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1 Introduction

The past two decades have seen an enormous increase in the development
and use of networked and distributed systems, providing increased func-
tionality to the user and more efficient use of resources. To obtain the be-
nefits of such systems parties will cooperate by exchanging messages over
networks. The parties may be users, hosts or processes; they are generally
referred to as principals in authentication literature.

Principals use the messages received, together with certain modelling
assumptions about the behaviour of other principals to make decisions on
how to act. These decisions depend crucially on what validity can be as-
sumed of messages that they receive. Loosely speaking, when we receive
a message we want to be sure that it has been created recently and in good
faith for a particular purpose by the principal who claims to have sent it.
Wemust be able to detect when amessage has been created or modified by
amalicious principal or intruderwith access to the network orwhen ames-
sage was issued some time ago (or for a different purpose) and is currently
being replayed on the network.

Anauthentication protocol is a sequence ofmessage exchanges between
principals that either distributes secrets to some of those principals or al-
lows the use of some secret to be recognised [27]. At the end of the protocol
the principals involved may deduce certain properties about the system;
for example, that only certain principals have access to particular secret in-
formation (typically cryptographic keys) or that a particular principal is
operational. They may then use this information to verify claims about
subsequent communication, for example, a received message encrypted
with a newly distributed key must have been created after distribution of
that key and so is timely.

A considerable number of authentication protocols have been specified
and implemented. The area is, however, remarkably subtle andmany pro-
tocols have been shown to be flawed a long time after theywere published.
TheNeedhamSchroeder Conventional KeyProtocol was published in 1978
[90] and became the basis for many similar protocols in later years. In 1981,
Denning and Sacco demonstrated that the protocol was flawed and pro-
posed an alternative protocol [45]. This set the general trend for the field.
The authors of both papers suggested other protocols based on public key
cryptography (see section 2). In 1994 Martin Abadi demonstrated that the
public key protocol of Denning and Sacco was flawed [1]. In 1995, Lowe
demonstrated an attack on the public key protocol ofNeedhamand Schroeder
(seventeen years after its publication). In the intervening years a whole
host of protocols have been specified and found to be flawed (as demon-
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strated in this report).
This report describes what sorts of protocols have been specified and

outlines what methods have been used to analyse them. In addition, it
provides a summary of the ways in which protocols have been found to
fail.

There is a large amount ofmaterial in the field and themain body of this
document is intended as a concise introduction to and survey of the field.
An annotated bibliography is included to guide the reader.

Since authentication relies heavily on encryption and decryption to
achieve its goals we first provide a brief review of cryptography.

6



2 Cryptographic Prerequisites

2.1 General Principles

Cryptographic mechanisms are fundamental to authentication protocols.
Suppose thatwe have somemessage text P whichwewish to transmit over
the network. P is generally referred to as plaintext or a datagram. A cryp-
tographic algorithm converts P to a form that is unintelligible to anyone
monitoring the network. This conversion process is called encryption. The
unintelligible form is known as ciphertext or a cryptogram. The precise form
of the cryptogram C corresponding to a plaintext P depends on an addi-
tional parameter K known as the key.

The intended receiver of a cryptogram C may wish to recover the ori-
ginal plaintext P . To do this, a second key K1 is used to reverse the pro-
cess. This reverse process is known as decryption. Encryption and decryp-
tion are depicted in figure 1.

P

PlaintextCiphertext

C

Plaintext

DecryptionEncryption

-1

P

Key = KKey = K

ReceiverSender

Figure 1: Encryption and Decryption

The classes of encryption and decryption algorithms used are generally
assumed to be public knowledge. By restricting appropriately who has ac-
cess to the various keys involvedwe can limit the ability to form ciphertexts
and the ability to determine the plaintexts corresponding to ciphertexts.

2.2 Symmetric Key Cryptography

In symmetric key cryptography the encryption key K and the decryption
key K1 are easily obtainable from each other by public techniques. Usu-
ally they are identical and we shall generally assume that this is the case.
The keyK is used by a pair of principals to encrypt and decrypt messages
to and from each other. Of course, anyone who holds the key can create
ciphertexts corresponding to arbitrary plaintexts and read the contents of
arbitrary ciphertext messages. To ensure security of communication this
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key is kept secret between the communicating principals. Following es-
tablished convention we shall use the notation Kab to denote a key inten-
ded for communication between principalsA andB using a symmetric key
cryptosystem.

2.2.1 Classical Cryptography

Classical cryptography has typically used symmetric keys. Typically clas-
sical ciphers have been either substitution or transposition ciphers and have
worked on text characters. A substitution cipher substitutes a ciphertext
character for a plaintext character. A transposition cipher shuffles plaintext
characters. The precise substitutions and transpositions made are defined
by the key. Examples include simple, homophonic,
polyalphabetic andpolygram substitution ciphers and simple permutation
ciphers (e.g. where each successive group of N characters are permuted in
the same way). Elements of transposition and substitution are included in
modern day algorithms too. It is not our intention to survey classical ap-
proaches to cryptography. They arewell documented already [44, 100]. An
elementary introduction has been produced by Willet [115].

2.2.2 Modernday Cryptography

Modernday symmetric key algorithms are principally block ciphersor stream
ciphers.

A block cipher will encrypt a block of (typically 64 or 128) plaintext bits
at a time. The best known block cipher is the ubiquitous Data Encryption
Standard [48], universally referred to as DES. This has been a hugely con-
troversial algorithm. The controversy has centred on whether the effective
key length (56 bits – reduced from 128 at the insistence of the National Se-
curity Agency) is really sufficient to withstand attacks from modern day
computing power (seeWiener [114] for details), and over the design of ele-
ments called S-boxes (the design criteria were not made public). The reader
is referred to [102] for details. It is worth noting that the algorithm is re-
markably resistant to attack using the published state-of-the-art cryptana-
lysis technique known as differential cryptanalysis discovered by Biham
and Shamir . As revealed by Coppersmith in 1994 [41] this was because
the technique was known to the designers of DES back in 1974! Of course,
in this survey we can only comment on what is publicly known.

Other examples of block ciphers are MADRYGA (efficient for software
implementation and operates on 8-bit blocks), NEWDES (operates on 64-
bit blocks butwith a 120-bit key), FEAL-N, RC2andRC4 (by RonaldRivest)
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and IDEA (by Lai andMassey). Schneier has written a readable account of
the IDEA algorithm [99]. A very good overview of block ciphers (and oth-
ers) can be found in Schneier’s general cryptography text [100].

2.2.3 Modes of Block Cipher Usage

There are several modes in which a block cipher can be used:

 Electronic Code Book (ECB)

 Cipher Block Chaining (CBC)

 Cipher Feedback Mode (CFB)

 Output Feedback Mode (OFB)

ECB is the simplest mode. Consecutive blocks of plaintext are simply
encrypted using the algorithm. Thus, identical blocks of plaintext are al-
ways encrypted in the same way (with the same result). Its security needs
to be questioned for specific contexts. An analyst may be able to build up
a codebook of plaintext-ciphertext pairs (either known or because he can
apply cryptanalytical methods to derive the plaintexts). Also, it is possible
to modify messages (e.g. by simply replacing an encrypted block with an-
other).

Cipher Block Chaining (CBC) is a relatively goodmethod of encrypting
several blocks of data with an algorithm for encrypting a single block. It is
one mode in which the widely used Data Encryption Standard (DES) can
be employed. Block i of plain text is exclusively-ored (hereafter XORed)
with block i  1 of ciphertext and is then encrypted with the keyed block
encryption function to form block i of ciphertext. A random block (see be-
low) is used to initialise the process.

For example, with initialisation block I the encryption ofmessage block
sequence P1P2 : : : Pn with keyK denoted by E(K : P1P2 : : : Pn) is given by

E(K : P1P2 : : : Pn) = C0C1C2 : : : Cn

where

C0 = I

8i; i > 0  Ci = e(K : (Ci1  Pi))

Here, e(K :) is the block encryption function used with keyK. The en-
cryption process is shown in figure 2.
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Figure 2: Cipher Block Chaining

Successive ciphertext blocks are decrypted using the keyed block func-
tion d(K :) according to the rule

Pi = Ci1  d(K : Ci)

Thus, for any successive pair of ciphertext blocks we can recover the plain-
text block corresponding to the second (provided we have the key).

If we choose a different initial block I in each case then even identical
plaintext messages will have different ciphertexts. It is widely acknow-
ledged that non-repeating initial blocks are essential for adequate preser-
vation of confidentiality (unless the first block in a message is always ran-
dom in which case it is known as a confounding block). Authors differ as
to whether they should be passed between communicating parties in the
clear (which Schneier [100] thinks is fine) or encrypted ( as recommended
by Davies and Price [42]). Voydock and Kent [113] address many aspects
of initial block usage insisting that they should be pseudorandom for CBC.
The rationale given there and in various other texts is incomplete or simply
wrong. For example Schneier states that an initial block can be a serial num-
ber that increments after eachmessage but does not repeat. Clark and Jacob
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[38] have shown that such an approach is potentially disastrous; they show
how for the most celebrated authentication protocol of all, adoption of this
approach would allow a third party to create the ciphertext for an arbitrary
message without having access to the key!

In certain network applications it is useful to be able to transmit, re-
ceive and process data chunks of size less than the block size (e.g. the pro-
cessing of character-sized chunks from a terminal). In such cases Cipher
Feedback mode (CFB) might be used. Figure 3 is based on a figure by
Schneier [100] and shows an 8-bit CFB with a 64-bit block algorithm. Here
the contents of a shift register are initialised with some value. The contents
of the shift register are encrypted as a block, and the leftmost byte of the res-
ult is XORedwith the next plaintext byte to produce a ciphertext byte. The
contents of the register are now shifted left by 8 bits and the most recently
created ciphertext byte is placed in the rightmost byte of the register and
the procedure repeats. The decryption procedure is easily obtained.

XOR

Cipher

Feedback

Key

Leftmost byte

Last 8 Cipher bytes

Shift Register

i

Encrypt

B

i
CP

i

Figure 3: Cipher Feedback Mode

Output Feedback mode (OFB) is shown similarly in figure 4. Here, it is
the leftmost byte of the direct output of the encryption function that is fed
back into the shift register.
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Schneier states that the initialisation vectors for CFB andOFB should be
different for each message encrypted, though there is no additional benefit
from sending them encrypted [100]. Voydock and Kent disagree [113].

The error propagation properties of the different modes of encryption
vary but are not detailed here. The reader is referred to Schneier [100] or
Davies and Price [42] for details.

Other modes are possible, e.g. Counter mode (like OFB but with the
contents of the register simply incremented each time, i.e. no feedback),
Block Chaining mode (where the input to the encryption is the XOR of all
previous ciphertext blocks and the current plaintext block) and Propagat-
ing Cipher Block Chaining (where the input to the encryption is the XOR of
the current and the immediately previous plaintext blocks and all previous
ciphertext blocks). There are a variety of other modes which are somewhat
esoteric; we shall not describe them here.

Output

Feedback

Key

XOR

Leftmost byte

Shift Register

Last 8 leftmost output bytes

i

Encrypt

B

i i
CP

Figure 4: Output Feedback Mode

2.2.4 Stream Ciphers

Stream ciphers encrypt one bit of plaintext at a time. The usual approach is
to generate a bit stream and to XOR successive bits with successive bits of

12



plaintext. Clearlywe shouldwish the bit-stream produced to be as random
as possible. Indeed, a vast amount ofwork into pseudorandom streamgen-
eration has been carried out (see [100]). The streams produced depend on a
key in some way (if identical streams were produced each time then crypt-
analysis becomes easy). A keystream generator comprises a finite statema-
chine and an output function. Figure 5 shows two basic approaches to bit-

Counter mode

C
i

C
i

P
i

Output Feedback Mode

Key Key
Function

Output Function

Internal State

Next-State

K
i

K
i

Internal State

Next-State

i
P

i
C

Function

Output Function

Figure 5: Stream Cipher Approaches

stream generation: output feedback mode (where the value of the key af-
fects the next state) and the output function is pretty straightforward; and
Counter mode (where the key affects the output function and the next state
is straightforward, typically a counter increment).

It is also possible to use block ciphers as keystream generators (e.g. use
Counter Mode and select the leftmost bit of the encrypted block output).
For details of the above see Schneier [100].

2.3 Public Key Cryptography

In public key cryptography there is no shared secret between communic-
ating parties. The first publication on the topic was the classic paper by
Whitfield Diffie and Martin Hellman in 1976 [47]. In public key encryption
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each principal A is associated with some key pair (Ka;Ka1). The public
key Ka is made publicly available but the principal A does not reveal the
private key Ka1. Any principal can encrypt a message M using Ka and
only principal A can then decrypt it usingKa1. Thus, the secrecy of mes-
sages to A can be ensured.

Some public key algorithms allow the private key to be used to encrypt
plaintext with the public key being used to decrypt the corresponding
ciphertext. If a ciphertext C decrypts (usingKa) to a meaningful plaintext
message P then it is assumed that the ciphertext must have been created
by A using the key Ka1. This can be used to guarantee the authenticity

of the message. The most widely known public key algorithm that allows
such usewas developed byRivest, Shamir andAdleman [95] and is univer-
sally referred to as RSA. Such algorithms are often said to provide a digital
signature capability.

The RSA algorithm [95] works as follows:

1. pick two large primes p and q, let n = p  q

2. choose e relatively prime to (n) = (p  1)(q  1)

3. use Euclid’s algorithm to generate a d such that e  d = 1 mod (n)

4. make the pair (n; e) publicly available – this is the public key. The
private key is d.

5. a message block M is now encrypted by calculating C = M e mod n.

6. the encrypted block C is decrypted by calculating M = Cd mod n.

Here encryption and decryption are the same operation (modular expo-
nentiation).

A sender A can communicate with B preserving secrecy and ensuring
authenticity by first signing amessage using his own private keyKa1 and
then encrypting the result using B’s public keyKb. B uses his private key
to decrypt and then uses A’s public key to obtain the original message.

Public key algorithms tend to rely on the (supposed) difficulty of solv-
ing computationally hard problems (e.g. finding discrete logarithms for
the Diffie Hellman algorithm and finding prime factors for RSA). Again,
key length is an issue. Computing power is increasing rapidly and there
have been significant advances. For example, ten years ago 512 bit keys
for RSAwere thought to be very secure; today 512 bits is considered amin-
imumrequirement (and 1024 bits is often recommended). Sheer processing
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capability also affects the usability of public key encryption. Public key al-
gorithms are generally much slower than symmetric key algorithms.
Schneier [100] gives a good account of relative speeds of algorithms.

There are some very useful and informative papers that deal (at least in
part) with public key cryptography. Hellman provides an excellent intro-
duction to public key cryptography and the underlying mathematics [60].
Willet provides a much higher level view [116]. Gordon [58] provides a
good but simple introduction. Diffie provides an exciting account of the
first decade of public key cryptography [46] with a particularly good ac-
count of the attacks on knapsacks. Brickell and Odlyzko provide an ac-
count of various attacks on public key systems (and others) [26]. Other
aspects are covered in Massey’s informative general paper on cryptology
[85].

2.4 One-way Hash Algorithms

We shall often require evidence that a message that has been sent has not
been subject to modification in any way. Typically this is carried out using
a hash function. A hash function H when applied to a message M yields
a value H(M) of specific length known as the hash value of that message.
H(M) is often referred to as a message digest. The mapping of messages to
digests is one-way; given M and H(M) it should be computationally in-
feasible to find M’ such that H(M’)=H(M). The digest is a form of reduced
message calculated using a publicly known technique. A receiver of ames-
sage can checkwhether amessage and a corresponding digest agree. Hash
functions are largely intended for use in conjunction with
cryptography to provide signatures.

If M is a message then A can provide evidence to B that he created it,
and that it has not been tampered with, by calculating E(Kab : H(M)) and
sending themessageM together with the newly calculated encrypted hash
value. On receiving the message, B can calculate H(M) and then E(Kab :
H(M)) and check whether the value agrees with the encrypted hash value
received. Since the amount of encryption is small this is a quite efficient
means to demonstrate authenticity.

2.5 Notational Conventions

In this report we shall use the notation E(K : M) to denote the result of
encrypting message plaintext M with key K.

A protocol run consists of a sequence of messages between principals
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and will be described using the standard notation. Principals are gener-
ally denoted by capitals such as A, B and S (for a server). The sequence of
messages

(1) A ! B : M1

(2) B ! S : M2

(3) S ! B : M3

denotes a protocol inwhichA sendsM1 toB,B then sendsM2 to S who
then sendsM3 to B. Attacks on protocols often involve some mischievous
principal pretending to be another. We denote a mischievous principal by
Z. The notation Z(A) denotes the principal Z acting in the role of A. Z has
unfettered access to the network medium and may place at will messages
onto the net claiming to be sent fromA and interceptingmessages destined
for A (and possibly removing them).

A number generated by a principal A is denoted byNa. Such numbers
are intended to be used only once for the purposes of the current run of the
protocol and are generally termed nonces. We shall sometimes refine the
notion of a nonce to include a timestamp and distinguish between sequence
numbers or genuinely pseudorandom nonces. Such distinctions are made
in, for example, the ISO entity authentication standards (see [63]).

A message may have several components; some will be plaintext and
some will be encrypted. Message components will be separated by com-
mas. Thus

(1) A ! B : A;E(Kab : Na)

denotes that in the first message of the protocol A sends to B the mes-
sage whose components are a principal identifier A together with an en-
crypted nonce E(Kab : Na).
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3 Protocol Types

In this section we provide an overview of the various forms of authentica-
tion protocol in use today. At the highest level we have categorised them
according to the principal cryptographic approach taken, i.e. symmetric
key or public key. We distinguish also between those that use (one ormore)
trusted third parties to carry out some agreed function and those that op-
erate purely between two communicating principals that wish to achieve
some mode of authentication. There are further distinctions that can be
made: the number of messages involved in the protocols (e.g. one-pass,
two-pass, three-pass etc.) and whether one principal wishes to convince
the second of some matter (one-way or unilateral authentication) or
whether both parties wish to convince each other of something (two-way
or mutual authentication). These distinctions are also made by the ISO en-
tity authentication standards (see [63]).

3.1 Symmetric Key Without Trusted Third Party

Perhaps the simplest (andyet effective) example in this class is the ISOOne-
pass Symmetric Key Unilateral Authentication Protocol [64] (see also 6.1.1)
shown below. It consists of the single message:

(1) A ! B : Text2; E(Kab : [TajNa]; B; T ext1)

Here the text fields shown are optional; their use is implementation spe-
cific (and we shall ignore them in this discussion). We can see that the
claimant A (i.e. the one who wishes to prove something) sends an encryp-
ted message containing a nonce and the identifier of the verifier (i.e. the
principal towhom the claim ismade). The noncemay be a timestamp Ta or
a sequence number Na depending on the capabilities of the environment
and the communicating principals. On receiving this message, B, who be-
lieves that the key Kab is known only to himself and A, may deduce that
A has recently sent this message if the sequence number is appropriate or
if the timestamp has a recent value. Note here that if a malicious principal
has unfettered access to the network medium then use of sequence num-
bers will be insufficient (since he can record message (1), prevent B from
receiving it, and replay it to B at a later time).

The best-known protocols that do not use a trusted third party are
simple challenge-response mechanisms. One principal A issues data to a
second principal B. B then carries out some transformation and sends the
result toAwho checks to see if the appropriate transformation has occurred.
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Figure 6 shows a simple challenge-response protocol. In this case the nonce
Na should be random. If the nonce were a sequence number, or were oth-
erwise predictable, a malicious principal could issue the next nonce value
to B and record the response. When A genuinely issued the same nonce
value at a later date the intruder could replay B0s earlier response to com-
plete the protocol. A could conclude only that the message he receives was
created at some time byB (but not necessarily in response to hismost recent
challenge).

Na

E(Kab: Na)

Principal BPrincipal A

Figure 6: A Challenge Response Protocol

There are other variations on the challenge-response theme. Sometimes
the challenge is encrypted, sometimes not; sometimes it is random, some-
times predictable (but never before used). Gong highlights many issues as-
sociated with the use of nonces for such purposes [55].

The ISO Two-Pass Unilateral Authentication Protocol is described later
in this document (see 6.1.2). The ISO Two- and Three-PassMutual Authen-
tication Protocols are described in sections 6.1.3 and 6.1.4 respectively.

Another approach to ensuring authenticity uses cryptographic check
functions. Essentially, a message is sent together with some summary or
digest calculated using a hash function using a shared key. Examples are
given in section 6.2. Examples can be found in Part 4 of the ISO entity au-
thentication standard [66].

3.2 Symmetric Key With Trusted Third Party

Symmetric key protocols that use a trusted third party (TTP) are by far the
most numerous in the literature. The most celebrated protocol of all time,
theNeedhamSchroeder Symmetric KeyAuthentication protocol [90] is de-
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scribed below:

(1) A ! S : A;B;Na

(2) S ! A : E(Kas : Na;B;Kab; E(Kbs : Kab;A))
(3) A ! B : E(Kbs : Kab;A)
(4) B ! A : E(Kab : Nb)
(5) A ! B : E(Kab : Nb  1)

In this protocol A requests from the server S a key to communicate with
B. He includes a random nonce Na generated specially for this run of the
protocol. This nonce will be used by A to ensure that Message (2) is timely.
S creates a keyKab and creates message (2). Only A can decrypt this mes-
sage successfully since he possesses the keyKas. In doing so hewill obtain
the key Kab and check that the message contains the nonce Na. A passes
on to B the encrypted message component E(Kbs : Kab;A) as Message
(3).

PrincipalB decrypts this message to discover the keyKab and that it is
to be used for communication with A. He then generates a nonce Nb, en-
crypts it (using the newly obtained key), and sends the result to A as mes-
sage (4).

PrincipalA, who possesses the appropriate keyKab , decrypts it, forms
Nb1, encrypts it and sends the result back toB asmessage (5). B decrypts
this and checks the result is correct. The purpose of this exchange is to con-
vinceB thatA is genuinely operational (and thatMessage 3was not simply
the replay of an old message).

At the end of a correct run of the protocol, both principals should be
in possession of the secret key Kab newly generated by the server S and
should believe that the other principal has the key. Rather, this is what the
protocol is intended to achieve. We shall show in section 4.1 that it is in fact
flawed.

There have been many other protocols that have used a trusted third
party to generate and distribute keys in a similar way: the Amended
Needham-Schroeder Protocol [91] (see 6.3.4), the YahalomProtocol (see 6.3.6),
the Otway-Rees Protocol [94] (see also 6.3.3) which is essentially the same
as theAmendedNeedham-Schroeder Protocol. Woo andLamprovide sev-
eral authentication protocols [117, 118] (6.3.10). Other examples include
those byGong andCarlsen’s secret key initiator protocols (formobile phone
networks) (6.9.2 and 6.3.7) and the ISOFour- and Five PassMutual Authen-
tication Protocols [64] (6.3.8 and 6.3.9).

Denning and Sacco suggested fixing problems in the Needham
Schroeder protocol using timestamps. The Denning Sacco Conventional
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Key Protocol replaces the first three messages of the Needham Schroeder
protocol with:

(1) A ! S : A;B

(2) S ! A : E(Kas : B;Kab; T; E(Kbs : A;Kab; T ))
(3) A ! B : E(Kbs : A;Kab; T )

Here, T is a timestamp generated by S. A and B can check for timeliness
of messages (2) and (3) (i.e. the timestamp must be within some window
centred on the respective local clock time).

Third partiesmay be trusted for activities other than key generation and
distribution. Consider the Wide Mouthed Frog Protocol due to Burrows
(but not for use in real systems) [27]:

(1) A ! S : A;E(Kas : Ta;B;Kab)
(2) S ! B : E(Kbs : Ts; A;Kab)

A is trusted to generate a session key Kab. On receiving message (1) S
checks whether the timestamp Ta is "timely" and, if so, forwards the key
to B with its own timestamp Ts. B checks whether the message (2) has
a timestamp that is later than any other message it has received from S.
Here the server S effectively performs a key translation service (providing
also trusted timestamping). Davis and Swick providemore key translation
service facilities [43].

Some protocols allow keys to be reused inmore than one session. These
are typically two-part protocols. The first part involves a principal A ob-
taining a ’ticket’ for communication with a second principal B. The ticket
generally contains a session key and is encrypted so that only the receiver
B candecrypt it. In the secondpart of the protocolApresents the ticket toB

whenhewishes to communicate; hemay do this on several occasions (until
the ticket expires). These are usually called repeated authentication protocols.
Such protocols have been devised by Kehne et al [71] and also by Neuman
and Stubblebine [93].

3.3 Public Key

Protocols using public key cryptography findnumerous applications in au-
thentication but the speed of encryption and decryption using public key
algorithms has prevented theirwidespreaduse for general communication;
for example, Scheneier states that RSAencryption is about 100 times slower
than DES when both are implemented in software (the fastest hardware
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implementation of RSA has a throughput of 64 Kbaud). However, exchan-
ging symmetric encryption keys using public key cryptography provides
an excellent use of the technology and several such distribution schemes
have been created.

Needham and Schroeder proposed the following protocol in their clas-
sic work [90]:

(1) A ! S : A;B

(2) S ! A : E(Ks1 : Kb;B)
(3) A ! B : E(Kb : Na;A)
(4) B ! S : B;A

(5) S ! B : E(Ks1 : Ka;A)
(6) B ! A : E(Ka : Na;Nb)
(7) A ! B : E(Kb : Nb)

Here, we see how use is made of a trusted server S, generally called a cer-
tification authority, that stores the public keys of the various principles and
distributes then on request sealed under its own private keyKs1. The cer-
tification authority’s public key is generally assumed known to the prin-
cipals. Messages (1), (2) and (5), (6) are used by A and B to obtain each
other’s public keys. Message (3) is encrypted under B0s public key and
so can only be decrypted successfully by B. It contains a challenge Na to-
gether with A0s identifier. B decrypts this to obtain the challenge, forms
a challenge of his own Nb and encrypts both challenges under A0s pub-
lic key and sends the result as message (6). A then decrypts message (6).
Since only B could have obtained the information necessary to send this
message A knows that B is operational and has just responded to his re-
cent challenge. A then encrypts B0s challenge Nb using B’s public key Kb

and sendsmessage (7). B then decrypts and checks that it contains his chal-
lenge and concludes thatA is operational and indeed initiated the protocol.
This protocol has only recently been shown to be flawed [78].

Some key distribution protocols use public key cryptography, for ex-
ample Digitals SPX (see Schneier’s book [100] or Woo and Lam [118]). The
draft CCITT X.509 standard [30] uses public key cryptography for authen-
ticated communication. The ISO authentication framework makes extens-
ive use of public key cryptography.

Denning and Sacco provide an example of how to use public key cryp-
tography to distribute session keys [45]. Martin Abadi noticed in 1994 that
it was terribly flawed [1].

Public key cryptographymay also be used to provide digital signatures.
RSA [95] can be use to sign a message by encrypting under the private key.
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It can also be used to sign a hash value of a complete message. The ac-
tual message can also be sent in the clear with the encrypted hash value
appended. A major alternative to the use of RSA developed, amid some
controversy, by the United States National Security Agency (NSA) is the
Digital Signature Algorithm. It is based on El Gamal encryption. Schneier
provides a good account of the algorithm [100] and a good journalistic ac-
count of the controversy can be found in the paper by Adam [2]. Other
digital signatures schemes include ESIGN, McEliece (based on algebraic
coding theory). Akl provides a good tutorial guide to digital signatures in
general [3].

3.4 Hybrid Protocols

There are some protocols that use both public and symmetric key crypto-
graphy. An example of such is the unusal (but seemingly very effective)
Encrypted Key Exchange (EKE) protocol by Bellovin andMerritt [15]. This
protocol is unusual in that it uses symmetric key cryptography to distribute
’public’ keys. It also seems to tolerate fairly poormechanisms of symmetric
encryption.

3.5 Other Forms of Protocol

There are many other types of authentication protocol. For example, pro-
tocols that deal with non-repudiation, secret voting, anonymous transac-
tions, anonymous signatures etc. The reader is referred to Schneier for de-
tails [100]. Examples of various international standard protocols can be
found in [63], [64], [65], [66], [67]. Recent protocols include a beacon based
protocol by Seberry et al [68] and a robust password exchange protocol by
Hauser et al [59]. Liebl [77] provides an overview of authentication proto-
cols (in less detail than here).

3.6 General

There are many applications of authentication technology that are not dis-
cussed above. Simmons provides an example of the need for authenticity
in the face of a very hostile enemy for the purposes of verifying nuclear
test ban treaties [101]. Anderson provides an indication of how electronic
payment systems work [9]. The same author discusses societal and legal
aspects of cryptographic technology [8], [7].
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4 Attacking Authentication protocols

In this section we detail the various ways in which protocols fail and give
examples.

4.1 Freshness Attacks

A freshness attack occurs when a message (or message component) from
a previous run of a protocol is recorded by an intruder and replayed as a
message component in the current run of the protocol. The classic example
of such an attack occurs in the NeedhamSchroeder conventional (symmet-
ric) key protocol described in section 3.2.

At the end of a correct run of the protocol, both principals should be
in possession of the secret key Kab newly generated by the server S and
believe that the other has the key. That is what the protocol is intended to
achieve. In 1981, Denning and Sacco demonstrated that the protocol was
flawed [45]. Consider message (3). Although B decrypts this message and
(if it is indeedwell-formed) assumes legitimately that it was created by the
server S, there is nothing in themessage to indicate that it was actually cre-
ated by S as part of the current protocol run. Thus, suppose a previously dis-
tributed key K 0ab has been compromised (for example, by cryptanalysis)
and is known to an intruderZ. Z might havemonitored the network when
the corresponding protocol runwas executed and recordedmessage (3) con-
sisting of E(Kbs : K 0ab; A). He can now fool B into accepting the key as
new by the following protocol (omitting the first two messages):

(3) Z(A) ! B : E(Kbs : K 0ab; A)
(4) B ! Z(A) : E(K 0ab : Nb)
(5) Z(A) ! B : E(K 0ab : Nb  1)

B believes he is following the correct protocol. Z is able to form the correct
response in (5) because he knows the compromised keyK 0ab. He can now
engage in communication with B using the compromised key and mas-
querade as A. Denning and Sacco suggested that the problem could be
fixed by the inclusion of timestamps in the relevant messages [45]. The ori-
ginal authors suggested an alternative fix to this problem by means of an
extra handshake at the beginning of the protocol [91].

4.2 Type Flaws

Amessage consists of a sequence of components eachwith some value (for
example, the name of a principal, the value of a nonce, or the value of a
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key). Themessage is represented at the concrete level as a sequence of bits.
A type flaw arises when the recipient of a message accepts that message as
valid but imposes a different interpretation on the bit sequence than the
principal who created it.

For example, consider the Andrew Secure RPC Protocol

(1) A ! B : A;E(Kab : Na)
(2) B ! A : E(Kab : Na + 1; Nb)
(3) A ! B : E(Kab : Nb + 1)
(4) B ! A : E(Kab : K 0ab;N 0b)

Here, principal A indicates to B that he wishes to communicate with
him and sends an encrypted nonce E(Kab : Na) as a challenge in (1). B

replies to the challenge and issues one of his own by sending the message
E(Kab : Na + 1; Nb) in message (2). A replies to B0s challenge by forming
and sending E(Kab : Nb + 1) to B. B now creates a session key K 0ab and
distributes it (encrypted) together with a sequence number identifier N 0b

for future communication.
However, if the nonces and keys are both represented as bit sequences

of the same length, say 64 bits, then an intruder could record Message (2),
intercept Message (3) and replay Message (2) as Message (4). Thus the at-
tack looks like:

(1) A ! B : A;E(Kab : Na)
(2) B ! A : E(Kab : Na + 1; Nb)
(3) A ! Z(B) : E(Kab : Nb + 1)
(4) Z(B) ! A : E(Kab : Na + 1; Nb)

Thus principal A may be fooled into accepting the nonce value Na + 1 as
the new session key. The interpretations imposed on the plaintext bit string
of the message are shown in figure 7.

If the nonces are random then the use of the nonce value as a key may
not lead to a security compromise but it should be noted that nonces cannot
be assumed to be good keys. Furthermore, nonces do not necessarily have
to be random, just unique to the protocol run. Thus a predictable nonce
might be used. In such cases A will have been fooled into accepting a key
whose value is known to the intruder.

The above protocol is flawed in otherways too. For example, it is equally
possible to recordmessage (4) of a previous run and replay it in the current
run, i.e. there is a freshness attack, as pointed out by Burrows, Abadi and
Needham [27].
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Interpretation

Intended

of Receiver

Interpretation

Decryption

Encryption
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NbNa + 1

Ciphertext

1001101100111100 1101101100010010

1001101100111100 1101101100010010

Figure 7: Bit Stream Interpretations and Type Flaw

The Otway-Rees protocol [94] provides another example of a protocol
subject to a type attack.

(1) A ! B : M;A;B;E(Kas : Na;M;A;B)
(2) B ! S : M;A;B;E(Kas : Na;M;A;B); E(Kbs : Nb;M;A;B)
(3) S ! B : M;E(Kas : Na;Kab); E(Kbs : Nb;Kab)
(4) B ! A : M;E(Kas : Na;Kab)

The above protocol causes a keyKab created by the trusted server S to
be distributed to principals A and B. M is a protocol run identifier.

After initiating the protocol A expects to receive a message back in (4)
that contains the nonceNa used in (1) together with a new session keyKab

created by S. IfM is (say) 32 bits long, A and B each 16 bits long andKab

is 64 bits then an intruder Z can simply replay the encrypted component
of Message (1) as the encrypted component of Message (4). Thus

(1) A ! Z(B) : M;A;B;E(Kas : Na;M;A;B)
(4) Z(B) ! A : M;E(Kas : Na;M;A;B)

HereA decryptsE(Kas : Na;M;A;B) checks for the presence of the nonce
Na and accepts (M,A,B) as the new key. M, A and B are all publicly known
(since theywere broadcast in the clear). Similarly, it is clear that an intruder
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can play the role of S in Messages (3) and (4) simply replaying the encryp-
ted components of Message (2) back to B. The attack is:

(1) A ! B : M;A;B;E(Kas : Na;M;A;B)
(2) B ! Z(S) : M;A;B;E(Kas : Na;M;A;B); E(Kbs : Nb;M;A;B)
(3) Z(S) ! B : M;E(Kas : Na;M;A;B); E(Kbs : Nb;M;A;B)
(4) B ! A : M;E(Kas : Na;M;A;B)

He can now listen in to conversation between A and B using the now
publically available key (M;A;B).

Further examples of type flaws are given by Syverson [110] andHwang
et al [62].

4.3 Parallel Session Attacks

A parallel session attack occurs when two or more protocol runs are ex-
ecuted concurrently and messages from one are used to form messages in
another.

As a simple example consider the following one-way authentication pro-
tocol:

(1) A ! B : E(Kab : Na)
(2) B ! A : E(Kab : Na + 1)

Successful execution should convinceA thatB is operational since only
B could have formed the appropriate response to the challenge issued in
message (1). In addition, the nonce Na may be used as a shared secret for
the purposes of further communication between the two principals. In fact,
an intruder can play the role of B both as responder and initiator. The at-
tack works by starting another protocol run in response to the initial chal-
lenge.

(1:1) A ! Z(B) : E(Kab : Na)
(2:1) Z(B) ! A : E(Kab : Na)
(2:2) A ! Z(B) : E(Kab : Na + 1)
(1:2) Z(B) ! A : E(Kab : Na + 1)

HereA initiates the first protocol withmessage (1.1). Z nowpretends to
beB and starts the second protocol run with message (2.1) which is simply
a replay of message (1.1). A now replies to this challenge with message
(2.2). But this is the precise value A expects to receive back in the first pro-
tocol run. Z therefore replays this as message (1.2). At the very least A be-
lieves that B is operational. In fact, B may no longer exist. The attack is
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Principal
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Figure 8: Simple Parallel Session Attack

illustrated in figure 8. Solid arrows indicate messages of the first protocol
run, broken arrows indicate messages of the second protocol run.

In the above attack Z used principal A to do some work on his behalf.
He needed to form an appropriate response to the encrypted challenge but
could not do so himself and so he "posed the question" to Awho provided
the answer. A is is said to act as an oracle (because he always provides the
correct answer) and attacks of this form are often called oracle attacks.

An interesting example of an oracle attack occurs in theWide-Mouthed
Frog Protocol (not intended for use in real systems). The protocol is de-
scribed by Burrows, Abadi and Needham [27].

(1) A ! S : A;E(Kas : Ta;B;Kab)
(2) S ! B : E(Kbs : Ts; A;Kab)

Here, each principal (A andB in the above) shares a keywith the server
S. If A wishes to communicate with a principal B then he generates a key
Kab and a timestamp Ta and forms message (1) which is sent to S.

On receivingmessage (1)S checkswhether the timestampTa is "timely"
and, if so, forwards the key to B with its own timestamp Ts. B checks
whether the message (2) has a timestamp that is later than any other mes-
sage it has received from S (and so will detect a replay of this message).

The first way it can be attacked is by simply replaying the first message
within an appropriate timewindow - this will succeed sinceS will produce
a new second message with an updated timestamp. If S 0s notion of timeli-
ness is the same asB0s (i.e. it accept messages only if the timestamp is later
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than that of any other message it has received from the sender) then this at-
tack will not work.

The secondmethod of attack allows one protocol run to be recorded and
then the attacker continuously uses S as an oracle until he wants to bring
about reauthentication between A and B.

( 1 ) A ! S : A;E(Kas : Ta;B;Kab)
( 2 ) S ! B : E(Kbs : Ts; A;Kab)
(10 ) Z(B) ! S : B;E(Kbs : Ts; A;Kab)
(20 ) S ! Z(A) : E(Kas : T 0s; B;Kab)
(100) Z(A) ! S : A;E(Kas : T 0s; B;Kab)
(200) S ! Z(B) : E(Kbs : T 00s; A;Kab)

Z now continues in the above fashion until he wishes to get A andB to
accept the key again. He does this by allowingA andB to receivemessages
intended for them by S.

There is some ambiguity in the available descriptions as to how
timestamps are checked. It would seem sensible for a recipient A or B to
impose some type of timewindow on the timestamps ofmessages received
from S (as well as checking the message it has received from S is
timestamped later than any other it has received from S). The efficacy of
the attack is not compromised. Z simply plays ping-pong with S until it
wants to rearrange authentication between A and B. Continuous use of S
as a timestamp oracle ensures that all messages are sufficiently up to date.

Parallel session attacks abound in the literature [104, 118, 109, 62]. Bird
et al [18, 19] illustrate parallel session attacks and present informalmethods
for analysing for their presence.

4.4 Implementation Dependent Attacks

Carlsen [32] indicates that some protocol definitions allow both secure and
insecure implementations. Typing attacks could be prevented if the con-
crete representations of component values contained redundancy to identify
a sequence of bits as representing a specific value of a specific type (and the
principals made appropriate checks). Few protocol descriptions require
such enforcement of types explicitly. Thus, the implementation approach
adopted may severly affect the actual security of a protocol that conforms
to the description and implementation-dependent attacks are possible.

Similarly we saw in subsection 4.2 how the implementation of nonces
(random or predictable) could severely affect the security of a protocol. In
that case it merely determined the degree of damage caused by an already
flawed protocol.
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Perhaps the most interesting (and least understood) area where
implementation-dependent attacks may arise is the interaction between a
specific protocol and the actual encryption method used. In the protocols
we have described so far little has been said about the properties required
of an encryption algorithm. The next section shows that the naı̈ve use of
certain algorithms (that are generally considered strong) in the context of
specific protocols may produce insecure results.

4.4.1 Stream Ciphers

A stream cipher encrypts a plaintext bit stream on a bit-by-bit basis. The
encrypted value of a particular bit may depend on the keyK, random ini-
tialisation data R and the plaintext bits encrypted so far.

Consider the last twomessages of the Needham Schroeder protocol de-
scribed in section 3.2.

(4) B ! A : E(Kab : Nb)
(5) A ! B : E(Kab : Nb  1)

Suppose that the cipherstream for Message (4) is b1b2 : : : bn1bn. Now if
Nb is odd then the final plaintext bit (assumed to be the least significant
bit) will be 1 and Nb  1 will differ only in that final bit. On a bit by bit
encryption basis, the cipherstream for message (5) can be formed simply
by flipping the value of the final bit bn. On average the nonce will be odd
half of the time and so this form of attack has a half chance of succeeding.
This form of attack was originally described by Boyd [21]. It appears that
this form of attack is not limited to stream ciphers. Analysis reveals that
similar attacks can also bemounted against certain uses of cipher feedback
mode for block ciphers. Furthermore, if the element that is subject to bit
flipping represents a timestamp then the scope for mischief seems greater
(but seems unrecorded in the literature).

It is interesting to note that under the same set of assumptions a much
more virulent attack can be carrie dout by A. Message (3) of the protocol is
given below:

(3) A ! B : E(Kab;A : Kbs)

Flipping the final bit of this message could turn the A into a C under
decryption. Since A knows the key Kab he could fool B into believing he
shared this key with C and effectively masquerade as C.
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4.4.2 Cipher Block Chaining

Another formof attack concerns the use of Cipher BlockChainingdescribed
in section 2.2.3. For any successive pair of ciphertext blocks we can recover
the plaintext block corresponding to the second (providedwehave the key).
Suppose that E(K : P1P2P3) = IC1C2C3 Then C1C2C3 looks like a cipher-
text that beginswith initialisation blockC1, and decrypts to P2P3. Similarly
C1C2 decrypts to P2 (it usesC1 as an initialisation block) andC2C3 decrypts
to P3.

Thus we can see that without appropriate additional protection valid
messages may be created if their contents are subsequences of generated
messages. To distinguish this form of attack from those that followwe shall
call this form of flaw a subsequence flaw.

Consider again message (2) of the Needham Schroeder protocol of sub-
section 4.1.

(2) S ! A : E(Kas : Na;B;Kab; E(Kbs : Kab;A))

Suppose that this has ciphertext C0C1C2C3::: and that all components have
length one block. Then E(Kas : Na;B) = C0C1C2. But such a message is
of the form A might expect to receive in message (3) when B has initiated
the protocol. Thus, he can be fooled into accepting the publicly knownNa

as a key. Thus use of CBC mode of encryption with this protocol will not
suffice.

Stubblebine andGligor [107] havedemonstrated attacks via cut and paste
methods where the ciphertexts of messages are split and conjoined appro-
priately to form the ciphertexts of other messages (which should only be
formable by those in possession of the appropriate key). This is illustrated
in figure 9.

We see that the spliced ciphertextmessage decrypts to appropriate plain-
text except for the block immediately after the join. Denoted by X in the
figure, it is likely that it is random gibberish but in some cases that may be
precisely what is expected (e.g. if the block is expected to contain a ran-
dom number). Mao and Boyd have also highlighted the dangers of CBC
use [83], pointing out that in many cases it will be possible to determine
precisely what value X takes if the intruder has knowledge of the plain-
text block corresponding to the ciphertext immediately after the ciphertext
join. In the example shown in figure 9, we have

X = C3  dK(C 0

2)

X = C3  (C 0

1  P 0

2)
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Figure 9: Splicing Attack on Cipher Block Chaining
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and so if P 0

2 is known then so is X since the ciphertext blocks are publicly
broadcast.

It is dangerous to believe that attacks of the above form lose their power
if the plaintext block is not publicly known or guessable; such blocks will
generally be known to the parties communicating in a protocol who may
misuse their knowledge (see below).

Of particular note are initialisation attacks— attacks that involve mod-
ulation of the initialisation vector C0. Consider a ciphertext that starts with
C0C1 and suppose thatweknow that the initial plaintext blockwasP1. Then

P1 = C0  dK(C1)

Now for any desired block value W we have

W = W  P1  P1

since anything XORedwith itself is 0. And so we have (substituting for the
second P1)

W = W  P1  (C0  dK(C1))

and so

W = C 0

0  dK(C1)

where C 0

0 = W  P1  C0 and so C 0

0C1 is the ciphertext corresponding
to plaintext W . In this fashion we can replace the initial known plaintext
block P1 with our own choice W . This is potentially very disturbing since
the rest of the message is unaffected.

As an example of the danger of this attack, consider again message (2)
of the Needham Schroeder protocol. We can record message (2) of a previ-
ous run of this protocol between A and B. In particular we can replay the
old message (2) after modifying the initial block from the old (and known)
value of the nonce Na with the new one issued in the current run of the
protocol. Thus, we can impersonate the trusted server S. Now consider
the contents of message (3) of that protocol:

(3) A ! B : E(Kbs : Kab;A)

Since A knows the key in message (3), he can create a new message (3)
whenever he likes for any key value he likes. One might argue that if A

wants tomisbehave he cando somuchmore simply than this but thismisses
the point: Bworks on the assumption that the contents ofmessage (3)were
created by the trusted server S. This is clearly not the case.
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We have illustrated these attacks using the Needham Schroeder pro-
tocol simply because it is the best known and simple to understand. The
above forms of attack present problems with a good number of protocols.

We have illustrated various forms of cryptoalgorithm dependent flaws.
The above description is by no means exhaustive. Indeed, other modes of
encryption have given rise to problems in implemented protocols. In par-
ticular, Propagating Cipher Block Chaining (PCBC) mode was shown to
be deficient and led to the Kerberos V.5 protocol adopting CBC mode (V.4
used PCBC). Criticisms of the Kerberos protocols were given by Bellovin
and Merritt [14]. Other aspects relating to Cipher Block Chaining can be
found in the recent paper by Bellare et al [13].

4.5 Binding Attacks

In public key cryptography the integrity of the public keys is paramount.
Suppose your public key isKy and an intruder’s public key isKi. The in-
truder is able to decrypt anymessages encryptedwithKi. Principals wish-
ing to convey information to you secretly will encrypt using what they be-
lieve is your public key. Thus, if the intruder can convince others that your
public key isKi then theywill encrypt secret information usingKi and this
will be readable by the intruder.

Thus, the principals in charge of distributing public keys must ensure
that the above cannot occur; there must be a verifiable binding between a
public key and the corresponding agent. In some authentication protocols,
this has not been achieved. Consider the following protocol:

(1) C ! AS : C; S;Nc

(2) AS ! C : AS;E(Kas1 : AS;C;Nc;Ks)

Here, a prospective client C wants to communicate with S and needs the
public key ofS. The certification authorityAS is the repository for principals’
public keys. C sends a message (1) to request the public key of S. He in-
cludes a nonce Nc to ensure the freshness of the expected reply.

AS replies with message (2). The principal identifier AS is sent in the
clear to tell C which public key to use to decrypt the following ciphertext.
The components of the encrypted part signify that themessagewas created
by AS, that this message has been created in response to a request from a
client C with nonce Nc and that the public key requested isKs. However,
the reader may note that there is nothing in the encrypted part of message
(2) that assures the recipient that the key is really the public key of S. This
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leads to the following parallel session attack:

(1:1) C ! Z(AS) : C; S;Nc

(2:1) Z(C) ! AS : C;Z;Nc

(2:2) AS ! Z(C) : AS;E(Kas1 : AS;C;Nc;Kz)
(1:2) Z(AS) ! C : AS;E(Kas1 : AS;C;Nc;Kz)

Here the intruder Z intercepts the initial message from C toAS and simply
replaces the identifier of the intended server S with his own identifier Z:

and sends the result toAS asmessage 2.1. AS, believing thatC has reques-
ted Z’s public key, replies with message (2.2). Z simply allows this to be
received by C as message (1.2). C performs appropriate decryptions and
checks and believes that he has received the public key of S. This attack
(and a similar one) was identified by Hwang and Chen [61]. They suggest
that this problem can be solved by explicitly including the identifier of the
requested server S in Message (2). The protocol then becomes:

(1) C ! AS : C; S;Nc

(2) AS ! C : AS;E(Kas1 : AS;C;Nc; S;Ks)

Problems with signing after encryption arose some time ago with the
draft CCITT X.509 standard. L’Anson andMitchell [12] showed certain de-
ficiencies in the protocols as did Burrows, Abadi and Needham [27] (see
6.8.1).

4.6 Encapsulation Attacks

In a great many protocols a principalAmay arrange for a second principal
B to encrypt some data chosen by A. As a rule such data should be re-
garded as ’user data’ and carefully considered as a vehicle for cryptosys-
tem dependent attacks. As a simple example consider the following key
translation protocol due to Davis and Swick [43]:

(1) B ! A : E(Kbt : A;msg)
(2) A ! B : E(Kbt : A;msg); B
(3) T ! A : E(Kat : msg;B)

In this protocol all participants share keyswith the trusted serverS. The
server acts as intermediary. A accepts message (3) as proof that B sent the
message msg to him via S. The reversal of principal and message com-
ponents appears to be made to introduce asymmetry (and hence protect
against reflections). However, if msg begins with a principal identifier C

34



then message (3) may be passed off as a message (1) but orginated by A

and intended for C. Since B chooses the contents of msg he can arrange
this. Can we protect against this by means of some integrity check. Gener-
ally the answerwill be yes but this is notwithout its pitfalls. Ifmessages are
of variable length then in many cases, it may be possible to embed a whole
message (including CRC check say) in the msg component. If CBC mode
of encryption is ued then a perfected formed encrypted message could be
extracted (this depends on how initial vectors are chosen).

Note that user data is very common, typically in the form of principal
identifiers or nonces and the like. Thus if a plaintext message P were 3
blocks long (including checks) and another message had a freely chosen
nonce N then if this nonce is 3 or more blocks in length then a CBC encap-
sulation attack becomes possible. Similar attacks will hold when a stream
cipher is used (but here it will generally have to be the initial segment of a
message).

4.7 Other Forms of Attack

The above forms of attackmay be regarded as representative of the dangers
involved in designing authentication protocols. In general, they do not re-
quire a great deal of mathematical sophistication to comprehend. More
sophisticated attacks that take advantage of particular algebraic properties
of the cryptoalgorithm when used in the context of authentication proto-
cols are given in the excellent paper by Judy Moore [88].

In addition, more traditional forms of attack such as cryptanalysis can
be launched on several protocols. Mao and Boyd [84] have recently invest-
igated ways of protecting against such attacks. Paul Kocher’s recent dis-
covery of an attack on RSA via timing analysis might well have profound
and more general impact [76].

Aspects of redundancy have also been addressed by Gong [53]. Pro-
tocols using passwords have been addressed by several authors [15], [56].
Carlsen [32] has a category called elementary flaws which is used to group
protocols which are breakable with little effort because they provide little
or no protection. The (unintentionally flawed) CCITT X.509 protocol and
the (intentionally flawed— it was intended as a example to highlight defi-
ciencies in the use of BAN logic) Nessett protocol [92] are included in this
category. It is a matter of opinion as to when a flaw is considered element-
ary and the choice is somewhat arbitrary. Clark and Jacob have discovered
a flaw similar to the CCITT X.509 one in a recently published protocol [36].
Anderson and Needham provide introductory accounts of how protocols
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may fail and provide good advice on how to construct secure protocols
[10, 11]. Anderson also provides a highly readable and somewhat distress-
ing account of how management aspects as well as technical aspects can
cause systems to fail [5].

4.8 Conclusions

Protocol construction might seem a simple task; protocols often comprise
only a fewmessages. This is, however, clearly deceptive and the examples
we have shown above indicate that the invention of secure protocols is a
remarkably subtle affair.

The current explosion in distributed system development and network
usagemeans that there is a pressing need for a framework and tool support
for the rigorous development and analysis of new security protocols. Al-
though significant advances have beenmade in recent years, there is clearly
some way to go! As Lowe has shown [80] the same mistakes seem to be
made time after time.

There are, however, signs that the community is getting to grips with
thematter at hand. There is a gradual realisation that it is thewhole system
that is important and that a considerable number of factors need to be taken
into account. Anderson emphasises the management aspects in banks [5].
Abadi and Needham take a strong practical engineering approach provid-
ing ten useful rules of thumb in their general design guide [1].

The subtlety of some attacks indicates that a systematic (and automated)
approach to analysis is essential. The next section indicates some of the
methods and tools that have been used to date.
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5 Formal Methods for Analysis

In this sectionwe review themajor approaches to the specification and ana-
lysis of authentication protocols. Several methods have been tried, each
with their strengths and weaknesses. We address them as follows:

 the use of existing formal methods to specify and analyse authentic-
ation protocols;

 the use of expert systems to analyse particular scenarios;

 the use of logics of knowledge and belief;

 the use of algebraic term-rewriting systems.

This is the classification used by Rubin andHoneyman [98] in their review
article.

As indicated by Rubin and Honeyman, the above methods as imple-
mented are all independent of the cryptographic mechanism used. This is
of course a strength since in producing a protocol specification we might
not yetwish to specify a particular implementationalmechanism. However,
it also highlights a gap in the formal support for protocol development:
tool support for the identification of cryptosystem dependent insecurities.

5.1 Extant Formal Verification Systems

Early formal efforts concentrated on the use of existing formal specifica-
tion and verification systems. This is hardly surprising; a great deal of ef-
fort was expended by the security community (developers, evaluators and
Government agencies) to use formal specification and verification tech-
niques for many aspects of security. Toolsets had been developed, or were
being developed, and use could be made of the experience gained in other
areas.

The first such attempt appears to be that of Kemmerer, who in 1987 used
the Ina Jo development environment to specify and prove properties of a
cryptographic system [72], [73]. The attempt was successful and demon-
strated that proof technology could be brought to bear successfully onprob-
lems in the field. Effectively, security of the system is expressed as state
invariants which are then shown to be maintained under controlled trans-
itions. The work was concerned with the correctness of the system. There
was no attempt to model, for example, an active intruder on the network.
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Boyd andMao have used theZ specification language to specify aspects
of a key distribution systems [25]. No proofs are attempted. The Z lan-
guage has been used in many areas of security outside of authentication.
Within the UK it is often the language of choice for specification for Gov-
ernmental agencies. Details of these uses are omitted here.

More recently, the B notation has been use to specify authentication sys-
tems [17]. This method shows some promise as tool support emerges.

The use of such state-based techniques seems of limited use. There is
little or no attempt to model an attacker (Kemmerer models a passive in-
truder, Mao and Boyd model none). There is an implicit assumption that
the functionality specified is sufficient to maintain security. Without an ex-
plicit statement of what attacks are possible it is impossible to see whether
the specified operations actually do maintain security. Such methods are
primarily concerned with the preservation of correctness rather than secur-
ity.

Other formal specification techniques have been used for authentica-
tion protocols, e.g. LOTOS has been used to specify the X.509 directory
framework. Finite-state machines have also been used by several authors
for the specification and analysis of protocols. None of these uses provides
analytical support for security in the face of an active intruder. Rubin and
Honeyman [98] provides some details.

Recent work by Formal Systems Europe and Programming Research
Group at Oxford [97] has used verification techniques for process algebras
to analyse security protocols. In particular work has been carried out using
CSP. Principals in the protocol are specified as CSP processes operating in
parallel. In addition, a general attacker is added that can carry out actions
that may reasonably be expected of an attack (listening, faking, replaying
etc.)

An authentic run of the protocol is specified (the protocol terminates
with success only if the message sequence is what the protocol intended).
The implementation of the protocol which comprises the various principals
as agents must now be shown to satisfy the specification. The Failures Di-
vergences Refinement (FDR) tool is used to check possible traces of the im-
plementation against the specification. Roscoe and Gardiner have created
a variety of heuristics to prune down the search space to make the model
checking feasible.

The results have been very promising (subtle and hitherto unknown
protocol flaws have been discovered using the approach). For example,
17 years after its publication a flaw was found in the Needham Schroeder
Public Key protocol [79]. See also [81]. Roscoe and Gardiner provide an
account of the initial results of their research in [97]. The extension of the
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work to handle algebraic elements is also available [50] [51].
A particularly pleasing part of the work is the wilingness to investigate

the operation of protocols under the relaxation of trust in principals (or the
weakening of assumptions).

5.2 The Use of Logics

Logics have seen widespread use in the analysis of authentication proto-
cols. The logics used have been principally of two types:

 epistemic logics (that is, logics of knowledge);

 doxastic logics (that is, logics of belief).

Traditionally, issues of trust have been dealt with using belief logics and
issues of security have been dealt with using knowledge logics.

Syverson [108] provides a good overview of how logics can be used for
the analysis of authentication protocols. He indicates that it is possible to
reason about both trust and security using either approach but that in prac-
tice he has found that epistemic logics are more efficient.

The greatest amount of effort has been expended in the use of belief lo-
gics and it is to this that we turn our attention first.

5.2.1 BAN Logic

In 1989, Burrows, Abadi andNeedhampublishedwhat is probably themost
influential document in authentication literature [27]. They provided a lo-
gic (referred to universally asBAN logic) to describe the beliefs of principals
involved in a protocol. The set of beliefs held by a principal changes as he
receives protocol messages. The authors provide a set of inference rules
that define how the set of beliefs changes. Thus, given an initial set of be-
liefs the logic allows the analyst to determine what the final belief state is.

BAN logic has a special place in authentication history; it represents the
first attempt to provide a formal language to describe what the assumptions
of a protocol are and also what the goals are. In general, protocol descrip-
tions have generally statedwhat the principals should do and not what they
were trying to achieve.

The logic has stimulated a great deal of controversy. Nessett [92]
provides an example of a clearly insecure protocol which is nevertheless ac-
cepted as secure by the BAN logic. Effectively, a shared keyK is encrypted
under a private key and broadcast to the network. Since the corresponding
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public key is generally known, the message can be decrypted by all to ob-
tain the secret shared key. In their rejoinder [28] the BAN authors point out
that their logic dealt with trust and not confidentiality, stating that the ob-
vious publication of the shared key in the indicated manner contradicted
a belief in its suitability for use.

This would appear correct, but the situation is still rather unsatisfying.
Additional problems have been identified. Snekkenes [103] showed that
permutations of protocol steps left the results unaffected.

It is possible that a principal may decrypt some random text to obtain
some putative ”formula” using some key that he holds. For the decryp-
tion to succeed the result of decryption must be meaningful in some way.
Gong, Needham and Yahalom [57] introduce the notion of recognisability
in their logic (general referred to as GNY) to cater for this. Also, the ori-
ginal BAN logic assumes that there is sufficient redundancy in a message
for a principal to detect a message he himself originated (thus reflection
attacks are assumed to be catered for outside of BAN analysis). GNY lo-
gic makes origination explicit. GNY allows preconditions to be attached to
rules to achieve different levels of belief. Thus, different levels of trust are
allowed by the logic. Most BANwork concentrates on the analysis of proto-
cols. When used for development, problemsmay arise because completely
infeasible protocols may be specified that nevertheless achieve the desired
goals according to the protocol (e.g. by specifying that principals sendmes-
sages that contain information they simply do not have). This is dealt with
by Gong [54] whose extended logic requires that principals make use only
of information that is legitimately available to them.

Boyd and Mao [25] provide many criticisms of BAN logic (and other
descendants): the formalisation approach is somewhat vague; it allows be-
liefs thatmay legitimately be regarded as nonsensical (e.g. belief in a nonce)
and themethod of determining assumptions is adhoc. Instead they provide
a language for describing protocols and a partially mechanised approach
to idealisation. As pointed out by Rubin and Honeyman [98] there is still
informal judgement atwork in the idealisation process. The reasoning pro-
cess is backwards (rather than forwards as in BAN logic), thus the reason-
ing proceeds from the desired conclusion to derive initial beliefs.

There have been other belief-logic approaches. Boyd and Mao have in-
troduced a non-monotonic logic of belief (i.e. one which allows previously
held beliefs to be revoked) [25]. Campbell et al [31] introduce the notion
of uncertainty into BAN by assigning probabilities to assumptions and to
rules of inference. This allows conclusions drawn to be treated as uncer-
tain. Linear programming methods are used to determine the precise
bounds of probabilities.
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Kessler and Wedel modify BAN to allow the incorporation of plaintext
messages [75]. This widens the scope of what can be analysed. They also
replace the nonce-verification rule of BANwith a ”has recently said ” rule.
A recipient of a message no longer believes that the sender of a message
believes the contents, rather he now just deduces that the sender sent it re-
cently. A rule is introduced to allow a principal to try keys that he has (or
can generate) without actually believing that the key is appropriate for the
message in question. Kessler andWedel’smost important suggestion is the
incorporation of a passive eavesdropper into the system. By the determin-
ation (by closure) of information available to such an intruder, certain types
of confidentiality breaches can be detected (e.g. the the Nessett flaw). The
authors provide an example of BAN’s inability to deal with a parallel ses-
sion attack. Recent work by Boyd and Mao has indicated that care needs
to be taken when cleartext is omitted [24] but Oorschot disputes the views
they take [121].

Overall, BANhasproved of substantial use. It often seems like amarked
improvement on its successors which have added conceptual apparatus to
deal with its perceived deficiencies at the expense of considerable increase
in complexity. This is indeed the view of Roger Needham (commenting on
GNY logic). Kessler andWedel note that BAN extensions tend to be exten-
sions to the original BAN logic, not to its successors. BAN logic has un-
earthed many protocol flaws and provides a very cost-effective means of
detecting (some) flaws. In terms of value for money it has much to be said
for it. The rule would appear to be ”Try BAN first; it doesn’t cost a great
deal and it often produces results.” The method is clearly not without its
difficulties; it should be regarded as a useful tool. BAN logic deals with
trust; it does not deal with confidentiality. Since confidentiality is essen-
tial to maintaining authentication other methods will need to be brought
to bear for system security.

An important aspect of the BAN approach is that it forces the analyst
to be precise about what the goals and assumptions of a protocol actually
are. It is often very difficult to determine these from many specifications.

5.2.2 Other Logics

General purpose logics (or adapted forms) have also been employed in the
services of authentication. Bieber [16] provides a quantified extension called
CKT5 of the modal logic KT5 (together with send and receive operators)
and uses it to couch and prove authentication properties. Carlsen [33] in-
dicates how various deficiencies of the standard notation can be overcome
by providing rules for a standard protocol specification into a CKT5 logic
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specification. Snekkenes has shown that the sort of analysis carried out in
the Bieber method is insufficient to detectmulti-role flaws, i.e. where a prin-
cipal does not restrict himself to playing just one agent. He also suggests
how to extendBieber’s approach to copewith theproblem. Snekkenes notes
in his doctoral dissertation that principal operation is couched in rather
complex formulae. Snekkenes has also carried out significant work that
uses the HOL (Higher Order Logic) specification language and tool sup-
port to specify and prove properties about protocols [105].

5.3 Expert Systems and Algebraic Rewriting Systems

There have been a few notable attempts to provide automated analysis of
protocols via search techniques. Early work by Millen et al led to the de-
velopment of the Interrogator tool [87]. The user guide provides an up-
dated account of the tools facilities [86]. Protocols are specified in a prolog-
based syntax. Knowledge of the various principals is built up and recorded
as the protocol progresses. The tool, with guidance from the user, can be
used to investigate ways in which states can be reached where security is
compromised, i.e. start from an insecure state and attempt to see how you
could have got there. The tool appears usable and has been used to find
flaws in protocols. It is one of the tools included in a comparative study
of three systems [74]. The comments there indicate that the tool at present
has problems in discovering flaws in which a principal takes on more than
one role (if so this is a weakness sharedwith other systems, see [104]). Also
the paper notes

There are, in general, many different ways to specify the same
protocol, which are ”correct” in some sense. Yet they lead to dif-
ferent running times, and some may exclude possible penetra-
tions.

Search-path pruning heuristicsmay lead to somepenetrations beingmissed.
Snekkenes [105] points out that the Interrogator does not allow the identi-
fication of guess-based attacks. BAN logic does not address these either.

Meadows has developed an analysis tool based on term rewriting (the
NRL Protocol Analyser). The specification language is again prolog-based
and fairly easy to follow. Principals possess beliefs and also know vari-
ous words which make upmessages. Receipt of a message causes the state
of the system to change. Words and beliefs held by a principal occur as a
result of receiving messages. Various rewrite rules are specified as part of
the protocol (e.g. the result of encrypting and then decrypting some plain
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text with the same key produces te original plaintext). The tool attempts
to find scenarios to reach an insecure state. The tool looks technically ef-
fective but Rubin and Honeyman [98] report that these types of tools are
rather difficult to use by designers. Interestingly, the tool failed to find a
flaw in the TMN protocol due to the way in which the properties of the
RSA algorithm had been couched [74]. The analysis process is not entirely
automated; lemmas for the tool to prove must be generated by the user.
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6 A Library of Protocols

6.1 Symmetric Key Protocols Without Trusted Third Party

6.1.1 ISO Symmetric Key One-Pass Unilateral Authentication Protocol

This protocol [64] consists of a single message from one principal A to a
second B. A secret key Kab is assumed to be shared between these two
principals.

(1) A ! B : Text2; E(Kab : [TajNa]; B; T ext1)

The use of the text fields is application specific. There is a choice between a
sequence number Na and a timestamp Ta which ’depends on the technical
capabilities of the claimant and the verifier as well as the environment.’

6.1.2 ISO Symmetric Key Two-Pass Unilateral Authentication Protocol

In this protocol the claimant A is authenticated by the verifier B by the
means of challenge-response. The protocol is fairly familiar:

(1) B ! A : Rb; Text1
(2) A ! B : Text3; E(Kab : Rb;B; Text2)

HereRb is a random number. On receiving message (2)B decrypts the en-
crypted component and checks for the presence of both B and Rb issued
in message (1). At the end of the protocol B may conclude that A is op-
erational (or at least was the originator of message (2) after he (B) issued
message (1)).

6.1.3 ISO Symmetric Key Two-Pass Mutual Authentication

This protocol allows each communicating principal to establish that the other
is operational. Again, a secret key is assumed to be shared between A and
B.

(1) A ! B : Text2; E(Kab : [TajNa]; B; T ext1)
(2) B ! A : Text4; E(Kab : [TbjNb]; A; T ext3)

This protocol is in fact two independent uses of the one-pass authentication
protocol (see 6.1.1). Use of the text fields is suggested as a way of binding
the two messages.

Again, the use of sequencenumbers or timestamps ’dependson the tech-
nical capabilities of the claimant and the verifier as well as the environ-
ment.’
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6.1.4 ISO Symmetric Key Three-Pass Mutual Authentication

Here mutual authentication is achieved by the use of random numbers Ra

and Rb.

(1) B ! A : Rb; Text1
(2) A ! B : Text3; E(Kab : Ra;Rb; B; Text2)
(2) B ! A : Text5; E(Kab : Rb;Ra; Text4)

On receiving message (2) B checks for the presence of both B and Rb sent
in message (1). On receiving message (3) A checks both Rb and Ra are the
ones sent in message (1) and (2) respectively.

6.1.5 Using Non-Reversible Functions

In this protocol, the responding principal is trusted to generate a new ses-
sion keyK. On receiving message (2) B decrypts and then checks that the
correct value of f(Rb) has been sent. He forms a one-way hash value of
the other nonceRa and encrypts it under the newly distributed keyK and
sends the result to A, who similarly decrypts and checks the value is cor-
rect.

(1) B ! A : B;Rb

(2) A ! B : A;E(Kab : f(Rb); Ra; A;K)
(3) B ! A : B;E(K : f(Ra))

6.1.6 Andrew Secure RPC Protocol

This protocol has been shown to be flawed. It is intended to distribute a
new session key between two principals A and B. In the final message (4)
the nonce N 0b is a handshake number to be used in future messages.

(1) A ! B : A;E(Kab : Na)
(2) B ! A : E(Kab : Na + 1; Nb)
(3) A ! B : E(Kab : Nb + 1)
(4) B ! A : E(Kab : K 0ab;N 0b)

The problem with this protocol is that there is nothing in message (4)
that A knows to be fresh. An intruder can simply replay this message at
a later date to get A to accept it as the final message of a protocol run (i.e.
replace the final message sent by B).

There is also a parallel session attack: an intruder can playB as respon-
der and initia
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6.2 Authentication Using Cryptographic Check Functions

All ISOprotocols in this section can be found inPart 4 of the ISO 9798 Stand-
ard [66]. The keyed function fKab(X) returns a hashed value for data X in
a manner determined by the key Kab.

6.2.1 ISO One-Pass Unilateral Authentication with CCFs

(1) A ! B : [TajNa]; B; T ext2; fKab([TajNa]; B; T ext1)

6.2.2 ISO Two-Pass Unilateral Authentication with CCFs

(1) B ! A : Rb; Text1
(2) A ! B : Text3; fKab(Rb;B; Text2)

6.2.3 ISO Two-Pass Mutual Authentication with CCFs

(1) A ! B : [TajNa]; T ext2; fKab([TajNa]; B; T ext1)
(2) B ! A : [TbjNb]; T ext4; fKab([TbjNb]; A; T ext3)

This protocol is two independent uses of the single pass unilateral authen-
tication protocol.

6.2.4 ISO Three-Pass Mutual Authentication with CCFs

(1) B ! A : Rb; Text1
(2) A ! B : Ra; Text3; fKab(Ra;Rb; B; Text2)
(3) B ! A : Text5; fKab(Ra;Ra; Text4)

6.3 SymmetricKeyProtocols InvolvingTrustedThirdParties

6.3.1 Needham Schroeder Protocol with Conventional Keys

This is most celebrated (or best-known) of all Security Protocols. The ori-
ginal presentation is given in [90]. The more usual notational conventions
are adopted here.

(1) A ! S : A;B;Na

(2) S ! A : E(Kas : Na;B;Kab; E(Kbs : Kab;A))
(3) A ! B : E(Kbs : Kab;A)
(4) B ! A : E(Kab : Nb)
(5) A ! B : E(Kab : Nb  1)
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The most famous attack is by Denning and Sacco [45]. There is another
potential weakness which depends on the nature of the assumptions made
about cryptographic support.

The main problem with this protocol is that B has no way of ensuring
that the message (3) is fresh. An intruder can compromise a key and then
replay the appropriate message (3) to B and then complete the protocol.

If a stream cipher is used then the difference between the ciphertexts
in (4) and (5) is very small (one bit) and this allows a simple attack to be
launched. The reader is referred to [21]. See also section 4.4.1.

6.3.2 Denning Sacco Protocols

Denning and Sacco suggested fixing the freshness flaw in the Needham
Schroeder protocol above by the use of timestamps. The protocol replaces
the first three messages with:

(1) A ! S : A;B

(2) S ! A : E(Kas : B;Kab; T; E(Kbs : A;Kab; T ))
(3) A ! B : E(Kbs : A;Kab; T )

T is a timestamp. B can check for timeliness of message (3) (it must be
within some window about his current local clock time).

6.3.3 Otway-Rees Protocol

TheOtway-Rees Protocol [94] is awell-knownprotocol that has been shown
to be flawed. The notation of the original differs from common usage and
so the form presented here is that given in [27].

(1) A ! B : M;A;B;E(Kas : Na;M;A;B)
(2) B ! S : M;A;B;E(Kas : Na;M;A;B); E(Kbs : Nb;M;A;B)
(3) S ! B : M;E(Kas : Na;Kab); E(Kbs : Nb;Kab)
(4) B ! A : M;E(Kas : Na;Kab)

In the aboveM is a nonce. In (1) A sends to B the plaintextM;A;B and an
encryptedmessage readable only by the server S of the form shown. B for-
wards the message to S together with a similar encrypted component. The
server S decrypts the message components and checks that the compon-
ents M;A;B are the same in both messages. If so, then it generates a key
Kab and sends message (3) to B which forwards part of the message to A.
A and B will use the key Kab only if the message components generated
by the server S contain the correct nonces Na and Nb respectively.
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An attack on the protocol is given below:

(1) A ! Z(B) : M;A;B;E(Kas : Na;M;A;B)
(4) Z(B) ! A : M;E(Kas : Na;M;A;B)

In this attack principal B is fooled into believing that the tripleM;A;B is
in fact the new key. This triple is of course public knowledge. This is an
example of a type flaw.

6.3.4 Amended Needham Schroeder Protocol

In 1987 Needham and Schroeder [91] suggested a fix to the original Need-
ham Schroeder Protocol. This is given below.

(1) A ! B : A

(2) B ! A : E(Kbs : A;Nb0)
(3) A ! S : A;B;Na;E(Kbs : A;Nb0)
(4) S ! A : E(Kas : Na;B;Kab; E(Kbs : Kab;Nb0; A))
(5) A ! B : E(Kbs : Kab;Nb0; A)
(6) B ! A : E(Kab : Nb)
(7) A ! B : E(Kab : Nb  1)

The protocol is thought to be secure (there would appear to be a crypto-
graphic implementation dependent flaw; namely the bit flipping flaw de-
scribed by Boyd [21]).

6.3.5 Wide Mouthed Frog Protocol

The following protocol is given in [27]. It is due to Burrows.

(1) A ! S : A;E(Kas : Ta;B;Kab)
(2) S ! B : E(Kbs : Ts; A;Kab)

A is trusted to generate a session key Kab. On receiving message (1) S

checks whether the timestamp Ta is "timely" and, if so, forwards the key
to B with its own timestamp Ts. B checks whether the message (2) has a
timestamp that is later than any other message it has received from S. The
protocol is flawed (possibly in several ways).

The first way it can be attacked is by simply replaying the first message
within an appropriate time window - this will cause reauthentication since
S will produce a new second message with an updated timestamp. The
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second method of attack allows one session to be recorded and then the at-
tacker continuously uses S as an oracle until he wants to bring about reau-
thentication between A and B.

( 1 ) A ! S : A;E(Kas : Ta;B;Kab)
( 2 ) S ! B : E(Kbs : Ts; A;Kab)
(10 ) Z(B) ! S : B;E(Kbs : Ts; A;Kab)
(20 ) S ! Z(A) : E(Kas : T 0s; B;Kab)
(100) Z(A) ! S : A;E(Kas : T 0s; B;Kab)
(200) S ! Z(B) : E(Kbs : T 00s; A;Kab)

and now Z is in a position to replay appropriate messages to A and B

(1) A ! Z(S) : E(Kas : T 0s; B;Kab)
(2) Z(S) ! B : E(Kbs : T 00s; A;Kab)

There is some ambiguity in the available descriptions as to how timestamps
are checked. It would seem sensible for a recipient A or B to impose some
type of time window on the timestamps of messages received from S (as
well as checking the message it has received from S is timestamped later
than any other it has received from S). The efficacy of the attack is not com-
promised. Z simply plays ping-pong with S until it wants to rearrange au-
thentication between A and B. Continuous use of S as a timestamp oracle
ensures that all messages are sufficiently up to date.

6.3.6 Yahalom

The Yahalom protocol is given below. It has been shown to be flawed by
several authors. There are also some attacks based on assumptions about
cryptographic implementation which were noticed by Clark and Jacob
(many protocols are equally susceptible).

(1) A ! B : A;Na

(2) B ! S : B;E(Kbs : A;Na;Nb)
(3) S ! A : E(Kas : B;Kab;Na;Nb); E(Kbs : A;Kab)
(4) A ! B : E(Kbs : A;Kab); E(Kab : Nb)

One attack on the Yahalom protocol is given below:

(1) Z(A) ! B : A;Na

(2) B ! Z(S) : B;E(Kbs : A;Na;Nb)
(3) ! : Omitted

(4) Z(A) ! B : E(Kbs : A;Na;Nb); E(Na;Nb : Nb)

Other attacks can be mounted on the protocol. Attacks on a modified form
of this protocol can be found in [109].
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6.3.7 Carlsen’s Secret Key Initiator Protocol

This protocol is fairly self-explanatory and may be found in [34].

(1) A ! B : A;Na

(2) B ! S : A;Na;B;Nb

(3) S ! B : E(Kbs : Kab;Nb; A); E(Kas : Na;B;Kab)
(4) B ! A : E(Kas : Na;B;Kab); E(Kab : Na); N 0b

(5) A ! B : E(Kab : N 0b)

6.3.8 ISO Four-Pass Authentication Protocol

(1) A ! B : TV Pa;B; Text1

(2) S ! A :
Text4; E(Kas : TV Pa;Kab; B; Text3);
E(Kbs : [TsjNs]; Kab; A; Text2)

(3) A ! B :
Text6; E(Kbs : [TsjNs]; Kab; A; Text2);
E(Kab : [TajNa]; B; T ext5)

(4) B ! A : Text8; E(Kab : [TbjNb]; A; T ext7)

6.3.9 ISO Five-Pass Authentication Protocol

(1) A ! B : Ra; Text1
(2) B ! S : R0b; Ra; A; Text2
(3) S ! B : Text5; E(Kbs : R0b;Kab; A; Text4); E(Kas : Ra;Kab; B; Text3)
(4) B ! A : Text7; E(Kas : Ra;Kab; B; Text3); E(Kab : Rb;Ra; Text6)
(5) A ! B : Text9; E(Kab : Ra;Rb; T ext8)

6.3.10 Woo and Lam Authentication Protocols

The following series of one-way authentication protocols are similar. Some
are known to be incorrect. The published accounts of these protocols are
given in [118]. Woo and Lam state that a protocol is correct if

"whenever a responder finishes execution of the protocol, the
initiator of the protocol is in fact the principal claimed in the ini-
tial message".

Woo and Lam start with a protocol f and progressively simplify it to .
The final simplification leads to a flawed protcol. Note: in their 1994 paper
[118] Woo and Lam state that they assume that principals can detect the
replay of messages they have created.
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The protocol f .

(1) A ! B : A

(2) B ! A : Nb

(3) A ! B : E(Kas : A;B;Nb)
(4) B ! S : E(Kbs : A;B;Nb; E(Kas : A;B;Nb))
(5) S ! B : E(Kbs : A;B;Nb)

The protocol 1.

(1) A ! B : A

(2) B ! A : Nb

(3) A ! B : E(Kas : A;B;Nb)
(4) B ! S : E(Kbs : A;B;E(Kas : A;B;Nb))
(5) S ! B : E(Kbs : A;B;Nb)

The protocol 2.

(1) A ! B : A

(2) B ! A : Nb

(3) A ! B : E(Kas : A;Nb)
(4) B ! S : E(Kbs : A;E(Kas : A;Nb))
(5) S ! B : E(Kbs : A;Nb)

The protocol 3.

(1) A ! B : A

(2) B ! A : Nb

(3) A ! B : E(Kas : Nb)
(4) B ! S : E(Kbs : A;E(Kas : Nb))
(5) S ! B : E(Kbs : A;Nb)

The protocol .

(1) A ! B : A

(2) B ! A : Nb

(3) A ! B : E(Kas : Nb)
(4) B ! S : E(Kbs : A;E(Kas : Nb))
(5) S ! B : E(Kbs : Nb)
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The protocol  can be attacked as follows:

(1) Z(A) ! B : A

(2) B ! Z(A) : Nb

(3) Z(A) ! B : G

(4) B ! Z(S) : E(Kbs : A;G)
(10) B ! Z(R) : B

(20) Z(R) ! B : Z;E(Kzs : Nb)
(30) B ! Z(R) : E(Kbs : Z;E(Kzs : Nb))
(40) Z(B) ! S : E(Kbs : Z;E(Kzs : Nb))
(50) S ! Z(B) : E(Kbs : Nb)
(5) Z(S) ! B : E(Kbs : Nb)

Here Z waits for B to start up a protocol run at (1’) with some principal
R to complete the attack.

Alternatively it may be attacked as follows:

(1) Z(A) ! B : A

(10) Z ! B : Z

(2) B ! Z(A) : Na

(20) B ! Z : Nz

(3) Z(A) ! B : G

(30) Z ! B : E(Kzs : Na)
(4) B ! S : E(Kbs : A;G)
(40) B ! S : E(Kbs : Z;E(Kzs : Na))
(50)
(5) S ! B : E(Kbs : Na)

These protocol attacks are indeed given in [118]. However, the proto-
colswould appear to be subject to some straightforward replay attacks. For
example, in 3

(1) Z(A) ! B : A

(2) B ! Z(A) : Nb

(3) Z(A) ! B : Nb

(4) B ! Z(S) : E(Kbs : A;Nb)
(5) Z(S) ! B : E(Kbs : A;Nb)

Similar attacks may be mounted against 1 and 2 etc. as stated above
Woo and Lam assume explicitly that principals can detect replays of mes-
sages they have created. Even if this were so (and we would prefer the
mechanism to be part of the protocol, a point raised also by Lowe [80]) the
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security of the protocol would still dependon the properties of the cryptosys-
tem used. Thus, Woo and Lam note that  is not susceptible to the above
form of attack. This is not necessarily the case. If we assume that the sym-
metric cipher is commutative then we can carry out the following attack:

( 1 ) B ! Z : B

(2:1) Z(A) ! B : A

(2:2) B ! Z(A) : N

(1:2) Z ! B : E(N : Kzs)
(1:3) B ! Z : E(E(N : Kzs) : Kbs)
(2:5) Z(S) ! B : E(N : Kbs)

6.3.11 Woo and LamMutual Authentication protocol

Here is a protocol due toWoo and Lam [118] that combinesmutual authen-
tication and key distribution.

(1) P ! Q : P;N1
(2) Q ! P : Q;N2
(3) P ! Q : E(Kps : P;Q;N1; N2)
(4) Q ! S : E(Kps : P;Q;N1; N2); E(Kqs : P;Q;N1; N2)
(5) S ! Q : E(Kps : Q;N1; N2; Kpq); E(Kqs : P;N1; N2; Kpq)
(6) Q ! P : E(Kps : Q;N1; N2; Kpq); E(Kpq : N1; N2)
(7) P ! Q : E(Kpq : N2)

There is a novel attack on this protocol due to Clark, Jacob and Ryan
[40]. Effectively, the principal Q can launch a parallel session attack that
causes P to accept as new a previously issued key. The attack consists of
the following steps:

(1:1) P ! Q : P;N1
(2:1) Q ! P : Q;N1
(2:2) P ! Q : P;N2
(1:2) Q ! P : Q;N2
(1:3) P ! Q : E(Kps : P;Q;N1; N2)
(1:4) Q ! S : E(Kps : P;Q;N1; N2); E(Kqs : P;Q;N1; N2)
(1:5) S ! Q : E(Kps : Q;N1; N2; Kpq); E(Kqs : P;N1; N2; Kpq)
(1:6) Q ! P : E(Kps : Q;N1; N2; Kpq); E(Kpq : N1; N2)
(1:7) P ! Q : E(Kpq : N2)
(2:3) Q ! P : E(Kqs : Q;P;N1; N2)
(2:4) P ! Q(S) : E(Kqs : Q;P;N1; N2); E(Kps : Q;P;N1; N2)
(2:5) Q(S) ! P : E(Kqs : P;N1; N2; Kpq); E(Kps : Q;N1; N2; Kpq)
(2:6) P ! Q : E(Kqs : P;N1; N2; Kpq); E(Kpq : N1; N2)
(2:7) Q ! P : E(Kpq : N2)
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Q launches a parallel session in response to P initiating the protocol and
uses the same nonce in message (2.1). He waits for P 0s reply N2 and then
uses that as his response in the first protocol. The first protocol then com-
pletes as normal. The secondprotocol proceedswithQ intercepting all com-
munications intended for S and replaying the components ofmessage (1.5)
back as those of message (2.5) (with order reversed) to cause P to reaccept
the key. This is recorded in [40]. The above is not a particularly strong at-
tack but indicates clearly that the protocol does not provide the authenti-
city guarantees that it should.

Lowehas recently found amore vicious attack basedon the samenotion
of message component symmetry [80].

6.4 Symmetric Key Repeated Authentication protocols

6.4.1 Kerberos

This protocol is in three parts each of which is now explained. The pro-
tocol involves four principals: a client C; a server S with whom C wishes
to communicate; and two trusted servers T and A. T is known as a Ticket
Granting Server and provides keys for communication between clients such
as C and and servers such as S. A is known as the Key Distribution Centre
and provides keys for communication between clients such asC and ticket
granting servers such as T . The full protocol has three parts each consist-
ing of two messages between the clientC and each of the servers in turn as
shown in figure 10. In the protocol descriptions that follow shared secret
keys are written with subscripts of the principals who share (or who will
share) them. Thus,Kct denotes the key for secure communication between
C and T . We use the notation E(K : X) to denote the text X encrypted
under the key K.

The first part of the protocol concerns only C and A.

(1) C ! A : C; T

(2) A ! C : E(Kac : Kct); E(Kat : Tct)

where

Tct = (C;C  address; timestamp; expirytime;Kct)

In message (1) the client C informs the key distribution centre A that
he wishes to communicate with the ticket granting server T . A generates a
new key Kct for this purpose and encrypts it under the key it shares with
C. It also forms a ’ticket’ Tct that contains the new key together with the
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Figure 10: Kerberos Exchanges

identifier of C, C 0s address, a timestamp, an expiry time for the ticket and
the keyKct . The expirytime limits the interval over which the ticket is con-
sidered as valid. This ticket is encrypted using the keyKat shared between
A and T . The two encrypted components are now sent toC asmessage (2).
C obtains the new key Kct by decrypting E(Kac : Kct). He may now use
this key to communicate with T . This is carried out in the second part of
the protocol described below:

(3) C ! T : E(Kct : Ac); E(Kat : Tct); S
(4) T ! C : E(kct : Kcs); E(Kst : Tcs)

where

Act = (C;C  address; timestamp)

Tcs = (C;C  address; timestamp; expirytime;Kcs)

C uses the the newly received key Kct to encrypt some authentication
credentialsAct comprising the identifierC, the address ofC anda timestamp.
He provides this encrypted authentication information to T in message (3)
together with the newly received encrypted ticket Tct and the identifier S

of the server with whom he wishes to communicate.
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T now decrypts to obtain the key Kct in the ticket and uses that key to
obtain the authentication information Act which it checks. If everything is
in order, it generates a new key Kcs for use between C and S. It then en-
crypts this new key and forms a ticket Tcs and encrypts this under the key
Kst it shares with S. It sends both encrypted components to C in message
(4). Provided the ticket Tct is still valid (i.e. it has not expired) the client C
may use the ticket and corresponding key to obtain further similar services
from T (i.e. may repeat this part of the protocol).

In the third part of the protocol C uses the newly obtained keyKcs and
ticket Tcs to obtain the services of S.

(5) C ! S : E(Kcs : Acs); E(Kts : Tcs)
(6) S ! C : E(kcs : timestamp + 1)

where

Acs = (C;C  address; timestamp)

He forms further authentication informationAcs, encrypts it underKcs and
sends the result to S together with the newly acquired encrypted ticket as
message (5). S carries out decryption on the ticket to obtain the session
keyKcs and then uses this key to obtain the authentication information. If
everything is in order, it increments the timestamp, encrypts the result and
sends it to C as message (6).

6.4.2 Neuman Stubblebine

Some protocols contain two parts: one to bring about the exchange of some
ticket which is then used in the future to achieve authentication on several
occasions. We shall term these protocols repeated authentication protocols. In
the Neuman Stubblebine Protocol [93] given below, the first four messages
are the initial protocol.

(1) A ! B : A;Na

(2) B ! S : B;E(Kbs : A;Na; tb); Nb

(3) S ! A : E(Kas : B;Na;Kab; tb); E(Kbs : A;Kab; tb); Nb

(4) A ! B : E(Kbs : A;Kab; tb); E(Kab : Nb)

The repeated authentication part of the protocol is given below.

(1) A ! B : N 0a; E(Kbs : A;Kab; tb)
(2) B ! A : N 0b; E(Kab : N 0a)
(3) A ! B : E(Kab : N 0b)
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Attacks have been successfullymounted on both parts of the protocol. Pos-
sible attacks can be found in [62]. The first attack on the initial protocol is
given below.

(10) Z(A) ! B : A;Na

(20) B ! Z(S) : B;E(Kbs : A;Na; tb); Nb

(30)
(40) Z(A) ! B : E(Kbs : A;Na(= Kab); tb); E(Na : Nb)

The subsequent protocol can then be attacked as follows:

(10) Z(A) ! B : N 0a; E(Kbs : A;Na(= Kab); tb)
(20) B ! Z(A) : N 0b; E(Kab : N 0a)
(30) Z(A) ! B : E(Kab : N 0b)

The following parallel session attack can be used:

(1) Z(A) ! B : N 0a; E(Kbs : A;Kab; tb)
(2) B ! Z(A) : N 0b; E(Kab : N 0a)
(10) Z(A) ! B : N 0b; E(Kbs : A;Kab; tb)
(20) B ! Z(A) : N 00b; E(Kab : N 0b)
(3) Z(A) ! B : E(Kab : N 0b)

In this attack the initial ticket is recorded from a previous legitimate run of
the protocol.

6.4.3 Kehne Langendorfer Schoenwalder

Here is the KLS repeated authentication protocol. The first five messages
form the ticket distribution part. The key Kbb is known only to B.

(1) A ! B : Na;A

(2) B ! S : Na;A;Nb; B

(3) S ! B : E(Kbs : Nb;A;Kab); E(Kas : Na;B;Kab)
(4) B ! A : E(Kas : Na;B;Kab); E(Kbb : tb; A;Kab); Nc; E(Kab : Na)
(5) A ! B : E(Kab : Nc)

The repeated protocol is:

(10) A ! B : N 0a; E(Kbb : tb; A;Kab)
(20) B ! A : N 0b; E(Kab : N 0a)
(30) A ! B : E(Kab : N 0b)

The repeated authentication part of the protocol is subject to an attack that
is identical in form to the parallel session attack on theNeumanStubblebine
repeated protocol.
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6.4.4 The Kao Chow Repeated Authentication Protocols

In 1995, Kao and Chow proposed a similar repeated authentication pro-
tocol that was not susceptible to the attacks on the Neuman Stubblebine
protocol [70].

(1) A ! S : A;B;Na

(2) S ! B : E(Kas : A;B;Na;Kab); E(Kbs : A;B;Na;Kab)
(3) B ! A : E(Kas : A;B;Na;Kab); E(Kab : Na); Nb

(4) A ! B : E(Kab : Nb)

This protocol sufferswhen a session key is compromised (as in theDenning
Sacco attack on the Needham Schroeder protocol). The authors therefore
proposed (in the same paper) to use a different key purely for the hand-
shake. The protocol now becomes:

(1) A ! S : A;B;Na

(2) S ! B : E(Kas : A;B;Na;Kab;Kt); E(Kbs : A;B;Na;Kab;Kt)
(3) B ! A : E(Kas : A;B;Na;Kab); E(Kt : Na;Kab); Nb

(4) A ! B : E(Kt : Na;Kab)

This protocol is further extended to encompass tickets.

(1) A ! S : A;B;Na

(2) S ! B : E(Kas : A;B;Na;Kab;Kt); E(Kbs : A;B;Na;Kab;Kt)

(3) B ! A :
E(Kas : A;B;Na;Kab);
E(Kt : Na;Kab); Nb; E(Kbs : A;B; Ta;Kab)

(4) A ! B : E(Kt : Na;Kab); E(Kbs : A;B; Ta;Kab)

6.5 Public Key Protocols without Trusted Third Party

All the ISO protocols in this section may be found in Part 3 of the ISO/IEC
9798 Standard [65].

6.5.1 ISO Public Key One-Pass Unilateral Authentication Protocol

(1) A ! B : CertA; [TajNa]; B; T ext2; E(K1
a : [TajNa]; B; T ext1)

6.5.2 ISO Public Key Two-Pass Unilateral Authentication Protocol

(1) B ! A : Rb; Text1
(2) A ! B : CertA; Ra; Rb; B; Text3; E(K1

a : Ra;Rb; B; Text2)
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6.5.3 ISO Public Key Two-Pass Mutual Authentication Protocol

(1) A ! B : CertA; [TajNa]; B; T ext2; E(K1
a : [TajNa]; B; T ext1)

(2) B ! A : CertB; [tbjNb]; A; T ext4; E(K1
b : [tbjNb]; A; T ext3)

This protocol is in fact two independent applications of the single pass uni-
lateral authentication protocol.

6.5.4 ISO Three-Pass Mutual Authentication Protocol

(1) B ! A : Rb; Text1
(2) A ! B : CertA; Ra; Rb; B; Text3; E(K1

a : Ra;Rb; B; Text2)
(3) A ! B : CertB; Rb; Ra; A; Text5; E(K1

b : Rb;Ra;A; Text4)

This is the unilateral two-pass protocol with message (3) added.

6.5.5 ISO Two Pass Parallel Mutual Authentication Protocol

(1) A ! B : CertA; Ra; T ext1
(10) B ! A : CertB; Rb; T ext2
(2) B ! A : Rb;Ra;A; Text6; E(K1

b : Rb;Ra;A; Text5)
(20) A ! B : Ra;Rb; B; Text4; E(K1

a : Ra;Rb; B; Text3)

6.5.6 Bilateral Key Exchange with Public Key

(1) B ! A : B;E(Ka : Nb;B)
(2) A ! B : E(Kb : f(Nb); Na; A;K)
(3) B ! A : E(K : f(Na))

6.5.7 Diffie Hellman Exchange

In the Diffie-Hellman algorithm two numbers are publicly agreed by the
communicating principals A and B. Let these numbers be G and N . The
protocol is

(1) A ! B : X = GxmodN

(2) B ! A : Y = GymodN

A chooses X = GxmodN for some random x and sends the result to B as
message (1). B chooses Y = GymodN for some random y and sends the
result to A as message (2). A computes k = Y xmodN and B computes k =
XymodN . The result of these two calculations is the same and equal to the
new session key. This provides ameans of key exchange but no guarantees
of authenticity.
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6.6 Public Key Protocols with Trusted Third Party

6.6.1 Needham-Schroeder Public Key Protocol

This protocol appears in the classic paper [90]. It has recently been shown
to contain a flaw by Gavin Lowe as part of the project research work.

(1) A ! S : A;B

(2) S ! A : E(K1
s : Kb; B)

(3) A ! B : E(Kb : Na;A)
(4) B ! S : B;A

(5) S ! B : E(K1
s : Ka; A)

(6) B ! A : E(Ka : Na;Nb)
(7) A ! B : E(Kb : Nb)

Lowehasdiscovered an attack on this protocol ([78]). Messages 1, 2, 4 and 5
are concerned purelywith obtaining public key certificates and are omitted
from the description of the attack below:

(3) A ! Z : E(Kz : Na;A)
(30) Z(A) ! B : E(Kb : Na;A)
(60) B ! Z(A) : E(Ka : Na;Nb)
(6) Z ! A : E(Ka : Na;Nb)
(7) A ! Z : E(Kz : Nb)
(70) Z(A) ! B : E(Kb : Nb)

6.7 SPLICE/AS Authentication Protocol

This is a mutual authentication protocol between a client C and a server
S using a certification authority AS to distribute public keys where neces-
sary. In the protocol T is a timestamp and L is a lifetime.

(1) C ! AS : C; S;N1

(2) AS ! C : AS;E(K1
AS : AS;C;N1; KS)

(3) C ! S : C; S; E(K1
C : C; T; L; E(KS : N2))

(4) S ! AS : S;C;N3

(5) AS ! S : AS;E(K1
AS : AS; S;N3; KC)

(6) S ! C : S;C;E(KC : S;N2 + 1)

This protocol has been shown to be flawed (in different ways) by Hwang
and Chen [61] and also Gavin Lowe.
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In the first attack it is possible to impersonate a client:

(1) Z ! AS : Z; S;N1

(2) AS ! Z : AS;E(K1
AS : AS;Z;N1; KS)

(3) Z(C) ! S : C; S; E(K1
Z : C; T; L; E(KS : N2))

(4) S ! Z(AS) : S;C;N3

(40) Z(S) ! AS : S; Z;N3

(5) AS ! S : AS;E(K1
AS : AS; S;N3; KZ)

(6) S ! Z(C) : S;C;E(KZ : S;N2 + 1)

In the second attack it is possible to impersonate the server:

(1) C ! Z(AS) : C; S;N1

(10) Z(C) ! AS : C;Z;N1

(2) AS ! C : AS;E(K1
AS : AS;C;N1; KZ)

(3) C ! Z(S) : C; S; E(K1
C : C; T; L; E(KZ : N2))

(4) Z ! AS : Z;C;N3

(5) AS ! Z : AS;E(K1
AS : AS;Z;N3; KC)

(6) Z(S) ! C : S;C;E(KC : S;N2 + 1)

In the third attack (by Gavin Lowe) message (3) is replayedwithin the pos-
sible time window to reachieve authentication.

6.7.1 Hwang and Chen’s Modified SPLICE/AS

Hwang andChen [61] proposed an enhancedprotocol to overcome the flaws
(that they had identified) in SPLICE protocol presented above. This mod-
ified SPLICE/AS protocol has recently been shown by Clark and Jacob to
be flawed too.

(1) C ! AS : C; S;N1

(2) AS ! C : AS;E(K1
AS : AS;C;N1; S;KS)

(3) C ! S : C; S; E(K1
C : C; T; L; E(KS : N2))

(4) S ! AS : S;C;N3

(5) AS ! S : AS;E(K1
AS : AS; S;N3; C;KC)

(6) S ! C : S;C;E(KC : S;N2 + 1)

For the purposes of the attack we need only consider messages (3) and
(6) and sowe assume that all public keys are appropriately obtained or pos-
sessed.

(3) C ! Z(S) : C; S; E(K1
C : C; T; L; E(KS : N2))

(30) Z ! S : Z; S; E(K1
Z : Z; T; L; E(KS : N2))

(60) S ! Z : S; Z; E(KZ : S;N2 + 1)
(6) Z(S) ! C : S;C;E(KC : S;N2 + 1)
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The problem arises because the server S is fooled as to the origin of the en-
crypted nonce in (3’). It is created by C in (3) but is used by Z in (3’) who
pretends to have created it himself.

6.8 Denning Sacco Key Distribution with Public Key

(1) A ! S : A;B

(2) S ! A : CertA; CertB

(3) A ! B : CertA; CertB; E(Kb : E(K1
a : Kab; Ta))

where CertA = E(K1
s : A;Ka; T ) is the public key certificate of A signed

by S etc. There is a problem with this protocol (discovered by Abadi in
1994). B can now decrypt to obtain the session key and timestamp signed
by A and form a message of the form

(3) B(A) ! C : CertA; CertC ; E(Kc : E(K1
a : Kab))

and can now masquerade as A to C.

6.8.1 CCITT X.509

This is the classic description, as it appears in [27], of three protocols (con-
sisting either of message 1, messages 1 and 2 or all three below. It has been
shown to be flawed.

(1) A ! B : A;E(K1
a : Ta;Na;B;Xa; E(Kb : Ya))

(2) B ! A : B;E(K1
b : tb; Nb; A;Na;Xb; E(Ka : Yb))

(3) A ! B : A;E(K1
a : Nb)

Attacks have been found by L’Anson andMitchell [12] and by the Burrows
Abadi andNeedham [27]. The problem is that there is signing after encryp-
tion. If an encrypted message has a component that is itself encrypted un-
der a public key then it cannot be deduced that the sender actually knows
the contents of that component.

6.9 Miscellaneous

6.9.1 Shamir Rivest Adelman Three Pass protocol

The following protocol differs in that the participants share no secrets. It
was suggested as a means of transmitting data over an insecure channel.
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It assumes that encryption is commutative. It is known to be subject to a
variety of attacks.

(1) A ! B : E(Ka : M)
(2) B ! A : E(Kb : E(Ka : M))
(3) A ! B : E(Kb : M)

The first attack simply uses A as an oracle.

(1) A ! Z(B) : E(Ka : M)
(2) Z(B) ! A : E(Ka : M)
(3) A ! Z(B) : M

Carlsen suggests that itmight be possible to simply checkwhether themes-
sage returned in (2) is in fact encrypted, but there would seem to be a very
simple attack, namely one where a legitimate principal C takes on the role
of B but using his own key.

There is also another attack:

(1) A ! Z(B) : E(Ka : M)
(10) Z(B) ! A : E(Ka : M)
(20) A ! Z(B) : M

(2) Z(B) ! A : bogus

(3) A ! Z(B) : E(Ka : bogus)

6.9.2 Gong Mutual Authentication Protocol

This protocol [52] is based on the use of one-way functions rather than en-
cryption. In the following protocol f and g are both one-way (publicly
known) functions (they may be identical). Each principal A and B shares
a secret, Pa and Pb respectively, with the authentication server S. Na, Nb

and Ns are nonces.

(1) A ! B : A;B;Na

(2) B ! S : A;B;Na;Nb

(3) S ! B : Ns; f(Ns; Nb; A; Pb)  (k; ha; hb); g(k; ha; hb; Pb)
(4) B ! A : Ns; hb

(5) A ! B : ha

In message (3) (k; ha; hb) = f(Ns; Na;B; Pa) is calculated by the server S. k
is a secret to be shared between A and B, while ha and hb are called hand-
shake numbers. The symbol  represents the XOR function. Principal B

computes f(Ns; Nb; A; Pb) to retrieve (k; ha; hb) from the second item of the
message. It also computes g(k; ha; hb; Pb) to check against the third item
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that tampering has not taken place. After receiving message (4). A com-
putes f(Ns; Na;B; Pa) to get (k; ha; hb) . If the value of hb matches the one
sent by B then A replies with message (5). The literature surveyed has not
indicated that the protocol is flawed.

6.9.3 Encrypted Key Exchange – EKE

This is an unusual protocol due to Bellovin and Merritt [15] and has the
following steps:

(1) A ! B : E(P : Ka)
(2) B ! A : E(P : E(Ka : R))
(3) A ! B : E(R : Na)
(4) B ! A : E(R : Na;Nb)
(5) A ! B : E(R : Nb)

Here P is a password used as a symmetric key,Ka is a randomly generated
public key. R is a randomly generated session key. There would appear
to be a fairly straightforward paralel session attack on the above protocol
(unreported in the literature)

(1:1) A ! Z(B) : E(P : Ka)
(2:1) Z(B) ! A : E(P : Ka)
(2:2) A ! Z(B) : E(P : E(Ka : R))
(1:2) Z(B) ! A : E(P : E(Ka : R))
(1:3) A ! Z(B) : E(R : Na)
(2:3) Z(B) ! A : E(R : Na)
(2:4) A ! Z(B) : E(R : Na;Nb)
(1:4) Z(B) ! A : E(R : Na;Nb)
(1:5) A ! B : E(R : Nb)
(2:5) Z(B) ! A : E(R : Nb)

6.9.4 Davis Swick Private Key Certificates

The first protocol given by Davis and Swick [43] is for key translation via
a trusted translator T . The protocol is given below:

(1) B ! A : E(Kbt : A;msg)
(2) A ! T : E(Kbt : A;msg); B
(3) T ! A : E(Kat : msg;B)

On receiving message (3) A assumes that msg originated with B and
was destined for A. IfB arranges formsg = CX for some identifier C then
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message (3) becomes E(C;XB : Kat). B can now use this to masquerade
as A in message (1). Sufficient redundancy would need to be placed in the
message to prevent this attack (noticed by Clark and Jacob).

A scaled up version of the key translation service is also presented.

(1) B ! A : E(Kbt : A;msg)
(2) A ! T : E(Kbt : A;msg); E(Kt : Kbt; B; Lb); E(Kt : Kat; A; La)
(3) T ! A : E(Kat : msg;B)

HereKt is T 0smaster key used to signed the key containing tickets. La

and Lb are lifetimes. E(Kat; A; La : Kt) is A0s private key certificate created
by T .

There is a key distribution protocol:

(1) B ! T : E(Kt : Kbt; B; Lb)
(2) T ! B : E(kt : K 0bt; B; L0b); E(Kbt : K 0bt; T; L0b; checksum)

Another key distribution protocol is given:

(1) A ! T : E(Kt : Kat; A; La); encKbt; B; LbKt

(2) T ! A : E(Kbt : Kab;A; Lab)E(Kat : Kab;B; Lab; checksum)
(3) A ! B : E(Kab : msg;A); E(Kbt : Kab;A; Lab)
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There are only two forms of concrete exchange messages and the paper
shows how these can be used to model different types of exchange (user-
user, protocols using a trusted party and conference key protocols).

The paper identifies issues that are not dealt with (such as key revocation,
the effect of untrustworthy behaviour of a principal andmore complex dis-
tribution protocols).

The formal model as it currently stands needs some adjustment. The prob-

lem lies with their definition of security for states of the system. Whilst it

would appear true that given a suitable initial state and the definitions of

the send and receive operations the resulting operation will be “secure”—

the notion of suitable definition of initial state must be addressed. It is per-

fectly feasible to set up an initial state (and in general such a statewill not be

a pathological one, i.e. it will have some keys) that is useless. For example, a

state where the only pair in the whole system is (k1; Charles) and this pair

is in the local store of both Alice and Bob. It is a relatively trivial matter to

alter the definition of the security criterion to rule out this sort of possibility

though. A good paper and one of the few to talk about deriving protocols

rather than post-hoc verifying them.

[26] E. F. Brickell and A. M. Odlyzko. Cryptanalysis: A Survey of Recent
Results. Proceedings of the IEEE, 76(5), May 1988.

This paper provides an excellent overview of some advanced (in 1988)

attacks on a variety of algorithms. A number of attacks are described

on knapsack variants, Ong-Schnorr-Shamir and Okamaoto-Shiraishi sig-

natures schemes, RSA and others. It also addresses the Data Encryption

Standard.

[27] Michael Burrows, Martin Abadi, and Roger Needham. A Logic of
Authentication. Technical Report 39, Digital Systems Research Cen-
ter, February 1989.

We give a section by section account of this paper. This may seem a little
excessive but the paper is clearly the most important paper in the field.

Section 1 Authentication protocols guarantee that if principals really are
who they say they are then they will end up in possession of one or more
shared secrets, or at least be able to recognise the use of others’ secrets.

There are lots of authentication protocols. It is not clear preciselywhat these
protocols achieve. As a result a formal approach is needed to explain pre-
cisely what assumptions are being made within a protocol and what con-
clusions can legitimately be derived from the successful execution of the
protocol.
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Some aspects of authentication protocols have been deliberately ignored
(no attempt to cater for authentication of untrustworthy principals and no
analysis of encryption scheme strength).

The authors are fairly limited in what they claim for the logic that follows:

Our goal, however, is not to provide a logic that would explain every
authentication method, but rather a logic that would explain most of
the central concepts in authentication.

This is important as BAN logic has often been unfairly criticised.

The authors then give informal accounts of some important notions in au-
thentication

 If you’ve sent Joe a number that you have never used for this purpose
before and if you subsequently receive from Joe something that de-
pends on knowing that number then you ought to believe that Joe’s
message originated recently — in fact, after yours.

 If you believe that only you and Joe knowK then you ought to believe
that anything you receive encrypted with K as key comes originally
from Joe.

 If you believe that Kis Joe’s public key, then you should believe that
any message you can decrypt withK comes originally from Joe.

 If you believe that only you and Joe knowX then you ought to believe
that any encryptedmessage that you receive containingX comes ori-
ginally from Joe.

Section 2 In this section the authors present their formalism based on a
many-sortedmodal logic. Messages are regarded as statements in the logic.
There are principals, keys and formulae. A number of logical constructs are
given.

The authors assume explicitly that a principal is able to detect and ignore
message he/she has sent. The logic ismonotonicwithin a protocol run (that
is, beliefs that hold at the start of the run hold at the end). Moreover, the
logic assumes that if a principal utters a formulaX thenhe actually believes
it.

The authors state “each encryptedmessage contains sufficient redundancy
to be recognised and decrypted unambiguously”. This idea of recognisab-
ility will be taken up by other authors. Indeed, the notion is a subtle an im-
portant one. The notational convenience of omitting the sender of a mes-
sage is often used. It is, of course the case, that decryptionwill be necessary
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if the actual sender of a message is to be known: that is: the message must
have sufficient authenticity.

The authors then present a set of postulates fairly modestly: “we do not
present the postulates in the most general form possible; our main concern
is to have enough machinery to carry out some realistic examples and to
explain the method”.

Some of the constructs introduced by the authors in this section have a no-
tion of trust involved. The nature of this trust is notmade explicit. From the
examples, however, it can be seen that trusting a principal to know a shared
secret means that he will not use it himself; if this were not the case then
many of the later postulatesdonotmake sense.The formalism assumes that
all sessions with a shared key are between two parties P and Q. Multiple
party sessions are of course a practical possibility.

In the description of the nonce verification rule (if I believe that X is fresh
and that you have utteredX , then I should believe that you believe X , be-
cause you must have uttered X recently and hence still believe it) the au-
thors suggest that they could introduce a “recently said” operator to over-
come the restriction thatX must be cleartext. This idea will be taken up by
other authors.

The authors then present the notion of an idealised protocol. Standard de-
scription of protocols give a fairly concrete description of what bits go
where in a message. This is not particularly useful for logical manipulation
and so the authors transform each protocolmessage into a formula. Parts of
the formula which do not contribute to the beliefs are omitted; thus there is
no cleartext in BANmessages. Each protocol is a sequence of encrypted for-
mulæ. The authors claim that their idealised formulæare clearer and more
complete than other traditional descriptions. They also state that deriving
an encoding from an idealised protocol is far less time consuming and error
prone than understanding the meaning of a particular informal encoding.
Omitting cleartext gives rise to some problems, e.g. the direct leakage of in-
formation.

Loosely speaking, a message m can be interpreted as a formula X if
whenever the recipient gets m he may deduce that the sender must have
believed X when he sent the message. This process is fairly controver-
sial. There would appear to be an implicit assumption that we choose the
strongest feasible formula for X . Failure to do this may require the addi-
tion of initial assumptions that would not be necessary under an alternat-
ive idealisation. It seems that in addition to iteration of initial beliefs for the
purposes of proof, as suggested by the authors, one might well iterate over
idealisation too.

The protocol analysis takes the following steps
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1. The idealised protocol is derived form the original one.

2. Assumptions about the initial state are written.

3. Logical formulae are attached to statements of the protocol, as asser-
tions about the state of the system after each statement.

4. The logical postulates are applied to the assumptions and the asser-
tions, in order to discover beliefs held by the parties in the protocol.

Effectively we produce an annotated protocol in much the same way as we
could produce an annotated program.

The authors state that there is no (refined) notion of time in their logic, nor
do they address concurrency issues.

Section 3 The authors state that there is room for debate as to what the
goals of an authentication protocol should be. Several plausible candidates
are suggested, the actual goals will of course be system specific.

Sections 4–11 These sections apply the BAN logic presented to several
protocols:

Section 4 The Otway-Rees Protocol

Section 5 The Needham Schroeder Protocol with conventional keys.

Section 6 The Kerberos Protocol

Section 7 TheWide-mouthed Frog Protocol

Section 8 The Andrew Secure RPC Handshake

Section 9 The Yahalom Protocol

Section 10 The Needham-Schroeder Public Key Protocol

Section 11 The CCITT X.509 Protocol(s)

We shall not describe the analyses in detail here.

Sections 12–13 The remaining sections showhow the logic can be exten-
ded to handle hashing and provide a more formal semantics for the logic.

This paper is essential reading. Most security protocol papers reference it,
or one of its other forms, and several criticise it (somemore fairly than oth-
ers). The paper is well written and provides the basis for numerous exten-
sions.
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[28] Michael Burrows, Martin Abadi, and Roger M. Needham. Rejoinder
to Nessett. ACM Operating Systems Review, 24(2):39–40, April 1990.

This is the BAN authors’ refutation of Nessett’s criticism [92]. They quote
from their paper [27] that they did not intend to deal with security issues
such as “unauthorised release of secrets”. This would appear justified. The
authors state thatNessett’s example “accurately points out an intended lim-
itation or our logic” but indicate that the assumption by principal B that
the published key is in fact good is contradictory. Though this is allowed
by the formalism they claim “though not manifested by our formalism, it
is not beyond the wit of man to notice. From this absurd assumption, Nes-
sett derives an equally absurd conclusion”.

This rejoinder is pretty much to the point! Part of BAN logic folklore.

[29] Michael Burrows, Martin Abadi, and RogerM. Needham. The Scope
of a Logic of Authentication. Revised Research Report 39, Digital
Systems Research Center, 1994.

This is intended as an annex to the original BAN report [27].

[30] C. C. I. T. T. Recommendation X.509. The Directory-Authentication
Framework. C. C. I. T. T., December 1988.

This contains draft proposals for various protocols.

[31] E. A. Campbell, R. Safavi-Naini, and P. A. Pleasants. Partial Belief
and Probabilistic Reasoning in the Analysis of Secure Protocols. In
Proceedings 5th IEEE Computer Security Foundations Workshop, pages
84–91. IEEE Computer Society Press, 1992.

A rather interesting paper; there is clearly work to be done in this (or re-
lated) areas. The paper describing a formal system in which elements of
logic have probabilities associated with them. This allows the real world
to be modelledmore accurately. Logical deductions depend on the correct-
ness of such elements and so are associated with probabilities. The paper
finds bounds on various probabilities of interest using linear programming
methods. Some examples are given.

Well worth a read.

[32] Ulf Carlsen. Cryptographic Protocol Flaws. In Proceedings 7th IEEE
Computer Security Foundations Workshop, pages 192–200. IEEE Com-
puter Society, 1994.

This paper presents a categorisation of protocol flaws. The categories are:
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Elementary flaws some protocols may provide only marginal protection,
e.g. ones that communicate passwords in the clear, or the Nessett
counterexample [92] to the BAN analysis approach.

Password guessing flaws (passwords may be used to generate keys, and
the practical limitations of such approaches allow a brute force but
biased search)

freshless flaws identified by the inability of one principal to detect
whether a message has been created recently or not. The Denning-
Sacco attack [45] on the conventional key Needham Schroeder
protocol is a famous example. Burrows Abadi and Needham
demonstrate a freshness flaw in the Andrew Secure RPC protocol
[27].

Oracle flaws a principal inadvertently acts as a decryption agent for a pen-
etrator. There are examples of single-role andmulti-role oracle attacks
(i.e. when a principal is limited to one role or may take part in several
roles). The three-pass protocol of Rivest, Shamir and Adleman is the
subject of these oracle attacks. The three-pass protocol has the follow-
ing steps:

(1) A ! B : E(Ka : M)

(2) B ! A : E(Kb : E(Ka : M))

(3) A ! B : E(Kb : M)

After receiving the message at line 2 A decrypts with key ka and as-
suming commutativity sends the result back toB in line 3. The single
role oracle flaw is for the intruder simply to pretend to beB and return
fMgka back to A in line 2 and hence obtain M in line 3. The author
suggests that a “typing” check (to see whether the third message is
really an encrypted one)might solve this problem. As presented there
is a more obvious problem that shows that this will not work, namely
there is nothing to stop the intruder simply acting as B using a key
kc that she knows in place of kb. The protocol then works as normal.
Have I missed something?

Type flaws a subclass of oracle flawswhere in addition to using a fragment
of the protocol as an oracle, the penetrator exploits the inability of at
least one principal to associate a word (or message) with a particular
state of a particular protocol. Five different “types” of information can
be distinguished:

 cryptographic protocol;

 protocol run;

 transmission step;

 message (sub) components;
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 primitive types.

The paper then gives example type flaws exposed in the Neuman-
Stubblebine protocol and the Otway-Rees protocol.

Internal Flaws these are due to a principals failing to carry out the neces-
sary internal actions correctly (e.g. failing tomake a check). The paper
states that a common feature of many formal and semi-formal crypto-
graphic protocol specification methods is their lack of stating internal
actions.

Cryptosystem related flaws these arise due to the interactions of protocols
and the particular cryptographic methods employed.

The paper is well-written and very useful. Of particular note is the discus-
sion of type flaws.

[33] Ulf Carlsen. Generating Formal Cryptographic Protocol Specifica-
tions. In Proceedings 7th IEEE Computer Security Foundations Work-
shop. IEEE Computer Society Press, 1994.

The traditional method of specifying protocols has a well-defined syntax
but no semantics. They tend very much to resemble the implementation.
In this paper the author provides a means to automatically supply an in-
terpretation by making plausible assumptions. Rules are provided to de-
termine the types ofmessage components (keys, addresses,nonces etc), and
to infer assumptions and goals. Internal actions are addressed too (for ex-
ample, the presence of a wordwith type “nonce” implicitly indicates that a
nonce should be generated. Also, checking of values can be inferred. A tool
has been developed that can take a standard notational specification and
generate a protocol specification in the CKT5 language. Predicates are cre-
ateddescribing thebehaviours of eachprincipal, the assumptions andgoals
for each principal. Overall statements of correctness (of the goals with re-
spect to the assumptions) can then be stated and proved. A very interesting
paper since it provides onemeans for overcoming some of the well-known
deficiencies of the standard notation.

[34] Ulf Carlsen. Optimal Privacy andAuthentication on a Portable Com-
munications System. Operating Systems Review, 28(3):16–23, 1994.

This paper reviews somepreviouswork in the field of portable communica-

tion systems (PCSs). Various flaws are exposed and some fixes offered. The

paper discusses both initiator and responder (i.e. the other end) protocols.

Secret and public key approaches are addressed. The paper is well worth

a read (the area is set to become very big). One of the suggested protocols

seems flawed (the responder protocol of figure 5 of the paper does not ne-

cessarily provide authentication of the RCE to the portable).
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[35] P.-C. Cheng and Virgil D. Gligor. On the Formal Specification and
Verification of a Multiparty Session Protocol. In Proceedings of the
IEEE 1990 Symposium on Research in Security and Privacy, pages 216–
233. IEEE Computer Society Press, 1990.

As yet unread! Here for completeness purposes.

[36] John Clark and Jeremy Jacob. On The Security of Recent Protocols.
Information Processing Letters, 56(3):151–155, November 1995.

In this paper the authors describe some attacks on recently published pro-
tocols highlighting assumptions about cipher block chaining use but also a
flaw in a (corrected) version of the SPLICE authentication protocol (also in-
dependently discovered by Lowe of the Programming Research Group at
Oxford).

[37] John Clark and Jeremy Jacob. Attacking authentication protocols.
High Integrity Systems, 1(5):465–474, August 1996.

This paper provides a summary of ways in which protocols fail and

provides many examples of such flaws.

[38] John Clark and Jeremy Jacob. Non-Repeatability is Not Enough.

A preliminary paper. The authors demonstrate that advice on the use of

cipher block chaining is either wrong or the rationale is incomplete. If pre-

dictable initial blocks are used then in many cases it will be possible for a

principal to create the ciphertext for an arbitrary message of his choice.

[39] John Clark and Jeremy Jacob. A Survey of Authentication Protocol
Literature.

This is this whole document!

[40] John Clark and Jeremy Jacob. Freshness is Not Enough: Note on
Trusted Nonce Generation and Malicious Principals.

In this paper the authors demonstrate an unusual attack on a mutual au-
thentication protocol byWoo and Lam [118] described in section 6.3.11. Ma-
licious choice of a nonce by one principal can cause a previously issued key
to be accepted as fresh by the other principal.

[41] D. Coppersmith. The Data Encryption Standard (DES) and its
strength against attacks. IBM Journal of Research and Development,
38(3):243–250, May 1994.

In this paper the author argues that the DES algorithm is remarkably resi-
lient to differential cryptanalytical attacks. This is because the method was

81



known to the IBM designer team in 1974. This should wake the reader up!
What is in the public domain clearly lags well behind what is known to
Governments and their agents. The criteria for designing the infamous S-
boxes are described and discussed.

An essential read for cryptanalysts everywhere.

[42] D. W. Davies and W. L. Price. Security for Computer Networks. John
Wiley and Sons, 1 edition, 1994.

This is a well-established text in the field covering a variety of network se-
curity concepts. It encompasses both theoretical approaches to authentica-
tion as well as practical examples. The information is a little dated now but
this is still a useful book.

[43] DDavis and R Swick. Network Security via Private-Key Certificates.
Operating Systems Review, pages 64–67, 1990.

A private key certificate is effectively a ticket published by a server to it-

self. The ticket contains a key, principal identifier and lifetime. The identi-

fied principal may supply the ticket and use the corresponding key until

the ticket expires. Various applications are suggested (key translation and

key distribution). On close analysis it would appear that two of the sugges-

ted protocols can be attacked: the initial key translation protocol makes as-

sumptions about the content of the user supplied component of a message

(if it starts with a principal identifier then fraudulent messages can be cre-

ated using the translator as an oracle). The key distribution between server

domains using public key allows one of the servers to masquerade as the

other.

[44] D. E.Denning. Cryptography andData Security. AddisonWesley, 1982.

This has become a classic text for introductory cryptography. It covers the-
ory of cryptography and explains the fundamentals of various algorithms
before moving on to cover non-communications aspects of security.

[45] Dorothy Denning andG. Sacco. Timestamps inKeyDistribution Pro-
tocols. Communications of the ACM, 24(8), August 1981.

The authors examine first the Needham Schroeder conventional key pro-
tocol [90]. Under the assumption that keys cannot be compromised the pro-
tocol is regarded as secure. But if a key is compromised then it is shown that
a penetrator can fool a principal into accepting that key again (it is worth
noting that a malicious initiator, who obtained the key in the first place, can
also cause the key to be re-accepted).

However, this problem is removed by the incorporation of timestamps into
the protocol messages. This is the most widely cited protocol flaw.
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The paper then discusses the use of timestamps in public key systems to
distribute public keys and also shared keys. Finally the consequences of the
compromise of private keys is addressed.

The protocol to distribute symmetric keys using public keys is flawed but
this was discovered only in 1994 by Martin Abadi (see 6.8).

A well-written and very clear technical note. A landmark paper.

[46] Whitfield Diffie. The First Ten Years in Public Key Cryptography.
Proceedings of the IEEE, 76(5):560–577, May 1988.

An excellent survey of public key cryptography. The paper provides a tech-
nical introduction to the various advances in the area (exponential key ex-
changes, knapsacks, RSA, the fall of knapsacks etc). The paper than ad-
dresses implementation issues and where public key cryptography is go-
ing. A good read generally.

[47] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, November 1976.

A classic paper in the field. Heralds the birth of public key cryptography.

[48] Federal Information Processing Standard 46 – the Data Encryption Stand-
ard, 1976.

This is the prime reference for the Data Encryption Standard. It is well-

written and easy to read. The algorithm is of course described elsewhere.

[49] W. Fumy and P. Landrock. Principles of Key Management. IEEE
Journal on Selected Areas in Communications, pages 785–793, June 1993.

This paper provides an overview of issues involved in keymanagement. It
describes security requirements and a hierarchical approach to providing
them. It’s quite high level but is quite deceptive in its range.

[50] Paul Gardiner, Dave Jackson, Jason Hulance, and Bill Roscoe. Se-
curity Modelling in CSP and FDR: Deliverable Bundle 2. Technical
report, Formal Systems (Europe) Ltd, April 1996.

This report indicates how algebraic techniques can be incorporated within
the CSP/FDR approach to security protocol analysis. Such algebraic ma-
nipulation is necessary if the approach is to discover attacks which utilise
for example particular properties of encryption (commutativity of encryp-
tions etc.). Implementationdetails (code) are given in this report. The report
describes how algebra may be modelled within an extended form of CSP
(that used by FDR2)with results of initial evaluation. Later sections address
how the approach can be applied to the analysis of somewell-knownproto-
cols. Implementation attacks arising due to particular modes of encryption
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(e.g. CBC, CFB etc) are identified as highly troublesome; the state space be-
comes enormous very quickly.

[51] Paul Gardiner, Dave Jackson, and Bill Roscoe. Security Modelling in
CSP and FDR: Deliverable Bundle 3. Technical report, Formal Sys-
tems (Europe) Ltd, July 1996.

This represents a continuation and enhancement of thework reported in [?].

The refined approach is used to detect a well-known flaw in theCCITT pro-

tocol. One enhancement is the use of a ”lazy spy”— considering only those

behaviours of an intruder which are reachable given the specific history of

values observed in a sequence of protocol runs (rather than the whole be-

haviour space of the intruder).

[52] Li Gong. Using One-way Functions for Authentication. Computer
Communication Review, 19(5):8–11, October 1989.

This brief paper presents a mutual authentication algorithm based on the

notion of keyed (with passwords) one-way functions. The protocol also ef-

fects key distribution. The approach has the benefit that one-way functions

are probably easier to create than encryption algorithms since there is no

need to ensure invertibility. It is claimed that using one-way functions to

develop authentication protocols would not necessarily restrict the capab-

ilities that could be offered.

[53] Li Gong. A Note on Redundancy in Encrypted Messages. Computer
Communication Review, 20(5):18–22, October 1990.

Redundancy in messages can be used to provide checks that a message has
not been modified in transit. Explicit redundancy can be detected by any-
one with the correct encryption key. An example would be data concat-
enated with a checksum and which is then encrypted. A problem is that
this provides a means by which an attacker can verify keys he or she has
guessed. Protocols that encrypt with weak keys, for example passwords,
are vulnerable to a guessing attack. Implicit redundancy can only be recog-
nised by the intended recipient(s) who knows the key for a particular ex-
ample for a particular exchange. Examples are given.

[54] Li Gong. Handling Infeasible Specifications of Cryptographic Pro-
tocols. In Proceedings of The 4th IEEE Computer Security Foundations
Workshop, pages 99–102. IEEE Computer Society, June 1991.

This paper addresses the issue of specification and analysis of infeasible

specifications when the analysis is BAN style [27]. The paper provides an

outline of how GNY logic [57] can be amended so that principals can send
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onlymessages they can realistically expect to. This is done via the notion of

eligibility. Themethod ensures that before a message can be sent, the sender

must be in possession of the bit strings to be transmitted and it must hold

the beliefs implied by transmission of the message. Inference rules to ac-

commodate the changes are presented.

[55] Li Gong. Variations on the Themes ofMessage Freshness and Replay
and Replay or, the Difficulty of of Devising Formal Nethods to Ana-
lyse Cryptographic Protocols. In Proceedings 6th Computer Security
Foundations Workshop, pages 131–136. IEEE Computer Society Press,
1993.

This paper describes a variety of ways in which freshness identifiers may
be used. Three parties are identified:

 the supplier who creates the identifier;

 the prover that inserts the identifier in a message; and

 the verifier who establishes the freshness of a message by examining
themessage composition, especially the use of the freshness identifier.

The paper addresses the use of timestamps, truly random numbers, coun-
ters, pseudorandom numbers, synchronised counters and pseudorandom
number generators and fresh encryption keys. The paper presents a table
indicating which mode of use is secure for a particular freshness approach
indicating whether the prover is to be trusted or not. A brief categorisation
of message replays is then given.

[56] Li Gong, A. Lomas, R. Needham, and J. Saltzer. Protecting Poorly
Chosen Secrets fromGuessing Attacks. IEEE Journal on Selected Areas
in Communications, 11(5), jun 1993.

In some systems the use of weak keys is permitted, for example the use
of passwords to encrypt authentication data. An intruder might consider
guessing such keys as his best line of attack against the system. For such
attacks to work he needs to be able to check whether his guess is correct.
The protocol should make such verification impossible. This leads to the
concept of verifiable text. The authors demonstrate several protocols that use
randomnonces tomask redundancy thatmight give rise to verifiability. The
paper is unusual and well worth a read.

[57] Li Gong, Roger Needham, and Raphael Yahalom. Reasoning About
Belief in Cryptographic Protocols. In Deborah Cooper and Teresa
Lunt, editors, Proceedings 1990 IEEE Symposium on Research in Secur-
ity and Privacy, pages 234–248. IEEE Computer Society, May 1990.

85



This paper presents an extension to the original BAN logic [27]. Interesting
extensions include the notion of recognisability (the use of typing would
prevent many identified protocol flaws), the notion of possessions (for-
mulæ that a principal can posses, because he has seen them, and so on). In
distinction to BAN-logic a principal does not have to believe in a formula
in order to include it in a message (he merely has to possess it). Also in-
cluded are explicit “not-originated here” indications for message compon-
ents allowing the principal to detect replays of messages he himself has cre-
ated. There are alsomessage extensionsbywhich preconditions for actually
sending a message are attached to it. The derivation rules given are much
more numerous (over 40) than those given in BAN.

[58] John Gordon. Public Key Cryptosystems. In Proceedings of Networks
’84, 1984.

This is an introduction to public key cryptography for the beginner. The
paper is very light but there are some helpful analogies for the non-
cognoscenti.

The paper gives an outline of one-way functions, trapdoors, key exchange,
public key approaches and electronic signatures.

In general littlemaths is assumed (indeed thenotions ofmodular arithmetic
are explained for example) and many of the details are glossed over (e.g.
on explaining the disguising of super-increasing sequences in the knapsack
problem). Merkle-Hellman and RSA schemes are outlined very briefly.

[59] R. Hauser, P. Jansen, R. Molva, G. Tsudik, and E. van Herreweghen.
Robust and Secure Pasword andKeyChangeMethod. InDieterGoll-
mann, editor, Computer Security—ESORICS ’94, number 875 in Lec-
ture Notes in Computer Science, pages 107–122. Springer, 1994.

This paper addresses the problem of how passwords can be changed in a
distributed environment and in the presence of failures (for example, ac-
knowledgement messages not getting through).

There is a description of Kerberos (V4 and V5) CHANGEPW and a critical
examination (note that there is a typographical error in the V4 description).
The question is then raised as towhat happens in the protocolwhen failures
occur.

A robust solution to the password update problem is then provided. It as-
sumes that a user who does not successfully complete a transaction (from
his point of view) will repeat attempts to change the password in the same
way. Effectively the request message contains tickets with the old (new)
password encrypted with the new (old) password (it’s more complex than
this). The authentication server will either store the “old” password or the

86



“new” passwordwith the user dependingonwhether the previous attempt
succeeded or not. Decrypting an appropriate ticket ought to give sufficient
proof of identity. If the server already has carried out the update then there
is no change and a success response is given, otherwise the update process
goes ahead. Switching the order of the tickets (which would allow an in-
truder to reverse the change) is protected against by the inclusion of nonces
(and functions thereof) to ensure that the ordering of the messages is de-
terminable (one is actually a timestamp).

It is hard to say howmuch of a problem this paper addresses. Intuitively it

would seem far from “crucial” as stated by the authors. The proposed solu-

tion is quite neat though and certainly it seems efficient. Worth a read.

[60] Martin E Hellman. The Mathematics of Public Key Cryptography.
Scientific American, pages 130–139, August 1979.

This article provides a very good introduction to public key cryptography
mathematics. The author addresses general principles such asNP-hardness
and provides an explanation of knapsack and RSA approaches. The math-
ematics is described well and many simple examples are given. A very
good place to start.

[61] Tzonelih Hwang and Yung-Hsiang Chen. On the security of
SPLICE/AS: The authentication system in WIDE Internet. Inform-
ation Processing Letters, 53:97–101, 1995.

This paper presents two attacks on the SPLICE/ASauthentication protocol.
Theflaws are caused by signing after encryption. Solutions are offered to fix
the flaws. Clark and Jacob [36] show that there still remains a flaw.

[62] Tzonelih Hwang, Narn-Yoh Lee, Chuang-Ming Li, Ming-Yung Ko,
and Yung-Hsiang Chen. Two Attacks on Neuman-Stubblebine Au-
thentication Protocols. Information Processing Letters, 53:103–107,
1995.

This paper presents two attacks on the Neuman Stubblebine protocol. The
first is that given by Carlsen [32] in 1994 (but note that this paper was sub-
mitted before Carlsen’s was published). The second is a parallel session at-
tack using the one principal as an oracle. Suggestions of how to avoid this
aremade. The authors are aware of the problem to be solved and in addition
to themethod shown they suggest somealternatives (such as permuting the
order of encryption to avoid replays in different messages). In fact it would
appear that this approach is actually more secure since the protocol as it
stands could be implemented using cipher block chaining. In that case a re-
play becomes possible, with the replayed message just an initial segment
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of the first message; this wouldn’t be the case if there was some plaintext
permutation before encryption.

The improvement for the subsequent authentication protocol also depends
on implementation for security. Examination shows that if cipher block
chaining is used then there is a problem with the improved solution. Thus,
the offered solution is implementation dependent.

[63] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 1: General Model, 1991.

This is the introductory part of the ISO/IEC 9798 standard dealing with en-
tity authentication mechanisms . Its basic function is to provide definitions
and notation used in the subsequent parts.

[64] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 2: Entity authentication using symmetric
techniques, 1993.

This part of the ISO/IEC 9798 standard presents several unilateral andmu-
tual authentication protocols based on shared key cryptography. Advice is
given on the use of text fields and also on the choice of time varying para-
meters(e.g. random, sequence numbers and timestamps).

[65] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 3: Entity authentication using a public key
algorithm, 1995.

This part of the ISO/IEC 9798 standard presents several unilateral and
mutual authentication protocols based on public key cryptography. They
would appear secure at present.

[66] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 4: Entity authentication using crypto-
graphic check functions, 1993.

This part of the ISO/IEC 9798 standard presents several unilateral andmu-
tual authentication protocols based on keyed hash functions.

[67] ISO/IEC. Information Technology - Security techniques — Entity Au-
thentication Mechanisms Part 5: Entity authentication using zero know-
ledge techniques, 1993.

This part of the ISO/IEC 9798 standard presents several unilateral andmu-
tual authentication protocols based on shared key cryptography.Advice on
the use of optional text fields and also on the choice of time varying para-
meters is given too (e.g. random, sequence numbers and timestamps).
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[68] A Jiwa, J Seberry, and Y Zheng. Beacon Based Authentication. In
Dieter Gollmann, editor, Computer Security — ESORICS ’94, number
875 in Lecture Notes in Computer Science, pages 125–142. Springer,
1994.

The paper provides a good introduction to Beacon-based authentication.
Conventions in cryptography are explained and an outline of Rabin’s (the
originator) approach to beacon use is given. A beacon emits at regular inter-
vals a random integer in the range 1 to N whereN is publicly known. The
use of this emitted token is given with respect to the contract signing prob-
lem. (How do we solve the problem of one party receiving a commitment
from another and yet not being committed him/herself?)

Simplifying, the parties exchange preliminary contracts and commitments
to sign (conditional) followed by random integers I1 and I2. Let I = (I1 +

I2) mod N . They now exchangemessages committing them to the contract
if the next beacon token is I . A party may not commit. If so, he has a 1 in
N chance of getting the other party at a disadvantage (and an N  1 in N

chance of not getting away with it and having to explain his/her lack of
commitment).

A beaconised version of the Needham Schroeder protocol is then given.

The paper is well written and addresses an approach that has not been

given much attention.

[69] R. Kailar and Virgil D. Gligor. On Belief Evolution in Authentication
Protocols. In Proceedings of the Computer Security Foundations Work-
shop IV, pages 103–116. IEEE Computer Society Press, 1991.

As yet unread!

[70] I Lung Kao and Randy Chow. An Efficient and Secure Authentic-
ation Protocol Using Uncertified Keys. Operating Systems Review,
29(3):14–21, July 1995.

This presents various repeated authentication protocols. The authors indic-
ate how the use of uncertified keys, i.e. whose validity is not ensuredwhen
they are first used may bring performance benefits.

[71] A. Kehne, J. Schöenwälder, and H. Langendörfer. A Nonce-Based
Protocol for Multiple Authentication. Operating Systems Review,
26(4):84–89, 1992.

Amodern repeated authentication protocol . An initial protocol distributes
a shared keyKab to principalsA andB and also a ticket fT;A;Kabgbb sealed
by B using a key known only to herself. Repeated authentication can then
be carried out by presenting the ticket and using the keyKab (distributed to
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A by the server under a key shared by it and A) and several nonces. After
the protocols are presented the BAN logic [27] is used to analyse the pro-
tocol. The aim of this protocol is to overcome reliance on accurate distrib-
uted clocks (it uses only local clocks for timestamp checks).

There are some problems with the protocol, as pointed out by Syverson
[110]. It might be argued that there is a flaw in the idealisation of the pro-
tocol. Indeed this is argued byNeuman and Stubblebine [93] that the fresh-
ness beliefs in the repeated authentication protocol are invalid. Syverson
disagrees with this view and indicates that it is perfectly possible to take
another interpretation of “run of the protocol”, namely that a run is a single
initial protocol and all subsequent runs of the repeated authentication pro-
tocol. It would appear that BAN as it currently stands does not handle re-
peated authentications using tickets.

For the authentication goals they set the authors argue that their initial pro-

tocol is minimal with respect to the number of messages.

[72] R. A. Kemmerer. Using Formal Verification Techniques to Analyse
Encryption Protocols. In Proceedings of the 1987 IEEE Symposium on
Research in Security and Privacy, pages 134–139. IEEE Computer Soci-
ety Press, 1987.

This is one of the first papers to apply logic to the analysis of encryption
protocols (rather than algorithms). This is done using a variant of the Ina
Jo specification language (and so represents a use of a well-known general
specification notation for protocol specification and analysis purposes).

The modern trend has been away from off-the-shelf technologies but this

may change.

[73] R. A. Kemmerer. Analysing Encryption Protocols Using Formal Veri-
fication Techniques. IEEE Journal on Selected Areas in Communications,
7(4):448–457, 1989.

Essentially the same fare as his earlier paper [72].

[74] C. Meadows R. Kemmerer and Jonathan Millen. Three Systems for
Cryptographic Protocol Analysis. Journal of Cryptology, 7(2):79–130,
1994.

Auseful paper. Three systems are described: the Interrogator, theNRLPro-
tocol Analyser and the use of Ina Jo. The tools are used to analyse the TMN
protocol with very interesting results. Well worth a read.

[75] V. Kessler and G. Wedel. AUTLOG—An advanced logic of authen-
tication. In Proceedings of the Computer Security Foundations Workshop
VII, pages 90–99, 1994.
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This paper proposes an extension of BAN Logic [27]. It borrows some as-

pects of existing extensions (e.g. recognisability) but introduces a number

of new ones. In particular there is a recently said predicate as original sug-

gestedby BurrowsAbadi andNeedham. There is an attempt to simplify the

idealisation process by pushing certain aspects of beliefs about keys into the

deduction rules. The idealisation process still looks pretty complex though.

The authors also introduce the notion of a passive eavesdropper. This can

be used to detect certain types of flaw (such as the Nessett flaw [92]). The

paper concludes with discussion about the inability of the logic to handle

parallel runs.

[76] Paul C. Kocher. Cryptanalysis of Diffie-Hellman, RSA, DSS, and
other Systems Using Timing Attacks. Extended Abstract on PK’s
WWW Page — http://www.cl.cam.ac.uk/users/rja14/, dec 1995.

A paper that will probably cause quite a stir since it presents an attack on
a variety of public key encryption schemes. The attacks are based on not-
ing the amount of time taken to encrypt text. The preliminary results look
worrying indeed.

Essential reading!.

[77] Armin Liebl. Authentication in Distributed Systems: A Biblio-
graphy. Operating Systems Review, 27(4):122–136, October 1993.

This paper provides a brief but wide ranging bibliography of seventy-one
papers in authentication. It surveys the field in terms of goals of authen-
tication, design aspects of cryptographic protocols, protocol categorisation
(private, public , hybrid, one-ways functions etc.) and verification of proto-
cols. There is a neat table of where to find relevant information on various
protocols. The column indicating which protocols are flawed is now out of
date!

[78] Gavin Lowe. An Attack on the Needham-Schroeder Public Key Au-
thentication Protocol. Information Processing Letters, 56(3):131–136,
November 1995.

Seventeen years after publication of the Needham Schroeder Public Key
protocol [90] Lowediscoverswhat everyone else hasmissed – a parallel ses-
sion attack. This brief paper is very clear in its descriptions.

[79] Gavin Lowe. Breaking and fixing the needham schroeder public-key
protocol using fdr. In Proceedings of TACAS, volume 1055, pages 147–
166. Springer Verlag, 1996.

In this paper Lowe describes how the CSP refinement checker FDR was
used to identify a hole in the security of the well known Needham

91



Schroeder Public Key Protocol ??. He presents an account of howprincipals
and intruder communications are modelled in CSP (with a restricted num-
ber of principals) and presents an argument to show that the analysis per-
formed is sufficient to guarantee its correctness when more principals are
added to the system.

[80] Gavin Lowe. Some new attacks upon security protocols. In Proceed-
ings of the Computer Security Foundations Workshop VIII. IEEE Com-
puter Society Pres, 1996.

This paper records a number of attacks on protocols. The aim is largely to

show that the same mistakes in protocol design are being made time and

time again. The paper contains a more vicious attack on the Woo and Lam

Mutual Authentication Protocol than that identified by Clark and Jacob (a

public nonce is accepted as a key) 6.3.11 This new attack requires a prin-

cipal to accept messages he has created. Woo and Lam actually state that

reflections are detected by principals and so the protocol has no means of

enforcing this. Lowe believes that such functionality should be captured by

the protocol and not be left as an implementation dependency. Attacks on

the KSL protocol ?? and on the TMN protocol are given.

[81] Gavin Lowe. Splice-as: A case study in using csp to detect errors in
security protocols. Technical report, Programming Research Group,
Oxford, 1996.

In this paper the author indicate show the CSP refinement checker FDR is

used to analyse a recently published protocol (which is actually a correction

of a previous one).

[82] Wenbo Mao and Colin Boyd. Towards the Formal Analysis of Se-
curity Protocols. In Proceedings of the Computer Security Foundations
Workshop VI, pages 147–158. IEEE Computer Society Press, 1993.

In this paper authors examine some of the defects of BAN logic. After not-

ing that BAN logic passes as secure somepatently flawed and insecure pro-

tocols they address some specific weakness. First the idealisation process

is examined (does not take into account context-specific information), then

elements of the nature of belief are examined (such as the senselessness

of believing in a nonce. The elicitation of assumptions is also a very dif-

ficult area. The authors then go on to provide their own formalism inten-

ded to cater for flaws identified. An element of preprocessing is carried out

to identify the implicit use in the protocol description so f various elements

(e.g. nonces are identified as challenges, response are identified etc.). A set
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of BAN-like inference rules are given. Two protocols are then analysed us-

ing the system.

[83] WenboMao and Colin Boyd. Development of Authentication Proto-
cols: Some Misconceptions and a New Approach. In Proceedings 7th
Computer Security Foundations Workshop, pages 178–186. IEEE Com-
puter Society Press, 1994.

This paper addresses two important points regarding authentication proto-
cols. The first is that non-secret data is often encrypted by a principal in or-
der to be retrieved by the intended recipient through decryption. Boyd and
Mao argue convincingly that a more desirable way of proceeding is to rely
on the one-way service of cryptographic systems rather than the secrecy
service. Thus, use of hash functions can be used in order not to provide to
much cryptoanalytic information.

The secondmisconception relates to implementation — the choice of cryp-
tographic algorithm. The authors indicate that theuse of cipher block chain-
ing for all cryptographic services in authentication protocols may be dan-
gerous and give an example of how a “cut and paste” attack can be moun-
ted on the Otway-Rees protocol.

The third point attacked by the authors is the misuse of redundancy, which
can lead to significant provision of cryptoanalytic information.

The authors state that the use of a single notation for all cryptographic
services gives a lack of precision that has lead to many weaknesses and
provide a notation that distinguishes between encryption for confidential-
ity and one way services. Their method requires that only secret data be
subject to confidentiality encryption.

Overall, the paper is well-written, varied in its scope and very useful.

[84] Wenbo Mao and Colin Boyd. On Strengthening Authentication Pro-
tocols to Foil Cryptanalysis. In Dieter Gollmann, editor, Computer
Security—ESORICS 94, number 875 in Lecture Notes in Computer
Science, pages 193–204. Springer, November 1994.

This paper indicates how certain classes of protocols allow a mischiever to
generate large amounts of plaintext-ciphertext pairs. A Kerberos descrip-
tion is given and an indication shown that the protocols is subject to an in-
teresting attack.

Suppose a principal sends a request to a server S in the clear. Server S

replies with a ticket that includes an encrypted part containing: flag bits,
session key, address, names, timestamps, lifetimes, host addresses and au-
thorisation data, all encrypted under the symmetric key Kas. Now much
of this data is known or nearly so. For timestamps etc. the format of the
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data is known if not the exact data. In the case of an internal adversary B

(with whom A wishes to communicate) this is entirely known. However,
the amount of data that can be obtained by B in such a way is very small.
More important is that the original request is in the clear and so message
requests from A can be spoofed ad nauseam. Nowwhat happens if the en-
cryption is done using cipher block chaining? Because the session key will
be different in each run, the sequences of ciphertext blocks will be different
too. Theway CBCworks allowsCi and Pi+C(i1) to be ciphertext plaintext
pairs. Since the session key is different in each run, this merely ensures that
different runs allow different plaintext ciphertext pairs to be created.

Adescriptionof theKryptoKnight authentication system is thengiven. This

too is subject to an attack generating plaintext ciphertext pairs. Remedies

are provided. In one a nonce is exchanged encryptedwhich then forms part

of the MAC generation key. There is effectively a one-time channel and so

only one plaintext ciphertext pair is possible on each run. Another scheme

using exponentiation key exchange is given.

[85] James L.Massey. An Introduction to Contemporary Cryptology. Pro-
ceedings of the IEEE, 76(5):533–549, May 1988.

A very good introduction to the history, terminology and theory of crypto-

logy. The author describes both secret key and public key cryptography.

The reader will need some mathematics to follow the text. the paper is un-

usual in that it also attempts to introduce the underlying information the-

oretic concepts to the reader as well as the more usual algorithm fare.

[86] JonathanMillen. The Interrogator User’s Guide. Technical ReportM
93B0000172, MITRE, 202 Burlington Road, Bedford, MA 01730-1420,
may 1994.

The Interrogator plays an important part in the development of tool sup-
port for protocol analysis. The user specifies the protocol in a prolog-based
syntax and can use the tool interactively to determine whether specific
states can be reached or specific data items compromised. Its use is illus-
trated via examples (theNeedhamSchroeder conventional keydistribution
protocol, the Diffie Hellman key Exchange and the TMNprotocol). the tool
provides an automatic search facility but informed guidance from the user
is need to reach the stage where automated support is appropriate.

An important tool.

[87] J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Pro-
tocol Security Analysis. IEEE Transactions on Software Engineering,
13(2):274–288, February 1987.
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This paper gives a description of the Interrogator tool. The user guide [86]

is a better place to find detailed information

[88] Judy H. Moore. Protocol Failures in Cryptosystems. Proceedings of
the IEEE, 76(5), May 1988.

The use of particular algorithms in conjunction with particular protocols
can have disastrous results. This is not because of any inherentweakness in
the cryptoalgorithms themselves, rather it is because theway inwhich they
are used requires that they possess certain properties which they do not in
fact have. It is the security of the whole system that must be considered not
just the algorithm or the protocol in isolation. The paper provides several
ways inwhichRSAcan beused in such amanner that certain number theor-
etic features of RSA render its indicated use dangerous: a notary protocol is
given in which it is possible to forge a signature on data because exponen-
tiation preserves the multiplicative structure; common modulus and low
exponent protocol failures are explained; a low entropy example is cited
(the failure arises because of the high redundancy of human speech). Fi-
nally various symmetric key failures are identified. The paper is useful in
that it highlights the difficulties in going from specification to implementa-
tion. All too often specifiers do not state the precise qualities they demand
of cryptoalgorithms.

This is an important paper. The whole area of cryptoalgorithm - protocol

interaction badly needs addressing (still).

[89] Louise E. Moser. A Logic of Knowledge and Belief about Computer
Security. In J Thomas Haigh, editor, Proceedings of the Computer Se-
curity Foundations Workshop III, pages 57–63. IEEE, Computer Society
Press of the IEEE, 1989.

This paper provides a brief overview of the development of modal lo-
gics and their use in reasoning about authentication protocols. It intro-
duces a new logic that combines a monotonic logic of knowledge and be-
lief augmented by a non-monotonic unless operator. For beliefs of the for
“B(p)unlessB(q)”B(p) is assumed to be true unless refuted by other evid-
ence. An example application of the logic is given. Principals wishing to
communicate ask a server for a key to be distributed. A characterisation of
knowledge and belief about the protocol is recorded in 18 axioms. These
axioms encompass rules about beliefs as a result of sending and receiv-
ing of messages, knowledge of principals’ keys and belief in their secur-
ity, and trustworthiness of principals. The logic takes the view that belief in
a proposition p is presumed unless it is refuted. This has some interesting
consequences—forexample, shouldwe assume that each principal believes
that “k is a key” for all k (Axiom 1d begins to look strange in this context).
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A few example consequences of the axioms are then given. The text con-
cludes that there is a need for quantification to be included in the logic. Fu-
ture plans include also the use of nested unless predicates. Combining the
logicwith a temporal logic is the final suggestion.Currently no tool support
is available for the logic (but the authors consider it essential).

The characterisation seems rather complex and as indicated above the ac-

tual axioms might usefully be examined. But there is a logic at work here

with a sound semantics. An important paper, and worth a read.

[90] Roger Needham and Michael Schroeder. Using Encryption for Au-
thentication in Large Networks of Computers. Communications of the
ACM, 21(12), December 1978.

One of the classic authentication papers. In this paper the authors ad-
dress issues of establishing interactive communication between principals,
authenticated one-way communication (for example, mail systems) and
signed communication.

Two protocols for establishing interactive communication are presented:
one using conventional symmetric key encryption and the other using pub-
lic key encryption. The former contains the classic replay flaw[45]. It is is
usually referred to as “The Needham Schroeder Protocol” but this could
equally apply to any of the three protocols presented in this paper. The au-
thors were aware of many possible attacks and provide a rationale for their
protocols. The public key protocol has recently been shown to be suscept-
ible to a parallel session attack by Gavin Lowe. The final protocol described
is a means of obtaining digital signatures via a third party using symmetric
key encryption.

The authors assume that keys are not readily discoverable by exhaustive search
or cryptanalysis. As we were later to find out, more restrictive assumptions
would be needed.

The paper ends with the well-known quote:

Finally, protocols such as those developed here are prone to extremely
subtle errors that are unlikely to be detected in normal operation. The
need for techniques to verify the correctness of such protocols is great,
and we encourage those interested in such problems to consider this
area.

One of the landmark papers in authentication. Essential reading.

[91] Roger M. Needham and M. D. Schroeder. Authentication Revisited.
Operating Systems Review, 21(7):7–7, January 1987.

96



In this paper the authors revisit their famous conventional (symmetric) key

authentication protocol and show how an extra exchange between the two

authenticating principals can be used to overcome the freshness deficiency

identified by Denning and Sacco (who overcame the problem by the use

of timestamps) [45]. The extra exchange includes a nonce from the second

principal B to be provided to the authentication server. This is then in-

cluded by the authentication server in the authentication ticket passed to

B as part of the protocol, thereby ensuring freshness.

[92] Daniel M. Nessett. A Critique of the Burrows, Abadi and Needham
Logic. ACM Operating Systems Review, 24(2):35–38, April 1990.

This brief paper (and its rejoinder) formed the start of what might be de-
scribed as “BANwars”— the debate over what Burrows, Abadi andNeed-
ham claimed for BANlogic (first order claim) [27], what others claimed they
claimed (second order claim) andwhat the capabilities of BAN logic and its
derivatives are (no claims, just investigative science).

Nessett misquotes (or misinterprets) the BAN authors statements regard-
ing goals of authentication. This paper implies that the BAN authors had
a particular position on what the belief goals of a protocol should be. This
is simply wrong; the BAN authors give the indicated goals merely as ex-
amples of what might be suitable in particular circumstances. Indeed, the
BAN authors even describe the Otway Rees protocol is a “well designed
protocol that may have use in certain environments”, even though the pro-
tocol does not achieve the goals Nessett states they regard as necessary (a
point raised by Syverson [108]).

The more important point of this paper is that it provides an example pro-
tocol that is obviously insecure but the flaw is not detected by BAN ana-
lysis. The crux of the example is that a principal can broadcast a message
that contains a key for shareduse and a nonce all encryptedwith her private
key. This is obviously readable by everyone (with the public key) and so the
protocol is insecure. The protocol given is sufficient to establish first and
second order beliefs of both parties in the goodness of the key.

The paper is now part of authentication folklore.

[93] B. Clifford Neuman and Stuart G. Stubblebine. ANote on the Use of
Timestamps as Nonces. Operating Systems Review, 27(2):10–14, April
1993.

The paper discusses the use of timestamps as nonces. It then proceeds to
give an alternative protocol similar to that given by Kehne et al [71] for re-
peated authentication. The ticket is slightly different to the one used in that
protocol. In addition, although timestamps are still local, the ticket is sealed
by the authentication server, rather than by one of principals.
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The paper criticises the application of BAN logic [27] to the KLS protocol
[71], stating that it violates the notion of freshness. Furthermodifications to
this protocol are suggested. The tradeoffs involved in adopting particular
approaches to authentication (e.g. timestamps or nonces) are examined.

The protocol has certain flaws as exposed by Hwang et al [62].

[94] D. Otway and O. Rees. Efficient and Timely Mutual Authentication.
Operating Systems Review, 21(1):8–10, January 1987.

This paper presents the well-known Otway-Rees protocol. The notation is
a little different from usual. The description is of interest for historical reas-
ons: the protocol has become one of those regularly subject to analysis tech-
niques (e.g. BAN [27]).

[95] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Di-
gital Signatures and Public Key Cryptosystems. Communications of
the ACM, 21(2):120–126, February 1978.

The authors present the RSA algorithm for the first time in an academic
journal (it had appeared previously in one of Martin Gardner’s columns).
A classic paper.

[96] A.W. Roscoe. Intensional Specifications of Security Protocols. In Pro-
ceedings 9th IEEE Computer Security Foundations Workshop, pages 28–
38. IEEE Computer Society Press, 1996.

The author introduces two notions of specification: extensional and inten-
sional.

An extensional specification indicates what the protocol is to achieve (but
not how). Given a set of assumptions prior to the protocol about ”states of
mind” of the principals an extensional specification will give what proper-
ties of those states of mind of the principals must hold after execution of the
protocol. The author illustrates how such specificationsmay be found lack-
ing if attacks are to be found. An intensional specification describes prop-
erties of how communications between principals must occur. It does not
specify precisely what is achieved. A deviation from the designer’s inten-
ded sequence of communications is an attack. Other methods must be ap-
plied to address what the protocol actually achieves (e.g. BAN analysis).
Coding such specifications in CSP allows the refinement checker FDR to be
brought to be to search for deviational attacks. Well worth a read.

[97] Bill Roscoe and Paul Gardiner. Security Modelling in CSP and FDR:
Final Report. Technical report, Formal Systems Europe, oct 1995.
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This report summarise how CSP can be used to model principals’ beha-

viour in security protocols.Authentication is couched as a refinement prob-

lem and the refinement checker FDR is used to carry out a state space ex-

ploration to determine whether a proposed ’implementation’ actually sat-

isfies the specification of authentication. This report is the initial output of

the Formal Systems work indicating that CSP/FDR could be a very prom-

ising means of analysing security protocols.

[98] A. D. Rubin and P. Honeyman. Formal Methods for the Analysis
of Authentication Protocols. Technical Report Technical report 93–
7, CITI, November 1993.

This paper provides a review of extant literature in the field of authentic-

ation protocols. The paper begins with some introductory definitions and

a description of the Needham-Schroeder protocol [90], its flaws and their

resolution by timestamps. This serves as a good motivation for the subject

matter that follows. The various approaches to analysis are then investig-

ated. The authors use Meadow’s categorisation [?]. The reference material

is wide-ranging and the text is well written.

[99] B. Schneier. The IDEA Encryption Algorithm. Dr. Dobb’s Journal,
pages 50–56, December 1993.

This article provides a good, easily understood description of the IDEA
conventional key encryption algorithm. This is a 64-bit block algorithm
with a 128-bit key. The main diagram seems slightly out of kilter with the
text though.

Software implementations are about 1.5 to 2 times as fast as correspond-

ing DES implementations. The author cites a VLSI implementation that en-

crypts at 177MBits/s when clocked at 35MHz.

[100] Bruce Schneier. Applied Cryptography. Wiley, 1994.

Probably the best available introductory text on modern day cryptography

and its applications. It is easy to read and very wide ranging in the topics

covered. Many conventional key and public key algorithms are described

together with known weaknesses. A significant amount of effort is expen-

ded explaining various cryptographic protocols. There are several attacks on

protocols described but some attacks that we know about are not covered.

[101] G.J. Simmons. How to Insure that Data Aquired to Verify Treaty
Compliance are Trustworthy. Proceedings of the IEEE, 76(5):621–627,
May 1988.
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A cold war summary paper! Rather less flippantly, Simmons provides a
readable account on the work of treaty verification (for nuclear tests) car-
ried out at Sandia Laboratories. Descriptions are given of both symmetric
key and public key approaches.

[102] Miles E. Smid and Dennis K. Branstad. The Data Encryption Stand-
ard: Past and Future. Proceedings of the IEEE, 76(5):550–559, May
1988.

This is a goodpaper to read. It examines the history of DES, why it was pro-
duced, who were the major stakeholders and how it was taken up by vari-
ous bodies. An overview of its applications is given. Not much technical
information but a good overview of the state of play in 1988.

[103] Einar Snekkenes. Exploring the BAN Approach to Protocol Ana-
lysis. In 1991 IEEE Symposium on Research in Security and Privacy,
pages 171–181. IEEE Computer Society Press, 1991.

Snekkenes shows that BAN logic is incapable of detecting errors due to per-
mutation of protocol steps.He also shows that it is unlikely that a BAN type
approach can hope to provide good analysis of zero-knowledge type pro-
tocols. A class of protocols is introduced called terminating protocols and it
is shown that Dan Nesset’s flawed protocol [92] belongs to this class.

[104] E. Snekkenes. Roles in Cryptographic Protocols. In Proceedings of the
1992 IEE Symposium on Security and Privacy. IEEE Computer Society
Press, 1992.

In this paper Snekkenes shows that Bieber’s approach to protocol verifica-

tion [16] may not detect flaws that arise due to principals taking on more

than one role in a protocol. Bieber’s logic may, however, be successfully

modified. An example protocol is given that is deemed secure by both BAN

analysis and Bieber CKT5 analysis.

[105] Einar Snekkenes. Formal Specification and Analysis of Cryptographic
Protocols. PhD thesis, Faculty of Mathematics and Natural Sci-
ences, University of Oslo, Norwegian Defence Research Establish-
ment, P.O. Box 25, N-2007, Kjeller, Norway, jan 1995.

This DPhil thesis provides a formal framework for specifying and reason-
ing about protocols. Numerous theories have been written in HOL to sup-
port the analysis of protocols.

[106] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Ker-
beros:An Authentication Service for Open Network Systems. jan
1988.
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Themost usual academic reference for the earlyKerberos. Very clearlywrit-
ten. The paper addresses protocol issues but also administration and ap-
plication programmer views.

[107] Stuart G. Stubblebine and Virgil D. Gligor. On Message Integrity in
Cryptographic Protocols. In Proceedings of the 1992 IEEE Symposium
on Research in Security and Privacy, pages 85–104. IEEE, 1992.

This paper deals with the possibility of forging messages by cutting and
splicing of transmitted messages. The principal mode of encryption con-
sidered is cipher block chaining (CBC). The Kerberos authentication proto-
cols is chosen as an example to be attacked in this way. The paper addresses
the adequacy (or otherwise) of checksums to protect against suchmalicious
modification. A detailed but very good read.

[108] Paul Syverson. The Use of Logic in the Analysis of Cryptographic
Protocols. In Teresa F. Lunt and John McLean, editors, Proceedings of
the 1991 IEEE Symposium on Security and Privacy, pages 156–170. IEEE
Computer Society, May 1991.

The author is concerned with placing the use of logics for analysing secur-
ity protocols on a formal footing. In particular there is a worry that the cap-
abilities and limitations of particular logics are not really understood and
that some tool is needed to allow analysis of the logics. He proposes pos-
sible worlds semantics as that tool.

Section 2 : Security Trust and Intentionality The author categorises
the objectives of protocol analysis logics for both epistemic (knowledge)
anddoxastic logics (belief). Loosely, belief is concernedwith trust, function-
ality and a legitimate subject’s point of view, whereas knowledge logics are
used to investigate security and a penetrator’s viewpoint.

Though intuitively epistemic logic seemsmore appropriate for security and
doxastic logics for trust, each is formally capable of capturing and reason-
ing about trust and security. Practical concerns about the amount of work
involved in doing proofs lead the author to recommend that future research
concentrate on epistemic logics.

Section 3: BANLogic This section provides a critique of BAN logic [27]
and also comments on others’ critiques of BAN.

Syverson points out that while the BAN authors themselves have a good
idea of what they are doing, others are occasionally confused about the
authors’ goals. In particular the goals of authentication are a considerable
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source of confusion. Nessett’s criticisms [92] are examined. The author cor-
rectly points out that the BAN authors take no position on the goals of au-
thentication, rightly considering these goals to be application specific.

One of the BAN authors’ statements “common belief in the goodness of
K is never required—that is, A and B need not believe that they both be-
lieve that. . .that they both believe thatK is good” is criticised, because such
demonstration is known to be impossible in general. He goes on to give an
example where second order beliefs are insufficient and concludes that the
degree of belief demonstrated by a protocol varies according to the applic-
ation.

The author also takes to task Cheng and Gligor for several misattributions.
He also examines Nessett’s claims and points out that in places the original
BAN paper might give the impression of handling (at least some) security
issues. He refers to the table of protocols included in the BANpaper but in-
dicates that the authors of BAN included these ‘bugs’ as “aspects our form-
alism helped bring to light”.

It is maintained that BAN logic has been much misinterpreted and that in
practice it has helped reveal several flaws.As a formalmethod, however, the
author does not support the use of BAN logic.

Section 4: Semantics The author examines the role of semantics. One
of the major roles of a semantics is to give a means of evaluating logics.
Generally, wewouldwant to show soundness and completeness.Although
soundness is often the principal concern, for security applications com-
pleteness is seen as being of “utmost importance”. A formal semantics
provides a precise structure with respect to which such completeness and
soundness can be proven. The author argues that if a semantics takes its
structure directly from the logic, then no assurance is gained about the ad-
equacy of the logic from soundness or completeness theorems (indeed they
should be trivial). A further view on formal semantics is that it supplies an
alternative view (diversity).

The author introduces possible world semantics offering this as a means of
exposing the Nessett flaw.

Overall: The paper is well written and is well worth a read.

[109] Paul Syverson. A Taxonomy Of Replay Attacks. In Proceedings of
the 7th IEEE Computer Security Foundations Workshop, pages 131–136.
IEEE Computer Society Press, 1994.

This paper presents a taxonomy of replay attacks; or rather, two taxonom-
ies: origination taxonomy (based on the protocol run of origin of replayed
message) and destination taxonomy (based on the recipient of the replayed
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message relative to its intended recipient). Origination splits replays into
run-external attacks (replay of messages from outside the current protocol
run) and run-internal ( replay of messages from inside the current protocol
run). Run-external attacks are further divided into interleavings (requiring
contemporaneousprotocol runs) and classic replays (not necessarily requir-
ing contemporaneous runs).

Within the origination taxonomy can be placed the destination taxonomy:
deflections (message is sent either to a sender —a reflection— or to a third
party) and straight replays (intended recipient receives the message but it is
delayed).

The paper goes on to describe how the taxonomy provides a framework
in which to discuss countermeasures ’ capabilities and how it highlights
the capabilities of various logical analysis approaches (for example, BAN
is generally directed at classic replays and will usually deal with interleav-
ings). Some examples of replay attacks are given on the BAN-Yahalom pro-
tocol.

The taxonomy actually applies tomessage fragments rather thanmessages.
In practice it may be necessary to usemore than one type of replay tomount
a successful attack.

The paper is worth a read. There is little startling but that is the way with
taxonomies. The onepresented in this paper appears useful. The emergence
of taxonomies indicates perhaps that protocol development and analysis
has come of age?

[110] Paul Syverson. On Key Distribution for RepeatedAuthentication. In
Operating Systems Review, pages 24–30, 1994.

This paper describes the two-part Neuman Stubblebine protocol and then
shows how it can be attacked. The attacks assume certain implementation
dependencies (for example, that the substitution of a nonce for a keywill go
undetected and that direction bits are not used). After a discussion of coun-
termeasures the paper then presents a variant of the Neuman Stubblebine
protocol, which is free from the previous attacks, but then shows how it it-
self can be attacked. A final protocol that incorporates elements of the KSL
protocol [71] is then presented. The paper concludes with an analysis of
what the goals of the KSL and NS repeated authentication protocols were
and of the utility of BAN logic [27] for addressing repeated authentication.

A good paper, with some nice attacks.

[111] Paul Syverson and Catherine Meadows. A Logic language for Spe-
cifying Cryptographic Protocol Requirements. In Proceedings of the
1993 IEEE Symposium on Research in Security and Privacy, pages 165–
177. IEEE Computer Society Press, May 1993.
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As yet unread. Here for completeness.

[112] Gene Tsudik. Message Authentication with One-Way Hash Func-
tions. Operating Systems Review, 22(5):29–38, 1992.

This paper assesses the merits of two approaches to using hash functions

to providemessage authentication: the secret prefix and secret suffixmeth-

ods. The paper proposes a useful hybrid.

[113] Victor L. Voydock and Stephen T. Kent. Security Mechanisms in
High-Level Network Protocols. Computing Surveys, 15(2):135–171,
June 1983.

An early protocol security classic. This paper describes attacks on commu-

nications protocols and measures that can be taken to counter them. Best

of all is the low level detail on cryptosystem usage (in particular, the con-

sequences of the use of particular approaches to the choice of initialisation

vectors in DES). Essential reading.

[114] Efficient DES Key Search, Crypto 93, August 1993.

This paper addresses in considerable detail a design for a pipelined key-
search machine for DES. A very good paper. Probably the most detailed
hardware paper to reach a conference ever!

[115] MichaelWillet. Cryptography Old andNew. Computers and Security,
Vol 1:177–186, 1982.

This is a simple introduction to cryptography assuming no maths whatso-
ever. It gives a good introductory account to the history of cryptography
and introduces various types of encryption algorithm. It is of course a little
dated. It takes the reader from Caesar ciphers to DES and public key cryp-
tography (but no details on the latter).

[116] Michael willet. A Tutorial on Public Key Cryptography. Computers
and Security, pages 1–20, 1982.

Willett provides a very brief overview of mainstream public key crypto-

graphy (concentrating on RSA and Merkle Hellman Knapsacks).

[117] T. Y. C. Woo and S. S. Lam. Authentication for Distributed Systems.
Computer, 25(1):39–52, January 1992.

This paper provides a good introduction to some principles of authentic-
ation, explaining some basic cryptography, what the threats to a system
are, what sorts of parties may wish to carry out authentication exchanges.
The paper provides someparadigms of authentication exchanges. Two case
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studies (Kerberos and SPX) are given. There are some errors in the paper.
Woo and Lampublished some corrections shortly after this paperwas pub-
lished indicating that figure 5 on page 47 needs augmenting: the principal
P needs to be included to precede the principal Q in steps 5 and 6. Some
of the protocols shown are susceptible to attack nevertheless. Indeed, Woo
andLam themselveshave published a correction to another of the protocols
[118].

[118] T. Y. C. Woo and S. S. Lam. A Lesson on Authentication Protocol
Design. Operating Systems Review, pages 24–37, 1994.

A previous paper by the authors [117] described a protocol that was sub-

sequently found to be flawed. The authors explain how they started with

a secure (but elaborate) one-way authentication protocol and progressively

simplified it to take outwhatwas regarded as superfluous information. The

simplification steps are given and the transition to insecurity is identified.

The authors give a Principal of Full information, which dictates that the ini-

tiator and responder include in every outgoingmessage all of the informa-

tion that has been gathered so far in the authentication exchange. A num-

ber of simplification heuristics are given. These are demonstrated by ap-

plication to a mutual authentication protocol. It would appear that there

is a problem with the description given in this paper. The transition to in-

security occurs in the step before the one identified by the authors. Effect-

ively a parallel session attack can be mounted to enable a malicious agent

to start and complete an authentication exchange with a server without the

principal whose identity he claims knowing that such an authentication has

taken place.

[119] S. Yamaguchi, K. Okayama, and H. Miyahara. Design and Imple-
mentation of an Authentication System in WIDE Internet Environ-
ment. In Proceedings of the 10th Regional Conference on Computers and
Communication Systems, 1990.

The original description of the SPLICE Authentication System. See [36].

[120] Alec F Yasinsac and William A Wulf. A Formal Semantics for Eval-
uating Cryptographic Protocols. The paper has been superceeded
by a later version published in the IEEE Symposium on Security and
Privacy 1994., 1993.

This paper provides a good introduction to some relevant issues for authen-
tication protocols. It provides an overview of the historic development of
protocols. After supplying an appraisal (albeit brief) of the capabilities of
current approaches to protocol verification the authors go on to suggest an
approach based on the notion of weakest precondition calculus. They say:
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Our review of the problem of protocols verification has brought
us back repeatedly to the field of program verification. Actions
of principals in programs can be thought of as analogous to the
operations of programs.

The general idea is that protocol steps are viewed in terms of their results,
i.e. they are effectively state transformers, with the sending and receiving
of messages modelled as memory accesses.

A language CPAL (Cryptographic Protocol Analysis Language) is given
in which the goals of authentication can be specified. Whereas BAN logic
models the evolution of principals’ beliefs, the aim of the current paper
is to model the actions a user can take. CPAL provides a language to de-
scribe those actions (send/receive messages on a network, encryption and
decryption, creating keys, timestamps and nonces, cox/different comput-
ing functions andmaking comparisons and simple decisions). Note that the
approach taken is that a protocol does not require a notion of looping (ef-
fectively only assignment and alternation are needed).

With the simplified execution model the idea is that the goals of the pro-
tocol are stated as a postcondition and then wp-calculus is used to derive
the preconditions for success of the protocols (i.e. the initial assumptions).

The appendix to this paper gives a descriptionof theCPAL language and an
indication of its use to specify various protocols (Needham and Schroeder
Private Key Protocol, Denning and Sacco Private Key Protocol, and the Ot-
way and Rees Private Key Protocol).

The ideas expressed in this paper are useful but the particulars seem a little
light at the moment.

[121] Paul C van Oorschot. An Alternate Explanation of two BAN Lo-
gic ’failures’. In Tor Helleseth, editor, Eurocrypt ’93, number 765 in
LNCS, pages 443–447. Springer Verlag, 1993.

This paper provides a retort to Boyd and Mao’s paper at the same confer-

ence discussing limitations of BAN logic approaches [24]. Oorschot main-

tains (with justification) that BAN passes the first protocol simply because

the formal assumption of trust in the authentication server is not actually

true. The second example protocol is passed by BAN because the idealisa-

tion is simply wrong.
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