
1

A Survey of Research into Legacy System Migration

Abstract

Legacy information systems typically form the

backbone of the information flow within an

organisation and are the main vehicle for

consolidating information about the business. As a

solution to the problems these systems pose -

brittleness, inflexibility, isolation, non-extensibility,

lack of openness etc. - many companies are

migrating their legacy systems to new environments

which allow the information system to more easily

adapt to new business requirements.

This paper presents a survey of research into

Migration of Legacy Information Systems. The main

problems that companies with legacy systems must

face are analysed, and the challenges possible

solutions must solve discussed. The paper provides

an overview of the most important currently

available solutions, and their main downsides are

Jesus Bisbal, Deirdre Lawless, Ray Richardson, Donie O’Sulli van,

Bing Wu, Jane Grimson, Vincent Wade, Broadcom Éireann Research,

Trinity College, Dublin, Ireland. Dublin, Ireland.

1. INTRODUCTION 2

2. MIGRATION ISSUES 3

2.1. JUSTIFICATION 3
2.2. LEGACY SYSTEM UNDERSTANDING 4
2.3. TARGET SYSTEM DEVELOPMENT 6
2.4. TESTING 6
2.5. MIGRATION 8

3. LEGACY SYSTEM MIGRATION TOOL SUPPORT 9

3.1. JUSTIFICATION TOOLS 10
3.2. LEGACY SYSTEM UNDERSTANDING TOOLS 10

3.2.1. Program Understanding Tools 11
3.2.2. Database Understanding Tools 12

3.3. TARGET SYSTEM DEVELOPMENT TOOLS 13
3.3.1. Client/Server Development 13
3.3.2. Transaction Processing 15
3.3.3. Internet Based Technologies for Legacy Systems 15

3.4. TRANSITION SUPPORT TOOLS 16
3.4.1. Year 2000 Problem Tools 16
3.4.2. Integration Software 17
3.4.3. Consultancy Services 19

3.5. TESTING TOOLS 19
3.6. LIMITATIONS OF MIGRATION SUPPORT TOOLS 20

4. APPROACHES TO MIGRATION 20

4.1. THE BIG BANG APPROACH 21
4.2. THE DATABASE FIRST APPROACH 22
4.3. THE DATABASE LAST APPROACH 24
4.4. THE COMPOSITE DATABASE APPROACH 25
4.5. THE CHICKEN-LITTLE STRATEGY 26
4.6. THE BUTTERFLY METHODOLOGY 28
4.7. SCREEN SCRAPING 30

5. OPEN RESEARCH ISSUES 31

5.1. LEGACY SYSTEM UNDERSTANDING 31
5.2. TARGET SYSTEM DEVELOPMENT 32
5.3. DATA MIGRATION 33
5.4. MIGRATION TOOLS 34
5.5. MIGRATION APPROACHES 34
5.6. GENERAL MIGRATION ISSUES 35

6. SUMMARY 36

7. REFERENCES 37

APPENDIX I - ANALYSIS OF CURRENT MIGRATION APPROACHES 38

APPENDIX II - OPEN RESEARCH ISSUES 39

2

identified. Finally, it defines the stages involved in any

migration process, and a set of tools to support each

one are outlined.

Index Terms - Legacy systems, migration

methodologies, migration steps, migration tools, re-

engineering.

1. Introduction

Legacy information systems1 typically form the

backbone of the information flow within an

organisation and are the main vehicle for consolidating

information about the business. If one of these systems

stops working, the business may grind to a halt. These

mission critical legacy information systems are

currently posing numerous and important problems to

their host organisations. In particular,

• these systems usually run on obsolete hardware

which is slow and expensive to maintain;

• maintenance of software is generally expensive;

tracing faults is costly and time consuming due

to the lack of documentation and a general lack

of understanding of the internal workings of the

system;

• integration with other systems is greatly

hampered by the absence of clean interfaces;

1A legacy information system can be defined as “any
information system that significantly resists modification and
evolution” , [Brod95].

• evolution of legacy systems to provide new

functionality required by the organisation is

virtually impossible.

The last point is particularly relevant in today’s

competitive environment where organisations must

perform their operations in the most cost-effective and

eff icient way ([25], [48], [29], [55]). Organisations are

constantly growing and changing business focus in

order to remain competitive. Major changes in business

practice inevitably require major changes to the

supporting information systems. However, legacy

systems are characterised as being very brittle with

respect to change. Small modifications or

enhancements can lead to unexpected system failures

which are very diff icult to trace in a largely

undocumented environment.

Many organisations now wish to move their legacy

systems to new environments which allow information

systems to be more easily maintained and adapted to

new business requirements. The essence of Legacy

Information System Migration is to allow them to do

this, retaining the functionality of existing information

systems without having to completely redevelop them.

Of the currently available, and generally ad-hoc,

methods for legacy system migration, few have had,

limited, success ([11], [21]). In view of this, many

organisations are reluctant to migrate their legacy

3

systems to newer technologies and now find themselves

in a ‘catch 22’ situation: mission critical legacy

systems which on the one hand provide li fe support to

the organisation are also a major impediment to

progress.

Thus there is an urgent need to provide tools,

methodologies and techniques not only for accessing

the data which is locked inside these systems, but also

to provide a strategy which allows the migration of the

systems to new platforms and architectures. The

exigency of this requirement is all the more highlighted

by the “Year 2000 problem” 2 which will render many

legacy systems practically unusable. All these issues

have caused legacy information system migration to

become one of the major issues in both business and

academic research ([7], [59]).

This paper presents an overview of the whole

process of legacy system migration. It is divided into 6

sections. The next section discusses the issues involved

in any migration project. Section 3 outlines the

currently available tool support for migration. Section 4

details existing legacy system migration methodologies.

A number of future research issues are presented in

Section 5. The concluding section presents a summary

of f indings.

2 Well known concept which refers to the problems that many
(mission criti cal) information systems will suffer because the

2. Migration Issues

Legacy system migration encompasses many

research areas. A single migration project could, quite

legitimately, address the areas of reverse engineering,

business reengineering, schema mapping and

translation, data transformation, application

development, human computer-interaction, and testing.

For the purposes of this paper, the following phases for

a generic migration process have been identified:

• Phase 1: Justification

• Phase 2: Legacy System Understanding

• Phase 3: Target System Development

• Phase 4: Testing

• Phase 5: Migration

In this section each of these phases will be discussed

with a view to providing a clear understanding of the

issues involved in a migration. A general description of

the objectives and expected outputs of each phase is

provided. Section 3 focuses on particular tools available

to support each phase, and gives more detailed

descriptions of the expected results.

2.1. Justification

Legacy system migration is a very expensive

procedure which carries a definite risk of failure.

date arithmetic they perform will be invalid at the change of
mill ennium, see section 4.4.1.

4

Consequently before any decision to migrate is taken,

an intensive study should be undertaken to quantify the

risk and benefits and fully justify the redevelopment of

the legacy system involved [49]. The primary outputs

of this investigation should be a cost benefit analysis

and an estimation of the possibilit y of failure. Software

quality metrics can be used to estimate the level of

technical diff iculty involved. The legacy systems

contribution to profit and the significance of its

information should be used as measures of the systems

business value. Its business value combined with

estimations of its li fe expectancy and current

maintenance costs could be used to arrive at a figure for

the possible benefits redevelopment could bring. The

size, decomposabilit y, relation to other systems and

relative stabilit y of the systems functionality combined

with the technical diff iculty involved in its migration

should give an estimation of the risk involved. Gaining

a measure of how easy software is to maintain by using

software maintainabilit y metrics for example, can

identify potential reusable components and provide a

quantifiable method to determine components which

must be completely rewritten ([14], [58]).

2.2. Legacy System Understanding

Legacy system migration can be viewed as a

constrained problem solving activity [56], the major

constraint being the legacy system. The system

resulting from a migration must meet some

business/user requirements but as the legacy system

already partially meets these requirements, it is essential

to the success of the migration to understand the

functionality of the legacy system and how it interacts

with its domain.

Due to the fact that many legacy systems have poor,

if any, documentation, many research projects have

chosen to focus on the area of recreating documentation

from legacy code (see section 3.2). It has been found

that this process cannot be fully automated [9]. In order

to recover a relevant design and documentation, much

interaction from a system expert is required. Once the

design and documentation have been constructed, they

still have to be understood. Reusable components and

redundancies have to be identified before the

requirements for the target system can be produced. A

poor understanding of the legacy system will l ead to an

incorrect specification of requirements for the target

system and ultimately a failed migration project.

Legacy system understanding can be aided by

reverse engineering. Reverse engineering can be

defined as identifying the system's components and

their interrelationships and create representations of the

system in another form or at a higher level of

abstraction [66].

5

As well as understanding legacy applications, the

structure of the legacy data must also be uncovered.

Many different data models have been proposed and

implemented over the years including the hierarchical,

network, relational, extended relational, and object-

oriented. These data models are different ways of

organising data. A general rule of thumb is that the

older the data model the more diff icult it is to rediscover

the legacy data structure. The situation is much more

complex for the still very prevalent standard file format,

for which there is no centralised description of the data

structures, but they are buried in the applications’ code.

Individual source programs must be examined in order

to detect partial structures of f iles. Very often data

structures are hidden, optimisation constructs are

introduced (e.g. padding for address alignment or record

splitti ng when the size is greater than the page size), and

specifications are left to be procedurally encoded.

Both standard files and early data models were not

powerful enough to model certain data characteristics

and the application developers had to hand-code these

features, (e.g. referential integrity constrains). This

leaves migration engineers having to wade through

complex code fragments in order to retrieve the legacy

data structures. As with applications, once the legacy

data structure is extracted it still has to be understood.

A general lack of standardisation with regard to naming

and structuring of data elements combined with

implementation specific optimisation components

makes the understanding process very diff icult to

automate. Once the structure has been understood

redundancies have to be identified so that only

necessary data will be migrated. This data will t hen

have to be analysed and cleaned before migration. The

adage ‘Garbage In - Garbage Out’ is most applicable to

legacy system migration.

In addition, interactions between the legacy system

and other information systems and resources must be

identified. Failure to do so can result in expensive

failures in related systems when a legacy system is

migrated [11]. This interaction is often unclear from the

code or documentation, adding another source of

complexity to this phase.

Much of the existing research into the area of legacy

system migration has focused on this understanding

phase ([12], [17], [31], [33], [45], [64]). Although there

are many commercial tools which claim to automate

tasks in this phase (see section 3.2), most are specific to

particular types of application and require a particular

code or data structure and all require extensive input

from the migration engineer.

6

2.3. Target System Development

Once the legacy system is understood a requirements

specification can be prepared. A target system

developed according to this specification will have the

same functionality as the legacy system. Decisions

have to be made with regard to the architecture should

be chosen for the target system. This is a crucial stage

of any migration project, the target environment chosen

must support the target application requirements [43].

Most current systems are developed using a 3-tiered

client server architecture ([36], [13]). A primary design

intention of these architectures is to facilit ate

maintenance and extension in the future. Instead of

developing single monolithic applications developers

are encouraged to separate the interface, business logic

and data components of an application; these represent

the three tiers of 3-tier client/server computing (see

section 3.3.1). Even within tiers autonomous

components are identified and separated out. A

common Interface Definition Language (IDL) can be

used to describe the interfaces to the individually

constructed components. Communication between

components is only possible through these predefined

interfaces and components do not need to be aware of

how other components are implemented. This

arrangement allows components to be modified and

extended without affecting the operation of other

components. This extends the idea of data

independence, which is well known in the database

world, to the world of component applications.

Frameworks, such as CORBA, OLE/COM and DCE

([36],[37]), exist to facilit ate the seamless distribution of

components. Services within these frameworks allow

components to discover each other and interoperate

across networks. The traditional interoperabilit y barriers

of heterogeneous languages, operating systems, and

networks are effectively overcome by this component

based distributed framework architecture. An overview

of these technologies and their relevance to systems re-

engineering and migration can be found in [43]. There

can be no guarantees that applications developed using

this architecture will never become tomorrow’s legacy

systems. However, by choosing the most appropriate

architecture and methods, target applications that

facilit ate change can be developed.

2.4. Testing

Testing is an ongoing process throughout the

migration of a legacy system. Up to eighty percent of a

migration engineer’ s time could quite legitimately be

spent testing [18]. Due to the high risk involved in any

migration project, increased when the legacy system is

mission critical, it is imperative that there are no

7

inconsistencies between the output of a legacy system

and that of its replacement system. By keeping the same

functionality, a direct comparison of outputs is

suff icient to determine the validity of the target system.

Sommervill e has termed this process Back-to-back

testing [65], and is shown in Fig. 1. Basically, the

existence of more than one version of a system, as is the

case for legacy system migration, is exploited for

testing. Selected test data is presented to both versions

of the system, and differences in the outputs probably

indicates the existence of software malfunctions. In the

case of legacy migration, where the outputs of the target

implementation do not correspond with its legacy

equivalent, the target system needs to be carefully

investigated.

The idea of back-to-back testing has also been

reported and successfully implemented by Beizer [5].

Fig. 2 represents his framework for testing rehosted

software, which can in fact be seen as a refinement of

Fig. 1. An adequate test suite [5] is selected for testing

the legacy software, and the outcomes of this test suite

are recorded. Ideally, this test data should be that which

was used when developing the legacy software,

although this information would be rarely available.

Following this framework, the legacy software is

translated into the target environment. The test suite is

also translated so that it can be used as input for the new

rehosted software. Finally the test suite outcomes are

translated as well , in order compare them with the

outcomes of the rehosted software, named Actual

Rehosted Outcomes in Fig. 2. If differences between

actual and rehosted outcomes are detected, the

translators (of software, test suite, or outcomes) must be

Test DataTest Data

Legacy Program.
Functionali ty A

Legacy Program.
Functionali ty A

Target Program.
Functionali ty A

Target Program.
Functionali ty A

Results
Comparator

Results
Comparator

Difference Report

Fig. 1. Back-to-back Testing Strategy

Legacy
Software

Legacy
Software

Test
Suite

Test
Suite

Test Suite TranslatorTest Suite Translator

Rehosted
Test
Suite

Test
Suite

Outcomes

Test
Suite

Outcomes

Outcomes TranslatorOutcomes Translator

Rehosted
Test

Outcomes

Rehosted
Test

Outcomes

Rehosted Software AcceptedRehosted Software Accepted Debug TranslatorsDebug Translators

Rehosted
Software

Rehosted
Software

Software TranslatorSoftware Translator

Actual
Rehosted
Outcomes

Actual
Rehosted
Outcomes

Correct?Correct?

Yes No

input

output

Fig. 2. Testing Framework for Rehosted Software

8

debugged, otherwise the software will be considered as

being successfully rehosted.

It must be noted that this framework assumes that an

adequate test suite for the legacy software will became

an adequate test suite of the rehosted software (after

translation), which is not always true. In fact, this test

suite is the minimum test which should be performed

against the target system during a migration project, in

order to test its functionality. Additional testing may be

required depending on the specific target environment.

For example, additional performance testing will be

imperative when migrating from a mainframe based to a

client and server environment.

The back-to-back testing strategy works under the

premise that both versions of the software being tested

implement the same functionality. For this reason it is

not advisable to introduce new functionality to the

target system as part of the migration project ([11], [5]).

However, in reality it is likely that in order to justify the

expense of a migration project, the target system will be

required to offer new functionality. In this case, the

legacy system should be migrated, without any

enhancement, first. New functionality can be

incorporated into the target system after the initial

migration has been performed.

2.5. Migration

The migration phase is concerned with the cut over

from the legacy system to the target system. Dealing

with mission-critical legacy systems means that this cut

over must cause as littl e disruption to the business

environment as possible. Therefore, a naive approach of

simply switching off a legacy system and turning on a

new feature-rich replacement is, in many cases, not a

realistic option [11]. Also, cutting over to the target

system in one single step, as show Fig. 3(a), represents

too high a risk for many organisations as it results in the

whole information flow would be managed by a system

which has never been operational, and thus necessarily

untrusted.

Ideally, to reduce the risk involved in this phase, the

cut over must be performed incrementally, and by small

steps. Each step should result in the replacement only a

Legacy
Information

System

Legacy
Information

System

Legacy
Data

Legacy
Data

M1
M1 M2

M2
M3

M3 Mn
Mn...

Target Database(s)
(a)

...

CUT OVERCUT OVER

(b)

Target Application(s) Modules

(Partial) Legacy
Inform. System

(Partial) Legacy
Inform. System

Legacy/Target
Data

Legacy/Target
Data

M1
M1

gateway(s)

gateway(s)

Legacy
Information

System

Legacy
Information

System

Legacy
Data

Legacy
Data

Cut over1
Cut over1

Actual Information System

Taget
Environment

Legacy
Environment

Fig. 3 Cutting Over the Legacy Information System

9

few legacy components (applications or data) by

corresponding target components. The example

ill ustrated in Fig. 3(b) represents a step where only a

small part of the legacy functionality has been cut over

to the target, the rest remains in the legacy. An

additional module has been introduced, termed gateway,

to integrate both the target and the legacy environments,

which together form the actual information system the

organisation will use during migration. Further steps

will be required to migrate more functionality from the

legacy to the target systems. When the complete legacy

system has been migrated to the target environment, a

gateway will be no longer required.

The incremental migration described above is a

potentially highly complex process. For this method to

be successful, it must be possible to split the legacy

applications in functionally separate modules. However,

this is not always possible for legacy systems, the vast

majority of which are badly structured. The same

problem arises if the legacy data is also incrementally

migrated. It could be diff icult, if not impossible, to find

out which portions of the data can be migrated

independently. In addition, the management of the

whole process would not be an easy task.

The construction of the gateway could also be

extremely diff icult as it may involve dealing with

heterogeneous environments, distributed applications

and distributed databases. Each of these fields is still an

open research area issue and results may not be mature

enough to be used in a mission-critical migration.

Migrating a legacy system in an incremental fashion

is designed to reduce the risk of the migration phase.

However, its inherent complexity carries with it a high

risk why may actually result in increasing the risk

involved in migration. These two sources of risk must

be balanced if the migration phase is to succeed. This

phase is central to every migration project and much

research is still required in this area

Section 4 analyses different approaches to migration.

Each one aims to meet a different trade-off between the

risk introduced by its complexity (section 4.5) and the

risk introduced if the migration is performed in a non-

incremental fashion (section 4.1).

3. Legacy System Migration Tool Support

Migrating a legacy information system is a long,

high-risk process, typically lasting five to ten years [11].

Migration tools can considerably reduce the duration of

a migration project, helping the migration engineer in

tedious, time-consuming and error-prone tasks. This

section is not intended to be a catalogue of all tools, or

types of tools, available, rather it presents some

examples of the tools currently available to assist in the

migration process, and ill ustrates what kind of support

migration engineers can expect from such tools.

10

Following the migration issues discussed in section

2, each tool is classified according to which phase of the

process it is intended to support, as shown in Fig. 4.

Section 3.1 outlines some tools that help to justify the

migration of a legacy system. Tools analysed in section

3.2 help provide a better understanding of a legacy

system. Section 3.3 describes tools which provide

automated support for engineers building open systems,

the preferred target systems for legacy migration.

Section 3.4 lists a miscellaneous set of services and

tools which include partial solutions to migration,

software to support enterprise wide applications and

consultancy companies concerned with managing

migration projects. Section 3.5 relates a migration

project to the testing needed in any software

engineering project, and lists some tools which can help

in this process.

3.1. Justification Tools

The general justification process for migration

projects can be related to the planning phase of any

application development. CASE tools and software

metrics [14] are thus readily available to support this

process.

The RENAISSANCE project [42] started in 1996,

plans to develop methods for assessing cost, risks and

benefits of migration and will it self be supported by

existing CASE tools. It will also produce CASE toolkit

extensions to assist in reverse engineering the design of

system famili es written in the C programming language.

3.2. Legacy System Understanding Tools

As discussed in section 2.2, understanding the legacy

information system is essential to the success of a

migration project. A growing number of tools are

becoming available to aid migration engineers in the

legacy system understanding phase. Although these

tools can considerably reduce the amount of time

needed to understand a migrating system, the automated

understanding of a system’s structure is still far from

being achieved [9]. Legacy system understanding tools

can clearly be subdivided into those which analyse the

application’s code and those that analyse the data

structure. The following two subsections are based on

this classification.

Legacy Information System Migration ToolsLegacy Information System Migration Tools

Legacy System
Understanding

Legacy System
Understanding

Program
Understanding

Program
Understanding

Database
Understanding

Database
Understanding

Target System
Development

Target System
Development TestingTestingTransition SupportTransition Support

Year 2000
Problem

Year 2000
Problem

JustificationJustification

Integration
Software

Integration
Software

Data IntegrationData Integration Middleware SolutionMiddleware Solution

Consultancy
Services

Consultancy
Services

Client/Server
Development

Client/Server
Development

Internet-Based
Technologies

Internet-Based
Technologies

Transaction
Processing

Transaction
Processing

Fig. 4. Migration Tools Hierarchy

11

A more detailed list of tools to assist in this phase

can be found in ([33], [64]).

3.2.1. Program Understanding Tools

The general aim of program understanding tools is to

develop mental models of a software system’s intended

architecture, meaning and behaviour [33]. These models

make understanding easier for the engineer.

Legacy systems typically have poor if any

documentation (see section 2.2). The research prototype

called Rigi ([60], [45]), is an example of a tool which to

assist in the reconstruction of system documentation.

Rigi claims to parse legacy code and produce useful

documentation on how it performs its functionality.

Other such tools are offered by companies like

Computer Associates, IBM, Compuware, Intersolv,

Microfocus, and Bachman. All these companies offer

tools to isolate the data information in COBOL

applications and help separate the code into more useful

and readable segments.

Reasoning Systems offers Software Refinery a

reverse engineering tools generator [41], one of the

most mature reengineering products known to the

authors. Using a grammar of the language to be

analysed, this tool creates a parser that builds a high

level representation of the structure of the legacy

program. The user can manipulate this tree-style

representation instead of using the code itself. Software

Refinery provides symbolic computations which ease

the reengineering process. This company also provides

some tools3 constructed using Software Refinery that

support the key tasks when working with legacy

systems implemented using specific languages. They

help in tasks such as: understanding code structure,

analysing the impact of changes, generating

documentation, and reengineering.

The DECODE research project [12] aims to develop

a Co-operative Program Understanding Environment.

The main idea is to use an algorithm to automatically

extract part of the program design and then co-operate

with the user to improve and extend this design. The

user can create a hierarchy of design components. Then

it is possible to link operations to components, and code

to the operation that it implements. These hierarchies

abstract the internal structure of the code and allow the

user to navigate through it.

A different approach was followed in [31] to

construct COGEN, a knowledge-based system for

reengineering a legacy system. It involved restructuring

the user interface, re-writing database transactions, and

translating language features. The knowledge base is

ad-hoc built , and its quality depends on the complexity

of the legacy system. However, it is estimated that when

12

translating general language features the automated

conversion was nearly 100%. The goal of this system

was not to increase the understanding of the legacy

application, but to translate it into the target system in a

way as automated as possible. Although this objective is

different from the general aim of creating models of the

legacy program, this approach should be considered for

some migration projects. The main disadvantage of

COGEN is that it is highly specific to the legacy system

it works with, but at the same time this results in a

highly automated process, its strongest feature. The

knowledge base is only applicable for one specific

legacy environment (DG COBOL) and one specific

target environment (IBM’s CICS). Thus its lack of

generality is obvious, even if some rules could be

common or quite similar for other environments.

However, as program understanding, translation, etc.

are very diff icult tasks, high automation levels will only

be achieved using heuristic methods and ad-hoc

solutions. COGEN exploits techniques from artificial

intelli gence (AI) and applies them to legacy system

understanding.

Finally, a novel approach is proposed in [44]

whereby Case Based Reasoning and domain specific

ontologies are employed to understand legacy systems

3 Refinery/Cobol, Refinery/Ada, Refinery/Fortran, and
Refinery/C.

and to learn from experience. This is another example

of a marriage between AI and legacy understanding.

3.2.2. Database Understanding Tools

Other legacy system understanding tools include

those for database reverse engineering. The Bachman

Re-Engineering Product Set [3] and the DB-MAIN

CASE tool [24] both concentrate on recapturing the

semantics of physical database designs. Little support is

provided for extracting the data structure but once this

is available, both tools provide considerable support in

comprehending the structure.

A research prototype called SeeData [2] employs

computer graphics to produce very elegant and easy to

understand representations of an underlying relational

legacy database structure.

Finally, the INCASE Software Code Interviewer

(SCI) ([46], [47]) is a static analysis reverse engineering

tool that examines an application’s source code. SCI

aims to discover an application’s data model from

existing COBOL source code and Job Control Language

statements. This software parses the application’s code

and loads the SCI Acquisition Database (ADB). The

ADB represents application components that are needed

in the discovery process, as for example COBOL source

code, COBOL statements and statements arguments,

etc. Once the ADB contains this low-level information,

13

pre-defined and user-defined rules are used to search the

database for major entities and attributes of entities

which will constitute the data model.

3.3. Target System Development Tools

The main goal in a migration project is to build a

fully operative, functionally equivalent system into a

target open environment. An essential requirement of

legacy system migration is that the newly developed

target systems should not become tomorrow’s legacy

systems. Currently, it is believed that client/server

architectures lead to open applications which will not

suffer the same deficiencies that current legacy

applications (see section 1), making these the desired

target architectures. Also, due to the mission critical

nature of many legacy systems, transaction support will

be a basic requirement for the target, enterprise-wide

applications. These applications seek a secure and

distributed environment, where many users can access

simultaneously and eff iciently a diversity of data

sources and applications. Finally, giving the growing

importance that the World Wide Web has in the way

companies do business, the target architecture should

facilit ate WWW’s integration within the enterprise wide

information system. The following subsections provide

an overview of tools that provide support for

developing applications which fulfil these requirements.

A more detailed discussion can be found in [43].

3.3.1. Client/Server Development

Client/Server computing is the current development

paradigm. It is to this technology that many existing

legacy systems will be migrated. This section examines

tools available to aid in the development of client/server

applications, focusing, in particular, on the support

these tools provide for migrating/integrating legacy

applications.

The initial generation of client/server computing was

motivated by the proli feration of cheap PC computing

power. Users demanded that information systems make

use of this cheaper computing power. This resulted in

user-friendly interfaces being incorporated into

information systems with much more local processing

and control, see Fig. 5(a). A primary downside of this

CLIENTCLIENT

Tier-1

SERVERSERVER

Tier-2

Network• Presentation
• Application Logic

• Data / Resources
• Application Logic

(a)

ClientClient

Tier-1

 Presentation

Application
Server(s)

Application
Server(s)

Tier-2

Business Logic

Data / Resources

RDBMSRDBMS

Tier-3

QUEUESQUEUES

MAINFRAMESMAINFRAMES

...

(b)

Service
Requests

Data

Fig. 5. Two-Tier(a) and Three-Tier(b) Client/Server
Architectures

14

swing from the centralised mainframe to the PC was

maintenance problems. Business logic now resided on

the PC clients, referred to as “Fat Clients” [36], so any

updates or extensions had to be replicated on all clients

resulting in enormous versioning and operational

headaches. The next generation of client server

computing, referred to as 3-tier client/server, aims to

eliminate these problems by abstracting the business

logic into a third ‘middleware’ layer. The three layers

are thus the interface layer, the application logic layer,

and the resource servers layer [36], see Fig. 5(b).

First generation (or two-tier) client server application

development features two types of tool :

• Graphical tools that focus on client side database

access. These automate database access but can

lead to the “Fat Client” syndrome. Examples of

these tools include PowerSoft’s PowerBuilder,

Semantics Enterprise Developer, and Compare’s

Uniface.

• Tools that combine visual screen builders with

traditional third generation languages. These

include Microsoft’s Visual Basic and Visual

C++, Borland’s Delphi, etc.

The greatest and most cost effective benefit of both

types of tool li es in developing small , uncomplicated

applications that do not require broad deployment and

high volumes of users. Unfortunately, the typical

legacy system is by definition complex, used by large

numbers of users, and deployed across the entire

enterprise. Besides this, first generation tools are not

developed to handle complex development functions

like transaction management, locking models, and

multiple database access. These functions are central

to the operation of any legacy system. Situations where

first generation tools find application in the migration

process can be seen in the area of “screen scraping” , i.e.

the replacement of character based legacy system front

ends with graphical user interfaces (see section 4.7).

3-tier client/server tools address application

scalabilit y for high volume transaction support and

expanding volumes of users. The main players in this

arena are Visions Unify product, Forté from Forté

Software Inc., and Dynasty from Dynasty Technologies.

The main feature that distinguishes these products from

others is their automatic partitioning mechanism. This

automatically analyses an application and decides which

tier of the 3-tier client server architecture various

application components should reside on. This removes

any business functions from the client and ensures

bulky unprocessed data is no longer shipped across an

overloaded network.

15

3.3.2. Transaction Processing

Most mission critical systems are data intensive and

require substantial transaction processing support. This

type of support was traditionally only associated with

large scale mainframe based DBMSs. Desktop

transaction processing support through triggers and

stored procedures is regarded as “TP lite” and not

suitable for mission critical enterprise wide applications.

However, new support for transactions on the desktop is

now provided in the form of Transaction Processing

(TP) monitors.

Examples of such tools are Transarc’s Encina [27],

Tandem’s Tuxedo TP monitor [54] and NCR’s TOP

END [34]. They provide Distributed Transaction

Processing (DTP) and also aim to help in some aspects

of 3-tiered application development. Other services

commonly provided by these kinds of tools are load

balancing and application replication management.

3.3.3. Internet Based Technologies for Legacy

Systems

The rapid growth in use of Internet and Intranet

software in the mid nineties has mainly been due to the

prevalence of World Wide Web (WWW) technology.

The main motivation for this technology’s deep

penetration into the distributed software market has

principally been the abilit y to deliver and render

graphics, hyper-text information, audio, video and

animation on client machines networked to servers (via

HTTP over IP protocol) and providing simple

information retrieval mechanisms [8].

Perrochon outlines how WWW technology could be

used in accessing legacy information systems [39].

Gateways, built using Common Gateway

Interface(CGI) or Server Side Include(SSI) scripts, are

used to access the legacy data from web based clients.

Using the Web in this way provides a unified interface

to legacy systems for a potentially unlimited audience.

As with screen scraping (see section 4.7), the issue of

legacy migration is not addressed. Instead the emphasis

is on providing access to legacy data stored in obsolete

formats and locked inside closed systems. The use of

CGI and SSI to build these gateways could prove to be

quite diff icult, especially if any serious data

translation/manipulation is required. A more suitable

tool for the task might be the Java programming

language from Sun, ([22], [23]).

Developed by Sun Microsystems Inc, Java is the

name of a specific technology used to create and run

active documents and downloadable programs. It

consists of the Java programming language (which can

be used much as a conventional Object Oriented

Language as well as for writing active WWW based

documents called applets), Runtime Environment which

16

provides the faciliti es needed to run a Java program, and

Class library which makes Java applets easier to write

[15]. There are several development environments

which aid implementation of Java programs namely Sun

Microsystem’s Java Development Environment (JDE)

and Semantec’s Café. Java technology has been applied

to providing distributed access to databases [26], [50].

WWW products and technologies are not yet widely

used in legacy systems migration. However the above

approaches are being used to allow distributed access to

existing information systems and as such are candidates

for either interim/target platform environments on

which to migrate systems.

3.4. Transition Support Tools

Legacy system migration is a very rapidly expanding

commercial field. For this reason many companies

claim to offer ‘ legacy migration services’ although they

may not support the complete migration process. The

services available can be roughly classified as follows:

• Addressing the Year 2000 problem

• Integrating different software that builds the

global information system of a company

• Providing consultancy during a migration

project.

This section outlines these kinds of services.

3.4.1. Year 2000 Problem Tools

As the year 2000 approaches many areas of the

computer industry face the potential failure of the

standard date format: MM/DD/YY. To save storage

space in the past, and perhaps reduce the number of

keystrokes necessary to enter a year, many IS groups

have only allocated two digits to the year. For example,

“1996” is stored as “96” in the data files, and “2000”

will be stored as “00” . This two-digit date affects data

manipulation, primarily subtractions and comparisons.

Many software systems may either crash or produce

garbage with the advent of the year 2000 [32]. The cost

of modifying these legacy systems is enormous, the

whole problem relates back to the undocumented nature

of legacy information systems, discussed in section 2.2.

The simple act of determining how many systems in an

organisation will be affected can easily require many

man months of effort alone. The deadline for

commencing reengineering projects to deal with the

year 2000 problem is thus fast approaching for many

large organisations. Unlike other motivating factors for

system reengineering such as the requirement for

Business Process Reengineering, or faster processing,

there are no doubts about the consequences of inaction

for the year 2000 problem.

In response to the Year 2000 problem a large number

of companies have produced products to assist. An

17

extense and very comprehensive guide of tools which

assist on solving this problem can be found in [63].

3.4.2. Integration Software

Some companies focus more on integrating legacy

systems with newer technology applications rather than

actually migrating legacy systems to new architectures.

Not all the integration processes have the same purpose.

Some set out to integrate their data sources, or

incorporate new data management technology. A more

complex approach is to create a framework where all

applications in the company, legacy and newly

developed, are mutually accessible. These options are

analysed in the next two subsections.

3.4.2.1. Data Integration

This section outlines some tools focused on

integrating data sources or incorporating new

management technology.

Acucobol is a company which concentrates on

bringing COBOL applications into the ‘Open-Systems’

market. One of its products, Acu4GL [1], claims to

provide a seamless interface from COBOL to relational

database management systems (RDBMS). This product

executes COBOL Input/Output (I/O) operations by

automatically generating SQL statements, so that

applications do not have to be modified and users do

not need to learn SQL. This is possible because all

Acucobol I/O passes through a generic file handler, and

whenever it encounters an input or output to a file that

must be managed by a RDBMS, the request is passed to

the Acu4GL interface which in turn accesses the

database.

Persistence Software [40], in contrast, does not

provide access to new data management but aims to

interface object-oriented developed applications with

relational database management systems, i.e. new

applications accessing legacy data. The development of

an application with Persistence Software starts by

specifying the applications’ data model. Persistence

then generates database objects which manage the

mapping to relational tables. Another component of

Persistence provides an object-oriented interface

between application objects and relational data. Finally,

a different component is concerned with retrieving the

data, ensuring integrity and optimising performance.

UniData [57] was originally a relational database

vendor. It has now branched out into the area of legacy

system migration. The angle of its particular relational

RDBMS is in the storage, retrieval, and manipulation of

nested data and repeating groups as well as traditional

data. This feature greatly reduces the complexity of

migrating data from network and hierarchical databases

to a relational database format. This provided UniData

with an instant advantage in the fast growing world of

18

legacy data migration. They subsequently developed a

suite of tools to address the larger problem of legacy

system migration, such as a screen scraper (see section

4.7), a COBOL code analyser to extract application’s

data model, and a fourth generation language for

developing client/server applications. UniData

concentrates on providing a relational database solution

to legacy systems. It addresses the requirements of those

legacy systems whose information needs to be

leveraged on the desktop but who are not themselves in

urgent need of migration.

Apertus’ Enterprise/Integrator [20] is an example of

a tool designed to integrate the different data sources of

an enterprise. It offers a rich set of features that address

the full li fe cycle of the data integration process. Some

notable faciliti es provided by Enterprise/Integrator

include support for both the detection of redundant data

and what is known as value conflict resolution. Rules

can be defined by the user to identify logically

redundant data. These rules might inspect combination

of attribute values to determine if two objects are

logically equivalent (redundant data). The need for

value conflict resolution arises because it is not

uncommon that information representing the same real

world entity, coming from different sources, have

conflicting values. A separate set of rules, Property

Value Conflict Resolution (PVCR) rules, aim to solve

these kinds of conflicts, deciding which value to use to

populate the integrated data store.

3.4.2.2. Middleware Solution

In the past, different departments in a company have

built their information systems independently of each

other. There is a need to integrate these disparate

information systems, to preserve the investment in

legacy systems, and to incorporate new technology.

This situation has led many companies to develop

products to support integration of heterogeneous

environments that will result in what is called

Enterprise-wide Information Systems.

Open Horizon’s Connection [35] is an example of

this kind of product. It could best be described as a

proprietary Object Request Broker (ORB) [36]. The

particular goal of Connection is to provide a secure

connection for any end user application to the database

server tier and the application server tier in a 3-tier

client server application. The product provides many of

the faciliti es proposed by CORBA, a distributed

communication infrastructure, security services,

directory services, and dynamic binding. It achieves

most of this by being built on top of the OSF’s DCE. In

addition, OpenHorizon allows for a single sign on so

that users only have to present their credentials once

19

and are then free to access all database servers on the

network.

Enterprise/Access [19] is another such product. It is a

middleware tool that enables the deployment of second

generation (see section 3.3.1), enterprise-strength

client/server applications and provides a controlled,

cost-effective migration path off legacy systems.

3.4.3. Consultancy Services

This section outlines the services provided by some

companies that provide support for the whole process of

migrating a legacy information system.

I-Cube [28] is a consultancy firm which provides

advice and contracting services for managing a

migration project. No specific migration tools are

produced by I-Cube.

LexiBridge [30] in contrast provides a toolkit for the

migration process. The toolkit is made up of three

components : the Workbench, the Repository, and the

Databridge. The Workbench divides the legacy system

into four layers: the User Interface, the Process Model,

the Data model, and the Physical Model. PowerBuilder,

refer to section 3.3.1, windows are automatically

generated to replace the character based user interface,

(effectively an internal screen scraper). LexiBridge

relies on the use of triggers and stored procedures to

replace the original legacy I/O. Legacy data is

converted into Sybase, Oracle, or DB2 formats.

Scrubbing mechanisms are provided for cleaning data to

eliminate inconsistencies and redundancies. Finally a

code optimiser is used to eliminate dead code,

restructure weak logic, and rescope program variables.

Sector 7 [52] has developed a methodology for

migration based on five steps: assessment, planning,

porting, validation, and productization. It specialises in

VMS to Unix and NT system migration. Sector 7 also

offers a wide range of tools to support most stages of a

migration project. Sector 7’s methodology is too

general to be used in any particular migration project.

3.5. Testing Tools

As mentioned in section 2.4, it is important that

functionality is not added to the target system as part of

the migration project [11]. If the functionality does not

change, commercial tools can be used to automatically

produce test environments to systematically validate the

correctness of the target system. The general testing

process of a migration project can be related to the

testing phase of any software engineering project. Tools

are thus readily available when testing a migration

process.

Sector 7 and Performance Software [53] are

examples of companies that provide support for

automated testing. Another company, Cyrano [16],

offers a set of products, known collectively as Cyrano

20

Suite, specialised in testing client/server based

applications.

3.6. Limitations of Migration Support Tools

From the previous sections, it is clear that there is no

complete solution or even agreed approach to the

migration problem. Those commercial/research

products that are available tend to address the issue

from a number of varying angles. Some of them focus

on a very narrow area of the process (database or code

understanding, integration, etc.), and require a high

level of user involvement.

Others address the overall l egacy migration issue,

but they offer a too general methodology which does

not address the specifics of particular migration

projects.

Another limitation of the majority of commercial

solutions is that they focus almost exclusively on legacy

systems written in COBOL. The most widely supported

platform is IBM running MVS and using the IMS

hierarchical database management system. A large

number of legacy systems in the computer industry as a

whole do operate with this configuration. However,

there are still a lot of legacy systems written in other

languages, (Fortran, C, Plex), running on different

platforms, (Digital, Bull , Data General),and using

different database management systems, (standard file,

network, relational). The migration or integration of

these systems is largely unsupported.

4. Approaches to Migration

Given the scale, complexity and risk of failure of

legacy system migration projects, it is clear that a well -

defined, detailed approach that can be easily

implemented is essential to their success. In this section

currently available legacy system migration approaches

are discussed. Although legacy information system

migration is a major research issue, there are few

comprehensive migration methodologies available.

Those that are documented are either so general that

they omit many of the specifics or, they are centred

around particular tools and are so specific to a particular

phase that users might be in danger of overlooking other

significant phases. This section presents 6 of those

currently available :

• Big Bang Approach

• Database First Approach

• Database Last Approach

• Composite Database Approach

• Chicken Little Strategy

• Butterfly Methodology

Each approach has its advantages and disadvantages

and some are more suitable for use in one particular

migration project than in another. When considering

21

legacy system migration, an intensive study needs to be

undertaken to find the most appropriate method of

solving the problems it poses.

Section 4.7 briefly discusses a common approach to

‘migration’ adopted in industry.

A summary of how each of these approaches fulfil

the areas a migration project must address (see section

2) is presented in Appendix I.

4.1. The Big Bang Approach

The Big Bang approach [4], also referred to as the

Cold Turkey Strategy [10], involves redeveloping a

legacy system from scratch using a modern

architecture, tools and databases, running on a new

hardware platform. For any reasonably sized system it

is clear that this is a huge undertaking. In reality, the

risk of failure is usually too great for this approach to be

seriously contemplated. In order to justify adopting

this approach, it is usually necessary to guarantee that

the redeveloped system will i nclude not only all the

functionality provided by the original legacy system but

also many new additional features. This adds greatly to

the complexity of the migration and further increases

the risk of failure.

Before migration can start, it is necessary to

understand the legacy system fully. Often

documentation for the legacy system at worst does not

exist or, at best is incomplete or is out of date. Thus the

functionality must be extracted from the code and the

underlying data structures and understood before

redevelopment begins. This adds both to the duration

and the complexity of the project and can greatly

increase the risk of failure if this process is flawed. The

situation is further complicated by the fact that legacy

systems do not generally operate in isolation. They

often interact with other legacy systems and resources.

In practice this interaction is often not clear from either

the code or documentation. A decision to redevelop

one legacy system from scratch could trigger failures in

other dependent information systems.

Apart from the failure risks, another very real

concern arises from the constantly changing technology

and business requirements. Any project of this scale

could take several years to complete. While the legacy

system redevelopment proceeds, technology will

continue to evolve and, more significantly, an

organisation’s business focus could change. Thus

organisations could find themselves in a position where

the redeveloped system no longer meets their business

needs and the technology used is already out-of-date

before it ever becomes operational.

It seems clear that it is not advisable to use the Big

Bang approach for all l egacy system migrations.

However, where legacy systems have a well defined,

22

stable functionality, are not mission critical and are

relatively small i n size this approach could be used.

4.2. The Database First Approach

The Database First approach [4], also called the

Forward Migration Method [10], involves the initial

migration of legacy data to a modern, probably

relational, Database Management System (DBMS) and

then incrementally migrating the legacy applications

and interfaces.

While legacy applications and interfaces are being

redeveloped, the legacy system remains operable. This

methodology falls within a group of methodologies

which allow for the interoperabilit y between both the

legacy and target systems (sections 2.2 to 2.5). This

interoperabilit y is provided by a module known as

Gateway: a software module introduced between

components to mediate between them [11]. Gateways

can play several roles in migration, insulating certain

components from changes being made to others,

translating requests and data between components or

co-ordinating queries and updates between

components..

The concrete gateway used by the Database First

approach is called Forward Gateway. It enables the

legacy applications to access the database environment

in the target side of the migration process, as shown in

Fig. 6. This gateway translates and redirects these calls

forward to the new database service. Results returned

by the new database service are similarly translated for

used by legacy applications.

The main advantage of this approach is that once the

legacy data has been migrated, the latest fourth

generation language and reporting tools can be used to

access the data providing immediate productivity

benefits. The legacy system can remain operational

while legacy applications and interfaces are rebuilt and

migrated to the target system one-by-one. When the

migration is complete, the gateway will no longer be

required and can be decommissioned as the old legacy

system is shut down.

There are several disadvantages to this approach, in

particular, it is only applicable to fully decomposable

Target Database Service

Target

Forward GatewayForward Gateway

UIJSIJUI1SI1

M1 MJ

 Data

UInSInUIkSIk

Mk Mn

SI System Interface

UI User Interface

M Application Module

Legacy Component

Target Component

Fig. 6. Database First Approach

23

legacy systems4 where a clean interface to the legacy

database service exists. Also, before migration can start,

the new database structure must be defined. The major

risk with this activity is that the structure of the legacy

database may adversely influence the structure of the

new database. The Forward Gateway employed can be

very diff icult, and sometimes even impossible, to

construct due to the differences between the source and

the target in technology, in database structure,

constraints etc..

Overall this is a rather simplistic approach to legacy

system migration. The migration of the legacy data may

take a significant amount of time during which the

legacy system will be inaccessible. When dealing with

mission critical information systems this may be

unacceptable.

An enhancement to this method is proposed by

Menhoudj and Ou-Halima [67]. Using this method,

migration is carried out through several small

migration steps. At each step one or more files are

migrated, following a predefined order. An application

module is migrated only when all the files it accesses

have already been migrated. Therefore, there will never

be a module in the target system which needs to access

4 A fully decomposable IS is one where applications,
interfaces and databases are considered to be distinct
components with clearly defined interfaces. Applications
must be independent of each other and interact only with the
database service.[Brod95]

a file stored in the legacy system. Modules in the legacy

system may access files (tables, once migrated) in the

target system, thus a forward database gateway is

required.

An example of this migration is shown in Fig. 7.

Fig. 7(a) represents the set of modules (M i) and data

files (Fi) that constitute the legacy system. The

assumption is that the migration sequence defined by

the method states that firstly F1 must be migrated, then

F2, and finally F3. Once file F1 has been migrated into

table T1, module M1 only accesses data stored in the

target system, thus it must be also migrated. This

situation is shown in Fig. 7(b). Then file F2 is migrated,

as shown in Fig. 7(c), after that module M2 is also

migrated, Fig. 7(d).

M3

F3

M2

F2

Forward
database
gateway

M1

T1

Legacy
 System

Target
 System

M3

F3

M2

M1

T1 T2

M3

F3

M2M1

T1 T2

M3

F3

M2

F2

M1

F1

(a) (b)

(c) (d)

Legacy
 System

Forward
database
gateway

Forward
database
gateway

Fig. 7. Intermediate Steps of a Migration Process

24

The key of the method relies on the way in which the

migration sequence is determined. It is based on the

principle of minimizing the changes required to the

legacy modules when some files or modules are

migrated. The main idea is to analyse the

interdependencies between legacy data files, which

leads to a partial order between these files. Due to space

limitation is not possible to detail the whole process, for

more details refer to [67].

The method could be thought as being excessively

simplistic, for example, the assumptions made

regarding the type of legacy system target systems, (file

based and relational based, respectively), and the

possibilit y of clearly uncovering the set of

interdependencies between data files, do not always

hold when facing a generic legacy problem. The

method, however, offers a most important contribution

to the area of legacy system migration in that it

addresses the problem from a very practical (and

necessarily specific) point of view. Most of the

available methodologies for legacy migration are

defined at a very abstract level, and do not address

many of the practical problems to face when an actual

migration is being implemented.

4.3. The Database Last Approach

The Database Last approach [4], also called the

Reverse Migration Method [10], is based on a similar

concept to the Database First approach and is also

suitable only for fully decomposable legacy systems.

Legacy applications are gradually migrated to the target

platform while the legacy database remains on the

original platform. The legacy database migration is the

final step of the migration process. As with the

Database First approach, a gateway is used to allow for

the interoperabilit y of both information systems. In this

case a Reverse Gateway enables target applications to

access the legacy data management environment. It is

employed to convert calls from the newly created

applications and redirect them to the legacy database

service, as shown in Fig. 8.

Legacy Database Service

Legacy

Reverse GatewayReverse Gateway

UInSInUIkSIk

Mk MnUIJSIJUI1SI1

M1 MJ

 Data

SI System Interface

UI User Interface

M Application Module

Legacy Component

Target Component

Fig. 8. Database Last Migration Approach

25

If the legacy database service is to be migrated to a

relational database management service, then the target

applications will be developed completely with SQL

calls to the data service. It is these calls that are

captured by the Reverse Gateway and converted to the

equivalent legacy calls. The Database Last approach

has a lot in common with the client/server paradigm.

The legacy database takes on the role of a database

server with the target applications operating as clients.

There are commercial products available which

effectively act as reverse gateways, e.g. Sybase’s

OmniConnect and DirectConnect products.

The Database Last approach is not without its

problems however. Performance issues can be raised

with regard to the gateway. The Reverse Gateway will

be responsible for mapping the target database schema

to the legacy database. This mapping can be complex

and slow which will affect the new applications. Also

many of the complex features found in relational

databases (integrity, consistency constraints, triggers

etc.), may not be found in the archaic legacy database,

and hence cannot be exploited by the new application.

This approach is probably more commercially

acceptable than the Database First approach as legacy

applications can continue to operate normally while

being redeveloped. However, the migration of the

legacy data will still require that the legacy system be

inaccessible for a significant amount of time. When

dealing with mission critical information systems, this

may be unacceptable.

4.4. The Composite Database Approach

The Composite Database approach outlined in [10] is

applicable to fully decomposable, semi-decomposable5

and non-decomposable6 legacy systems. In reality, few

legacy systems fit easily into a single category. Most

legacy systems have some decomposable components,

some which are semi-decomposable and others which

are non-decomposable, i.e. what is known as a Hybrid

Information System architecture.

In Composite Database approach, the legacy

information system and its target information system are

operated in parallel throughout the migration project.

The target applications are gradually rebuilt on the

target platform using modern tools and technology.

Initially the target system will be quite small but will

grow as the migration progresses. Eventually the target

system should perform all the functionality of the

legacy system and the old legacy system can be retired.

During the migration, the old legacy system and its

target system form a composite information system, as

5 A semi-decomposable IS is one where only the user and
system interfaces are separate components. The applications
and database service are not separable.[Brod95]
6 A non-decomposable IS is one where no functional
components are separable.[Brod95]

26

shown in Fig. 9 (modified from [10]), employing a

combination of forward and reverse gateways. The

approach may involve data being duplicated across both

the legacy database and the target database. To

maintain data integrity, a Transaction Co-ordinator is

employed which intercepts all update requests, from

legacy or target applications, and processes them to

identify whether they refer to data replicated in both

databases. If they do, the update is propagated to both

databases using a two-phase commit protocol as for

distributed database systems [6].

Analysing non-decomposable legacy components

can be very diff icult. In the worst case the component

must be treated as a black box. The best that can be

achieved is to discover its functionality and try to elicit

as much legacy data as possible. Sometimes using

existing legacy applications, (e.g., database query,

report generation, and access routines), is the only way

to extract the legacy data. Once the functionality has

been ascertained, the component can be re-developed

from scratch. It can often be very diff icult to identify

when legacy data or functions are independent; in many

cases they may simply have to be replicated and target

copies co-ordinated until the entire legacy system can

be safely retired.

The Composite Database approach eliminates the

need for a single large migration of legacy data as

required in the Database First and Database Last

approaches. This is significant in a mission critical

environment. However, this approach suffers from the

overhead not only of the other two approaches but also

the added complexity introduced by the co-ordinator.

4.5. The Chicken-Little Strategy

The Chicken Little strategy outlined in [11] is a

refinement of the Composite Database approach.

Chicken Little proposes migration solutions for fully-,

semi- and non-decomposable legacy systems by using a

variety of gateways. The difference between these kinds

of gateways relies on where in the system they are

placed, and on the amount of functionality they provide.

All of them have the same goal, however, i.e. to mediate

between operation software components, as said in

section 4.2. The types of gateways referred to in

Co-OrdinatorCo-Ordinator

Forward GatewayForward Gateway

Legacy Component

Target Component

M1
M1

SI1
SI1 UI1

UI1

Mj
Mj

SIj
SIj UIj

UIj

SIk
SIk UIk

UIk SIm
SIm UIm

UIm SIh
SIh UIh

UIh SIn
SIn UIn

UInSI UI

Reverse GatewayReverse Gateway

Target DBMSTarget DBMS

Mh
Mh Mn

Mn

SI System Interface

UI User Interface

M Application Module

Legacy Data /
Database Service

Legacy Data /
Database Service

Target
Data

Target
Data

Mapping
Table

Mapping
Table

Fig. 9. Composite Database Migration Approach

27

sections 4.2 and 4.3 will here be called database

gateways to distinguish them from the others.

For a fully decomposable legacy system a database

gateway, either forward or reverse, is used and is

positioned between the application modules and the

database service. An application gateway is used for a

semi-decomposable legacy information systems. This

gateway takes the form of the gateway ill ustrated in

Fig. 9 and is positioned between the separable user

and system interfaces and the legacy database service.

For non-decomposable systems an information system

gateway is positioned between the end-user and other

information systems and the legacy information

system. This gateway also takes the form shown in Fig.

9, but it is expected to be much more complex than an

application gateway. An information system gateway

has to encapsulate the whole functionality of the legacy

system, while an application gateway encapsulates only

from application modules down.

As well as database, application, and information

system gateways, the concept of an interface gateway,

as shown in Fig. 10, is also proposed for non-

decomposable legacy systems. The idea is to insulate

end users from all underlying processes in the

migration. The interface gateway captures user and

system interface calls to some applications and redirects

them to others. It also accepts the corresponding

responses and translates, integrates and directs them to

the calli ng interface.

Chicken Little also proposes an 11 step plan to be

followed in any migration project, shown in Fig. 11.

Each step handles a particular aspect of migration, e.g.

migrating the database or migrating the application. The

method can be adapted to fit individual legacy systems

UIJSIJUI1SI1

UInSInUIkSIk

Mk Mn

Legacy Information System Target DBMS

Interface Gateway

External
Information Systems

End
Users

SI System Interface

UI User Interface

M Application Module

Legacy Component

Target Component

Fig. 10. Interface Gateway

Step 1 : Incrementally analyse the legacy information
 system
Step 2 : Incrementally decompose the legacy
 information system structure
Step 3 : Incrementally design the target Interfaces
Step 4 : Incrementally design the target applications
Step 5 : Incrementally design the target database
Step 6 : Incrementally install the target environment
Step 7 : Incrementally create and install the
 necessary gateways
Step 8 : Incrementally migrate the legacy databases
Step 9 : Incrementally migrate the legacy
 applications
Step 10 : Incrementally migrate the legacy interfaces
Step 11 : Incrementally cut over to the target
 information system.

Fig. 11. Chicken Little Migration Steps

28

migration requirements. Steps do not have to be

performed in sequence and several steps can be

performed in parallel.

The method is designed to be incremental i .e. the

legacy system(s) are migrated to the target system(s)

one component at a time. Gateways are then used to

allow the legacy and target systems to interoperate.

Using Chicken Little data is stored in both the migrating

legacy and the growing target system. In most cases,

gateway co-ordinators have to be introduced to maintain

data consistency. As Brodie and Stonebraker

themselves point out “update consistency across

heterogeneous information systems is a much more

complex technical problem with no general solution yet

advised, and it is still an open research challenge” [11].

Thus it seems that to apply Chicken Little approach

would be a big challenge to any migration engineer. In

addition, the strategy does not include a testing-step (see

section 2.4), which is clearly essential and a vital part of

the process before cutting on the target information

system.

4.6. The Butterfly Methodology

The Butterfly Methodology is based on the

assumption that the data of a legacy system is logically

the most important part of the system and that, from the

viewpoint of the target system development it is not the

ever-changing legacy data that is crucial, but rather its

semantics or schema(s). Thus, the Butterfly

Methodology separates the target system development

and data migration phases, thereby eliminating the need

for gateways.

 Using the Butterfly Methodology, when the legacy

data migration begins, the legacy datastore is frozen to

become a read-only store. All manipulations on the

legacy data are redirected by a module called the Data-

Access-Allocator (DAA), see Fig. 12. The results of

these manipulations are stored in a series of auxili ary

datastores: TempStores (TS). The DAA effectively stores

the results of manipulations in the latest TempStore.

When legacy applications access data, DAA retrieves

data from the correct source, e.g. the legacy datastore or

the correct TempStore.

���
.GICE[�+PVGTHCEG

.GICE[�#RRNKECVKQPU

&CVCDCUG�5GTXKEGU

.GICE[�+PVGTHCEG

.GICE[�#RRNKECVKQPU

&CVCDCUG�5GTXKEGU

1RGTCVKXG

1RGTCVKXG
.GICE[
&CVC

6WTPGF�QP��
HQT�

&GXGNQROGPV
CPF�6GUVKPI

6WTPGF�QP��
HQT�

&GXGNQROGPV
CPF�6GUVKPI

%#6'42+..#4�5;56'/ ��������%*4;5#.+5�5;56'/

&##&##

%JT[UCNKUGT%JT[UCNKUGT

65P�65P�

4GCF�1PN[

2WRC�&CVC5VQTG
6CTIGV�&CVC5VQTGU

/KFFNGYCTG0GVYCTG&$�5GTXKEGU

���65�65�
65�65�

6CTIGV
#RR�

6CTIGV
#RR�

���

6CTIGV
#RR�

6CTIGV
#RR� 6CTIGV

#RRO
6CTIGV
#RRO���

65P65P

)TCRJKE�7UGT�+PVGTHCEGU

.GICE[�
&CVC5VQTG
.GICE[�
&CVC5VQTG

Fig. 12. Butterfly Methodology, Migrating the Data in
TempStore TSn

29

A Data-Transformer, named Chrysaliser in Fig. 12,

is employed to migrate, in turn, the data in the legacy

system as well as in the TempStores to the target

system. While Chrysaliser is migrating the legacy

datastore all manipulations are stored in the first

TempStore (TS1); when migrating data in TS1, all

manipulations are stored in TS2; and so on.

If the time taken to migrate a TempStore is faster

than that taken to build the next one, the size of each

TempStore will decrease at each iteration. When the

amount of data in TSn is suff iciently small , the legacy

system can be brought down and the data in the last

TempStore migrated to the target system, without

causing any serious inconvenience to the core business.

This will result in an up-to-date target database and the

target system can be made operative. Thus using the

Butterfly Methodology, at no time during the migration

process will t he legacy system by inaccessible for a

significant amount of time.

Fig. 12 shows a scenario during the legacy data

migration. It can be seen that the combination of the

DAA and Chrysaliser serve as a legacy data migration

engine.

Using the Butterfly methodology, Target

SampleData, which is based upon the target system data

model, is stored in a Sample DataStore. Target

SampleData is transformed from Legacy SampleData, a

representative subset of the data in the legacy data store.

The Sample DataStore is employed to support the initial

development and testing of all components (except for

data) of the target system.

The Butterfly methodology is a novel approach to

handling legacy system migration. Target applications

can be exhaustively tested against actual data held in the

Sample Datastore. Each step of the Butterfly

methodology can be completely tested and the legacy

database can be rolled back at any stage. The legacy

system can continue to operate as normal throughout the

migration until the last TempStore has reached the pre-

determined size.

From a pragmatic point of view, the main factor

which will determine whether or not this methodology

is usable, is the value of v
u (where u is the speed of

Chrysaliser transforming the data, and v is the speed of

the DAA building up new TempStores). If v = 0 (i.e.

the DAA does not build the TempStores), the

methodology reverts to a ‘Big Bang’ migration (see

section 4.1). If v > u (i.e. the sizes of the TempStores

do not decrease at each iteration), then the migration

process will never finish.

Factors relevant to the success of the methodology

include:

• a thorough understanding of the legacy and

target systems

30

• an accurate and concise sample datastore

• a fast chrysaliser

• an eff icient Data-Access-Allocator.

4.7. Screen Scraping

Few organisations have as yet attempted a full -scale

migration project. Many attempt to implement solution

which allows them to gain some of the benefits of new

technology without having to interrupt their mission-

critical legacy system. One particularly popular

approach is Screen Scraping.

Screen scraping is the process of replacing the

character based front end of a legacy information

system with a PC client based graphical user interface.

Putting a graphical user interface onto a legacy system

is a cheap and effective method of leveraging legacy

data on the desktop. Users are free to use the graphical

data manipulation and input tools common on the

desktop to input data and process the system output.

At present there are a large number of products

available to perform screen scraping. Some of the

better known include MultiSoft’s WCL/QFG toolkit,

Client Server Technology’s GUISys, and Co*STAR

from ClearView. These products depend on the use of a

terminal emulator for the communications link to the

host mainframe legacy system. Most include their own

emulators but some rely on third party vendors such as

Systems Synchronous Incorporated. The user builds the

graphical user interface in a structured interactive

session. The processing logic for the host screen is then

specified. The resulting PC client application is usually

in the form of some automatically generated first

generation client server tool, (in nearly all cases either

Microsoft’s Visual Basic or PowerSoft’s PowerBuilder).

Despite the commercial success of screen scraping it

is still very much a short term solution. Placing a

graphical interface onto a legacy system does not

address many of the serious problems faced by legacy

systems. Problems of overloading, inabilit y to evolve to

provide new functions, and inordinately high

maintenance costs are all i gnored. Screen scraping

simply provides an easy to use interface for the legacy

system. At best it reduces training costs for new

employees and allows an interface to the legacy system

on the desktop. There is no recoding of the legacy

system so no new functionality is provided, also all

processing still t akes place on the mainframe thus not

easing the burden on the overloaded mainframe or

reducing operational costs by using the cheaper

computing power of the desktop.

In many cases screen scraping not only fails to

provide an adequate solution but actually serves to

compound an organisations maintenance problems.

Wrapping legacy system access with screen scraping

31

software adds a functionally superfluous layer to the

legacy system, which itself will have to be maintained

in future systems maintenance procedures.

5. Open Research Issues

While some phases of migration, such as legacy

system understanding, have been the subject of

research for a number of years, others, such as

migration, have remained relatively untouched until

recently. This section provides a brief outline of some

of the major areas in which research is still required.

These issues are summarised in Appendix II .

5.1. Legacy System Understanding

This area has been the subject of much research in

recent years and has resulted in a number of tools and

techniques to assist in both program and data

understanding tasks, see section 3.2. However, to a

large extent the problems encountered in this phase

have remained unsolved and are worthy of further

research.

• Application Understanding

The majority of research in this area has

concentrated on legacy systems written on COBOL.

Although this is the language of a lot, perhaps even the

majority, of legacy systems, it is by no means the only

language used. Tools and techniques for understanding

systems written in other languages are required. In

addition, as poor programming practice, and

documentation, is not limited to legacy systems,

research need not be limited to typical legacy languages

such as COBOL and FORTRAN, languages such as C,

and even C++ and Java, should also be considered.

Within this area, the effect of which version of a

language was used to implement systems also needs to

be investigated . For example, does COBOL 85 need a

completely different tool than COBOL 74.

• Data Understanding

Research in this area has mainly concentrated on

providing tools and techniques to graphically represent

and understand database/file schemas, see section 3.2.2.

Little research has concentrated on extracting the data

structure from existing code and data, one of the most

diff icult tasks in legacy system migration. Again the

majority of research has focused on legacy systems

written in COBOL using flat files, relational or

hierarchical databases. Many legacy systems use other

relational databases for which tools are required. As

with application understanding, the effect of which

version of a database was used to implement systems

also requires investigation.

• Legacy System Understanding

Many legacy systems solve common problems. The

majority of large organisations would have legacy

systems which deal with personnel and payroll i ssues

32

and it is logical to assume that there is a lot of common

ground in most. Investigating the subject areas of

legacy systems could aid understanding. For example,

it seems logical all medical administration systems

should have a concept of a patient record, patient

history etc. Identifying a set of key concepts to search

for could be useful in both application and data

understanding.

• AI Support for Understanding

The majority of understanding tools developed to

date, see section 3.2, require extensive input from an

expert in the migrating legacy system. To a large extent

the available tools automate the understanding of

relatively straight-forward aspects of legacy systems,

e.g. identifying access to files/tables, identifying

separation of functionality in the form of functions or

procedures, and rely on the legacy system expert to

provide direction and information to overcome more

diff icult problems, e.g. identifying the full database

schema, identifying redundant data. The knowledge of a

system expert is crucial. The application of AI research

in this area could be most useful. For example, a novel

approach, worthy of more serious investigation, has

been proposed by Richardson et al [44], in which Case

Based Reasoning is used to understand legacy systems

and learn from experience of maintaining legacy

systems.

5.2. Target System Development

When considering legacy system migration,

developing the replacement target system would appear

to be one of the simplest tasks. There are, however,

significant diff iculties which must be overcome, see

section 2.3, and require research.

• Validating Target Functionality

The new target system must exploit the target

architecture to offer new benefits while retaining the

tried and trusted functionality of the legacy system. In

addition, it must do so as soon as cut-over has occurred.

Testing the target system is therefore more crucial for a

migration project than for a traditional systems

development project. Ensuring that the target system

produces the same results as the legacy can be

extremely diff icult. As with any systems development

project errors and omissions may not be found the target

system is operational. How to correct such errors is

extremely significant in a migration project where,

depending on the methodology used, part of mission-

critical information system may be operating in the

target environment and part in the legacy environment.

Techniques are required to correctly elicit the core

legacy system functionality and to validate that this has

been incorporated successfully into the target system.

The Butterfly methodology, see section 4.6, has

proposed using a sample datastore containing a sample

33

of actual legacy data to test the newly developed target

system before it is deployed. Techniques for

constructing and ensuring the correctness of this data

are required.

• Enterprise Computing

In the past, individual departments have developed

their computer systems independently. This has been

recognised as a mistake and the aim for many

organisations is to develop an enterprise-wide

computing culture. With this in mind, a migrating

system cannot be considered in isolation. While it is

migrating, other systems may require access to it. Once

it has been migrated, it may require access to systems

which are undergoing migration. Investigation is needed

into how migrating systems can interoperate with others

within the enterprise.

• Methods for Reuse

A primary reason for migrating a legacy system

rather than simply redeveloping it from scratch is to

retain legacy system functionality in the new target

system. There are few methods available to identify

potential candidates. Similarly, the primary method for

reusing a component has been to wrap it in an additional

layer of software which allows it to be used in its new

environment [51]. Research is required into other

techniques for reuse.

5.3. Data Migration

Legacy data is perhaps the most important aspect of

any legacy system yet the issues involved in migrating it

to a new environment have not been widely considered.

• Efficient Real-time Data Migration Engine

As yet there are few approaches for migrating

mission-critical legacy data. Allowing the target and

legacy systems to interoperate via a gateway, see

section 4.2 to 4.5, offers an alternative to migrating

legacy data in a one massive step. However, using

gateways can result in a complex target architecture in

which gateways can never be eliminated. As mentioned

in section 4.5, maintaining data consistency across

heterogeneous systems is a highly complex technical

problem and into which research is required.

The Butterfly methodology, see section 4.6, offers

an alternative approach to migrating legacy data using a

series of temporary stores to store results of

manipulations on legacy data while this is being

migrated to the target system. This approach offers an

alternative to the bulk of existing research into this area,

but it has yet to be tried in practice.

• Determining Data for Migration

Deciding exactly what legacy data to migrate is also

an area requiring research. For example, one migration

project found that 80% of accesses to data in a

particular legacy system were read-only [11]. In such a

case, it may not be necessary to migrate all the legacy

34

data at one time. Research into identifying which legacy

data is crucial for the initial target system operation

could significantly reduce migration timescales.

Methods for handling exceptions within the target

system, such as requests to unmigrated data, are also

required.

• Dirty Data

The condition of the legacy data is also an important

issue. Not all l egacy data can be classified as good

quality data [38]. Methods for deciding what data is

dirty and for cleaning legacy data prior to, or after,

migration are required.

5.4. Migration Tools

As discussed in section 3, numerous tools to assist in

the migration process have already been developed.

There is however, the potential for more research into

this area.

• General Tool-kit Framework

The majority of tools which could be used in a

migration project are developed in isolation and are not

generally designed to co-operate. Developing tool-kits

or support environments for software development

projects has been an area of research for a number of

years. Investigating the support a migration project

requires and existing research into software

development environments could be applied to

migration would be useful.

• Individual Migration Tool Development

Although numerous tools have already been

developed, as has already been discussed in this section

and section 3, there are still many areas in which tools

are required. In particular the areas of target system

development, testing and migration have been largely

unsupported to date.

5.5. Migration Approaches

To date few migration approaches have been

proposed, see section 4. Those that have been proposed

have few, if any, practical results to support them. A

safe, comprehensive migration approach is a necessity.

• General Migration Approach

The few approaches that have been developed, see

section 4, have adopted widely varying solutions to the

problems of migration. It is unlikely that a single

migration approach, be suitable for every possible type

of legacy system will emerge. The migration

requirements of all types of information system, legacy

or otherwise, need to be investigated and approaches

developed. Some aspects of migration, such as

developing and testing the target system, the sequence

in which tasks should be performed, should be

suff iciently similar for all projects to allow a model of

migration, such as that proposed in section 2, to be

developed.

• Refinement of Current Approaches

35

Existing approaches have generally been presented at

a very high level. Each proposed step encompasses

many important tasks. For example, The Chicken Little

approach includes a step “ Incrementally design the

target database”. This is clearly not a simple task and

needs serious investigation.

5.6. General Migration Issues

 The previous sections have presented issues which

clearly fall within particular areas. This section outlines

some more general issues for migration.

• Managing Migration

The management of software development projects

has long been the subject of research. A migration

project is in many respects similar to a software

development project and therefore it could be

considered that the management issues are similar. It

could also be considered that the issues unique to

migration, such as the reuse of legacy components,

migration of data, provide a much more challenging

prospect. Expanding existing migration approaches and

building a general model of migration should provide a

clearer view of exactly what a migration project

involves and from this a management perspective can

be derived. In addition, the management of the system

resulting from migration must ensure that as few of the

problems which effected the legacy system are

experienced in the future.

• Justifying Migration

As mentioned in section 2.1, a migration project

represents a huge undertaking for any organisation. It is

a very expensive undertaking and carries a serious risk

of failure. Methods to identify factors which affect the

level of risk and to quantify this risk are required.

Metrics have been developed to identify the risk

involved in software development projects ([14], [58]),

similar metrics are required for migration.

• Target Environment Selection

A major pre-requisite for justifying the commitment

of the necessary time and resources a migration project

requires must be that the target environment offer

substantial immediate and long-term benefits. In today’s

competitive and fast-changing business and

technological world, no organisation should be willi ng

to expend a large amount of resources on migrating to a

target platform which will become obsolete in a

relatively short time.

Although it is impossible to predict the technological

advances the future will bring, it can be predicted with

reasonable certainty that choosing the most applicable

architecture for an application can help lessen, or even

avert, many of the problems currently being

experienced by legacy system users. There a numerous

potential target architectures and tools which could be

used to develop the target system, see section 3.

36

Research into guidelines for choosing appropriate

architectures would be most useful.

• Managing Human Aspects of Migration

The development of the target system is a crucial

aspect of migration. It may be best to use existing staff

or employ new staff f or this specific task. The skill s

required by those responsible for developing such a

system need to be investigated.

It must also be remembered that the target system

will be deployed in a ‘ legacy’ culture. Those

responsible for maintaining the legacy may also be

responsible for maintaining the target. This will ,

perhaps, involve a complete change of working

practice. Research into how best manage this change is

required.

• Practical Experience Reports

 Few organisations have attempted migration

projects. Much of the research into the area of legacy

system migration is thus unsupported by practical

results. As the year 2000 approaches it is to be hoped

that many organisations may take the opportunity of

migrating their legacy systems rather than enhancing

them to cope with the year 2000.

6. Summary

Legacy Information Systems Migration is currently

the focus of much attention from both business and

research communities. The problems posed by legacy

systems are a roadblock to progress for many

organisations. Legacy systems are in danger of reducing

their host organisation’s competitiveness. This paper

has presented an overview of the problems posed by

legacy system and the challenges that possible

solutions must address to overcome them.

The most significant proposed approaches to legacy

migration have been discussed. It has been concluded

that actual methodologies are either too general to be

applied in practice or too specific to guide a complete

migration project and are supported by few practical

results. Current approaches fail even to agree in what

phases must involve a generic migration process. This

paper has outlined a set of phases any successful

migration process should include. Each phase has been

detailed and the challenges to overcome and the

expected outputs of each have been clearly identified.

A set of tools to support each phase of migration has

been identified. From the discussion of these tools, it

has been found that most available tools are those

needed in a any software engineering process (i.e.

(target) system development, and testing). Specific tools

for legacy migration are still t o come (i.e. justification,

target system cut-over, and understanding).

37

Legacy information system is becoming an area of

increasing importance in both industry and academia

and requires a lot more research.

7. References

[1] Acucobol, "Acu4GL: Interfaces to Relational Database
Management Systems",http://www.acucobol.com/Produ

 cts/Acu4GL/A4GL11genWP.html, 1996
[2] J. M. Antis, S. G. Eick and J.D. Pyrce, "Visualising The

Structure of Large Relational Databases", IEEE Software,
pp. 72-79, Jan. 1996

[3] Bachmann, "A CASE for Reverse Engineering",
Datamation, pp. 49-56, July 1988

[4] A. Bateman and J. Murphy, "Migration of Legacy
Systems", School of Computer Applications, Dublin City
 University, Working Paper CA-2894,
http://www.compapp.dcu.ie/CA_Working_Papers, 1994

[5] B. Beizier, "Software Testing Techniques", Second
Edition, Van Nostrand Reinhold, New York, 1990

[6] D. Bell and J. Grimson, "Distributed Database Systems",
Addisson-Wesley, 1992.

[7] K. Bennet, "Legacy Systems: Coping with success", IEEE
 Software, pp. 19-22, Jan. 1995

[8] H. Berghel, "The Client’s side of the World Wide Web",
Communications of the ACM, 39(1), pp. 30-40,

 Jan. 1996
[9] T. J. Biggerstaff , "Design Recovery for Maintenance and

Reuse", IEEE Software, pp. 36-49, July 1989
[10]M. Brodie and M. Stonebraker, "DARWIN: On the

Incremental Migration of Legacy Information Systems",
TR-022-10-92-165 GTE Labs Inc., http://info.gte.com/

 ftp/doc/tech-reports/tech-reports.html, Mar. 1993
[11]M. Brodie and M. Stonebraker, "Migrating Legacy

Systems: Gateways, Interfaces and the Incremental
Approach", Morgan Kaufmann. USA, 1995

[12]D. N. Chin and A. Quili ci, "DECODE: A Co-operative
Program Understanding Environment", Journal of
Software Maintenance 8(1); pp. 3-34, 1996.

[13]S. Clinton, "Developing for Multi -Tier Distributed
Computing Architectures with Delphi Client/Server Suite
2.0", http://netserv.borland.com/delphi/papers/, 1997

[14]D. Coleman, "Using Metrics to Evaluate Software System
 Maintainabilit y", IEEE Computer, pp. 44-49, Aug. 1994

[15]D. Comer, "Computer Network and Internets", Prentice
Hall , ISBN 0135990106, 1997

[16]Cyrano, "CYRANO's Automated Software Quality
Products", http://www.pstest.com/, Dec. 1996

[17]Computer Science Department - The University of
Namur, "DB-MAIN: A R&D Programme in Database
Applications Engineering and Case Technology",
http://www.info.fundp.ac.be/~dbm/, Feb. 1996

[18]G. Dedene and J. De Vreese, "Realiti es of Off-Shore
Reengineering", IEEE Software, pp. 35-45, Jan. 1995

[19]Apertus Technologies Inc., "Enterprise/Access White

Paper", http://www.apertus.com/prod/access/whitePa
 per.html, Mar. 1997
[20]Apertus Technolgies Inc., "Enterprise/Integrator White
 Paper", http://www.apertus.co.uk/app.rods/esg/eiwp.htm,
 March 1997
[21]P. Fingar and J. Stikeleather, "Next Generation

Computing: Distributed Objects for Business", SIGs
Books & Multimedia New York, 1996

[22]D. Flanagan, "Java in a Nutshell - A Desktop Reference
for Java Programmers", O' Reill y & Associates Inc., 1996

[23]J. Gosling and H. McGilton, "The Java Language
Environment: A White Paper", http://java.sun.com:

 80/doc/language_environment/, May 1996
[24]J-L. Hainaut, J. Henrard, J-M. Hick, D. Roland and V.

Englebert, "Database Design Recovery", Proc. 8th Conf.
on Advance Information Systems Engineering, CAiSE'96
Springer-Verlag pp. 463-480, 1996

[25]M. Hammer and Champy J, "Re-Engineering the
Corporation - A manifesto for Business Revolution",
Nicholas Brealey Publishing, 1993

[26]A. Hemrajani, "Networking with JAVA ", Dr Dobb’s
Sourcebook, pp.34, Sept/Oct 1996

[27]P. J. Houston, "Introduction to DCE and Encina", http://
 www.transarc.com/afs/transarc.com/public/www/Public/
 ProdServ/Product/Whitepapers/, Nov. 1996
[28]Int’ l Integration Inc., "I Cube",

http://199.34.33.188/compdesc.htm, Dec. 1996
[29]I . Jacobson, M. Ericson and A. Jacobson, "The Object

Advantage: Business Process Reengineering with Object
Technology", Addison-Wesley New York, 1995

[30]LexiBridge, "The premier solution for migrating legacy
systems to client/server", http://www.lexibridge.com/,
July 1996

[31]Z-Y Liu, M. Ballantyne and L. Seward, "An Assistant
for Re-Engineering Legacy Systems", Proc. 6th

 Innovative Applications of Atrificial Intelli gence Conf.
 pp 95-102, AAA I, Seattle, WA,http://www.spo.eds.com
 :80/edsr/papers/asstreeng.html, Aug. 1994
[32]R. Martin, "Dealing with Dates: Solutions for the Year

2000", IEEE Computer, Mar. 1997, 30(3), pp. 44-51
[33]Dr. H. A. Muller, "Understanding Software Systems

Using Reverse Engineering Technologies Research &
Practice", Tutorial presented at Int. Conf. on Software
Engineering 18, http://tara.uvic.ca/UVicRevTut/UVic

 RevTut.html, Mar. 25-29 1996
[34]NCR, "NCR TOP END: Robust Middleware For

Transaction Processing", http://www.ncr.com/product
 /integrated/software/p3.topend.html, Mar. 1997
[35]OpenHorizon, "OpenHorizon - 3-Tier Client/Server

Application", http://www.openhorizon.com, Mar. 1997
[36]R. Orfali , D. Harkey and J. Edwards, "Essential

Client/Server Survival Guide", John Wiley, 1994
[37]R. Orfali , D. Harkey and J. Edwards, "The Essential

Distributed Objects Survival Guide", John Wiley 1996.
[38]R. Orli , "Data Quality Methods",

http://www.kismeta.com/cleand1.html, 1996
[39]L. Perrochon, "On the Integration of Legacy Systems and

the World Wide Web", Presented at 4th Int’ l World Wide

38

 Web, Boston, MA, http://www.inf.ethz.ch/department/IS
 /ea/publications/ 4www95.html, Dec. 1995
[40]Persistence Software Inc., "Persistence Sofware: Enabling

the Integration of Object Applications with Relational
Databases", http://www.persistence.com/, July 1996

[41]Reasoning, "Reasoning Systems - Reengineering
Solutions", http://www.reasoning.com, Mar. 1997

[42]ESPRIT Project, "RENAISSANCE Project - Methods &
 Tools for the evolution and reengineering of legacy
 systems", http://www.comp.lancs.ac.uk/computing/rese
 arch/cseg/projects/renaissance, Nov. 1996
[43]RENAISSANCE Project, "D5.1c Technology selection",

http://www.comp.lancs.ac.uk/computing/research/cseg/pr
ojects/renaissance/D5.1C_introduction.html, July 1997

[44]R. Richardson, D. O'Sulli van, B. Wu, J. Grimson, D.
Lawless, J. Bisbal J, "Application of Case Based
Reasoning to Legacy Systems Migration", Proc. 5th

 German Workshop on Case-Based Reasoning
 Foundations, Systems, and Applications, pp. 225-234,

Mar. 1997
[45]Dr. H. Muller, "RIGI Project - An Extensible System for

Retargetable Reverse Engineering", University of
 Victoria, Canada, http://tara.uvic.ca, Nov.1996
[46]T. Sample and T. Hill , "The Architecture of a Reverse

engineering Data Model Discovery process", EDS
Technical Journal, 7(1), 1993

[47]K. Sedota, J. Corley, J. Niemann James and T. Hill , "The
INCASE Source Code Interviewer", EDS Technical
Journal, 4(4), 1990.

[48]R. Shelton, "Business Objects and BPR", Data
Management Review 4(11) pp. 6-20, Nov. 1994

[49]H. M. Sneed, "Planning the Re-engineering of Legacy
Systems", IEEE Software, pp. 24-34, Jan. 1995

[50]Sun Microsystems, "Joe : Developing Client/Server
Applications for the Web", Sun White Paper, 1997

[51]Systems Techniques Inc., "Wrapping Legacy Systems for
 Reuse : Repackaging v Rebuilding",
http://www.systecinc.com/white/whitewrp.html, 1996

[52]Z. Tabakman and D. Pikcili ngis, "Performing a Managed
Migration", http://www.sector7.com/index.htm, 1995

[53]Z. Tabakman, "Successful Migration Through Automated
 Software Testing ", http://www.sector7.com/, 1996

[54]Tandem, "Non-stop Tuxedo: Open TP Monitor for
Distributed Transaction Processing", http://www.tandem

 .com//INFOCTR/HTML/BRFS_WPS/NSTUXOTB.html,
 1996
[55]D. Taylor, "Business Reengineering with Object

Technology", John Wiley & Sons, New York 1995
[56]S. R. Till ey and D. B. Smith, "Perspectives on Legacy

System Reengineering", http://www.sei.cmu.edu/, 1996
[57]UniData, "UniData - Data management that works",

http://www.unidata.com/, July 1996
[58]K. D. Welker and Dr. P. W. Oman, "Software

Maintainabilit y Metrics Models in Practice", CrossTalk,
Nov./Dec. 1995 8(1), 1995.

[59]P. Winsberg, "What About Legacy Systems ?", Database
Programming and Design, 7(3), 1994

[60]K. Wong, S. Till ey, H. Muller, M. Storey, "Structural
Redocumentation: A Case Study", IEEE Software, pp.
46-53, Jan. 1995

[61]B. Wu, D. Lawless, J. Bisbal, J. Grimson and R.
Richardson, D. O’Sulli van, "The Butterfly Methodology :

 A Gateway-free Approach for Migrating Legacy
Information Systems", in Proc. 3rd IEEE Conf. on

 Engineering of Complex Computer Systems (ICECCS
 '97), Vill a Olmo, Como, Italy, Sep. 8-12 1997.
[62]B. Wu, D. Lawless, J. Bisbal, J. Grimson and R.

Richardson, D. O’Sulli van, "Legacy System Migration :
 A Legacy Data Migration Engine", in Proc. 17th Int’ l
 Database Conf., Brno, Czech Republic, Oct. 12 - 14,
 1997.
[63]N. Zvegintzov, "A Resource Guide to Year 2000 Tools",

IEEE Computer, 30(3), pp. 58-63, Mar. 1997
[64] M. Olsem, "Reengineering Technology Report Vol.1",
 Software Technology Support Centre(STSC, Oct. 1995
[65] I. Sommervill e, "Software Engineering",
 Addison-Wesley, 1995
[66] E. J. Chikofsty and J. H.Cross II , 'Reverse Engineering

and Design Recovery: A Taxonomy', IEEE Software,
7(1), January 1990, pp. 13-17

[67] K. Menhoudj and M. Ou-Halima, 'Migrating Data-
Oriented Applications to a Relational Database
Management System', Proceedings of the International
Workshop on Advances in Databases and Information
Systems (ADBIS'96), Moscow Sept. 1996

Appendix I - Analysis of Current Migration
Approaches

The following table is an analysis of the major

migration approaches described in sections 4 and

ill ustrates the extent to which each methodology

addresses the five major areas of migration discussed in

section 2. The main tasks to be performed by each

methodology for each area is also outlined.

39

Appendix II - Open Research Issues

The following table summarises the open research issues

discussed in section 5.

Justification Legacy
Understanding

Target
Development

Testing Migration

Big Bang Diff icult due to huge cost
and development time
involved.

No legacy component reuse
at all , so the legacy system
must be completely
understood.

Target technology
could be out-of-date
when project finishes,
due to long
development time.

Needs to be exhaustive
due to the risk involved

Not contemplated.
It is reduced to
switching off the
legacy and turning
on the target

Database
First

Data is the most valuable
asset of a company.
Migrating it as a first step
could represent a risk that
few companies are willi ng
to take

Legacy data must be full y
understood. Reuse is
possible. Some components
of the system can be treated
as a black-box (i.e. not full y
understood)

Could be incremental,
which allows the
system for adapting to
business changes

Incremental
implementation allows
for exhaustive testing
of each migrated
component, before the
new component is
migrated.

Data must be
migrated in one
go, and during this
time the
information
system is not
operational

Database
Last

Reverse database gateway
tools available, leads to a
quicker implementation.
New target applications
cannot exploit new
database features until the
migration has been
finished

Same as Database First Same as Database
First

Same as Database First Same as Database
First

Composite
Database

Chicken
Little

Both data and applications
can be incrementally
migrated. The massive
complexity involved could
be diff icult to justify

Legacy data must be full y
understood. Some
components can be treated as
black-box. However, need to
understand (and manage)
whether a component
accesses legacy or target data
(or both)

Same as Database
First and Database
Last

Same as Database First
and Database Last

The data can be
migrated in an
incremental
fashion. However,
the management
of the complexity
involved to do so
will be a serious
challenge

Butterfly
Methodology

Smooth migration step and
controlled complexity

Legacy must be full y
understood, and mapping
between data models
discovered. Reuse explicitl y
recommended

Supported by the
Sample DataStore.

Explicitl y supported by
the Sample DataStore.
In addition during
migration the
developing system can
be tested against the
already migrated data.
Users can also be
trained with this data

The legacy system
is operation at all
times.
Also, the
complexity is
considerably
reduced when
compared to
Chicken Little

General Migration Issues
Migration

Methodologies
Legacy System
Understanding

Target System
Development Data Migration Migration Tools

Managing Migration Developing a
General Migration
Approach

Language Understanding
Tools

Validating the target
system against the legacy
system

An eff icient real-time
data migration engine

General migration
toolkits

Justifying Migration
Methods for evaluating risk,
migration metrics

Data understanding Tools
Interoperation of
information systems with
migrating systems

Determining Data to
be migrated

Target Environment Selection
Refining Existing
Migration
Approaches

Effects of implementation
versions on
understanding

Developing
individual
migration tools

Managing human Aspects of
Migration

Subject matter Methods for component
reuse

Cleaning dirty data

AI Support for
understanding

