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A SPARSE DISCRETIZATION FOR INTEGRAL EQUATION
FORMULATIONS OF HIGH FREQUENCY SCATTERING

PROBLEMS ∗

DAAN HUYBRECHS† AND STEFAN VANDEWALLE†

Abstract. We consider two-dimensional scattering problems, formulated as an integral equa-
tion defined on the boundary of the scattering obstacle. The oscillatory nature of high-frequency
scattering problems necessitates a large number of unknowns in classical boundary element methods.
In addition, the corresponding discretization matrix of the integral equation is dense. We formulate
a boundary element method with basis functions that incorporate the asymptotic behavior of the
solution at high frequencies. The method exhibits the effectiveness of asymptotic methods at high
frequencies with only few unknowns, but retains accuracy for lower frequencies. New in our approach
is that we combine this hybrid method with very effective quadrature rules for oscillatory integrals.
As a result, we obtain a sparse discretization matrix for the oscillatory problem. Moreover, numerical
experiments indicate that the accuracy of the solution actually increases with increasing frequency.
The sparse discretization applies to problems where the phase of the solution can be predicted a
priori, for example in the case of smooth and convex scatterers.
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1. Introduction. The accurate numerical modeling of physical problems involv-
ing strong oscillations is a challenging problem. Scattering problems in unbounded
domains are often modeled by an integral equation defined on the boundary of the
scattering obstacle. As such, the problem on an unbounded domain is reduced to
a lower-dimensional problem on a bounded domain. Numerically, these are two im-
portant advantages. Still, the method has its drawbacks, and difficulties arise as
the frequency of the problem increases. Contrary to the case for partial differential
equations, the discretization matrix of an integral equation is dense. Furthermore,
in order to represent an oscillatory solution, the number of unknowns in a boundary
element approach has to be large. Typically, one chooses a fixed number of unknowns
per wavelength per dimension. This results in a linear system with a very large and
dense discretization matrix. Hence, classical solution methods for scattering problems
rapidly become prohibitively expensive [4].

Substantial efforts have been made over the last two decades to overcome these dif-
ficulties. One direction has been to improve on the solution time required to solve the
dense linear system. The fast multipole method achieves a fast matrix-vector product
in O(N logN) operations, when the number of unknowns N increases at least linearly
with the wavenumber [30]. The fast matrix-vector product can be combined with
a preconditioned iterative technique for an efficient overall solution algorithm [10].
Another direction is given by a number of asymptotic methods, such as geometrical
optics, physical optics, and the geometrical theory of diffraction [17, 23]. A common
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2306 DAAN HUYBRECHS AND STEFAN VANDEWALLE

characteristic of asymptotic methods is that they have an error of the order O(k−n),
where k is the wavenumber and where the exponent n is typically equal to 1 or 2.
This means that the accuracy of such methods improves with increasing frequencies.
Asymptotic methods break down for low to moderate frequencies, however.

A more recent trend is the combination of finite element methods with asymptotic
methods. This is achieved by considering basis functions that are, e.g., piecewise
polynomial, multiplied by the asymptotic form of the solution at large frequencies.
The asymptotic behavior of the solution to the problem of scattering by smooth
convex obstacles was analyzed in [27]. Motivated by these results, a hybrid scheme
was considered in [1]. The authors report an overall solution method that requires
O(k1/3) operations as a function of the wavenumber, a huge improvement over the
linear dependence on k. The basis functions are piecewise polynomials, multiplied by
plane waves in a number of directions. Similar hybrid methods with even better results
are proposed in [2, 7, 25, 24, 15, 12]. A number of operations that is independent of the
wavenumber, for a fixed error, is achieved by Bruno et al. in [7] for the scattering by
smooth convex obstacles, and by Langdon and Chandler-Wilde in [25] for scattering
on a half-plane. In the present paper, we combine a similar approach with recent
insights into the behavior of oscillatory integrals [21, 19]. As a result, we obtain a
small and highly sparse discretization matrix. In addition, the accuracy of the solution
actually increases with increasing frequency.

We start the paper in section 2 with a brief review of a suitable quadrature rule
for the evaluation of oscillatory integrals that have the general form

(1.1) I[f ] :=

∫ b

a

f(x)eikg(x) dx,

where both f and g are smooth functions and where the wavenumber k determines
the frequency of the oscillations. The review is based on results by Iserles and Nørsett
in [21] and by the authors in [19]. We show how Filon-type quadrature rules using
derivatives can be constructed that have the form

(1.2) I[f ] ≈ Q[f ] :=
n∑

l=0

dl∑
j=1

wl,jf
(j)(xl)

such that the accuracy of the rule improves with increasing frequency. This is quite
contrary to the rapid deterioration of classical quadrature rules, based on polynomial
interpolation, for increasingly oscillatory integrals. The asymptotic order of accuracy
as a function of the frequency is O(k−s−1), where the value of s depends on the
number of derivatives used. This is much like the behavior of truncated asymptotic
expansions. However, due to the nature of the constructed rules, the result is exact
for an arbitrarily large family of functions regardless of the frequency. The main
difference with asymptotic expansions therefore is that there is no breakdown at low
frequencies. In general, one can also expect a smaller error for moderate frequencies.

The results of [19] are generalized in section 3 to an appropriately chosen model
form

IH [f ] :=

∫ b

a

f(x)H(1)
ν (kg1(x))eikg2(x) dx,

where f , g1, and g2 are assumed to be smooth functions. The function H
(1)
ν (z) is the

Hankel function of the first kind and order ν; it is an oscillatory function for large
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arguments. The model form is chosen to represent the integrals that will appear later
in the solution of scattering problems. The resulting quadrature rule has the same
form as (1.2). The scattering problem is introduced in section 4. The quadrature
rules are subsequently used in the discretization of the oscillatory integral equation
in section 5. We identify a setting in which each row of the discretization matrix
corresponds to the discretization of a specific one-dimensional oscillatory integral with
a known phase. Owing to the small number of quadrature points required for the
evaluation of such integrals, the discretization matrix is sparse. The accuracy of
the solution improves because the quadrature rules themselves improve for increasing
frequencies.

We illustrate the method with numerical results in section 6. We consider the
scattering of a plane wave and of a circular wave, by a circle and by an ellipse,
respectively. We end the paper with some concluding remarks in section 7.

2. The efficient evaluation of oscillatory integrals. The classical approach
for the evaluation of oscillatory integrals is to use a fixed number of quadrature points
per wavelength. This automatically leads to a number of operations that scales lin-
early with the frequency. However, the asymptotic expansion of an oscillatory integral
for large frequencies reveals that the value of the integral is actually determined by
the behavior of the integrand near a small set of special points [31, 5]. These are the
boundary points of the interval, and the so-called stationary points.

Consider the oscillatory integral (1.1), where both f and g are smooth functions.
We call f the amplitude, and g the oscillator, of the integral. The stationary points
of (1.1) are all solutions ξ to the equation g′(ξ) = 0, ξ ∈ [a, b]. A stationary point is
said to have order r if g(j)(ξ) = 0, j = 1, . . . , r, but g(r+1)(ξ) �= 0. The importance
of such points lies in the fact that, locally, the integrand does not oscillate near a
stationary point. Away from all stationary points and the boundary points a and b,
the oscillations of the integrand increasingly cancel out. Hence, such regions do not
contribute much to the value of the integral.

Mathematically, this property is reflected in the asymptotic expansion of (1.1).
It can be shown that integral (1.1) with one interior stationary point of order r has
an asymptotic expansion of the form (see [31])

(2.1) I[f ] ∼
∞∑
j=0

cj [f ]

k(j+1)/(r+1)
, k → ∞.

It is proved in [21] that the first few coefficients cj [f ] of the asymptotic expansion
depend only on the first few derivatives of f and g, evaluated at the boundary points
and at the stationary points. A number of recent methods exploit this behavior in
order to obtain an approximation of I[f ] that improves with increasing k [21, 19, 26,
29]. We recall one particularly useful approach, which leads to a quadrature rule with
a classical form. We refer the reader to [20] for a more general overview.

2.1. A numerical steepest descent method. A well-known technique for
obtaining the asymptotic expansion (2.1) is the method of steepest descent [5, 33].
Justified by Cauchy’s integral theorem for analytic functions, the integration path is
deformed into a complex integration path that has more desirable properties. Specifi-
cally, the new path is chosen such that the integrand is not oscillatory along the path
and has exponential decay. The asymptotic expansion can then be derived from the
resulting line integrals in the complex plane. Asymptotic expansions have the disad-
vantage, however, that the error is not controllable for low values of k. Rather than
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2308 DAAN HUYBRECHS AND STEFAN VANDEWALLE

forming the asymptotic expansion, the line integrals can also be evaluated numerically.
This numerical approach leads to a method that improves with increasing k, but that
retains accuracy for small values of k [19].

Assume that both f and g are analytic functions. Subdivide the integration
interval [a, b] into subintervals [al, bl], l = 1, . . . , L, such that g′(x) �= 0, x ∈ (al, bl),
i.e., the oscillator g is a monotonic function on [al, bl]. Then the inverse of g exists
uniquely on [al, bl], and it is also analytic. We denote it by g−1

l . The integral over
[al, bl] is evaluated by deforming the integration path into the complex plane. Define
the path hx,l(p) by

(2.2) hx,l(p) = g−1
l (g(x) + ip), x ∈ [al, bl].

This path is called the path of steepest descent. It follows immediately from the
definition that eikg(hx,l(p)) = e−kpeikg(x). Hence, the line integral along the new
integration path, originating in the point x and terminating in the point hx,l(P ), can
be written as

(2.3) Sl[f ;x] = eikg(x)

∫ P

0

f(hx,l(p))h
′
x,l(p)e

−kp dp, P > 0.

The integrand of (2.3) is not oscillatory and decays exponentially fast. The integral
over [al, bl] can now be approximated by Sl[f ; al] − Sl[f ; bl]. In general, the value of
I[f ] can be approximated by a sum of nonoscillatory line integrals with exponentially
small error,

(2.4) I[f ] =

L∑
l=1

(Sl[f ; al] − Sl[f ; bl]) + O(e−kP ),

with P > 0. The larger P , the better the approximation, but for all finite P the error
decays exponentially fast as the frequency parameter k increases. In many cases of
practical interest, the limit case P → ∞ is possible, and the error O(e−kP ) vanishes.
In that case, decomposition (2.4) is exact.

2.2. A quadrature rule for oscillatory integrals. The decomposition (2.4)
can be used to obtain a quadrature rule for I[f ] with a classical form. Approximating
f by its truncated Taylor series at each point al and bl, we find a quadrature rule
using derivatives of the form

(2.5) Q[f ] :=

L∑
l=0

dl∑
j=0

wl,jf
(j)(xl),

with x0 = a, xl = bl, l = 1, . . . , L, and with the weights given by

w0,j = S1

[
(x− a)j

j!
; a

]
,

wl,j = −Sl

[
(x− xl)

j

j!
;xl

]
+ Sl+1

[
(x− xl)

j

j!
;xl

]
, l = 1, . . . , L− 1,

wl,j = −Sl

[
(x− b)j

j!
; b

]
.

Note that this rule uses only local information of f : its values and derivatives
at the endpoints a and b of the integration region and at all the stationary points in
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between. Yet the approximation I[f ] ≈ Q[f ] is very accurate and becomes increasingly
accurate with increasing values of the frequency parameter k. It can be shown that
the first few terms of the asymptotic expansion of the error I[f ] −Q[f ] vanish. This
is due to the fact that these terms depend only on the derivatives of f at exactly
the points we consider in the quadrature rule. Hence, the approximation has a high
asymptotic accuracy. The exact order depends on the number of derivatives dl that
are used and on the order of the stationary points involved [19].

3. Specialized quadrature rules. The quadrature rule of the previous section
applies only to the model integral (1.1). Intuitively, however, one sees that the ideas
can be readily generalized to any oscillatory integral. The value of an oscillatory
integral is determined by the behavior of the integrand near the endpoints of the
integration interval, and near the points where the integrand locally does not oscillate.
In order to construct similar quadrature rules, one requires knowledge of the phase
of the integral. In this section, we will construct such rules for a family of integrals
that will arise in the scattering problem discussed later. In particular, the integrand
involves an oscillatory Hankel function.

3.1. A generalized model form. Consider the oscillatory integral

(3.1) IH [f ] =

∫ b

a

f(x)H(1)
ν (kg1(x))eikg2(x) dx,

where f , g1, and g2 are smooth functions and H
(1)
ν (z) is the Hankel function of the

first kind of order ν. The Hankel function of order zero, H
(1)
0 (z), has a logarithmic

singularity at z = 0. Hankel functions of higher order have algebraic singularities of
the form 1/zν , z → 0 [3].

For large arguments, the Hankel functions behave like an oscillatory complex
exponential with a decaying amplitude,

(3.2) H(1)
ν (z) ∼

√
2

πz
ei(z−

1
2νπ−1/4π), −π < arg z < π, |z| → ∞.

Hence, the oscillator of the integrand of (3.1) is approximately given by

(3.3) g(x) = g1(x) + g2(x),

up to the addition of a constant. The Hankel function decays exponentially fast for
complex arguments with a positive imaginary part, as can be seen from the asymptotic
behavior (3.2). This means that the approach of section 2.2 using the path of steepest
descent is applicable. Hence, we conjecture that a quadrature rule exists of the form

(3.4) IH [f ] ≈ QH [f ] :=

L∑
l=0

dl∑
j=0

wH
l,jf

(j)(xl).

In the remainder of the section, we will prove this conjecture, determine the quadra-
ture abscissae xl, and show how the weights can be computed efficiently.

3.2. Construction of the quadrature rule. We start by stating some as-
sumptions on the functions f and g, which are needed to guarantee the integrability
and analyticity of the integrand in (3.1). First, we assume that f is analytic in an
open complex neighborhood D of [a, b], so that [a, b] ⊂ intD. Likewise, we assume
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that g1 and g2 are nonsingular and analytic in D, except possibly along a branch cut
that extends from a or b to the boundary of the region D; i.e., a and b may be branch
points but not singular points. We assume furthermore that g(x), defined by (3.3),
is strictly monotonic on the open interval (a, b) and hence invertible, but possibly
g′(a) = 0 or g′(b) = 0. Also, we assume that g1(x) �= 0, x ∈ (a, b). Finally, if ν > 0
and g1(ξ) = 0, we assume that f behaves like

(3.5) f(x) ∼ (x− ξ)ν−1+ε, x → ξ, with ε > 0.

Condition (3.5) guarantees that the integrand of IH [f ] is integrable. Subject only
to condition (3.5) and the analyticity requirements, the integration interval of (3.1)
can always be split into a number of subintervals that satisfy the conditions. The
assumptions guarantee that the integrand of IH [f ] is analytic on [a, b] except possibly
in the points a and b. In particular, this will allow us to apply Cauchy’s integral
theorem to select the integration path of (3.1).

Theorem 3.1. Under the assumptions stated above, the integral IH [f ] can be
approximated by a sum of contributions

(3.6) IH [f ] = SH [f ; a] − SH [f ; b] + O(e−kP ),

with P > 0, and with the contributions given by the integrals

(3.7) SH [f ;x] =

∫ P

0

f(hx(p))H(1)
ν (kg1(hx(p)))eikg2(hx(p))h′

x(p) dp,

where hx(p) satisfies

(3.8) g(hx(p)) = g(x) + ip.

The proof is almost identical to the proof of Lemma 4.1 in [18] and is omitted; it
differs mainly in the special treatment of the Hankel function based on the asymptotic
expression (3.2).

We note from the asymptotic behavior (3.2) that the integrand of the line inte-
gral SH [f ;x] in (3.7) is nonoscillatory and exponentially decaying in the integration
variable p,

H(1)
ν (kg1(hx(p)))eikg2(hx(p)) ∼

√
2

πkg1(hx(p))
eikg(x)ei(−

1
2νπ−1/4π)e−kp, k → ∞.

The size of the constant P is related to the size of the region of analyticity of f and
g [18]. In the numerical examples of the scattering problem, given in section 6, we
can in fact consider the limit case P = ∞. The error of decomposition (3.6) then
vanishes even at low frequencies.

We proceed in a way similar to that in section 2.2. Since f is analytic in D, it
has an absolutely convergent Taylor series. By the linearity of SH , we may write

SH [f ;x0] =

∞∑
j=0

f (j)(x0)S
H

[
(x− x0)

j

j!
;x0

]
.

Now, consider a subdivision of [a, b] into subintervals [al, bl], l = 1, . . . , L, such that
on each subinterval the conditions of Theorem 3.1 are satisfied. Truncating the Taylor
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series of f at each special point al and bl after a finite number of terms, we arrive at
a quadrature rule QH [f ] of the form (3.4), with weights given by

wH
0,j = SH

1

[
(x− a)j

j!
; a

]
,(3.9)

wH
l,j = −SH

l

[
(x− xl)

j

j!
;xl

]
+ SH

l+1

[
(x− xl)

j

j!
;xl

]
, l = 1, . . . , L− 1,(3.10)

wH
l,j = −SH

l

[
(x− b)j

j!
; b

]
.(3.11)

The weights can be explicitly computed very efficiently, by using Gauss–Laguerre
quadrature or similar techniques [11]. The accuracy of these methods improves rapidly
as a function of k, due to the faster decay of the integrands as k increases. For the
purposes of our application, this advantageous characteristic is not needed. It suffices
already that the number of operations for a fixed accuracy is bounded with respect
to k. We therefore choose to focus on the convergence properties of the quadrature
rule itself, rather than on the convergence of methods to compute the weights.

3.3. Convergence properties of the quadrature rule. We discuss the prop-
erties of the quadrature rule QH [f ], with weights given by (3.9)–(3.11), as a function
of k. The rule is exact by construction for polynomials of degree less than or equal to

(3.12) p = min
l

dl.

For more general functions, the accuracy as a function of k is determined by the
asymptotic size of the weights. We will show that the size of the weights decreases both
with increasing frequency and with increasing order of the corresponding derivative.
The order of accuracy of the quadrature rule is therefore equal to the asymptotic size
of the first weight that is discarded by truncation. In order to quantify this size, we
require a few technical lemmas.

Lemma 3.2. Assume that x0 is a stationary point that has order r. The param-
eterization of the path (3.8) behaves as

hx0(p) = x0 + O(p1/(r+1)), p → 0,(3.13)

h′
x0

(p) = O(p1/(r+1)−1), p → 0.(3.14)

Proof. Since g(j)(x0) = 0, j = 1, . . . , r, we can write the Taylor series of g as

g(x) = g(x0) + g(r+1)(x0)
(x− x0)

r+1

(r + 1)!
+ O((x− x0)

r+2).

The path hx0(p) = g−1(g(x0) + ip) solves g(hx0(p)) = g(x0) + ip, and hence

(3.15) hx0(p) ∼ x0 + r+1

√
ip(r + 1)!

g(r+1)(x0)
, p → 0.

The second result follows by differentiation. Note that the complex root is multi-
valued: the correct root is selected by using the analytic continuation of the inverse
g−1
i that satisfies g−1

i (g(x)) = x on [ai, bi] in expression (3.8).

The size of the weights follows from the size of the line integrals SH [ (x−x0)
j

j! ;x0].

Recall that the integral may be singular if g1(x) = 0. We will assume for the sake
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2312 DAAN HUYBRECHS AND STEFAN VANDEWALLE

of brevity that, in that case, g′1(x) �= 0. This condition is always satisfied by the
applications in section 6.

Lemma 3.3. Let SH , [f ;x] be defined by (3.7) with P = ∞, and g defined by (3.3).
Assume that g′(x0) �= 0; i.e., x0 is not a stationary point. If g1(x0) �= 0, we have∣∣SH [(x− x0)

j ;x0]
∣∣ = O(k−j−3/2), k → ∞.

If g1(x0) = 0 and g′1(x0) �= 0, the integral is singular and we have∣∣SH [(x− x0)
j ;x0]

∣∣ = O(k−j−1), j ≥ ν, k → ∞.

Proof. We write the integral SH [(x− x0)
j ;x0] as

(3.16) SH [(x− x0)
j ;x0] =

∫ ∞

0

u(p)e−kp dp =
1

k

∫ ∞

0

u(q/k)e−q dq,

with

(3.17) u(p) = (hx0(p) − x0)
jh′

x0
(p)H(1)

ν (kg1(hx0(p)))e
ikg2(hx0 (p))ekp.

It is a consequence of Watson’s lemma that the asymptotic expansion of the integral
can be obtained by integrating the asymptotic expansion of 1

ku(q/k) as k → ∞, term
by term in (3.16) [5, 32]. Generalizing Watson’s lemma, this remains true for integrals
of the form

∫∞
0

u(p)h(kp)dp, where h(z) ∼ log(z)nzse−z, n ≥ 0, s ∈ Z, z → 0, if the
integrand is integrable [6]. This means that the singularity of the Hankel function has
no influence on the asymptotic expansion.

First, consider the case g1(x0) �= 0. Then, combining the asymptotic behavior
of the Hankel function for large arguments, (3.2), with the results (3.13)–(3.14) of
Lemma 3.2 for r = 0, we have u(q/k) ∼ k−j−1/2. From (3.16) we can conclude
|SH [(x− x0)

j ;x0]| = O(k−j−3/2).
Next, consider the case g1(x0) = 0. If g′1(x0) �= 0, then we have g1(hx0(p)) ∼

p1/(r+1) = p. It follows that H
(1)
ν (kg1(hx0

(q/k))) = O(1), k → ∞. Hence, by the
generalization of Watson’s lemma, we may conclude |SH [(x− x0)

j ;x0]| = O(k−j−1),
j ≥ ν.

The corresponding lemma for stationary points is very similar. The difference is
due to the different behavior of the parameterization as described by Lemma 3.2.

Lemma 3.4. Let SH [f ;x] be defined by (3.7) with P = ∞, and g defined by (3.3).
Assume that x0 is a stationary point of order r. If g1(x0) �= 0, then we have

x
∣∣SH [(x− x0)

j ;x0]
∣∣ = O(k−(j+1)/(r+1)−1/2), k → ∞.

If g1(x0) = 0 and g′1(x0) �= 0, then we have∣∣SH [(x− x0)
j ;x0]

∣∣ = O(k−(j+1+r/2)/(r+1)), j ≥ ν, k → ∞.

Proof. Consider again the function u(p), given by (3.17). Assume first that
g1(x0) �= 0. We have (hx0(q/k) − x0)

j ∼ k−j/(r+1) and h′
x0

(q/k) ∼ kr/(r+1). Since

kg1(hx0
(q/k)) ∼ kg1(hx0

(0)) = kg1(x0), we also have H
(1)
ν (kg1(hx0

(q/k))) ∼ k−1/2.
Combined in (3.16), and by applying Watson’s lemma, this yields the first result.

The case where g1(x0) = 0 is slightly different. Since g′1(x0) �= 0, we have
g1(hx0(q/k)) ∼ k−1/(r+1) and hence kg1(hx0(q/k)) ∼ kr/(r+1). The Hankel function
therefore yields the factor k−(r/2)/(r+1) instead of k−1/2 as in the first case.
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Table 3.1

Absolute error of the approximation of IH [f ] by QH [f ], with f(x) = cos(x− 1), g1(x) = x, and
g2(x) = x2 +x3 −x. The last row shows the value of log2(e400/e800): this value should approximate
d0/2 + 5/4 (shown in parentheses).

k \ d0 0 1 2 3
100 1.2E − 3 2.8E − 5 1.3E − 6 2.6E − 8
200 5.1E − 4 8.6E − 6 2.9E − 7 4.1E − 9
400 2.2E − 4 2.6E − 6 6.4E − 8 6.2E − 10
800 9.3E − 5 7.8.1E − 7 1.4E − 8 9.7E − 11
rate 1.23 (1.25) 1.73 (1.75) 2.20 (2.25) 2.68 (2.75)

The convergence of the quadrature rule (3.4) as a function of k can now be
established. Note that the results of Lemma 3.3 agree with those of Lemma 3.4 if we
take the order of a regular point to be r = 0. Hence, we need not distinguish between
stationary points and regular (end)points.

Lemma 3.5. The error of the approximation of SH
l [f ;x0], x0 ∈ [al, bl], is

(3.18)

∣∣SH
l [f ;x0] −QS

l [f ;x0]
∣∣ :=

∣∣∣∣∣∣SH
l [f ;x0] −

dl∑
j=0

wH
l,jf

(j)(x0)

∣∣∣∣∣∣ = O(k−αl), k → ∞.

If g1(x0) �= 0, then αl := (dl + 2)/(r + 1) − 1/2. If g1(x0) = 0 and g′1(x0) �= 0, then
αl := (dl + 2 + r/2)/(r + 1).

Proof. Since the weights decay as a function of k, and as a function of the order
of derivative j, the error of the quadrature scheme is asymptotically determined by
the size of the first discarded weight. The result follows from Lemmas 3.3 and 3.4 by
setting j = dl + 1.

The theorem that characterizes the accuracy of the complete quadrature rule
follows immediately.

Theorem 3.6. Consider the approximation of IH [f ] by QH [f ]. The error has
asymptotic order α = minl αl, where αl is specified in Lemma 3.5.

As an example, we consider the integral
∫ 1

0
cos(x − 1)H

(1)
0 (kx)eik(x2+x3−x) dx.

The total oscillator for this integral is g(x) = x2 + x3. There are two quadra-
ture points: there is a singularity and a stationary point of order 1 at x = 0,
and a regular endpoint at x = 1. The weights wH

0,j and wH
1,j are given by (3.9)

and (3.11), respectively. From Lemma 3.4 we have |wH
0,j | = O(k−(j+1)/2−1/4), and

from Lemma 3.3 we have |wH
1,j | = O(k−j−3/2). Using d0 and d1 derivatives, the er-

ror has order min{O(k−(d0+2)/2−1/4), O(k−(d1+1)−3/2)} by Theorem 3.6. We choose
d1 = max{0, 
(2d0 − 5)/4�} to match the errors. Table 3.1 shows the convergence of
the quadrature rule QH [f ] as a function of k and d0.

4. High-frequency scattering problems.

4.1. Problem statement. We are interested in the solution of the two-dimen-
sional Helmholtz equation

(4.1) Δu + k2u = 0

in the domain Ω+ = R
2 \ Ω that is exterior to the open domain Ω, subject to a

Dirichlet boundary condition u = 0 on the boundary Γ = ∂Ω. We assume that a
periodic parameterization for Γ is given by

(4.2) κ(τ) : [0, 1] → Γ ⊂ R
2,
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2314 DAAN HUYBRECHS AND STEFAN VANDEWALLE

with |∇κ(τ)| > 0. The Helmholtz equation models the scattering of time-harmonic
waves of the form u(x)e−iωt. In the absence of damping we have k = ω/c, with c the
speed of propagation. For the scattering of an incoming acoustic or electromagnetic
wave ui(x) by the obstacle Ω, the solution can be written as u = ui + us. The
function us(x) represents the scattered wave; it satisfies the Helmholtz equation with
the Dirichlet boundary condition us(x) = −ui(x) on Γ.

The scattered wave can be represented in terms of the single-layer potential,

(4.3) (Sq)(x) =

∫
Γ

K(x, y)q(y) dsy, with K(x, y) =
i

4
H

(1)
0 (k|x− y|),

where q(x) is the density function defined on the boundary Γ, and where K(x, y) is
the Green’s function of the two-dimensional Helmholtz equation. The scattered wave
due to an incoming wave ui is given by us = −Sq if the density function q(x) is found
as the solution to the combined potential integral equation

(4.4)
q(x)

2
+

∫
Γ

(
∂K

∂nx
(x, y) + iηK(x, y)

)
q(y) dsy =

∂ui

∂n
(x) + iηui(x), x ∈ Γ,

where nx is used to denote the normal with respect to the variable x. Equation (4.4)
is uniquely solvable for all values of the wavenumber k [8].

An important observation is that q(x) = ∂u
∂n (x); i.e., the density function is exactly

the (exterior) normal derivative of the solution to the Helmholtz problem. This means
that the solution to (4.4) is directly related to a physical property of the problem. For
example, in electromagnetics, the normal derivative of the electric field is proportional
to the induced current on the surface of the conducting obstacle [28].

4.2. High-frequency integral equation formulation. The density function
q(x) is highly oscillatory for large values of the wavenumber k. The solution of (4.4)
therefore generally requires a large number of unknowns. In some cases, however, one
has a priori information about the phase of the solution. For example, if the obstacle
is convex, and if the incoming wave is a plane wave, then the phase of the solution
q is approximately the same as the phase of the incoming wave. Assume that the
incoming wave is given by ui(x) = ui

s(x)eikg
i(x). Then we can write

(4.5) q(κ(t)) = qs(t)e
ikgi(κ(t)), t ∈ [0, 1],

where qs(t) is a function that is less oscillatory than q(κ(t)), in a sense that will be
made more precise in section 4.3. In physical terms, the oscillations of the induced
current on a perfectly conducting surface tend to follow the oscillations of the incoming
electromagnetic wave. This is the main reason why the problem is formulated such
that the solution q(x) corresponds to a physical variable—only in that case is the phase
known in the form of (4.5). This was noted in [7]; the integral equation formulation
of this section follows the same pattern as in [7].

Substituting the ansatz (4.5) into (4.4) leads to the integral equation of the second
kind

(4.6)
1

2
qs(t)e

ikgi(κ(t)) +

∫ 1

0

G(t, τ)qs(κ(τ))eikg
i(κ(τ)) dτ = vi(κ(t)),

with

G(t, τ) :=

(
∂K

∂nx
(κ(t), κ(τ)) + iηK(κ(t), κ(τ))

)
|∇κ(τ)|,
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reflection diffraction
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Fig. 4.1. Reflection and diffraction effects in the scattering of an incoming wave ui by a smooth
and convex obstacle.

and with the right-hand side given by

vi(x) :=
∂ui

∂n
(x) + iηui(x).

The unknown in (4.6) is the function qs(t). Since qs(t) is less oscillatory than the
original density function q(κ(t)), one can solve (4.6) using a coarser discretization. In
the next section, we discuss the remaining oscillatory behavior of qs(t).

4.3. Asymptotic behavior of the solution. In the past decades, a lot of effort
has been invested in studying the asymptotic behavior of the solution q(x) to (4.4)
as a function of the wavenumber, concentrating mainly on the scattering of a plane
wave (see, e.g.,[23, 27] and references therein). For smooth and convex obstacles,
there are three important regions with different properties, illustrated in Figure 4.1:
the illuminated region, the shadow region, and the transitional shadow boundary
region. In the illuminated region, the scattered wave is described asymptotically by
geometrical optics: a wave is reflected such that the angle of incidence and the angle
of reflection are identical. A wave tangential to the shadow boundary is diffracted.
The density function decays rapidly away from the shadow boundary into the shadow
region, due to the continuous emission of diffracted waves. In the shadow region the
function q(x) approaches zero as k increases.

The asymptotic expansion of qs(t) for large k reflects these three regions. Assume
an incoming plane wave in the direction α of the form ui(x) = eikα·x, with |α| = 1.
It was proved in [27] that qs(t) has a uniform asymptotic expansion of the form

(4.7) qs(t) ∼
∑

m,n≥0

k2/3−n−2m/3bm,n(α, t)Ψ(n)(k1/3Z(α, t)),

which remains valid as t crosses the shadow boundaries. The shadow boundary points
can be characterized here by α·ν = 0, with ν the exterior normal to Ω. For a thorough
discussion and analysis of this expansion, we refer the reader to [12]. Here, we only
recall the main characteristics of the expansion, as a means to motivate the choices
that are made later on.

The function Z ∈ C∞ is infinitely smooth and has a simple root at the two shadow
boundary points. The function Z is positive when α · ν < 0, i.e., in the illuminated
region, and it is negative in the shadow region. The function Ψ(z) is smooth for
positive arguments, with

(4.8) Ψ(z) ∼ z, z → ∞,
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2316 DAAN HUYBRECHS AND STEFAN VANDEWALLE

and it is decaying rapidly but in an oscillatory manner for large negative arguments.
It follows that the function qs(t) is smooth in the illuminated region but may be
oscillatory in the shadow region, corresponding to the behavior of Ψ(z) for large
positive arguments and large negative arguments, respectively. One can also deduce
the following asymptotic properties from the leading order of (4.7):

(4.9) |qs(t)| =

{
O(k), illuminated region,

O(k2/3), shadow boundary.

There is a k-dependent transition region near the shadow boundary. Motivated
by (4.7), we introduce a transition region of size O(k−1/3) around the shadow bound-
ary points, and define the shadow boundary regions as

TB1(k) = [tsb1 −D1k
−1/3, tsb1 + C1k

−1/3],(4.10)

TB2(k) = [tsb2 − C2k
−1/3, tsb2 + D2k

−1/3],(4.11)

with constants C1, C2, D1, D2 > 0 independent of k, but small enough such that
TB1(k) and TB2(k) are nonoverlapping, and with tsb1 and tsb2 the locations of the
two shadow boundary points in the parameter domain [0, 1]. The illuminated region
is defined as

(4.12) TI(k) = (tsb1 + C1k
−1/3, tsb2 − C2k

−1/3).

The shadow region is the remaining part of the interval [0, 1].
The size of the transition region is related to the behavior of the argument

k1/3Z(α, t) of the function Ψ(z) in (4.7). Because Z(α, t) has a simple zero at tsb1,
we have

Z(α, t) ≈ Z ′(α, tsb1)(t− tsb1), t → tsb1.

Hence, there exists a constant c such that for sufficiently large k we have

(4.13) |k1/3Z(α, t)| ≤ c if t ∈ TB1(k).

A similar bound holds for the region TB2(k). Since the oscillations of qs(t) origi-
nate in the oscillatory behavior of Ψ(z) for negative arguments, the meaning of the
bound (4.13) is that the number of oscillations of qs(t) in the shadow boundary region
TB1(k) is bounded in k.

Remark 4.1. The remaining oscillatory behavior of qc(t) in the shadow boundary
region indicates that the oscillations of the incoming wave do not completely describe
the oscillatory behavior of q(x). Still, we will see that the ansatz (4.5) is suitable for
further computations.

5. A hybrid high-frequency boundary element method. The collocation
of integral equation (4.6) in a point xn leads to a one-dimensional and oscillatory inte-
gral in the integration variable τ . In this section, we show how an efficient quadrature
rule can be used for the discretization of that collocation integral. First, we discuss
the classical boundary element approach in section 5.1. The application of special-
ized quadrature rules, leading to a highly sparse discretization matrix, is described in
section 5.2. We comment on the location of the quadrature points section 5.3 and on
the limitations of the approach in section 5.4. It turns out that the quadrature rule
can not be applied everywhere. Finally, we arrive at a method combining a sparse
discretization with a dense part in section 5.5.
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5.1. Collocation approach for the discretization. Consider a collocation
scheme for integral equation (4.6), with a set of N distinct collocation points xn =
κ(tn), tn ∈ [0, 1], n = 1, . . . , N . The classical way to proceed is to look for an
approximation qc to solution qs in the form

(5.1) qc(t) =

N∑
m=1

cmφm(t),

where the φm functions are a set of linearly independent basis functions with support
Ωm := supp(φm). The number of basis functions may be small, since the exact
solution qs is not very oscillatory. Collocating (4.6) in the points tn, with qs replaced
by qc, leads to the equations

(5.2)
1

2
qc(tn)eikg

i(xn) +

∫ 1

0

G(tn, τ)qc(τ)eikg
i(κ(τ)) dτ = vi(xn), n = 1, . . . , N.

The collocation approach therefore leads to a linear system Ac = b of size N × N ,
where the elements of the discretization matrix A are given by

(5.3) An,m =
1

2
φm(tn)eikg

i(κ(tn)) +

∫
Ωm

G(tn, τ)eikg
i(κ(τ))φm(τ) dτ,

and the right-hand side by bn = vi(xn). The discretization matrix A is dense, but
small compared to the classical boundary element discretization for the original equa-
tion. Hence, this is a big improvement over the direct discretization of (4.4). Since
the elements (5.3) are given by oscillatory integrals, they can be computed efficiently
using the numerical steepest descent technique described in section 2.1. This would
yield an efficient total solution method, which remains efficient when k increases, but
that is also accurate for small values of k.

However, there are still some issues associated with this approach. Since the
matrix is dense, the method requires the evaluation of N2 integrals. Although N
may be rather small, the computational cost can still be high. Interestingly, it was
observed in [16] that many of the elements are small and can in fact be discarded,
reducing the computation time. A second, more important issue is that the results
of [16] indicate that the error of the scheme increases with increasing wavenumber.
Here, we examine a different discretization of (5.2) that aims to address these issues,
based on the quadrature rule developed in section 3 and motivated by the accuracy of
this rule for high wavenumbers. Owing to the small number of required quadrature
points, the resulting discretization matrix will be highly sparse.

5.2. The application of specialized quadrature rules. Based on the collo-
cation integral (5.2), we define the following general oscillatory integral:

(5.4) Ic[f ; tn] :=

∫ 1

0

f(τ)G(tn, τ)eikg
i(κ(τ)) dτ.

The oscillatory function G(t, τ) in the integrand is given explicitly by

G(t, τ) = − i

4
k
∇κ(τ) · (κ(t) − κ(τ))

|κ(t) − κ(τ)| |∇κ(τ)|H(1)
1 (k|κ(t) − κ(τ)|)

− η

4
|∇κ(τ)|H(1)

0 (k|κ(t) − κ(τ)|).
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Choosing η = k, this function can further be written as

(5.5) G(t, τ) = a(τ)kH
(1)
0 (k|κ(t) − κ(τ)|) + b(t, τ)kH

(1)
1 (k|κ(t) − κ(τ)|),

with functions a(τ) and b(t, τ) that are independent of k. Hence, integral (5.4) can be
written as a sum of two model integrals of the form IH [f ], involving Hankel functions,
multiplied by k. Both model integrals have the same oscillator,

(5.6) g(τ ; tn) := |κ(tn) − κ(τ)| + gi(κ(τ)).

In particular, this means that one can find a quadrature rule such that

(5.7) Ic[f ; tn] ≈ Qc[f ; tn] :=

Ln∑
l=0

dn,l∑
j=0

wc
n,l,jf

(j)(τn,l).

The rule Qc[f ; tn] is computed as follows:
• The weights wc

n,l,j are given by the expressions (3.9)–(3.11) for the weights

wH
l,j of the model integral, with the line integrals SH [f ;x] replaced by

(5.8) Sc[f ;x] :=

∫ P

0

f(hx(p))G(tn, hx(p))eikg
i(κ(hx(p))h′

x(p) dp,

where the integration path is the path of steepest descent corresponding to
the oscillator (5.6). Compared to SH [f ;x], we have included the additional
factors ka(τ) and kb(t, τ) from (5.5) into the weight function of the integral.
We note that it implies the assumption that κ(τ) is analytic. The scaling by
a factor k reduces the asymptotic order, based on the absolute error, by 1.

• The quadrature points τn,l are found from the oscillator (5.6). They are the
points where the integrand becomes singular (and hence nonanalytic) and
the stationary points of the oscillator g(τ ; tn). These points are derived by a
straightforward but technical analysis of g(τ ; tn). There are no contributing
endpoints, as the integrand is periodic on the closed curve Γ.

We now describe how the quadrature rule (5.7) can be used in the discretization.
The derivatives of qc can be written in terms of the basis functions φm,

(5.9) q(j)
c (τ) =

N∑
m=1

cmφ(j)
m (τ).

Hence, applying the quadrature rule to qc yields a matrix B with entries

(5.10) Bn,m =

{ ∑
l:τn,l∈Ωm

∑dn,l

j=0 w
c
n,l,jφ

(j)
m (τn,l), ∃l ∈ [0, Ln] : τn,l ∈ Ωm,

0 otherwise.

The entry Bn,m is nonzero only if at least one quadrature point τn,l exists that lies
in the support of the basis function φm. The number of nonzero points therefore
depends on the size of the supports of the basis functions. If all basis functions are
local, then the matrix B is highly sparse.

Remark 5.1. The asymptotic order of quadrature rule (5.7) is limited by the
number of derivatives dn,l that are used, as described by Theorem 3.6. In turn, note
from (5.9) that dn,l is limited by the number of derivatives that exist for the chosen
basis functions.
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0 0.2 0.4 0.6 0.8 1

0

0.2
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1

τ

t

Fig. 5.1. The location of the contributing points of the collocation integral for the scattering of
a plane wave by a circular obstacle. Each row corresponds to a fixed value t ∈ [0, 1], with the shadow
boundary points at 0.25 and 0.75, and the illuminated region in between. The singular points are
located along the diagonal. The off-diagonal points correspond to stationary points.

5.3. Location of the quadrature points. The location of the quadrature
points is illustrated in Figure 5.1 for the scattering of a plane wave by a circular
obstacle. There is one stationary point if tn lies in the illuminated region, and there
are three stationary points if tn lies in the shadow region. Two of these points coalesce
into one stationary point of order r = 2 exactly at the shadow boundary. Using local
basis functions, the structure of the discretization matrix B closely resembles that of
Figure 5.1.

The coalescence of two stationary points at the shadow boundary is a general
property for convex obstacles [22]. The quadrature points on the diagonal reflect the
general principle of localization of high-frequency scattering, which states that the
scattering of a ray is asymptotically determined by properties local to the point of
incidence [13]. As such, Figure 5.1 is illustrative for more general convex shapes.

Remark 5.2. Figure 5.1 shows the existence of a stationary point in the shadow
region when t ∈ TI(k) is a point in the illuminated region. This seems to contradict
the localization principle. Indeed, this stationary point has no physical relevance for
the scattering problem. Following Remark 4.1, it is an artifact of the incorrect ansatz
in the shadow region.

5.4. Limitations of the sparse discretization. The convergence of quadra-
ture rule Qc[f ; tn] as a function of k is described by the corresponding results for
QH [f ] discussed in section 3.3. In particular, the results imply that the accuracy of
the approximation increases with increasing k, at a rate that depends on the number
of derivatives that are used in the quadrature rule. For example, for t ∈ TI(k), we
have

(5.11) |Ic[f ; tn] −Qc[f ; tn]| = O
(
k−min{dn,0+1,(dn,1+2)/2−3/2}

)
,

where τn,0 = tn and τn,1 is the stationary point of order r = 1 in the shadow re-
gion. Hence, the sparse discretization matrix B is very well suited for computing
the application of the integral operator under consideration to a function of the form
f(t)eikg

i(κ(t)).
The convergence results in section 3.3 were derived, however, with the assump-

tion that the function f is independent of k. No statements can therefore be made
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0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Fig. 5.2. The real part of the integrand for tn = tsb1 for a circular obstacle and k = 100.

regarding the computed solution of an integral equation using the sparse discretization
matrix B, because the solution generally depends on k. Moreover, it was shown that
the assumed oscillatory behavior eikg

i(κ(t)) in the ansatz (4.5) does not fully describe
the oscillatory behavior of the exact solution q(x). Therefore, Qc[qs; tn] might not be
a good approximation to Ic[qs; tn]. It is important that the quadrature rule be accu-
rate when applied to the exact solution qs. Otherwise, one cannot expect that solving
the system with the sparse representation matrix B can yield a good approximation
of the exact solution.

It can be verified that Qc[qs; tn] is accurate when tn ∈ TI(k), i.e., when tn lies in
the illuminated region. The cases t ∈ Tsb1(k) and t ∈ Tsb2(k) are more problematic.
Figure 5.2 shows the real part of the integrand of the collocation integral Ic[1; tsb1],
where tn = tsb1 coincides with the first shadow boundary. This integral has a station-
ary point of order r = 2 at tsb1, but only to the right of the singularity. The integral is
highly oscillatory to the left of the shadow boundary, and not oscillatory to the right.
It turns out that a quadrature rule similar to Qc[f ; tn] can be used on the left inter-
val [0, tsb1] and in the illuminated region TI(k). It is not suited for the intermediate
interval [tsb1, tsb1 + C1k

−1/3]. Due to the stationary point, however, the integrand is
not oscillatory in that interval. In the following section, we will construct a sparse
approximation matrix that is based on the use of specialized quadrature rules in the
regions where they apply. They are combined with a classical dense discretization in
the remaining part of the integration domain.

Remark 5.3. The failure of Qc[qs; tsb1] for the exact solution qs can be seen as
follows: the asymptotic decay of the quadrature weights wn,l,j for increasing k is

cancelled exactly by the growth of the derivatives q
(j)
s (tsb1) for increasing k. Hence,

the rule does not converge.

5.5. A sparse discretization for the scattering problem.

Basis functions and collocation points. The basis functions for the discretization
are chosen corresponding to the behavior of the solution in the three different regions
identified in section 4.3. Recall that the solution is smooth in the illuminated region
TI(k), and oscillatory but rapidly decaying in the shadow region. First, following [7],
we approximate the solution by zero in the shadow region. We choose a fixed number
of basis functions in the illuminated region TI(k). Finally, we also choose a fixed num-
ber of basis functions in the transitional shadow boundary regions TB1(k) and TB2(k),
independently of k. This corresponds to using a fixed number of basis functions per
oscillation of the solution in these regions.

The collocation points V are chosen equidistantly in the regions TB1(k), TB2(k),
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0 50 100 150 200

0

50

100

150

200

Fig. 5.3. Illustration of the sparse discretization matrix using cubic B-splines for the scattering
of a plane wave by a circular obstacle. The middle part of the matrix is tridiagonal.

and TI(k). We have V = V1 ∪ V2 ∪ V3, where

V1 := {tsb1 −D1k
−1/3 + jh1}N1

j=0, with h1 :=
(C1 + D1)k

−1/3

N1
,

V2 := {tsb1 + C1k
−1/3 + jh2}N2−2

j=1 , with h2 :=
(tsb2 − tsb1 − (C1 + C2)k

−1/3)

N2 − 1
,

V3 := {tsb2 − C2k
−1/3 + jh3}N3

j=0, with h3 :=
(C2 + D2)k

−1/3

N3
.

These are N = N1 + N2 + N3 points. As basis functions, we choose B-splines of odd
degree s with knots U given by

(5.12) U := V ∪ {tsb1 −D1k
−1/3 − jh1}(s+1)/2

j=1 ∪ {tsb2 + D1k
−1/3 + jh3}(s+1)/2

j=1 .

These N + s+ 1 points uniquely determine N distinct B-splines. The basis functions
are s−1 times continuously differentiable. The nodes in the shadow region are added
in order to ensure a smooth transition into the shadow region where the solution is
approximated by zero.

Discretization. For the discretization, we propose the following scheme. If tn ∈
TI(k), a collocation point in the illuminated region, then

• the quadrature rule Qc[f ; tn] is applied for the singular point tn,
• the stationary points lie in the shadow region, and they are discarded.

For splines of degree s, the singular point tn lies in the support of only s separate basis
functions. The corresponding matrix entries are given by (5.10). The contributions
of the stationary points are discarded because the solution is approximated by zero
in the shadow region. Recall that in the context of the scattering problem, following
Remark 5.2, these are only spurious stationary points.

If tn ∈ TB1(k), corresponding to the first shadow boundary region, then

• a specialized quadrature rule for oscillatory integrals is applied on the interval
[0, tn],

• a classical dense discretization is used on the interval [tn, tsb1 + C1k
−1/3],

• a specialized quadrature rule for oscillatory integrals is again applied on the
interval [tsb1 + C1k

−1/3, 1].
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The quadrature rule on [0, tn] reduces to the contribution of the singular point tn.
The corresponding weights have the form of (3.11) with SH

l replaced by Sc
l ,

wc
n,ln,j = −Sc

ln

[
(x− tn)j

j!
; tn

]
,

where ln is the index such that tn = τn,ln . The quadrature rule on [tsb1 +C1k
−1/3, 1]

consists of the contributions of the stationary points τn,l outside the shadow boundary
region, and of the endpoint tr := tsb1 + C1k

−1/3. The weights corresponding to that
endpoint have the form of (3.9),

wc
n,lr,j = Sc

lr+1

[
(x− tr)

j

j!
; tr

]
,

where lr is the index such that tr ∈ [τn,lr , τn,lr+1]. Finally, the dense discretization in
the interval [tn, tr] leads to elements of the form

(5.13) σn,m =
1

2
φm(tn)eikg

i(xn) +

∫
Ωm∩[tn,tr]

G(tn, τ)eikg
i(κ(τ))φm(τ) dτ.

The only difference compared to (5.3) is that the integration domain may be cut at
the boundaries of [tn, tr]. Summarizing, the elements of the discretization matrix for
tn ∈ TB1(k) can be written as

Cn,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σn,m if Ωm ∩ [tn, tr] �= ∅

+
∑dn,ln

j=0 wc
n,ln,j

φ
(j)
m (tn) if tn ∈ Ωm

+
∑dn,lr

j=0 wc
n,lr,j

φ
(j)
m (tr) if tr ∈ Ωm

+
∑

l:tr<τn,l∈Ωm

∑dn,l

j=0 w
c
n,l,jφ

(j)
m (τn,l), ∃l ∈ [0, Ln] : tr < τn,l ∈ Ωm,∑

l:tr<τn,l∈Ωm

∑dn,l

j=0 w
c
n,l,jφ

(j)
m (τn,l), ∃l ∈ [0, Ln] : tr < τn,l ∈ Ωm,

0 otherwise.

The case tn ∈ TB2(k) can be treated similarly. The structure of the sparse matrix C
is illustrated in Figure 5.3. The two small dense parts correspond to the dense dis-
cretization in the intervals [tn, tsb1+C1k

−1/3] and [tsb2−C2k
−1/3, tsb2]. For simplicity,

we have chosen the constant C1 large enough such that, for tn ∈ TB1, all stationary
points τn,l ∈ TB1(k) also lie in the shadow boundary region. The constant C2 was
chosen similarly.

One can verify that the required integrals of the form (5.13) are not oscillatory.

Due to the stationary point of order r = 2, the integrand behaves as eikc(τ−tsb1)
3

near
the shadow boundary. The argument of the exponential is bounded in k, since by
construction we have

|τ − tsb1| ≤ max{C1, D1}k−1/3.

Hence, there is only a bounded number of oscillations in the integrals for increasing k.
It is therefore reasonable to expect that the integrals can be evaluated with a number
of operations that is independent of k. Since the weights of the quadrature rule can be
evaluated efficiently as well, and because the number of unknowns is fixed, the matrix
in Figure 5.3 can be computed with a total number of operations that is independent
of k.
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(−2,0)

Γ

(0,0)

R=0.5

(a) Circle

(−2,1)

(0,0)

Γ

0.3
0.5

(b) Ellipse

Fig. 6.1. Illustration of two smooth convex scattering obstacles. The boundary conditions are
plane waves, or circular waves originating from a point source.

6. Numerical results. We consider the scattering by two convex obstacles, a
circle and an ellipse, shown in Figure 6.1. We use two types of boundary conditions:
a plane wave, modeled in the form ui(x) = eikα·x, and a point source, modeled by

ui(x) = H
(1)
0 (|x− x0|), with x0 a point in the exterior Ω+ of the obstacle. The circle

and ellipse are parameterized by

κ(t) =

{
R cos(2πt),
R sin(2πt),

and κ(t) =

{
R1 cos(2πt),
R2 sin(2πt),

respectively.
In all examples, we have chosen the constants C1 and C2 large enough (w.r.t. D1

and D2) such that the sparse matrix has the form shown in Figure 5.3. The highest
order of the derivative used in the specialized quadrature rule for oscillatory integrals
is kept fixed, dn,l = d, ∀n, l, with d ≤ s − 1, where s is the degree of the piecewise
polynomial spline basis. The integrals (5.13) for the elements of the dense parts that
are singular were evaluated using Cubpack [9].

6.1. Total solution time. The smooth function qc(t) is illustrated in Figure 6.2
as it was computed for the different scattering problems. The mild oscillatory behavior
of the function near the shadow boundary is illustrated in the left panel of Figure 6.3,
showing only the real part of the solution. Two spikes are present near the shadow
boundary, with a peak value that scales as O(k2/3), as predicted by the estimate (4.9).
The dashed line shows the effect of doubling k. The O(k) behavior in the illuminated
region is clear from the imaginary part illustrated in the right panel of Figure 6.3.

Table 6.1 shows the timings for an implementation of the algorithm of section 5.5
in Matlab. In all the examples considered, the time actually decreases with increasing
wavenumber k. This is due to the fact that, at larger frequencies, the weights of the
specialized quadrature rule Qc[f ; tn] are easier to compute. Also, the integrals (5.13)
that determine the elements of the dense parts do not become more oscillatory. In
a classical boundary element method, and using 10 unknowns per wavelength, the
case k = 105 would correspond to a dense matrix with approximately N = 0.5 × 106

unknowns.

6.2. Error and convergence. In this section, we present numerical results
evaluating the error of the proposed scheme. First, we investigate the absolute and
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(a) Circle, plane wave
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(b) Circle, point source
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(c) Ellipse, plane wave
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(d) Ellipse, point source

Fig. 6.2. The real part (dashed lines) and imaginary part (solid lines) of the computed smooth
function qc(t). The parameters correspond to the case k = 200 in Table 6.1.

0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

10

0 0.2 0.4 0.6 0.8 1
−200

0

200

400

600

800

1000

Fig. 6.3. The real part (left) and imaginary part (right) of qc(t) for the scattering of a plane
wave by a circle. The solid lines correspond to k = 200, the dashed lines to k = 400.

relative error for increasing values of k. Next, we show that the accuracy is improved
by increasing the number of derivatives d that are used in the specialized quadrature
rules. We then illustrate the influence of the constants C1, C2, D1, and D2 that
determine the size of the shadow boundary region. Finally, we illustrate the influence
of the parameters N1, N2, and N3 that determine the total degrees of freedom.

In applications, one is usually interested in the quantity qs/k. For example, in
electromagnetics, this quantity is proportional to the induced current on the surface
of the obstacle with a proportionality constant that is independent of k. One can see
from (4.9) that qs/k corresponds to a normalization of qs for different k. For this
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Table 6.1

Total solution time in seconds for the different scattering problems. All parameters are kept
fixed, except the wavenumber k. We used d = 2 derivatives in the quadrature rules.

Circle Ellipse
Plane wave Point source Plane wave Point source

(C1, C2) (1.3, 1.3) (1, 0.1.0) (1.5, 1.3) (1.3, 1.3)
(D1, D2) (1.0, 1.0) (0.8, 0.8) (1.3, 1.0) (1.0, 1.0)

(N1, N2, N3) (30, 30, 30) (30, 30, 30) (60, 30, 60) (60, 30, 60)
k = 200 287s 312s 463s 512s
k = 400 283s 308s 450s 496s
k = 800 281s 306s 443s 491s
k = 1600 279s 302s 438s 484s
k = 10000 273s 294s 422s 470s
k = 100000 269s 289s 416s 459s

0 0.2 0.4 0.6 0.8 1
10

−15

10
−10

10
−5

10
0

10
5

 

 

k=200
k=400
k=800
k=1600

(a) Absolute error Ea

0 0.2 0.4 0.6 0.8 1
10

−10

10
−5

10
0

10
5

(b) Relative error Er

Fig. 6.4. Absolute and relative error for the scattering of a plane wave by a circle for different
values of k. We have used d = 1 derivative in the specialized quadrature rules. The other parameters
correspond to those in Table 6.1.

reason, in all following results we evaluate the absolute error in a point t as

(6.1) Ea(t) =
|qs(t) − qc(t)|

k
,

and the relative error as

(6.2) Er(t) =
|qs(t) − qc(t)|

|qs(t)|
.

The exact solution qs of the scattering problem is known analytically only for the case
of scattering of a plane wave by a circle. For the other cases, the error is estimated
by comparing computed solutions to each other.

The relative and absolute error for the scattering of a plane wave by the circle
is shown in Figure 6.4 for increasing values of k. We have chosen to use cubic spline
basis functions and derivatives up to order d = 1 in each specialized quadrature
rule. The figures show that both the absolute error and the relative error decrease
with increasing k. This is due to the higher accuracy of the quadrature rule Qc[f ; t]
at larger frequencies. The relative error tends to 100% in the deep shadow region
because we have approximated the solution by 0 in that region. One can verify from
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d=0 d=1 d=2 d=3 d=4

(a) Relative error for the case of a cir-
cle
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10
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d=0 d=1 d=2 d=3

(b) Absolute error for the case of an
ellipse

Fig. 6.5. Comparison of the absolute and relative error at k = 200 for different values of d,
the number of derivatives used in the specialized quadrature rules. The left panel corresponds to the
case of column 1 in 6.1, the right panel corresponds to the case of column 4.

Table 6.2

Maximal absolute error as a function of the size of the shadow boundary region, and pointwise
absolute and relative error in a fixed point T = 0.13 in the shadow boundary region. The constants
Cj = C and Dj = D are chosen pairwise equal (k = 200, d = 2, Nj = 50).

(C,D) (1.0, 0.7) (1.1, 0.8) (1.2, 0.9) (1.3, 1.0)
‖Ea‖∞ 1.0E − 3 4.6E − 4 2.4E − 4 1.8E − 4
Ea(T ) 4.4E − 4 7.9E − 5 3.6E − 5 5.1E − 6
Er(T ) 3.2E − 1 5.6E − 2 2.6E − 2 3.7E − 3

the figures that the absolute error in that region is still quite small compared to the
average value of the function qs(t). At k = 1600, a relative error of order 10−5 is
achieved in the illuminated region and near the shadow boundary.

The accuracy shown in Figure 6.4 for the smaller value k = 200 is quite poor,
however. The accuracy is much improved by increasing the number of derivatives used
in the quadrature rules. This is illustrated in Figure 6.5(a) for the same scattering
example with k = 200. The number of derivatives d ranges from 0 to 4. We used cubic
spline basis functions for d = 0, 1, 2 and splines of degree 5 for d = 3, 4. A relative error
of order 10−8 is achieved in the shadow boundary region, and a relative error of order
10−5 in the illuminated region. A similar experiment is illustrated in Figure 6.5(b),
corresponding to an incident circular wave on an ellipse-shaped boundary. The error
for d = 0, . . . , 3 in this case was estimated by comparing to the results of using d = 4.

The constants C1, C2, D1, and D2 determine the size of the transitional shadow
boundary regions. Since the solution is approximated by zero in the shadow region
outside these intervals, it can be expected that increasing the value of these parameters
results in smaller errors. This is confirmed by the results in Table 6.2, which show
the maximum of the absolute error Ea. The maximum is reached in the points tsb1 −
D1k

−1/3 and tsb2 +D2k
−1/3, i.e., on the border of the shadow region. It is also shown

that the accuracy of a point in the shadow boundary region increases if the size of that
region is increased. The accuracy of the points in the illuminated region is unaffected
by this change.

Finally, Table 6.3 shows the result of increasing the total number of degrees of
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Table 6.3

Maximal absolute error as a function of the number of degrees of freedom.

N1 = N2 = N3 20 30 40 50 60
‖Ea‖∞ 1.5E − 2 2.4E − 3 4.9E − 4 2.2E − 4 1.9E − 4

freedom for the same scattering example. The accuracy initially increases rapidly, but
remains stable as N increases further.

In conclusion, the accuracy of the proposed method is influenced by a number
of factors: the value of k, the accuracy of the specialized quadrature rules, the size
of the shadow boundary region, and the number of degrees of freedom. The results
show that the error is quite small and can be improved by changing the parameters.
However, the experiments do not indicate that arbitrary accuracy can be achieved for
a given value of k. For achieving high accuracy at very low values of k, the use of
specialized quadrature rules is not recommended; one can instead employ the dense
discretization described in section 5.1.

7. Concluding remarks. The method presented in this paper achieves a sparse
discretization matrix for an integral equation, which is made possible by the presence
of strong oscillations. The method is based on a classical boundary element technique
near the shadow boundary, and uses a new quadrature formula that is very effective
for oscillatory integrals in the illuminated region. The a priori knowledge of the phase
of the solution allows a discretization with a fixed small number of unknowns. Since
the new quadrature rule requires only few quadrature points, a sparse discretization
matrix is obtained. Moreover, numerical results indicate that the accuracy of the
solution increases with increasing frequency.

The method can still be improved in a number of ways. For example, we have only
considered a localized Filon-type method, while numerical experiments indicate that
regular Filon-type methods are typically more accurate for the same frequency. One
could also add additional quadrature points besides the singular and stationary points
to improve the accuracy. The small densely discretized part near the shadow boundary
may possibly be avoided by using a more elaborate ansatz for the asymptotic behavior
of the solution, such as those described by the geometric theory of diffraction [17, 23,
16].

The method is limited to smooth convex obstacles. The approach of [7] for smooth
convex obstacles can be extended to multiple scattering configurations using an itera-
tive approach [14]. We expect the same will hold for our approach. The extension to
three-dimensional problems is the subject of future research. This might be based on
suitable cubature rules for multivariate highly oscillatory integrals which have recently
been constructed [18].
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