE: A Co-operative
Program Understanding Environment”, Journa of
Software Maintenance 8(1); pp. 3-34, 1996

[13]S. Clinton, "Developing for Multi-Tier Distributed
Computing Architedures with Delphi Client/Server Suite
2.0", http://netserv.borland.com/del phi/papers/, 1997

[14] D. Coleman, "Using Metrics to Evaluate Software System

Maintainability", IEEE Computer, pp. 44-49, Aug. 1994

[15]D. Comer, "Computer Network and Internets', Prentice
Hall, ISBN 01359901061997

[16] Cyrano, "CYRANO's Automated Software Quality
Produwcts', http://www.pstest.com/, Dec 1996

[17) Computer Science Department - The University of
Namur, "DB-MAIN: A R&D Programme in Database
Applicaions Engineging and Case Techndogy',
http://www.info.fundpacbe/~dbm/, Feb. 1996

[18] G. Dedene and J. De Vreese, "Rediti es of Off- Shore
Reengineaing’, IEEE Software, pp. 35-45, Jan. 1995

[19] Apertus Techndogies Inc., "Enterprise/AccessWhite

Paper", http://www.apertus.com/prod/accesgwhitePa
per.html, Mar. 1997

[20] Apertus Techndgies Inc., "Enterprise/Integrator White
Paper", http://www.apertus.co.uk/app.rods/esg/eiwp.htm,
March 1997

[21]P. Fingar and J. Stikeleaher, "Next Generation
Computing: Distributed Objeds for Business', SIGs
Books & Multimedia New York, 1996

[22]D. Flanagan, "Javain a Nutshell - A Desktop Reference
for Java Programmers', O' Rellly & Assciates Inc., 1996

[23]J. Godingand H. McGilton, "The Java Language
Environment: A White Paper", http://java.sun.com:
80/doc/language_environment/, May 1996

[24) FL. Hainaut, J. Henrard, 3M. Hick, D. Rolandand V.
Englebert, "Database Design Recvery", Proc. 8th Conf.
on AdvanceInformation Systems Engineging, CAiSE'96
Springer-Verlag pp 463-480, 1996

[25]M. Hammer and Champy J, "Re-Engineging the
Corporation - A manifesto for BusinessRevolution”,
Nicholas Bredey Publishing, 1993

[26]A. Hemrgjani, "Networking with JAVA", Dr Dobb's
Sourcebook, pp.34, Sept/Oct 1996

[27]P. J. Houston, "Introduction to DCE and Encina’, http:/
www.transarc.com/af 'transarc.com/pubi c/www/Publi ¢/
ProdServ/Product/Whitepapers/, Nov. 1996

[28]Int’'| Integration Inc., "l Cube",
http://199.34.33.188 compdesc.htm, Dec 1996

[29]1. Jambson, M. Ericsonand A. Jambson, "The Objed
Advantage: BusinessProcessReengineging with Objed
Tedchndogy', Addison-Wesley New York, 1995

[30] LexiBridge, "The premier solution for migrating legacy
systems to client/server”, http://www.lexibridge.com/,
July 1996

[31]Z-Y Liu, M. Bdlantyne and L. Seward, "An Assstant
for Re-Engineging Legacy Systems’, Proc. 6th
Innowetive Applications of Atrificial Intelli gence Conf.
pp 95102 AAAI, Sedtle, WA http://www.spo.eds.com
:80/edsr/papers/asdreeng.html, Aug. 1994

[32]R. Martin, "Deding with Dates: Solutionsfor the Yea
2000, IEEE Computer, Mar. 1997, 30(3), pp. 44-51

[33]Dr. H. A. Muller, "Understanding Software Systems
Using Reverse Engineging Techndogies Research &
Pradice’, Tutorial presented at Int. Conf. on Software
Engineeing 18 http://tara.uvic.cdUVicRevTut/UVic
RevTut.html, Mar. 25-29 1996

[34NCR, "NCR TOP END: Robust Midd eware For
Transadion Processng’, http://www.ncr.com/product
/integrated/software/p3.topend.html, Mar. 1997

[35] OpenHorizon, "OpenHorizon - 3-Tier Client/Server
Applicaion", http://www.openharizon.com, Mar. 1997

[36]R. Orfdi, D. Harkey and J. Edwards, "Esentia
Client/Server Survival Guide', JohnWiley, 1994

[37]R. Orfdi, D. Harkey and J. Edwards, "The Esential
Distributed Objeds Survival Guide", JohnWiley 1996

[38]R. Orli, "Data Quality Methods",
http://www.kismeta.com/cleand Lhtml, 1996

[39]L. Perrochon "On the Integration d Legacy Systems and
the World Wide Web", Presented at 4th Int’| World Wide

37

Web, Boston, MA, http://www.inf.ethz.ch/department/IS
/edpubicaions/ 4www95.html, Dec 1995

[40] Persistence Software Inc., "Persistence Sofware; Enabling
the Integration d Objed Applicaionswith Relationa
Databases’, http://www.persistence.conV/, July 1996

[41] Reasoning, "Reasoning Systems - Reengineging
Solutions’, http://www.reasoning.com, Mar. 1997

[42]ESFRIT Projed, "RENAISSANCE Projed - Methods &
Todsfor the evolution and reengineging o legacy
systems", http://www.comp.lancs.acuk/computing/rese
arch/cseg/projeds/renaissance, Nov. 1996

[43]RENAISSANCE Projed, "D5.1c Techndogy seledion”,
http://www.comp.lancs.ac uk/computing/reseach/cseg/pr
ojeds/renaissance/D5.1C_introduction.html, July 1997

[44]R. Richardson, D. O'Sullivan, B. Wu, J. Grimson, D.
Lawless J. Bisbal J, "Applicaion d Case Based
Reasoning to Legagy Systems Migration”, Proc. 5th
German Workshop onCase-Based Reasoning
Founditions, Systems, and Applications, pp. 225234,
Mar. 1997

[45]Dr. H. Muller, "RIGI Projed - An Extensible System for
Retargetable Reverse Engineeaing’, University of
Victoria, Canada, http://tara.uvic.ca, Nov.1996

[46] T. Sample and T. Hill, "The Architedure of a Reverse
engineaing Data Model Discovery process', EDS
Technicd Journal, 7(1), 1993

[47K. Sedoata, J. Corley, J. Niemann Jamesand T. Hill, "The
INCASE Source Code Interviewer", EDS Tedchnicd
Journal, 4(4), 1990

[48]R. Shelton, "BusinessObjeds and BPR", Data
Management Review 4(11) pp. 6-20, Nov. 1994

[49]H. M. Sned], "Planning the Re-engineaing d Legagy
Systems', IEEE Software, pp. 24-34, Jan. 1995

[50] Sun Microsystems, "Joe : Developing Client/Server
Applicaions for the Web", Sun White Paper, 1997

[51] Systems Techniques Inc., "Wrapping Legacy Systems for
Reuse : Repadaging v Rebuilding’,
http://www.systed nc.com/white/whitewrp.html, 1996

[52)Z. Tabakman and D. Pikcili ngis, "Performing a Managed
Migration", http://www.sedor7.com/index.htm, 1995

[53]Z. Tabakman, "Successul Migration ThroughAutomated
Software Testing ", http://www.sedor7.com/, 1996

[54] Tandem, "Non-stop Tuxedo: Open TP Monitor for
Distributed Transadion Processng', http://www.tandem
.com//INFOCTR/HTML/BRFS WPSNSTUXOTB.html,
1996

[55]D. Taylor, "BusinessReengineging with Objed
Techndogy"', JohnWiley & Sons, New York 1995

[56]S. R. Tilley and D. B. Smith, "Perspedives on Legacy
System Reengineaing", http://www.sei.cmu.edu/, 1996

[57)UniData, "UniData - Data management that works",

http://www.unidata.com/, July 1996

[58] K. D. Welker and Dr. P. W. Oman, "Software
Maintainability Metrics Modelsin Pradice’, CrossTalk,
Nov./Dec 1995 §1), 1995

[59]P. Winsberg, "What Abou Legacy Systems ?', Database
Programming and Design, 7(3), 1994

[60]K. Wong, S. Tilley, H. Muller, M. Storey, "Structura
Redocumentation: A Case Study', |EEE Software, pp.
46-53, Jan. 1995

[61]B. Wu, D. Lawless J. Bishal, J. Grimsonand R.
Richardson, D. O’ Sulli van, "The Butterfly Methoddogy :
A Gateway-freeApproach for Migrating Legacy
Information Systems’, in Proc. 3rd IEEE Conf. on
Engineging d Complex Computer Systems (ICECCS
'97), VillaOlmo, Como, Italy, Sep. 8-12 1997

[62]B. Wu, D. Lawless J. Bisbal, J. Grimsonand R.
Richardson, D. O’ Sulli van, "Legacy System Migration:
A Legacy DataMigration Engine", in Proc. 17th Int'|
Database Conf., Brno, Czech Repubic, Oct. 12 - 14,
1997

[63]N. Zvegintzov, "A Resource Guideto Yea 2000Toadls",
IEEE Computer, 30(3), pp. 58-63, Mar. 1997

[64] M. Olsem, "Reengineaing Techndogy Report Vol.1",
Software Techndogy Suppat Centre(STSC, Oct. 1995

[65] I. Sommervill e, " Software Engineaing’,
Addison-Wesley, 1995

[66] E. J. Chikofsty and J. H.CrosslI, 'Reverse Engineaing
and Design Remvery: A Taxonamy', |EEE Software,
7(1), January 199Q pp. 13-17

[67] K. Menhoud and M. Ou-Halima, 'Migrating Data-
Oriented Applicaionsto a Relational Database
Management System', Procealings of the International
Workshop onAdvances in Databases and Information
Systems (ADBIS'96), Moscow Sept. 1996

Appendix | - Analysis of Current Migration
Approaches

The following table is an anaysis of the major
migration approaches described in sedions 4 and
illustrates the etent to which eadh methoddogy
addresses the five major areas of migration dscussed in
sedion 2 The main tasks to be performed by eat

methoddogy for ead areais aso outlined.

38

Justification L egacy Target Testing Migration
Under standing Development
Big Bang Difficult dueto huge mst No legacy comporent reuse Target techndogy Needsto be exhaustive | Not contemplated.
and development time at al, so the legacy system could be out-of-date duetotherisk involved | Itisreduced to
involved. must be mmpletely when projed finishes, switching df the
understood duetolong legacy andturning
development time. onthe target
Database Dataisthe most valuable Legacy data must be fully Could be incremental, Incremental Data must be
First as<t of a cwmpany. understood Reuseis which allows the implementation all ows migrated in ore
Migrating it as afirst step posgble. Some mmporents | system for adaptingto | for exhaustive testing go, and duingthis
could represent arisk that of the system can be treaed businesschanges of ead migrated time the
few companiesarewilling | asabladk-box (i.e. not fully comporent, before the information
to take understood) new comporent is systemisnot
migrated. operational
Database Reverse database gateway | Same & Database First Same & Database Same & Database First | Same & Database
Last todsavailable, leadsto a First First
quicker implementation.
New target applicaions
canna exploit new
database feaures urtil the
migration has been
finished
Com posite Both data and applications | Legacy datamust be fully Same & Database Same & Database First | The data can be
Database can beincrementally understood Some First and Database and Database Last migrated in an
migrated. The massve comporentscan betreged as | Last incremental
. complexity involved could | bladk-box. However, need to fashion. However,
Chicken be difficult to justify understand (and manage) the management
Little whether a @wmporent of the complexity
accesses legacy or target data invalved to doso
(or both) will be aserious
challenge
Butterfly Smooth migration step and | Legacy must be fully Suppated bythe Explicitly suppated by | Thelegacgy system
M ethodol ogy controll ed complexity understood, and mapping Sample DataStore. the Sample DataStore. isoperationat all
between data models In addition duing times.
discovered. Reuse explicitly migration the Also, the
recommended developing system can complexity is
be tested against the considerably
already migrated data. reduced when
Userscan also be compared to
trained with this data Chicken Little
Appendix Il - Open Resear ch | ssues
The following table summarises the open reseach isales
discussd in sedion 5
Migration Legacy System Target System
General Migration Issues M ethodologies Under standing Development Data Migration Migration Tools
Managing Migration Developinga Language Understanding Validating the target An efficient red-time | General migration
General Migration | Todls system against thelegacy | datamigrationengine | toolkits
Approach system
Justifying Migration Interoperation o Determining Data to
Methods for evaluating risk, Dataunderstanding Tools | information systemswith | be migrated
migration metrics migrating systems
Refining Existing | Effedsof implementation Developing
Target Environment Seledion Migration versons on individual
Approaches understanding migrationtods
Managing human Aspeds of Subjed matter Methods for comporent Cleaning drty data
Migration reuse
Al Suppat for
understanding

39

