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In the face of accelerating biodiversity loss and limited data, species distribution models � which statistically capture
and predict species’ occurrences based on environmental correlates � are increasingly used to inform conservation
strategies. Additionally, distribution models and their fit provide insights on the broad-scale environmental niche of
species. To investigate whether the performance of such models varies with species’ ecological characteristics, we
examined distribution models for 1329 bird species in southern and eastern Africa. The models were constructed at
two spatial resolutions with both logistic and autologistic regression. Satellite-derived environmental indices served
as predictors, and model accuracy was assessed with three metrics: sensitivity, specificity and the area under the curve
(AUC) of receiver operating characteristics plots. We then determined the relationship between each measure of
accuracy and ten ecological species characteristics using generalised linear models.

Among the ecological traits tested, species’ range size, migratory status, affinity for wetlands and endemism
proved most influential on the performance of distribution models. The number of habitat types frequented
(habitat tolerance), trophic rank, body mass, preferred habitat structure and association with sub-resolution
habitats also showed some effect. In contrast, conservation status made no significant impact. These findings did
not differ from one spatial resolution to the next. Our analyses thus provide conservation scientists and resource
managers with a rule of thumb that helps distinguish, on the basis of ecological traits, between species whose
occurrence is reliably or less reliably predicted by distribution models. Reasonably accurate distribution models
should, however, be attainable for most species, because the influence ecological traits bore on model performance
was only limited. These results suggest that none of the ecological traits tested provides an obvious correlate for
environmental niche breadth or intra-specific niche differentiation.

Humans are rapidly altering ecosystems the world over
(Balmford et al. 2002). Research exploring the ecolo-
gical consequences of this change, and efforts to protect
individual species (Corsi et al. 1999) or biodiversity
overall (Gioia and Pigott 2000) increasingly rely on
species distribution models. These models use empirical
data to describe and predict the occurrence of indivi-
dual species, essentially by quantifying statistically their
broad environmental (Grinellian) niche (Guisan and
Zimmermann 2000, Guisan and Thuiller 2005).

Such models are useful to: identify species’ ecological
requirements (Diekotter et al. 2006); determine possi-
ble causes of species declines (Knapp et al. 2003);
ascertain inter-specific competition (Leathwick and
Austin 2001); uncover evolutionary processes in range
dynamics (Peterson and Holt 2003); estimate species

persistence in reserve networks (Burns et al. 2003);
supplement inventory data (Engler et al. 2004); and
forecast species invasions (Thuiller et al. 2005), or the
effects of climate change (Thuiller 2003) and other
habitat alterations (Manel et al. 2000).

Ideally, the reliability of distribution models should
be carefully assessed before their predictions inform
conservation planning (Fielding and Bell 1997).
Adequate tests of model accuracy are, however,
difficult where data are scarce (Gibson et al. 2004)
or models explore future scenarios (Thuiller 2003, but
see Araújo et al. 2005). Under such circumstances, a
rule of thumb would be useful to help distinguish
between models that should be treated with scepticism
and those whose predictions can be applied with
reasonable confidence.
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Model reliability depends on a number of factors,
including methodological aspects, such as the model
algorithm used (Thuiller 2003, Segurado and Araújo
2004), and the nature of data available for model
training (Kadmon et al. 2003, McPherson et al. 2004).

Also of potential importance are ecological charac-
teristics of the species being modelled, since these can
affect distribution models in two ways. First, they can
influence the quality of data available for model
development and testing (Boone and Krohn 1999).
Second, certain ecological characteristics may make it
more difficult to statistically capture the relationship
between the species’ occurrence and environmental
conditions (Brotons et al. 2004). Species differ con-
siderably in the breadth of their ecological niche, for
example, and broad ranges are less likely to be
adequately captured by any one predictor (Grinnell
1917, Colwell and Futuyma 1971). Moreover, differ-
ences in species’ dispersal patterns and associated gene
flow may lead some species to exhibit sub-specific
variations in habitat preferences (local adaptations, Holt
2003). Even in the absence of genetically driven
differences in habitat use, spatial variation in competi-
tors, predators or other biotic factors could result in
different populations of a single species expressing
different ‘‘realised niches’’ (Hutchinson 1957, Osborne
and Suarez-Seoane 2002, Holt 2003, Peterson and Holt
2003). Such sub-specific differences risk reducing the
accuracy with which distribution models capture
occurrence-environment relationships in species-level
analyses.

Among the ecological characteristics postulated to
influence the accuracy of distribution models are:
association with poorly sampled or poorly mapped
habitats, body size, conservation status, habitat toler-
ance and distinctiveness, nomadism and migratory
behaviour, population trend, range size, rarity, response
to conspecifics, and trophic level (Elith and Burgman
2002, Garrison and Lupo 2002, Stockwell and Peterson
2002, Hepinstall et al. 2002, Huntley et al. 2004). How
each of these characteristics might impact distribution
models is outlined in Table 1.

Empirical assessments of the influence species’ traits
exert on model accuracy have to date yielded mixed
results, with some authors finding no effect (Elith and
Burgman 2002, Huntley et al. 2004) and others
reporting significant impacts by one or another ecolo-
gical characteristic (Stockwell and Peterson 2002,
Kadmon et al. 2003, Segurado and Araújo 2004).
Most studies, however, contemplated only a few (5/3)
ecological traits (Pearce et al. 2001, Garrison and Lupo
2002, Karl et al. 2002, Huntley et al. 2004), considered
distribution models for only a limited number (B/50)
of species (Mitchell et al. 2001, Elith and Burgman
2002, Hepinstall et al. 2002, Segurado and Araújo
2004, Brotons et al. 2004), or used measures of model

accuracy vulnerable to statistical artefacts (Boone and
Krohn 1999, Stockwell and Peterson 2002, Kadmon
et al. 2003; see discussion for further details).

To overcome these shortcomings, our study exam-
ined the relationship between model accuracy and ten
ecological characteristics in distribution models for
�/1300 bird species in southern and eastern Africa.
Models were built with ordinary logistic as well as
autologistic regression at two spatial resolutions, be-
cause the influence of ecological characteristics on
model accuracy may vary with the modelling algorithm
used (Hepinstall et al. 2002, Segurado and Araújo
2004), and potentially with spatial scale (Mitchell et al.
2001). The primary aim was to identify types of species
for which distribution models yield poor results, so that
such species can be handled with extra care in future
assessments for conservation planning. In addition, our
results offer preliminary insights on the interrelation-
ship between a species’ core ecological attributes and its
broad-scale environmental niche.

Materials and methods

Overview

We used logistic and autologistic models to relate the
presence and absence of 1329 bird species in two
avifaunal zones of southern and eastern Africa to
satellite-derived environmental indices related to cli-
mate and vegetation. The accuracy of these distribution
models was measured on data withheld from model
training using three metrics: sensitivity, specificity, and
the area under the curve (AUC) of receiver operating
characteristics (ROC) plots. We then used generalised
linear models and Kruskal-Wallis H-tests to examine
the relationships between model accuracy and ten
ecological traits.

Species distribution data

Information on species’ distributions was derived from
a database integrating bird atlas data from 14 nations in
southern and eastern Africa (Fig. 1). This database
draws on both published atlases (Lewis and Pomeroy
1989, Parker 1994, 1999, Harrison et al. 1997, Dean
2000, Carswell et al. 2005) and works in progress
(contributions by N. and L. Baker, B. Dowsett, V.
Parker and T. Pedersen), recording species occurrences
at varying spatial and temporal resolutions.

Data were summarised across seasons and each bird
sighting geo-referenced to a grid of half-degree squares
(HDS, 0.58 longitude by 0.58 latitude), the coarsest
resolution among original data. For a subset of
countries (Angola, the Democratic Republic of Congo,
Lesotho, Malawi, Mozambique, Namibia, South Africa,
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Table 1. Ecological traits that have been hypothesized to influence the accuracy of species distribution models, and ways in which
they might exert their influence. For traits whose influence was examined in our study, the names and nature of representative
measures used is indicated to the right.

Traits and their possible impact on distribution models Measure

Association with poorly recorded environments

. models for species associated with habitats poorly captured in survey data (e.g. man-modified habitats in
surveys focused on natural environments) may suffer from limited amounts of data or a distorted
representation of habitat preferences (Pearce et al. 2001).

. where species’ habitat preferences are difficult to capture in predictor variables (e.g. localised
resources missed by coarse environmental assessments), distribution models may misjudge
occurrence-environment relationship or not find any statistical associations (Fielding and Haworth
1995).

wetland affinity
(categorical)

habitat structure
(categorical)

sub-resolution habitat
(categorical)

Body size

. larger species may be more conspicuous, improving data availability.

. if larger species have larger home ranges, they may perceive the environment at coarser scales,
facilitating distribution models based on coarse-grained predictors (Suarez-Seoane et al. 2002).

. where body size correlates with range size, spatial variability in habitat associations may affect the
success of distribution models (see range size).

body mass
(quantitative)

Competitive exclusion

. if a species is prevented by another, ecologically similar species from utilising otherwise suitable habitat,
distribution models that do not include the competing species as predictor variable will likely
overestimate the species’ distribution (Best and Stauffer 1986).

Conservation status

. species considered threatened because of limited range size or population size impose the same
constraints on data availability as any rare species (see rarity).

. species considered threatened due to their range or population declining may be underutilising suitable
environments, leading to model misspecification (see population trend).

conservation status
(categorical)

Dispersal mode

. dispersal mechanisms and dispersal associated behaviours, including site fidelity, may result in the
absence of individuals from suitable areas or their presence at suboptimal sites, and can thus lead
models to misjudge habitat preferences (Fielding and Bell 1997, Pulliam 2000, Knick and Rotenberry
2000).

Endemism

. although endemism has not previously been identified as influential on model accuracy, we postulated
that species endemic to the study region yield better models than non-endemics, because models receive
less comprehensive data on the latter’s habitat preferences.

endemism
(categorical)

Habitat tolerance and distinctiveness

. species utilising a wide variety of habitats, or habitats that predominate in the study region, may impede
model algorithms from distinguishing between suitable habitats and the overall environment (Brotons
et al. 2004).

habitat tolerance
(quantitative)

Nomadism and migration

. if the movement of nomadic species responds to resources too localised (e.g. fruiting trees) or
short-lived (e.g. ephemeral water bodies) to be captured in predictor variables, distribution models may
misjudge species-habitat associations (Pearce et al. 2001).

. seasonal changes in the occurrence and habitat requirements of migratory species may lead models to
overestimate the species’ ecological niche unless occurrence data and predictor variables have the
appropriate temporal resolution (Neave et al. 1996).

. migrants may perceive the landscape at coarser scales, facilitating distribution models based on
coarse-grained predictors (Mitchell et al. 2001).

migration behaviour
(categorical)
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Swaziland, Uganda, and Zimbabwe), distribution re-
cords were also geo-referenced to a grid of quarter-
degree squares (QDS, 0.258 longitude by 0.258
latitude), allowing for analyses at finer resolution.

Taxonomic discrepancies between sources were
harmonised following Sibley and Monroe (1990,
1993), with some modifications. The resulting database
at half-degree resolution contained 471 720 occurrence
records for 1697 species, where each record represents a
unique combination of species and HDS. Data at
quarter-degree resolution captured the distributions of
1475 species with 628 917 records.

Not all species, however, were included in analysis:
some occurred in too few (B/10) HDS or QDS to

allow for the construction of distribution models; others
lacked information on ecological traits. Half-degree
models, therefore, were constructed for a total of 1315
species occupying 2515 HDS, quarter-degree models
for 1092 species occupying 5166 QDS. 1078 species
were modelled at both resolutions.

Species’ ecological traits

For each species analysed, we compiled information on:
body mass, conservation status, diet preferences, en-
demism, global range size, migratory behaviour, and
typical habitat. As a shorthand, we refer to all these

Table 1. (Continued)

Traits and their possible impact on distribution models Measure

Population trend

. at high or fluctuating population sizes, density dependent habitat selection can lead species to occupy
suboptimal habitats, leading distribution models to overestimate the species’ ecological niche
(Hepinstall et al. 2002).

. in rapidly declining species, predominantly suboptimal habitat may be occupied, leading distribution
models to misread occurrence-environment relationships (Hepinstall et al. 2002).

. if species colonising new areas (introduced species) or recovering from past declines are not yet utilising
all suitable environments, distribution models may underestimate ecological niches (Hepinstall et al.
2002).

Range size

. range size influences either the amount of data available for model development or the balance between
observations of presence and absence, which � unless controlled for � influences model accuracy
through statistical artefacts (McPherson et al. 2004).

. if widespread species exhibit local adaptations in habitat preferences, spatial variability in occurrence-
environment relationships may lead models to overestimate the species’ ecological niche (Stockwell and
Peterson 2002).

global range
(quantitative)

Rarity

. rarity reduces the amount and quality of data available for model development if rare species occupy few
sites (range size rarity) or are overlooked during surveys (low density) (Garrison and Lupo 2002, Kadmon
et al. 2003).

Response to conspecifics

. if territorial species or those living in large groups (colonies, herds) are more conspicuous thanks to
behaviours associated with territory defence (e.g. vocalisations) or high local abundance, more data may
be available for model development (Garrison and Lupo 2002).

. where the presence, absence or distance to conspecifics significantly influences occurrence patterns,
weakened species-environment relationships may lead to poorer model specification (Fielding and
Haworth 1995).

Trophic level

. species of higher trophic level may yield poorer models if they respond predominantly to biotic
interactions, which are more difficult to incorporate in distribution models than the abiotic resources
thought to constrain the distributions of organisms at lower trophic levels (Huntley et al. 2004).

. as noted by a reviewer, certain biotic interactions such as competition or specialisation on single prey
species may, however, amplify abiotic constraints (e.g. via narrowing realised niche space, Austin 2002),
negating above point.

trophic rank
(quantitative)
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characteristics as ‘‘ecological traits’’, but recognise that
some are intrinsic to the species (e.g. body mass), while
others arise out of interaction with the physical
environment and other organisms, including humans
(e.g. range size and conservation status).

Information on body mass was gleaned primarily
from Dunning (1993) and Brown et al. (1982�2004).
Where available, the mean or maximum recorded
female body mass was noted in grams. Species lacking
body mass statistics were assigned the mean weight of
congeneric species. Body mass was then log-trans-
formed to improve normality.

Conservation status was taken from the IUCN Red
List (Anon. 2004) and re-coded as a binary variable.
Species of Vulnerable, Endangered or Critically En-
dangered status were considered threatened. All others,
including Data Deficient and unevaluated species
(which are scarce among birds), were treated as not
threatened.

The diet preferences of most species were obtained
from data compiled by Şekercioğlu et al. (2004) and
supplemented with information in Brown et al. (1982�
2004) and Ginn et al. (1989). Food items were
classified into nine categories, assigned a trophic
stratum (Table 2) and ranked in the order of each

species’ preference based on quantitative diet analyses or
verbal qualifiers included in published diet descriptions.
The trophic rank of each species was then calculated as
the mean trophic stratum of all food items, with items

Fig. 1. The study region, indicating areas from which data on species occurrence was available (grey shading), country
boundaries (grey lines) and the two avifaunal zones identified by de Klerk et al. (2002) to which analyses were limited (black
lines).

Table 2. Dietary categories used in determining the trophic
rank of bird species.

Category Trophic stratum Examples

Fruit 1 fruit, drupes, berries
Nectar 1 nectar
Seed 1 seeds, maize, nuts, spores
Plant material 1 leaves, buds, bulbs, roots,

tubers, grass, algae,
vegetation

Invertebrates 2 insects, arthropods, krill,
shrimp, polychaetes,
gastropods, molluscs

Land vertebrates 3 reptiles, snakes,
amphibians, salamanders,
mammals, birds

Fish 3 fish
Omnivory 3 omnivore, generalist,

opportunist
Scavenge 4 carcasses, garbage, offal,

fishing boat discards,
scavenger
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of primary preference double-counted to attribute them
greater importance.

Species endemic to the 14 countries covered by our
database were identified based on range descriptions in
Avibase (Lepage 2005).

Each species’ global range size (extent of occurrence
in km2, log-transformed) was computed in ArcGIS 8.0
(ESRI) based on digitised, equal area projections of
published range maps.

The migratory behaviour of species was determined
using Dowsett and Forbes-Watson (1993). Seasonal
visitors (breeding and non-breeding) and species ex-
hibiting regional movements within the study area were
classified as migratory. Others, including locally noma-
dic species, were treated as sedentary.

Habitat information was gleaned primarily from
Sibley and Monroe (1990, 1993) and used to develop
four separate predictors. The first, habitat tolerance ,
measured ecological breadth as the number of habitat
categories (out of 18) reportedly utilised by the species.
The remaining three variables were categorical and
identified species associated with habitats poorly cap-
tured by the satellite-derived environmental indices
used in model development.

The variable wetland affinity flagged species asso-
ciated with freshwater bodies and wetlands, because
wetlands are difficult to distinguish in coarse-grained
satellite imagery, particularly if they contain emergent
vegetation (Girard and Girard 2003).

The variable sub-resolution habitat identified species
partial to linear habitats (e.g. riparian vegetation, coastal
beaches) or localised features (cliffs, caves, crevices)
poorly described by gridded environmental data of
quarter or half-degree resolution.

Habitat structure distinguished species confined to
structurally complex environments (forests, woodlands,
thickets, bush), species occurring exclusively in open,
structurally simpler habitats (grasslands, heath, farm-
land, desert), and those occupying both. In vertically
structured environments, satellite-derived indices might
miss important nuances in sub-canopy habitats (Joa-
chim et al. 1998). In open areas, in contrast, indices
may identify potentially trivial details such as soil type
(Hay 2000), and so unnecessarily complicate species-
environment relationships in distribution models.

Satellite-derived environmental predictors

A broad range of environmental predictors (61 in total)
was considered to ensure that unwitting omission of
variables important to particular ecological groups
would not bias results. Among these predictors,
individual species’ distribution models picked 14 on
average based on forward stepwise variable selection.
Models were thus saturated with predictors before we

tested for ecologically driven differences in model
accuracy.

Among the predictors considered, mean altitude was
obtained from a digital elevation model provided by the
United States Geological Survey’s EROS Data Center
(B/http://edcdaac.usgs.gov/gtopo30/gtopo30.html�/).

The remaining predictors constituted seasonal mea-
sures of satellite-derived environmental indices. Satellite
images collected twice daily over an 18-yr period
(1982�1999) by the United States National Oceanic
and Atmospheric Administration’s Advanced Very
High Resolution Radiometer (AVHRR) satellites con-
tributed: land surface temperature; air temperature; the
vapour pressure deficit (a measure of the air’s drying
power); a middle infrared signal reflective of both
temperature and vegetation structure; and the normal-
ised difference vegetation index (NDVI), which esti-
mates photosynthetic activity (Hay 2000, Goetz et al.
2000). Cold cloud duration, an index of rainfall (Hay
2000), was obtained from 10 yr (1989�1998) worth of
European Meteosat imagery.

All imagery was composited into cloud-free,
monthly images and re-sampled from its original spatial
resolution of 1 km2 to the quarter and half-degree grids
used to geo-reference bird data. Each index was then
subjected to Fourier analysis, a data reduction techni-
que ideal for summarising seasonal variables (Rogers
et al. 1996). Fourier analysis extracted, from each
environmental index, the overall mean, minimum,
maximum, and variance, plus the amplitude (strength)
and phase (timing) of annual, biannual and triannual
cycles.

Distribution modelling

Many techniques exist for building distribution models.
Given the number of species examined, we focused on
just two for practical reasons: logistic regression and its
derivative, autologistic regression. Logistic regression is
a commonly used technique that performs well in
comparison with other modelling techniques (Elith
et al. 2006).

At both quarter and half-degree resolution, distribu-
tion models were first built with logistic regression,
which uses data on species presence and absence to
establish what proportion of sites the species occupies at
each value of the explanatory variables. A logit link
ensures that a linear function of predictors yields
response values between 0 and 1 for each site,
representing the probability of species occurrence
(Legendre and Legendre 1998). Logistic regression
was implemented in S-Plus (Anon. 2001) with forward
stepwise variable selection based on the Akaike infor-
mation criterion (Sakamoto et al. 1986). Stepwise
variable selection has its shortcomings (Guisan and
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Thuiller 2005), but as we did not need to draw
inference based on the variables selected, we chose it
for computational speed.

Like many widely used regression techniques, logis-
tic regression assumes that individual data points are
independent of each other. This assumption is violated
in the presence of spatial autocorrelation, which is
common in ecological data: data points in close
proximity tend to be more alike than data points
further apart (Legendre and Legendre 1998). In species’
distribution records, such patterns can originate in
processes endogenous to the species, like conspecific
attraction and dispersal limitations, or in functional ties
between the species’ occurrence and environmental
conditions that in themselves are spatially structured
(Keitt et al. 2002). Some of these processes operate at
scales too fine to be detectable at quarter or half-degree
resolution (e.g. conspecific attraction), but others can
operate at much coarser scales (Legendre and Legendre
1998), and visual inspection of our data certainly
suggested that species’ occurrences were clustered in
space.

In the presence of such spatial autocorrelation,
logistic regression may misjudge the relative importance
of predictors (Hoeting et al. 2000). The problem can be
addressed by incorporating a spatial parameter into
logistic models that reflects how strongly a species’
probability of occurrence at one site is affected by its
presence or absence at neighbouring sites. The result is
known as autologistic regression (Augustin et al. 1996).

In autologistic models, calculating the probability of
a species’ presence at any one site has immediate knock-
on effects on predictions for neighbouring sites. Model
computation becomes challenging, therefore, when the
study region includes unsurveyed sites. The solution is
an iterative procedure known as Gibbs sampler, which
repeatedly updates predictions at each site based on the
site-specific environmental conditions and the (ever-
changing) predictions at neighbouring sites (Augustin
et al. 1996, Hoeting et al. 2000).

Autologistic regression was implemented in S-Plus
via a custom-written program (Appendix, Text S1).
The Gibbs sampler cycled through 50 iterations, which
sufficed for convergence in the majority of models. Grid
squares (QDS or HDS) influenced each others’ predic-
tions if they were in immediate contact, so that any
focal square had up to eight neighbours. Neighbours
outside the study area or beyond the coastline were
ignored. Renewed variable selection under considera-
tion of the autocovariate would have been desirable.
Variable selection methods for models incorporating
spatial autocorrelation are only now being developed
(Hoeting et al. 2006), however, and we are as of yet
unaware of a technique that could feasibly be applied to
models as computationally intensive as autologistic
regressions with Gibbs sampler. We therefore followed

other authors (Augustin et al. 1996) in using the same
environmental predictors for each species as selected
during logistic regression.

To retain discrete data for model testing, logistic and
autologistic models were trained with only two-thirds of
the data available per species. Both training and test
data contained an equal number of presence and
absence samples, because this optimises accuracy in
logistic models and ensures comparability between
species (McPherson et al. 2004, but see Real et al.
2006 for an alternative approach). Where necessary, the
balance between presence and absence samples was
achieved by sub-sampling the more numerous category
(generally absence). Potential absence samples included
any surveyed square not recorded to harbour the
species.

To avoid forcing models to make predictions for
areas ecologically distinct from training data, analyses
were limited to two avifaunal zones that encompassed
the bulk of our distribution records. These avifaunal
zones were identified by de Klerk et al. (2002) as the
southwestern and southern Savanna subregions (Fig. 1).

Measures of model accuracy

Model accuracy was measured on data withheld from
model training in a split-sample approach. Such test
data are not fully independent from training data due to
spatial autocorrelation (Araújo et al. 2005). None-
theless, they yield more conservative estimates of model
accuracy than training data themselves (Fielding and
Bell 1997, McPherson et al. 2004) and can provide a
reasonable surrogate for fully independent data (Araújo
et al. 2005). More precise estimates of accuracy could
be obtained by k-fold partitioning or bootstrapping
(Verbyla and Litvaitis 1989), but this was unfeasible in
our study given the large number of species modelled.

We used three metrics to measure accuracy: sensi-
tivity, specificity, and AUC. All three range from zero
(very poor model accuracy) to one (perfect fit between
observations and predictions). Sensitivity quantifies the
proportion of correctly predicted observations of species
presence. Sensitivity is low, therefore, when omission
errors (erroneous predictions of absence) are common.
Specificity, conversely, identifies the proportion of
correctly predicted observations of species absence.
Thus specificity is low when commission errors
(erroneous predictions of presence) are frequent (Field-
ing and Bell 1997). To calculate the two measures,
probabilistic estimates of species occurrence must be
classified into presence-absence predictions. A classifi-
cation threshold of 0.5 was used to strike a compromise
between omission and commission errors (McPherson
et al. 2004).
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AUC measures the area under a receiver operating
characteristics (ROC) curve, which plots sensitivity
against (1 � specificity) over a number of classification
thresholds. AUC is thus independent of classification
thresholds and evaluates the ability of models to
correctly predict a higher probability of occurrence
where species are present than where they are absent. It
was calculated non-parametrically using the Wilcoxon
statistic. Values below 0.7 indicate poor model perfor-
mance, as they suggest similar rates of correct and
erroneous predictions; values between 0.7 and 0.9
indicate (moderately) useful models; values exceeding
0.9 signify excellent accuracy (Pearce and Ferrier 2000).

Linking accuracy to species’ ecology

The relationship between model accuracy and ecologi-
cal traits was examined using simple (single-trait) and
multiple (multi-trait) regressions as well as Kruskal-
Wallis H-tests. All calculations were undertaken in S-
Plus (Anon. 2001). Holm’s method was used to adjust
significance levels for multiple testing (Aickin and
Gensler 1996). We also present unadjusted significance
levels, however, given debate over the appropriateness
of adjustments (Perneger 1998).

Regressions were implemented as generalised linear
models (GLMs) with a binomial error distribution and
logit link function, because the response variable
(accuracy) was limited to values between 0 and 1.
The proportion of variance in distribution model
accuracy explained by these GLMs was quantified via
the coefficient of determination (r2, calculated as the
square of the Pearson correlation coefficient between
observed and predicted accuracy). The statistical sig-
nificance and relative importance of individual ecolo-
gical traits in explaining accuracy was assessed using
log-likelihood ratio tests (Legendre and Legendre

1998). To identify a parsimonious model for each
measure of accuracy, various combinations of ecological
predictors and their interactions were examined, using
both r2 and the Akaike information criterion as guides.

For Kruskal-Wallis H-tests, a non-parametric ana-
lysis of variance, continuous ecological traits were
converted to binary variables (e.g. small vs big global
range) using the median to split data into lower and
upper values.

Results

The influence of spatial scale

Results obtained at quarter-degree resolution were
qualitatively and quantitatively similar to those ob-
tained at half-degree resolution. Consequently, only
results at half-degree resolution are reported below, but
figures and tables for results at quarter-degree resolution
are provided in the Appendix.

Overall model accuracy

Both logistic and autologistic distribution models
achieved high accuracy on average (Fig. 2). On a
species-by-species basis, autologistic models slightly but
significantly outperformed logistic models (paired-
sample Wilcoxon’s signed rank tests: ZB/�/13.64,
pB/0.001, n�/1,315 for sensitivity, specificity and
AUC).

The influence of ecological characteristics

Single-trait GLMs had weak explanatory power (max-
imum r2�/0.15) but � based on unadjusted signifi-
cance levels � suggested that six of the ten ecological
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Fig. 2. The accuracy achieved by logistic (top) and autologistic (bottom) distribution models at half-degree resolution. Accuracy
was measured as sensitivity (left), specificity (middle) and AUC (right). Density plots show the spread of accuracy values attained
by models for 1315 species; vertical lines indicate mean accuracy (9/one standard deviation).

142



predictors examined significantly influenced at least one
measure of model accuracy: global range size, migratory
behaviour, wetland affinity, endemism, habitat toler-
ance and body mass. Among these, global range size,
migratory behaviour and wetland affinity exhibited the
most consistent effects: regardless of model algorithm,
all measures of accuracy declined as range size increased,
if species were migratory, or if they frequented wetlands
(Table 3).

Holm’s adjustments for multiple comparisons
reduced the number significant predictors in single-
trait GLMs to four traits exerting their impacts
primarily on sensitivity: global range size, migratory
behaviour, wetland affinity and endemism (Table 3).
In contrast, Kruskal-Wallis H-tests on the categorical

variables suggested that all measures of accuracy were
affected by ecological traits, and that all traits except
conservation status had a significant influence (before
and after Holm’s adjustments; Fig. 3). Accuracy was
lower in: wide-ranging species (global range size
]/3 325 075 km2) than narrow-ranging species; mi-
grants than non-migrants; species associated with
wetlands than species not associated; non-endemics
than endemics; species tolerating many (]/2) rather
than few land cover types; species of higher (]/1.8)
than lower trophic rank; larger (]/38 g) than smaller
species; species associated with sub-resolution habitats
than species not associated; and species restricted to
open habitats than species frequenting vertically
structured habitats or both (Fig. 4). These patterns

Table 3. Effects of individual ecological traits on model accuracy at half-degree resolution. Shown are coefficient estimates (9/SE)
for the intercept and trait, as well as the coefficient of determination (r2) of single-trait models. Whether a trait’s influence was
significant was determined via log-likelihood ratio tests. Significance is indicated with one asterisk (*) when pB/0.05 or two asterisks
(**) when pB/0.01. Parameter estimates in bold remained significant (at global a�/0.05) after Holm’s adjustment for multiple tests.

Logistic regression Autologistic regression

Response Predictor Intercept Parameter r2 Intercept Parameter r2

Sensitivity
body mass (log) 2.299/0.22 �/0.239/0.11* 0.04 2.379/0.23 �/0.209/0.12 0.03

conservation status 1.839/0.25 �/0.049/0.25 0.00 2.149/0.30 0.149/0.30 0.00
endemism 2.059/0.11 0.309/0.11** 0.06 2.299/0.12 0.299/0.12** 0.06

global range size (log) 5.659/0.96 �/0.589/0.14** 0.15 5.629/1.01 �/0.559/0.15** 0.13

habitat structure
open

1.869/0.08
�/0.079/0.10

0.02 2.019/0.09
�/0.099/0.11

0.02complex 0.089/0.06 0.069/0.06
habitat tolerance 2.219/0.17 �/0.169/0.07* 0.05 2.329/0.18 �/0.149/0.07* 0.04

migratory behaviour 1.769/0.09 �/0.269/0.09** 0.07 1.909/0.09 �/0.279/0.09** 0.08
sub-resolution habitat 1.859/0.08 �/0.089/0.08 0.01 2.009/0.09 �/0.089/0.09 0.01

trophic rank 2.409/0.29 �/0.299/0.15 0.03 2.519/0.30 �/0.269/0.15 0.03
wetland affinity 1.699/0.09 �/0.319/0.09** 0.09 1.859/0.10 �/0.289/0.10** 0.08

Specificity
body mass (log) 1.849/0.20 �/0.159/0.10 0.02 1.979/0.21 �/0.139/0.11 0.01

conservation status 1.609/0.23 0.039/0.23 0.00 1.689/0.23 �/0.069/0.23 0.00
endemism 1.689/0.09 0.199/0.09* 0.04 1.849/0.10 0.199/0.10 0.04

global range size (log) 4.679/0.85 �/0.489/0.13** 0.15 4.089/0.88 �/0.369/0.13** 0.08

habitat structure
open

1.579/0.07
�/0.059/0.09

0.01 1.739/0.08
�/0.079/0.10

0.01complex 0.049/0.05 0.039/0.05
habitat tolerance 1.859/0.15 �/0.139/0.06* 0.04 1.969/0.16 �/0.119/0.07 0.03

migratory behaviour 1.479/0.08 �/0.229/0.08** 0.07 1.649/0.08 �/0.229/0.08** 0.07
sub-resolution habitat 1.559/0.07 �/0.079/0.07 0.01 1.719/0.08 �/0.099/0.08 0.01

trophic rank 2.009/0.26 �/0.239/0.13 0.03 2.159/0.28 �/0.229/0.14 0.02
wetland affinity 1.449/0.09 �/0.219/0.09* 0.06 1.629/0.09 �/0.199/0.09* 0.04

AUC
body mass (log) 2.459/0.24 �/0.099/0.12 0.03 2.669/0.27 �/0.159/0.14 0.02

conservation status 2.039/0.26 �/0.099/0.26 0.00 2.359/0.30 �/0.049/0.30 0.00
endemism 2.249/0.12 0.229/0.12* 0.04 2.539/0.13 0.249/0.13 0.04

global range size (log) 4.809/1.02 �/0.419/0.15** 0.10 4.869/1.14 �/0.389/0.17* 0.07

habitat structure
open

2.119/0.09
�/0.089/0.11

0.01 2.389/0.10
�/0.099/0.13

0.02complex 0.059/0.06 0.069/0.07
habitat tolerance 2.419/0.19 �/0.149/0.07 0.04 2.659/0.21 �/0.129/0.08 0.03

migratory behaviour 2.009/0.09 �/0.269/0.09** 0.09 2.279/0.10 �/0.299/0.10** 0.10
sub-resolution habitat 2.099/0.09 �/0.109/0.09 0.02 2.369/0.10 �/0.139/0.10 0.02

trophic rank 2.609/0.32 �/0.269/0.16 0.03 2.849/0.35 �/0.249/0.18 0.02
wetland affinity 1.959/0.10 �/0.279/0.10** 0.09 2.239/0.12 �/0.269/0.12* 0.07
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held for all measures of accuracy and at both spatial
scales, except that the effect of association with sub-
resolution habitats lost significance at quarter-degree
resolution (Appendix, Fig. S2, S3).

Note that the relative magnitude of H-test statistics
suggested that the impacts of global range, migratory
behaviour, wetland affinity and endemism were con-
siderably stronger than those of other traits. H-test and
single-trait GLMs thus agreed on the relative impor-
tance of predictors, just not significance levels (Fig. 3,
Appendix, Fig. S2).

Multi-trait GLMs that simultaneously included all
10 ecological traits as predictors assigned significance
only to global range size (when predicting sensitivity
and specificity) or no variable at all (in the case of AUC
and most cases after Holm’s adjustments). Judging

from likelihood ratios, however, the relative importance
of ecological predictors was again similar, although
body mass and trophic rank gained influence in
comparative terms (not shown).

In our search for parsimonious models, global range
size and migratory behaviour emerged as the most
universally applicable predictors, with wetland affinity
occasionally providing a useful third or substitute.
Parsimonious models explained up to 20% of the
variation in distribution model accuracy (Table 4) and
suggested, for example, that migratory wetland species
with large global ranges (35 000 000 km2) would
typically yield logistic models with AUCs of 0.79,
whereas models for narrow-ranging (1 500 000 km2)
non-migrants with no wetland affiliation reached AUCs
of 0.88.
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Fig. 3. The relative importance of ecological traits in influencing the accuracy (sensitivity, specificity or AUC, as indicated) of
species distribution models built at half-degree resolution. Relative importance was judged using: 1) each traits’ likelihood ratio
statistics in single-trait (left) and multi-trait (not shown) generalised linear models (GLMs), measuring the change in model
deviance attributable to that trait; and 2) the test statistic of Kruskal-Wallis H-tests (right). Both statistics are chi-square
distributed and were significant (at test-specific a�/0.05) only if they surpassed a value of 3.84, demarcated by the dashed
horizontal line. (For habitat structure, a three-level factor-variable, the significance cut-off was 5.99, not shown.) Stars above bars
indicate which trait’s impacts retained significance (at global a�/0.05) after Holm’s adjustments for multiple comparisons.

144



Discussion

Species’ ecological traits have long been suspected to
influence the accuracy of distribution models (Best and
Stauffer 1986). Yet empirical assessments of this
influence have been limited in number and often
subject to methodological foibles.

Several studies, for example, relied on measures of
accuracy such as the matching coefficient, sensitivity,
specificity, or kappa (Garrison and Lupo 2002,
Stockwell and Peterson 2002, Kadmon et al. 2003)
without controlling for statistical artefacts arising from
species’ prevalence (for a discussion of these artefacts
see Fielding and Bell 1997, McPherson et al. 2004).
Alternatively, accuracy was measured solely on data
used in model parameterisation (Hepinstall et al.
2002, Segurado and Araújo 2004, Huntley et al.
2004), which tends to provide an overoptimistic
impression of model reliability (Stockwell and Peter-
son 2002, McPherson et al. 2004), and may not allow

for enough variability in accuracy to detect ecological
differences. Furthermore, few authors have discussed
in detail how species’ ecological traits might exert their
control over model accuracy (Fielding and Bell 1997),
and because most studies assess a limited number of
traits, deliberations on this topic are scattered in the
literature.

We have herein attempted a synopsis of the
ecological traits postulated to affect model accuracy
and the mechanisms by which they may wield their
influence. Based on the literature, we identified 13
ecological traits as potentially influential (Table 1), and
empirically examined the effects of eight of these.
Findings for each trait are discussed individually below,
following brief observations on how spatial resolution
and the choice of model algorithm influenced results.
Throughout, we try to differentiate between effects that
reflect ecological phenomena and effects that have
primarily methodological roots, nonetheless acknowl-
edging that the two can become entangled.

Table 4. Parsimonious generalised linear models (GLMs) describing the influence of ecological characteristics on each of three
measures of accuracy in logistic and autologistic distribution models built at half-degree resolution. Shown are coefficient estimates
(9/standard error) for each GLM’s intercept and applicable predictors, as well as the model’s coefficient of determination (r2).

Response 0/ Logistic regression models Autologistic regression models

¡/ Predictors Sensitivity Specificity AUC Sensitivity Specificity AUC

Intercept 4.529/1.04 4.199/0.88 3.639/1.10 4.949/1.05 3.519/0.91 2.179/0.12
Global range size �/0.439/0.15 �/0.419/0.13 �/0.269/0.16 �/0.469/0.16 �/0.289/0.14
Migratory behaviour �/0.149/0.09 �/0.149/0.08 �/0.179/0.10 �/0.199/0.10 �/0.179/0.09 �/0.259/0.11
Wetland affinity �/0.179/0.10 �/0.179/0.11 �/0.199/0.12
r2 0.20 0.17 0.18 0.16 0.12 0.14
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Fig. 4. Box plots illustrating the impact of ecological traits on model accuracy at half-degree resolution. Impacts were highly
similar across models types (logistic vs autologistic) and accuracy metrics (AUC, sensitivity, and specificity). We therefore show
patterns for only AUC in logistic models. Boxes delimit the inter-quartile range, with girdles at the median and notches to
indicate the median’s 95% confidence intervals. Whiskers show the spread of data up to 1.5 times the inter-quartile range.
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Spatial resolution

The spatial scale at which species respond to their
environment � and thus the best scale for modelling
their distributions � may vary with species’ ecological
characteristics (Hutchinson 1959, Mitchell et al. 2001).
The interaction between ecological traits and model
accuracy might, therefore, vary with the spatial resolu-
tion of analysis. Our results, however, indicated little
difference between analyses at half-degree and quarter-
degree resolution, possibly because both resolutions are
coarse from an organism’s perspective. Analyses at a
wider range of scales may yet detect an effect of scale
and shed light on how ecological traits influence species’
habitat perception.

Choice of model algorithm

A wealth of algorithms is available for the construction
of species distribution models (Guisan and Zimmer-
mann 2000). These algorithms diverge in terms of both
the input data required and the computation of species-
environment relationships. Consequently, they may
also diverge in their sensitivity to species’ ecological
traits (Hepinstall et al. 2002, Segurado and Araújo
2004).

Logistic and autologistic distribution models re-
sponded similarly to ecological characteristics in our
analyses, although the accuracy of autologistic models
was often slightly less affected. The two algorithms
differ only in their approach to spatial autocorrelation.
We conclude, therefore, that explicitly addressing
spatial autocorrelation counteracts some of the statis-
tical irregularities species’ ecology imposes on occur-
rence-environment relationships. This confirms that
methodological aspects modulate how strongly ecolo-
gical traits influence the accuracy of distribution models
(Segurado and Araújo 2004).

Association with poorly recorded habitats

Species might favour habitats under-sampled during
field surveys, or habitats ill-defined by the predictors
used to construct distribution models. Either situation
could influence model accuracy unfavourably, but via
different mechanisms (Table 1).

Pearce et al. (2001) and Kadmon et al. (2003) noted
that model accuracy suffers if data used in model
parameterisation disproportionately under or over-
represent aspects of a species’ environment. We were
unable to determine how representative our distribution
data were, but employed three categorical variables to
flag habitats poorly captured by the predictors used.

Among them, habitat structure exerted a minor
effect on model accuracy, with poorer predictive power

for species in open than vertically structured habitats.
Such an effect could have ecological roots: birds of prey,
for example, may use open spaces as hunting grounds
regardless of land use type, leading to occurrence
records in a large variety of environments and thus a
lack of well-defined statistical associations. In our study,
species in open habitats did have greater habitat
tolerance than species restricted to vertically structured
habitats (Wilcoxon’s rank sum test: ZB/4.94, pB/

0.001, n1�/408, n2�/524). Species frequenting both
types of environment had even larger habitat tolerance
(Wilcoxon’s rank sum test: ZB/2.04, pB/0.05, n1�/

383, n2�/408), however, and nonetheless yielded better
models. Our findings therefore more likely reflect
methodological issues, with satellite-derived indices in
open areas picking up soil type or other forms of
environmental heterogeneity irrelevant to birds.

Species’ affiliation with sub-resolution habitats also
had only a minor impact on model accuracy that lost
significance at finer resolution, illustrating its metho-
dological roots.

Wetland affinity, in contrast, emerged as one of the
most significant influences on model accuracy, with
wetland-affiliated species yielding poorer models. This,
too, is clearly a methodological issue that use of more
appropriate predictor variables should resolve (e.g.
high-resolution land cover maps that adequately distin-
guish wetlands).

Body size

Body size has been suggested as a trait of interest
(Boone and Krohn 1999), although Stockwell and
Peterson (2002) found no significant relationship with
model accuracy. In our study, body mass had a small
but significant impact. Contrary to expectations, it was
larger rather than smaller species that yielded poorer
models. This suggests that the distributions of larger
organisms are not necessarily better captured by surveys
or more suitable to analyses at coarse spatial scales
(Suarez-Seoane et al. 2002). As body mass was only
weakly related to global range size and habitat tolerance
(rs5/0.27), the mechanism underlying its (albeit small)
impact remain uncertain.

Conservation status

Although distribution models are often employed in
conservation contexts (Corsi et al. 1999, Gibson et al.
2004), concern has been raised over their suitability for
the rare and range-restricted species of most conserva-
tion interest (Vaughan and Ormerod 2003).

This concern is primarily fuelled by the notion that
the scarcity and small ranges of threatened species
limit the data available for model specification, which
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can indeed diminish model accuracy (Stockwell and
Peterson 2002, McPherson et al. 2004). Rare and
threatened species, however, are often better studied
than common ones, so that models of their distribu-
tion may actually benefit from relatively comprehen-
sive data (Gioia and Pigott 2000, Karl et al. 2002).
Accordingly, neither Elith and Burgman (2002) nor
our study detected a link between conservation status
and model accuracy.

Endemism

Comprehensive sampling of the environmental condi-
tions encompassed by a study region is considered a
prerequisite for reliable models. Otherwise, species’
response curves � which describe the relationship
between species occurrence and environmental gradi-
ents � may be truncated and their shape misjudged
(Vaughan and Ormerod 2003).

Clearly, response curves will always be truncated
globally speaking, unless species are endemic to the
study region. It has previously been recognised that
this reduces transferability of models from one region
to another (Best and Stauffer 1986, Fielding and
Haworth 1995). Our findings suggest that it also
diminishes model accuracy within the original study
area, because non-endemics yielded poorer models
than endemics, at least in single-trait GLMs and
Kruskal-Wallis H-tests.

In multi-trait analyses, endemism lost significance
potentially because of interdependence with three other
influential traits: endemic species tended to have smaller
global ranges (Wilcoxon’s signed rank test Z�/

�/19.13, pB/0.01, n�/1,329), included fewer migrants
(x2�/73.01, pB/0.01, 1 degree of freedom), and
displayed less affinity for wetland habitats (x2�/

27.57, pB/0.01, 1 degree of freedom) than non-
endemics.

Such interdependence between ecological character-
istics complicates judgement of their individual effects.
Any effect of endemism must, however, be considered
methodological if its underlying cause truly is the
truncation of response curves. Of course, it is often
difficult to obtain data from a species’ entire geographic
range, illustrating that species’ ecological traits can
impose methodological deficiencies that are not easily
corrected.

Habitat tolerance and distinctiveness

Both the number and distinctiveness of habitats a
species utilises are thought to influence the ability of
model algorithms to discern patterns in a species’
occurrence (Kadmon et al. 2003, Brotons et al.
2004). Among studies that have assessed this influence

empirically, only two reported no effect (Garrison and
Lupo 2002, Stockwell and Peterson 2002). All others
found that increasing habitat tolerance affected model
accuracy unfavourably (Mitchell et al. 2001, Pearce
et al. 2001, Hepinstall et al. 2002, Kadmon et al. 2003,
Segurado and Araújo 2004, Brotons et al. 2004).

Despite our rather simplistic measure of habitat
tolerance, we too found that broader tolerance reduced
model accuracy, particularly in Kruskal-Wallis H-tests.
Stronger significance might have been attributed to
habitat tolerance in GLMs had we used a more
sophisticated measure, e.g. one based on Environmental
niche factor analysis or related techniques (Segurado
and Araújo 2004, Thuiller et al. 2004). In multi-trait
GLMs, habitat tolerance lost all significance, perhaps
because of collinearity with global range size (Spearman
rank correlation rs�/0.40, pB/0.01, n�/1,329).

Surprisingly, habitat tolerance in our analysis aug-
mented omission as well as commission errors. It has
generally been assumed that broader habitat use causes
model algorithms to overestimate species’ distributions,
leading to increased commission (Hepinstall et al.
2002, Kadmon et al. 2003). With both types of error
affected, it becomes clear that habitat tolerance influ-
ences the ability of model algorithms to distinguish
species presence from absence. Perhaps the occurrence
patterns of species able to utilise a variety of habitats are
less dependent on abiotic factors than biotic interac-
tions. If so, the poorer model performance for more
versatile species has ecological roots.

Nomadism and migration

Migratory species are thought to exploit seasonal peaks
in resources that resident species, whose numbers are
constrained by year-round resource availability, cannot
take full advantage of. Their occurrence patterns,
therefore, are determined by seasonal conditions rather
than conditions throughout the year, and may change
both within and between years depending on the
location of local resource peaks (Walther et al. 2004).
Occurrence patterns of nomadic species may be
even more variable in time and space, because by
definition they follow highly unpredictable resources
(Dean 1997).

Consequently, accurate models for nomadic and
migratory species likely require occurrence records and
environmental predictors of high temporal resolution.
Data of sufficient quality are rare, however, leaving
modellers with data that inadequately reflect occur-
rence-environment relationships (Walther et al. 2004).

Nonetheless, Garrison and Lupo (2002) and Stock-
well and Peterson (2002) detected no difference in
model accuracy between migratory and non-migratory
birds. Mitchell et al. (2001) in fact found migrants
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easier to model than resident species. Pearce et al.
(2001), however, reported poorer models for motile
than sedentary taxa.

In our study, non-migrants yielded significantly
better models than migrants. In part, this potentially
reflected a tendency among migrants to frequent poorly
captured wetland habitats (x2�/83.20, pB/0.01, 1
degree of freedom). Migration must have imposed
additional constraints on distribution models, however,
since parsimonious models of model accuracy some-
times included both migratory behaviour and wetland
affinity as predictors. This constraint likely was meth-
odological, because our data pooled observations of
species’ occurrence and environmental conditions over
several years. Any intra or inter-annual variation in
the distribution of migrants would therefore have
been obscured, and species-environment relationships
weakened.

Range size

Previous assessments of the relationship between range
size and model accuracy have provided contradictory
results, perhaps because artefacts arising from range
size’s influence over sample size and sampling preva-
lence were not accounted for (McPherson et al. 2004).
Garrison and Lupo (2002), for example, reported that
species with larger ranges yielded better models. Others,
in contrast, found wide-ranging species more difficult
to model (Stockwell and Peterson 2002, Segurado and
Araújo 2004).

Our analyses, which controlled for artefacts of
sampling prevalence, strongly suggested that model
accuracy declined with increasing range size. Since
range size influenced the size of training and test
datasets (rs�/0.61, pB/0.01, n�/1,315 at half-degree
resolution), the possibility of an artefact of sample size
remained. Greater training sample size should, however,
augment rather than diminish model accuracy
(McPherson et al. 2004). Moreover, the relationship
between model accuracy and range size retained
significance when training sample size was included in
regressions as a predictor.

Consequently, we conclude that the negative effect
global range size exerted on model accuracy was not a
statistical artefact but implies the existence of an
underlying ecological phenomenon. Possibly, the oc-
currence-environment relationships of wide-ranging
species are weakened by spatial variability in habitat
associations. Such variability might reflect genetically
driven divergence in habitat preferences (local adapta-
tions, Stockwell and Peterson 2002, Peterson and Holt
2003) or external constraints, with organisms settling
for what is best locally (Osborne and Suarez-Seoane

2002). Neither phenomenon need be limited to wide-
ranging species. Local adaptations can occur over short
distances if dispersal is limited (Åbjörnsson et al. 2004)
or gene-flow overwhelmed by local selection pressures
(Michalak et al. 2001). Moreover, all organisms must
make the best of conditions within the bounds of their
individual mobility. Because larger ranges generally
encompass greater ecological heterogeneity, however,
these phenomena could lead to noisier occurrence-
environment relationships in wide than narrow-ranging
species.

Given this potential, the negative effect of range size
on model accuracy was astonishingly small. Lack of
environmental heterogeneity is an unlikely explanation,
because our study region encompassed temperate to
tropical climes with, for example, considerable variation
in annual temperature range. Instead, our findings are
indicative of considerable niche conservatism even in
wide-spread species. Such niche conservatism may be
common (Guralnick 2006) and has important implica-
tions for many large-scale ecological patterns (Wiens
and Graham 2005).

Trophic level

Biotic factors have been postulated to dominate over
abiotic factors in shaping the distributions of species
higher up the food chain (Huntley et al. 2004).
Although information on forage, competitors and
predators can be incorporated into distribution models
(Corsi et al. 1999, Knapp et al. 2003), most models use
abiotic factors or habitat categorisations as predictors.
Poorer accuracy may consequently be expected from
models for species of higher trophic rank. Contrary to
Huntley et al. (2004), our analyses found evidence to
that effect. The impact on accuracy was relatively small,
however, suggesting that species’ distributions respond
to the physical environment regardless of trophic level.

Conclusion

With distribution models increasingly informing con-
servation strategies, it is important to know how
trustworthy their predictions are. Ideally, this should
be tested on a case by case basis. Where model
validation is impeded by insufficient data, however, a
rough guide regarding factors affecting model reliability
may be useful.

The reliability of models depends on both properties
of the data used to parameterise them and species’
ecological characteristics. Because species’ ecology af-
fects how easily data on their occurrence is collected,
methodological and ecological impacts on model
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accuracy may become entangled. Methodological im-
pediments can sometimes be overcome, so we at-
tempted to tease the two influences on model
accuracy apart. We conclude that certain ecological
traits, including habitat tolerance and range size, exert
real effects on the accuracy of distribution models that
cannot be explained by methodological artefacts. Other
traits, in contrast, influence accuracy via methodologi-
cal aspects of the modelling process, and better data
could theoretically eliminate their effects.

Obtaining better data is often difficult, of course,
and distribution models have gained popularity among
conservation ecologists precisely because they provide
answers where raw data alone are insufficient. Dimin-
ished accuracy of distribution models for certain types
of species may therefore be unavoidable. As a rule of
thumb, we suggest that models are associated with
greater uncertainty if they describe the distributions of
species who: 1) depend on poorly mapped habitats; 2)
are migrants, nomadic or otherwise display temporal or
spatial variation in their habitat associations; 3) occur
beyond the region from which data were drawn; 4) are
tolerant of a large variety of habitats; and/or 5) have
very large ranges. In addition, large size and higher
trophic level may further augment uncertainty.

That said, the influence of ecological characteristics
on model accuracy, although significant, was small in
our analyses, suggesting that useful models can be
obtained for the vast majority of species. This is good
news in the context of conservation science. For
evolutionary ecologists, it unfortunately means that
strong, easily quantifiable correlates of environmental
niche breadth and intra-specific niche differentiation
remain elusive. Both latter phenomena are functions of
phenotypic plasticity and gene flow. Potentially fruitful
avenues for future research therefore include: a)
integrating distribution models with molecular analyses
(Scribner et al. 2001); and b) scrutinising the relation-
ship between species’ niche characteristics and traits
most directly linked to gene flow, such as morpholo-
gical, behavioural or metabolic adaptations to dispersal
(Thuiller et al. 2004). In both cases, phylogenetically
controlled comparisons may help to elucidate subtle
differences otherwise masked by the enormous diversity
of life, its genetic make-up and dispersal modes.
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Segurado, P. and Araújo, M. B. 2004. An evaluation of
methods for modelling species distributions. � J. Bio-
geogr. 31: 1555�1568.
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