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Abstract—In this paper, we propose a parametric and sample size calculations — for the statistical
correlation models for assessment of biometric clas- evaluation and assessment of matching performance
sification error rates. Correctly specified correlations in a single environment and not methodology for im-

are integral to variance estimation and the corre- d tchi f T lish thi
sponding inferential quantities which depend upon Proved maitching periormance. 10 accomplish tnis,

these estimates. We present methodology here for both W& propose a new parametric correlation structure
false match and false non-match error rates for a for binary classification decisions that is useful in

single environment. This paper generalizes other work  estimation of the variability in false match and false
that has previously appeared in the bioauthentica- 5 match rates. We use parametric here, not in the

tion literature. Since both symmetric and asymmetric “ .
matching algorithms are used in practice, we present sense of Bolle et al. [2] who stated that “[pJarametric

a general correlation structure for both types of -.. Methods impose assumptions about the shape
algorithms. Along with the correlation structure, we of the distribution....” Instead we use parametric

describe estimators for the parameters in these models. jn the sense that we are specifying the first two
The correlation structure described here for binary moments of the distributions of interest and the

decision data is then used to derive explicit confidence rameters involved in th moments: however. w
intervals and sample size calculations for estimation of parameters involve 0S€ moments, however, we

false match and false non-match error rates. We then arenot as will become clear, assuming a particular
apply the correlation structure described herein to two shape of the distribution. It is important to properly

match scores databases to illustrate our approach. specify the correlation structure, and, hence, the
A discussion of the utility and consequences of this yarjance structure, for statistical inference. Incorrect
correlation structure is also provided. . . L .

_ assumptions or other misspecifications regarding the

Index Terms—false accept rate , false reject rate correlations can lead to inaccurate standard errors

, false match rate, false non-match rate, biometric 5.4 13 confidence intervals for estimation of these
authentication, variance structure, effective sample h d icall | I
size, confidence intervals, sample size calculations ~ EITOr rates that are drastically too large or too small.
Estimation of the parameters in the correlation struc-

ture using a method of moments approach is also

] o i ) presented.
Bio-authentication devices have become increas-The correlation structure is an integral aspect

ingly prevalent and increasingly important for sepf 5ssessing the variability in an estimate. This is
curing a wide range of locations, applications andspecially important since biometric decision data,
data. Qne important facet of these devices is theﬂﬁough binary, is thought to not be binomial, Mans-
matching performance — how well they make acfie|q and Wayman [10], and, hence, not uncorrelated.
curate decisions about whom to allow and whom tfnethodologies such as those proposed by Givens et
deny access. To estlr_na_te the matchmg_ performanngL Mitra [11] and Schuckers [20] depend heavily
error rates, some statistical methodologies have beg 5 correctly specified correlation structure for their
proposed, e.g. Mansfield and Wayman [10]. Most Qfpproaches. Misspecification of such models can
this previous work focuses on assessing matchifgye significant consequences for the outcomes of
performance through the false match and/or falscgny study. Here we will propose the first general
non-match rate. We note here that false matgfhrametric correlation structure that accounts for
and false non-match rates are averages of Zergi source of the correlations, the same individual
and one’s and, consequently, they follow statistic§eing used for multiple comparisons in biometric
methodology for averages and linear combinationgecision data. It is possible to estimate the variance

Our goal here is methodology — confidence intervalgng hence, the standard errors) of the false match

Michael E. Schuckers is with St. Lawrence University and thémd false non-match r_ates without assigning various
Center for Identification Technology Research. components to a particular parameter; however, be-
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cause we are also interested in sample size calcutax comparisons from two biometric captures ?rom
tions we use parameters for the various componernte same individual. These intra-individual decisions
of the variance. Wayman [23] proposed an estimare derived from dichotomizing the genuine distri-
tor for the variance of a FNMR assuming only aution, where the genuine distribution is defined as
single image per individual. That estimator seenthe match scores from intra-individual comparisons.
to be based on simplified version of the correlatio@onditional on the error rate, we utilize a model that
structure we will propose here. Bol&t al [2], Poh ignores — treats as zero — correlations between
et al[14] and Schuckers [19] previously assumed adifferent individuals. We begin by introducing our
implicit correlation structure as part of their work.correlation structure, then deriving the variance for
We generalize all of these approaches here. Otlre estimated error rate. That is followed by con-
approach is designed specifically for decision datéidence intervals and sample size calculations for
i.e. the binary decision by an algorithm to claim astimation of the FNMR.
match or non-match since that is required for use
when one reports error rates. See dtal. [9] for a ,
taxonomy of biometric data types. The parametét- COrrelation Structure
estimates are dependent on the chosen thresholdiLet Y;; represent the decision for thé" pair of
however, the general structure itself is not. For n@aptures collected on th&" individual, wheren is
tational simplicity we will not explicitly denote this the number of individualsi = 1,...,n andj =
dependence. That the estimates differ by threshold. .. m,. Thus, the number of capture pairs that
is made clear upon application of the model to datare compared for thé” individual is m;, andn is
using varying thresholds. Additionally, we will dealthe number of different individuals being compared.
with correlation for a single environment over whichwe then define
the process has a stationary covariance, that is for
which the process has a fixed mean and variance.
We begin the description of our approach b A e
presenting the theoretical basis for each parametri&@ — |nd|V|dL_JaI i Is declared a non-match
correlation structure. Following this, we provide 0 otherwise 1)

moments-based estimators for the correlation PHe assume for the’..’s that ElY,,] = nc and
1] 1]

rameters. Confidence interval approaches and safn V,,] = 7o(l — 7a) where E[X] and V[X]
1) -

S:e size ctilcglatloons are ftlzen def"’ted blased upQ present the mean and varianceXof respectively.
ese methods. Dur confidence Interval approa us, ¢ represents the FNMR and G here stands

IS one that can be carrlled out solely on observ' r genuine. The correlation structure for tl’fgs is
data; while the sample size approach depends - like

all statistical sample size calculations - on some

1 if j** pair of captures from

estimates of the process parameters. This is followed 1 if i=4,5=4
by illustrations of our approach by applying this Corr(Y;;,Yy;) =< p if i=dj#5 (2
methodology to several datasets. The structure of 0 otherwise

this paper is as follows. We begin by introducin
the correlation structure for false non match rates
Section Il. Section Il discusses correlation structur,

for estimation of false match rates. Both symmetri

and asymmetric classification algorithms are dis-
cussed. We illustrate these methods by applyin

them to biometric data from multiple modalities in
Section 1V. Finally, we discuss the implications fo
these correlation structures in Section V.

?Lhis correlation structure for the FNMR is based

pon the idea that the there will only be correlations

etween decisions made on the same individual but

ot between decisions made on different individuals.
us, conditional upon the error rate, there is no
rrelation between decisions on tff& individual

nd decisions on th& ** individual, wheni # 4’.

The degree of correlation is summarized sy

Then
[I. FALSE NON-MATCH RATE Vize] = VING'1"Yg] = N5*V[1"Y¢)

In this section, we present a parametric correlation = NZ*1"S¢l=NG’mc(l —ne)l" @61
structure for decisions made when comparing two = NZ*me(l —7g)
biometric captures from the same individual. This n
correlation structure is necessary for estimation of X |Neg +pzmz‘(mz‘ -1) 3)
the the false non-match rate (FNMR). (Here we will =1
use FNMR and FMR rather thqn False Reject Ra'falvhere ¢ = Var(Yg), N¢ = Y1, my,
and False Accept Rate, respectively, to be consistedl, = Corr(Yg), 1 = (1,1,...,1)7,

with Mansfield and Wayman [10].) Since we arer,; = (NG)—llTYG andYe = Y11,y Yim,,
interested in the FNMR, our decisions will be basetls,...,Yom,, ..., Ya1,. .., Yom, )* . Fleiss et al.
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[6] has suggested the following estimator for B. Statistical Estimation Methods

n -1 Being able to make statistical inference about an
<er(1 - ﬁG)Zmz(ml - 1)) error rate based upon observed data is often of in-
i=1 terest for evaluators of biometric authentication de-
DLl X ) ) vices. Being able to determine the margin of error or
x Z Z > (Vi = 76)(Yi — 7). (4) the width of confidence intervals is often of interest
i=1 j=1 j/=1 . . .
35 to testers for determining the number of individuals

Note that this is equivalent to averaging all of thggd the nur;:ber of attempts per mdlr\]/ldual. Qne
terms in the estimated correlation matrix that corre? \_/ante_lge t frﬂ a _paramet_rl_c approac to varlance
spond top to get a single estimate. Models like thafStimation enjoys is the ability to invert confidence
found in Equation (2) are known as intra—individualnte,rvals to deftermme the_ sample sizes necessary to
or intra-class models and have been studied exte?'fih'eve a particular margin of error for a confidence
sively in the statistics literature, e.g. Williams [24]|ntervgl. Schuckers [_1_8] h_as noteq that there are
or Ridoutet al [L5]. The parametep in the models effectively two quantities involved in any sample

above represents the intra-class correlation. That fi2€ calculation for biometric matching testing. The
hf st is the number of individuals to be tested and the

it measures the degree of similarity between t Y . : L .
binary decisions made on each individual. If ansecond is the number of times that each individual is
of the decisions on every individual are thé sam be tested. Below we describe confidence interval
(all ones or all zeros), thep will be one. If the Cl) and sample size calculations for estimation of

decisions on each individual are varying in a wa{e FNMR. These methods are dependent on the

that suggests that the decisions are not depend&ffrelation structure given above in Equation (2).
upon the individual them is zero, meaning that the OUr estimand here isc. A 100(1—a)% Cl for g
observations are uncorrelated. Note that because Wéhen
are considering correlations of binary observations

that the usual intuition based upon, for example, izl,g\/ﬁc(l — o)L+ (mo = DAl 4y
Pearson’s correlation coefficient is not applicable. 2 Ne

Negative values of are possible but such values wherez;_« is the1 — %th percentile of a stan-

suggest that decisions on captures from the sarggrd Gaussian distribution. We assume a Gaussian
individual are less similar to each other than theyistribution following the generalized Central Limit
are to all of the other decisions. This seems unlikelyheorem in Moore [12]. Recall thaY; is the total
to be the case in the context of biometric authemumber of decisions used to estimate.
tication. Schuckers [18] implicitly used the model \we now turn to sample size calculations. In order
in Equation (2) to create confidence intervals ang create sample size calculations for a confidence
to derive sample size calculations. Several authofigiterval, it is necessary to determine, among other
including Fleiss et al. [6], have suggested using thgiings, the desired margin of errds, for the inter-
following approximation to Equation (3) val. As mentioned above there are effectively two
. _ sample sizes when dealing with performance evalu-
Vir] = Ng'me(1 = 76)(1+ (mo = 1)p)  (5) ationpfor biometric authengcationpdevices. Here we
< IR _.o  Will focus on the number of individualsy, that
wheremg =n="5_;_, m;—(nm) Z;(mi*m) * need to be tested and assume that the number of
If m; = m for all i, thenNg = nm and the variance decisions per individual is fixed and known. This
of 7o from Equation (5) becomes is equivalent to assuming that; = m for all ¢
and thatm is known. In practice it will be possible
_ to determine different values fag by varying m
VAl — ma(l —7g) . , . .
7] = W * (nm + pnm(m — 1)) before proceeding with a evaluation. We can obtain
o the following sample size calculation for making a
= (nm)7(1+(m—=1)p). () 100(1 — @)% CI with a margin of error of B.

As mentioned abovey represents the intra-class 22 _ama(l—me)(1+ (m—1)p)

correlation. This quantity has a direct relationship 7 = : =D (8)
with the variance oftr found in Equation (3) and

the simplified version found in Equation (6). Ashaving replacedn, in Equation (7) withm. As with

p increases, the variance in both cases increasall.sample size calculations it is important to note
This is a consequence of the lack of independetitat we must specify priori values for the param-
information from each individual. Ip is large, then eters in the model. In this case we must estimate
each additional decision on a previously observedlues forrg andp before we determine the number
individual is providing little new information. of individuals, n. Traditionally, there are several

p o=




ways to obtain estimates for these quantities. The my;. It is possible form;, = 0 when decisioﬁs
two primary choices are to use previously collectefbr a particular comparison pair are not observed. In
similar data or to conduct a small pilot study. Havinghe general case, we consider both comparison pairs
obtained those estimates, it is straightforward to them, k) and(k, ). This allows for possible asymmetry
determinen. in the decisionsY;,, not guaranteed to equat.,,
is because we assume that when we compare the
I1l. FALSE MATCH RATE ¢t decision from the comparison paiti, k) to the

i g LA
We next focus on correlation models for falsez decision from the pai(k, ;) based on the same

RS e captures that the resulting decision may be different.
match rate (FMR) estlmat|0n_ in verification mOdewgassume that the datagis well ordere)(/j in the sense
As with the FMNR corr_elanon st_u_rctures, thes‘?hﬁt it is possible to assume that the order of the
models are based upon binary decisions becausece(;letures for a given pair of individuals, k) is the
biometric authentication decisions result in either s ! ’

L same for the paifk, ). Define
an acceptance or a rejection. We are concerne
here with the correlation between decisions made
between two individuals and another decision made
on two other individuals with the possibility of vy, =
overlap among the individuals involved in each
decision. The amount and type of overlap in individ- )
uals will be crucial to this structure. Thus, we ai _ _
to model the correlation between inter-individuZl}ELSE[t}ﬁgdm;ar:”eig? ‘r;[t};kﬂr T:Mwlé(lis_agzj.med
decisions. These inter-individual decisions are bas?d : . .

: o : 0 be w;. We estimated this quantity through

on dichotomizing match scores from the |mposte7rr — N7UTY,, where 1 — (1,1 )7
distribution. We follow Mansfield and Wayman [10] . — I b I A R

. — : g T
in using the term imposter distribution to refed Urther. 1et Yy = (Y, .., Yigm,, )" and

1 if ¢t pair of captures from
individual 7 and individualk is
declared a match

0 otherwise

P . ;o= (YL vyL, ooyT o oyI, YL oyl
to match scores from inter-individual comparisons, "
: ) o YL oyl Yl )T, Here | stands for
Below we differentiate between classification algoi_mSoster niron nn=

rithms that are symmetric and those that are asym-
metric. Symmetric matching algorithms are those for
whom the order of the individual captures does nQ
matter and asymmetric ones are those for whom th
order does matter. Thus for asymmetric matchers

comparing capture A against capture B may resuﬁow(n“in”?f’”)_: e
I 1=1, k=K, 0=

As before all structure is dependent on the thresh-
Id from the matching process, but we will suppress
eat dependence for notational simplicity. Then,

in a different decision than comparing capture B e p y

. . - n if i=i k=K £/
against capture A. The decisions resulting from wi i =i kAR it kAR
a symmetric matching algorithm would always be wo i iAT k=K itk K
the same regardless of the order of the captures. ws if i=K i #ki#i,i#k (10)
Below we propose a general correlation structure for wy M =kiF K FLRER ,
the asymmetric case and show that the correlation &1 !; i= Z,’Z =it %,v: 7 Z,»f; = f;,
structure for a symmetric matcher is a special case % ! f)tﬁerv(/ise_ iF kAR, CF

of this. As with the FNMR, we provide confidence

intervals and sample size calculations based upo-ﬁhis correlation structure is necessarily more com-
this structure. plicated than the FNMR equivalent presented in

(15) because of the correlation between decisions
) on captures from different individuals. In this cor-
A. General Correlation structure relation structurey) represents the correlation be-
In this section we derive a general correlatiotween decisions when the same individuals appear
structure for use in estimation of the FMR. Thisn the same order but the captures considered are
general structure allows for the matching algorithrdifferent. In other words if the first decision is
to be asymmetric. See Bistarelli et al. [1] for arthe 2nd capture from the 1st and 3rd individuals,
example of such a matching algorithm. L¥},, Yi32, and the second decision is the 4th capture
represent thé'" decision from the comparison pairfrom the 1st and 3rd individualsy;s4, then the
(i,k),0=1,...,mu,i=1,...,n,1 <k <n,k# correlation between these two decisions will be
i. Also let n be the total number of individuals denoted byn = Corr(Yise, Yi34). This is then
from whom biometric data has been taken and lain intra-comparison pair correlation similar gan
m; > 0 represent the number of comparisons okquation (2). Thew's here represent the correla-
the pair of individuals(i, k) where the order of the tion between two decisions when those decisions
pair matters, i.e. thatn;; is not necessary equalcontain one and only one individual in common.



w1 represents the case when the first individual ifThis can be expanded to

each decision is the same. For example, the first

decision is based on individuals 1 and2y,, and

the second decision is based on individuals 1 and 3} [#]

Yizer. w1 = Corr(Yiae, Yi3¢). When the second

individual is the same in each decision, we will = 7”(17_27”) Nr+0Y N ma(ma — 1)
assume that correlation will be representedday Ni i=1 k=1

An example of this would be when the first decision

invol individuals the 3rd and 4th individ & -
involves individuals the 3rd an individuals;, MZEW Z -

and the second decision involves the 2nd and 4th L o~
individuals, Y244, Then, we = Corr(Ysqs, Yose ). ki k! ik £k
When an individual is shared between the decisions n n n

in either the 'inside’ or the 'outside’ positions, we  + WQZ Z Mik Z Mk
will assume the correlation is;. For example, the i=1 k=1 =1

first decision might involve the 2nd and 4th individ- . et

uals,Ys4,, and the second decision might involve the n

4th and 1st individualsYy;,. In that case we would Tows Z > ma Z Mt
assume the correlation between those decisions is T B

wy = Corr(Yay, Yare) = Corr(Yaie, Yaaer ). The

correlations denoted by thgs are those where the Z Mppr

individuals are the same in each decision but the

order is reversed. That is, decisions involved must k/#;k/#k

include the same individuals, but the order of those + ¢ Z Z Mk

individuals is different in one of the decisiong, i=1 h=t

represents the case where the capture is the same

but the order is different; while:i; represents the

case where the captures are not the same and the © ‘SQZ Z M (i — 1)

order is not the same. To illustrate this, consider the G

3rd and 4th capture on the individuals 5 and 7. So (12)

& = Corr(Ysrs, Yrs4) and &y = Corr(Ysrs, Yrsa).

Further, we assume that if all individuals involved

in the decisions are all distinct then the correla-Where Xy = V(Y] and ®; = Corr(Y ). We
tion conditional on the FMR, is zero. For exam.derive parameter estimators using a method of mo-
ple Corr(Yaas, Yazer. In that case we will assume, ments approach by setting the sample variance of
conditional on the error rate, that the decisions a6, (Yr —#71)(Y; — #/1)7, equal to the model
uncorrelated or have correlation zero. In general, wé&riance,X;, whose correlation structure is defined
will assume that all of the correlation parameter Equation (10) and solving for the correlation
here are non-negative. A negative correlation fd¥arameters. As in the previous section, this is equiv-
the binary decisions described above would implglent to averaging the individual components of the
that having individuals in common would makeSample correlation matrix that correspond to each
decisions less likely to be same than those involvingPrrelation parameter. The moment-based estimator
four distinct individuals. In a biometrics contextfor n is then

this seems counterintuitive. Thus we assume a non-

negative correlation when the same individual is

part of both comparisons, but assume no correlation

-1
when four distinct individuals are part of these n n
comparisons. = (=70 0> mak(ma — 1)
Using the structure in Equation (10), we can =1
calculate the variance of our estimated error rate non mg mik
X Z Z Yire — 1) Yiger — 71).
=1 k=1 (=1 ¢/=1
V[ﬁ'l} k#i £
—14T (13)
= V[N;'1TYq)
= NPV[ATYq)
= NU'En Note the similarities in this estimator to the estima-
=  N?m(l-m)1"el tor for p in the previous section. The other moment-

(11) based estimators for the correlation parameters are



w1 =
n n n
Fr(l=fY D ma | )
i=1 k=1 k=1
k#i k! #i,k! #k
n n no Mmip MR/
> o> (Yike — 71)(Yigror — 71)
i=1 k=1 /=1 (=1 ¢'=1
k#i k! #d
k' #k
Wy =

Z Z Z (Yike — 7r)(Yirser — 71

>0 H(Ykié*ﬁl)(ykié*ﬁl) ,

—1

fan

1=

> Z (Yiie — 71)(Yiaer — 71)

. ) . . 6
provide confidence interval and sample size method-
ology.

B. Some simplified models of the general FMR
correlation

Under certain conditions, it is reasonable to sim-
plify the model in Equation (10). One such simplifi-
cation could occur when the matcher is symmetric.
As a consequence of this the correlation parameters
& andé&,, becomel andn respectively. This is be-
cause the symmetric case results in identical results
regardless of the order of the captures. Consequently
with a symmetric matcher the correlation= 1 and
the correlationéy = 5. This can be written as

Corr(Yike, Yirgrer) =
1 if i=i k=K =1,
n it i=i k=K (£,
wi if i=d kA K, i Ak,
wo if k=K i#d k#K, (15)
ws if i =kiAk it k+K
ws if i=k,i £kiti kLK
0 otherwise
Estimation for this symmetric version of Equation
(20) follows from the method of moments approach
described previously.

For some statistical methods, including sample
size calculations, a simplified version of the general
model is helpful. Several such constrained models
are reasonable. We discuss one of these below. Here
we letw = w; = wy = ws. This is equivalent to
stating that the correlation between decisions is the
same when two and only two of the four individuals
involved in the decisions is the same. This yields a
correlation structure of

COTT(Y;']@@,Y;‘/]C/Z/) =

if i=i k=K =1

if i=i k=k,0£0

if i=i kAk,i#tki#k

if i#£i k=k,k#ik#7

if i=k,i"#4ki#ti itk (16)
if & =kiAk,i#ii Ak

if i=k' k=i, iti k£k, (=1
& it i=K k=i,iAi{ kEK LEL
0 otherwise

Mgeegegs ~

Other simplified models — e.gv; = ws = ws,
& = & — may be reasonable for a given data
collection or with some additional knowledge about
a particular matching algorithm. For a given simpli-
fied model, deriving the method of moments based
estimation for the correlation parameters should be
straightforward.

C. Statistical Estimation Methods

Below we describe some possible simplifications We begin by deriving a confidence interval for
to the general structure in Equation (10). We thethe error rate of interest, the FNMR, based upon



the estimated variance of our estimator. Here that

1?(;:07: r?ste is the FMRz;. Thus a100(1 — a)% CI o szamwm(l — )
" =
B2m
1 & 2102\ VI[71] a7 N 2zf_a/2w7r1(1 —7r) ?
B?m
where
N 23 ajomr(1—mr)
Vi) = N1 —77) B?m,
0" " X [(1+&)+(+&)m—1)"]. (20)
X szik-‘rﬁzzmik(mik_l)
i=1 k=1 i=1 k=1
k7t kit Here, as beforeB is the margin of error desired
n n n andz,_q /2 is thel—a/2!" percentile of a standard
ooy > ma | > ma Normal distribution. (That is, the desired confidence
=1 it D interval is 7y £ B.) A priori estimates of the pa-
rametersr, w, &1, & andn need to be determined
SR - before these confidence intervals can be made. We
+ i i’ .
w; ;mk Z=1 ik also note that for a givem the total number of
ki il 2k decisions will beN; = n(n — 1)m assuming that
n n n all cross-comparisons are run. For Equation (20)
+o@sy Yy ma | > ma we use only the ’plus’ part of the solution to the
=1t A guadratic (_aquation. We do this sinc_e the only way
for the 'minus’ part of the quadratic equation to
n z": m yield a positive result is for the+ &5 to be negative.
— rE Negative values for these parameters in the con-
Kl i k! £k text of biometric authentication decisions indicate
ek ' negative correlations. This seems counterintuitive in
+ & ; ; Mk the biometrics context and, thus, we truncate these
ket correlations at zero. Other sample size calculations
o can be derived from the simplified models above.
+ 6D mui(me — 1) (18)  Similar calculations can also be found based on the
=1 k=t symmetric correlation model found in the appendix.
The above interval is based upon the general IV. | LLUSTRATION

correlation structure given in Equation (10). We ) )

get the estimated varianc&[#;], by substituting [N this section we apply the methods from the
our parameter estimates into Equation (11). It ig_/vo previous sections to actual biometric authen-
possible to derive confidence intervals by assumirjfgation data. The data we use here comes from
a simplified correlation structure and following thigWo sources. The first set of data was collected at
same process. Our assumption of Gaussianity Michigan State University and will be referred to
asymptotically valid since the estimate error raje as the MSU database, [16]. The second database

is a linear combination, Christofides and Mavrikio® Which we apply our methods is the XM2VTS
[3] If we assume thain;, = m for all i and that database as processed under the Lausanne Protocol

Wi = wy = wy = w, then the variance given in! [13]. Estimates for the parameters of the correla-
Equation (18) becomes tion structures, both symmetric and asymmetric, are
given for a range of error rates and thresholds. In

. addition, we give the standard errog#,f/ [#], for the
Vid] = ar(1—#r)[n(n — Dm] (1 + &) estimated error rates. These quantities are essential
+ ((+&)(m—1)+40(n—2)].  (19) for making confidence intervals far. Note that the
standard errors would beV—'#(1—#))"/? if all of
the correlation parameters are zero. The larger the
We can then invert Equation (19) and solve for correlation parameters the larger the variance. The
As we did above, we will assume that the numbeémpact of each particular correlation parameter is
of decisions per comparison pair is constant angbverned by the number of times that correlation
known,m;;, = m, and then determine the value forappears within the correlation matrixp. Again
n based upon this. Doing this and further assumintjese estimates are assumed to be non-negative and
thatn ~n —1~n — 2, we get so are truncated at zero when estimates are negative.



It is worth clarifying here that the correlations weif the decisions where uncorrelated. Thus we8 can
are studying are for decisions made on the sansee that the hand geometry’s standard error is most
device not the correlation between two devices dnflated by the correlations in this model. The larger
between two classifiers. We will discuss these issuasagnitude of thev; plays a large role here since
further in Section V below The results below arét is so much larger than the other values of the
not meant to be representative of possible valuess in this table.w's because of the number of
for all classifiers but rather they are meant to sernygermutations that they encompass tend to be present
as illustrations of the methodology proposed above the correlation matrix in larger numbers than

& or &. As a consequence, small differences in the
A. MSU database w’s propagate to larger differences in the standard

The MSU database is a collection of similarityerrors. Lastly regarding this Table I, we note that
scores from three different biometric modalities IS truncated at zero for all three classifiers.
face, fingerprint and hand geometry. To convert Table Il focuses on the FNMR's for the facial
these similarity scores to decisions, we dichotomizelassifier in the MSU database. Each row of this
by a threshold;. Thresholds were chosen as reatable corresponds to a different threshotd, We
sonable choices for possible applications or to faalculate the parameter estimates at each threshold
cilitate understanding of the consequences of diffeto illustrate that the estimates are different for each
ent thresholds on the correlation structure. TabléBreshold. For this face classifier, we also observe
| to IV have estimated parameters from applyingeveral trends in this table. First, the parameter
the methods described in Sections Il and Ill. Thestimates differ from one threshold to the next. For
algorithms that produced the imposter match scorésamplew, takes values that fluctuate from positive
in this data set are all asymmetric. For each modalitp truncated at zero. Second, we see that the standard
50 individuals were involved in the data collectionerrors vary significantly but they decrease as the
and each individual was compared against all @ffror rate decreases. There is one exception to this
the others. The inter-individual data (or impostewhenr = 70. This aberration is due to the estimated
data) contained0 x 49 different comparison pairs correlations -w;, w, and ws - between decisions
each of which were observedl times. Thus there When they share a single individual. It is possible
were N; = 12250 total imposter match scores forfor a very small correlation, e.gu; = 0.0033
the MSU database. This number is the same acrogben 7 = 80, to have a large impact on the
all three modalities for this database. For the intrggtandard error because of the number of pairs of
individual or genuine comparisons, each individuadecisions to whichuz is multiplied. For this case,
was compared against themselvs times. Thus, the standard error for the correlated modeb@s
there areNg = 500 genuine match scores for eactarger,0.0048 than the standard error would be in the
modality in the MSU database. For both the genuinéncorrelated caseé(.1994(1 — 0.1994)/12250)*/2.
and imposter match scores, we dichotomize each ipte that uncorrelated standard error is the same
these match scores by reasonable thresholds belggiimate that we should get by applying either the
to obtain decision data. user-specific bootstrap of Poét al [14] or the

Table | contains parameter estimates based upBgta-binomial approach of Schuckers [18] Recall
the correlation model given in Equation (10) forEquation (10) for more details. Third, and¢, are
each of the three modalities in the MSU databaseonsistently near zero or truncated at zero indicating
We denote by« estimates that are treated as zerthat the correlation between decisions on the same
since they take negative values. From this tabléomparison pair is zero if different captures are
we can see the impact of the correlations on theeing considered regardless of order. As we will see
standard errors through the relationship betwedhis seems to be peculiar to this particular matcher.
correlation and effective sample size is also dd-astly, we see that; take positive values when the
pendent on the number of decisions that compri¢greshold,r, is 40, 60 or 70. This is in contrast to
each parameter estimate. As mentioned above, tthe previous table where estimates.gfwere zero.
higher the correlation the higher the standard errofhus, we reiterate that the correlation parameters are
Clearly, the standard error for the hand geometigependent upon the threshold.
FMR is much more than the equivalent for the In Table Ill we move to presenting parameter
facial or fingerprint FMR. This is expected base@stimates for the decisions based upon genuine
on two factors: the estimated error ratg, and the match score data. The estimates here are based upon
estimated correlation parameters. Both are directtiie correlation model found in Equation (2). Recall
related to the size of the standard error when ttthat for the MSU database;; = 10 intra-individual
error rate is less thaf.5. The standard errors for comparisons were observed for eactbofindividu-
the hand geometry, fingerprint and facial FMR’als. Thus the total number of decisions her&/is =
would be0.0036, 0.0022, and0.0019, respectively, 500. Table Ill calculates the estimated error rate,



TABLE | 9
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS FROMSU DATABASE,

FALSE MATCH RATE, ASYMMETRIC MATCHERS, N; = 12250

Modality T I ﬁ w1 Wa W3 51 52 \/ ‘A/[ﬂf[}
Hand 100 0.2031 0.0205 0.0209 0.0036 *0.0000 *0.0000 0.0061 0.0096
Finger 20 0.0603 0.0049 0.0003 0.0016 *0.0000 0.0193 0.0143 0.0027
Face 50 0.0443 *0.0000 0.0005 0.0042 *0.0000 0.0037  *0.0000 0.0027

* indicates truncated at zero

TABLE Il
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS FROMI SU DATABASE,

FALSE MATCH RATE, FACE, ASYMMETRIC MATCHER, Ny = 12250

T Tr 7 W1 Wa W3 &1 &2 \/ V7]

100 0.3773 *0.0000 0.0048 0.0023 *0.0000 0.0035 0.0000 0.0072
90 0.2811 *0.0000 0.0006 0.0020 *0.0000 0.0120 *0.0000 0.0052
80 0.1994 *0.0000 *0.0000 0.0033 *0.0000 *0.0000 *0.0000 0.0048
70 0.1357 *0.0000 0.0008 0.0058 0.0008 0.0031 *0.0000 0.0053
60 0.0863 *0.0000 0.0010 0.0052 0.0009 0.0029 *0.0000 0.0044
50 0.0443 *0.0000 0.0005 0.0042 *0.0000 0.0037 *0.0000 0.0027
40 0.0167 *0.0000 0.0008 0.0087 0.0001 0.0229 *0.0000 0.0021
30 0.0040 *0.0000 *0.0000 0.0042 *0.0000 *0.0000 *0.0000 0.0008

* indicates truncated at zero

TABLE Il TABLE IV
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS
FROM MSU DATABASE, FROM MSU DATABASE,
FALSE NON-MATCH RATE, ASYMMETRIC MATCHERS, FALSE NON-MATCH RATE, FACE, ASYMMETRIC MATCHER,
Ng = 500 Ng = 500
Modality 7 fa p A/ Vire] T e p o\ Vire]
Hand 100 0.1120 0.0392 0.0164 100 0.0040 *0.0000 0.0028
Finger 20 0.0760 *0.0000 0.0119 90 0.0040 *0.0000 0.0028
Face 50 0.0660 0.0086 0.0115 80 0.0060 *0.0000 0.0035

70 0.0180 *0.0000 0.0059
60 0.0500 0.0129 0.0103
50 0.0660 0.0086 0.0115
40 0.1320 *0.0000 0.0151
30 0.2140 *0.0000 0.0183

* indicates truncated at zero

* indicates truncated at zero

g, the estimated intra-class correlatiprfor each
threshold,r, as well as the standard error for eacﬁ' XM2VTS database

estimated error rate. For the FNMR, the relationship This data was processed by Poh and Bengio under
between the observed correlation and the standatee Lausanne Protocol | [13]. Included in this data
errors is clearer than for the FMR since there iare both speaker and facial recognition match scores.
only a single correlation term. Here we also not®Vith the results of estimating the correlation models
that the decisions for the false non-match rate of trebove, we include the matching algorithm as well as
fingerprint classifier effectively have a correlatiorthe modality for data from the XM2VTS database.
of zero which results in the standard errors beinlflore details on these classifiers and the data pro-
what we would expect them to be for uncorrelatedessing can be found in [13]. The methodology
data. To see that the parameter estimates changeffmr this data collection ensured that not all cross-
a particular classifier as the threshold changes foomparisons were considered. Individuals were par-
the correlation structure of the FNMR, we presertitioned into a gallery and a probe set for the inter-
Table IV. We note thap takes positive values only individual or imposter comparisons. Individuals in
whent = 50 or 60. Thus, it is necessary to estimateeach of those groups were only compared against
all of the parameters each time we are interestedembers of the other group, not against members of
in a different threshold. This table uses the santbeir own group. Because of this structure to the data
thresholds and the same classifiers that appeareccoilection, we forcevs = 0 since no data is avail-
Table 1l. For the FNMR the correlation estimatesble for estimation of this quantity. Additionally,
change little as the thresholds change. the order of the comparisons was never reversed, so



that in cases where a comparison of a capture froralative to the sample size for the FNMR thalr? for
individual A versus an capture from individual Bthe FMR in the XM2VTS database.

was recorded there is no comparison reversing theln this section we have applied the correlation
order of the individuals. As a consequence of thistructure proposed in Sections Il and Il to data from
we will treat all of the classifiers in this database¢he MSU and XM2VTS databases. The results of
as symmetric. There wer200 individuals in the this application, found in Tables | to VI, have illus-
gallery and25 in the probe.8 match scores were trated the utility of the method of moments estima-
recorded for each inter-individuals comparison paitors we have proposed here. To further demonstrate
Thus, the total number of imposter decisions ithe consequences of the correlation structures we
Ng = 200x25x 8 = 40000. For the intra-individual propose, we introduced the effective sample size.
or genuine comparisons, tl260 gallery individuals From these results here it is clear that the estimated
were each compared to themselvgdimes. This correlations vary from threshold to threshold even

yields N¢ = 600 total genuine decisions. for the same classifier.
Table V has the parameter estimates for the
symmetric correlation model found in Equation (15) V. DISCUSSION

applied to the XM2VTS database. We selected a __ . . .
range of thresholds to achieve different error rates This paper prese_nts parametric gorrelatlon struc-
for the different classifiers. The estimated correlatyreS for the.evalugtlon of th? mgtchmg.perforrnance
tions for this data are appreciably larger than thosoer a '_slngle blometr_lc authentlcatlon_dewce. T_h_|s cor-
for the MSU database. cf. Table I. One conséplat'on structure is based upon binary decisions of

’ tch or non-match. In addition to these correlation

guence of these larger correlations is standard errdfé . . .
that would be much larger than if the decisionStructures we have introduced confidence interval

were uncorrelated. For example, consider the Fac%’?d sample size calculations based upon this struc-

matcher DCTb. MLP. The observed standard erréwe' For decision data involving inter-individual
using our correlation model i9.0072 while the comparisons (imposter decisions) we have proposed

standard error assuming uncorrelated decisions qgrrglatlon structures for both symmetric gnd asym-
(0.0580(1—0 0580)/40000)1/2 — 0.0012. Thus the metric matching algorithms. The correlation struc-
former is six times larger than the iva uncorre. ture for false match decision data is much simpler

lated approach. The estimated correlations betweg}effm the correlation structure for false non-match

decisions on the same comparison pajrare much cision data. This is due to the need to address
ecorrelations between two decisions that involve one

equivalent quantitiesp, & and &, in the MSU or lmore |nd|V|tdEa(; tthat 'T part |0f bptth d.e(;.S'%nS'l
database. This is clearly one reason for the lar &S€ hon-mafch data only INVolves Intra-individua
omparisons and, hence, the correlation structure

standard errors that we observe here. Similarly, traiahtf d We h | ided
the other correlation parameters estimates are ¢ p- more straigntforward. Ve have aiso provide
ethod of moments estimators for the parameters

sistently larger in magnitude than the equivalerﬂ1
estimates for the MSU database. The results in Tad[b these -:I]odtels. T?_e tr_nodels we rt1ave propodsed
V also illustrate that the same modality may hav@'¢ SPecilic 1o veriiication or one-lo-oné mode.

different correlation parameter estimates dependi .V\;ﬁver, the rglodt;e | for Eglsaetnqg—mﬁt.cht_decmogs
upon the classifier. This can easily be seen Ight reasonably be appiied 1o identification mode

looking at the columns correspondingde andd,. ecisions for false_ _match d_ata be_cal_Js_e identification
mode only specifies a single individual and so

The last table of output we consider contains , .
. b e might reasonably assume that the correlation
estimates of the correlation structure for the FNMI¥V g Y

. . between repeated decisions concerning that same
found in Equation (2) for the_ XM2VTS OI""t""b""seindividual were correlated but there would be no
These results can be seen in Table VI. Here we . : e o :

- correlation between identification decisions for dif-
utilize the same thresholds and the same match%srem individuals
as found in Table V. As we noted in the previous '
paragraph, the estimates for the XM2VTS databagdong with the general correlation models presented
are generally much larger than those for the MSldbove, we have presented constrained models which
database. This is again true for the results in essimplify these structures. The correlation models
mates of the correlation parameters for the FNMRhere, both the more general and the simplified,
However, the impact on the effective sample sizare the first to be explicitly provided for biometric
are not as drastic since the number of comparisodata of any kind. The models presented here are a
that go into estimation o is smaller relative to the generalization of the implicit correlation structures
number of comparisons that go into estimation of thisund in work by Schuckers [18], Poét al [14]
parameters of the symmetric false match correlatiaand in Bolleet al. [2]. The first two works implicitly

model. Similarly the effective sample sizes are largerssume the model we have explicitly described here.



TABLE V 11
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS FROMM2VTS DATABASE,

FALSE MATCH RATE, SYMMETRIC MATCHERS, N; = 40000

Modality Matcher T fts f) ) Qo Q3 1/ V[#s]

Face (FH, MLP) 0.0 0.0038 0.2271 0.0014 *0.00060.0000  0.0007
Face (DCTs, GMM) 0.0 0.0582 0.2935 0.0163  0.019%0.0000  0.0067
Face (DCTb, GMM) 0.2 0.0041 0.2599 0.0009  0.00090.0000  0.0007
Face (DCTs, MLP)  -0.8 0.1057 0.3484 0.0165  0.0075.0000  0.0086
Face (DCTb, MLP)  -0.5 0.0580 0.2565 0.0215  0.00670.0000  0.0072

Speaker (LFCC, GMM) 3.0 0.0142 0.3329 0.0226 0.018%.0000 0.0039

Speaker (PAC, GMM) 2.0 0.0570 0.3500 0.0324 0.024%0.0000 0.0090

Speaker (SSC, GMM) 1.0 0.0692 0.4435 0.0339 0.050.0000 0.0105
* indicates truncated at zero

t indicates that it is a theoretical zero in the case of this data since the combinations of (i,k) that lead to the estimation
of these parameters did not occur in this data.

TABLE VI
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS FROMM2VTS DATABASE,

FALSE NON-MATCH RATE, SYMMETRIC MATCHERS, NG = 600

Modality Matcher T five} p Vira]

Face (FH, MLP) 0.0 0.0350 0.3091 0.0095
Face (DCTs, GMM) 0.0 0.0400 0.1319 0.0090
Face (DCTh, GMM) 0.2 0.0283 0.2130 0.0081
Face (DCTs, MLP) -0.8 0.0033 *0.0000 0.0024
Face (DCThb, MLP) -0.5 0.0400 0.2188 0.0096

Speaker (LFCC, GMM) 3.0 0.0050 0.3300 0.0037

Speaker (PAC, GMM) 2.0 0.0583 0.3628 0.0126

Speaker (SSC, GMM) 1.0 0.0267 0.3579 0.0086
* indicates truncated at zero

In the case of the latter, Bollet al. aim to make the recommend that these confidence interval methods
subsets of observations "as independent as possibteily be used wherV — either N¢ or Ny is large,
(p.15). This works well for the FNMR decision dataj.e. when N ﬂ(l‘;ﬂ # > 10. This corresponds

however, if thew's in the FMR correlation model g an effective sample’size times our estimated error
in Equation (10) are non-zero then this approaghie heing greater than or equal 10. See Eng[5]

underestimates the variances of the estimated erigf discussions of the effective sample size. These
rates. There are some analogies here to the difficyrrelation structures also have application to other
ties of bootstrapping spatial data. See Solow [214tatistical methods already in the literature which de-

Cressie [4] and Tang [22] for more details. Thgend upon specification of the correlation structures,

parametric inference for the full correlation structuro]. while our focus has been on decision data,
described here. Our approach is quite flexible if is |ikely that a similar correlation structure would
the type of correlation structure among decisiongpply to match score/similarity score data. While
that it addresses and thus our approach generalizgg correlation structure may be appropriate, the
these previous methodologies. Our resulting struydividual variances will clearly be different. It
ture provides a more thorough understanding of thgj|| be necessary to replace thg1 — ) in each
variability in error rate estimation as well as a Morggriance equation with a general term, perhaps
accurate approach to inference that comes with Sugd} the variance of the match scores. The models and
knowledge. With a misspecified correlation structurgiryctures specified here will also find application in
it is possible to overestimate the precision of thgye estimation of ROC curves. In particular, it may
FMR or to claim that a FNMR is significantly lesspe possible to create confidence region estimates for
than a given value when that is not the case.  the entire ROC curve. This approach would utilize
We have also presented here methods for con pe improve;d variance gstimation techniques given
dence intervals , Equations (7) and (17), and samplgre to derive these regions.
size calculations, Equations (8) and (20). These As part of this work, we have also offered
methods allow for appropriate inference to be madeethodology for estimating the correlation parame-
about a single error rate and for the determination ¢érs that are part of each model. These estimators
the number of individuals that need to be tested. Waee based on a method-of-moments methodology.



It should be clear from the examples that we have4]
given that the larger the correlation the the larger
the variance of the estimated error rates. Furthe},]
we have illustrated how these methods can bégs]
applied to various decision data from a range of
modalities. While these estimating equations arg]
lengthy there application using a software package
such as Matlab” or the statistical softwareR

is straightforward. It is clear from these examples[S]
that it is important to understand this correlation[9]
structure in order to properly estimate and infer
about biometric matching error rates. Additionally,
we again note that the correlations for our proposed
models may vary from threshold to threshold. Thug?l
it is important to re-estimate the parameters of the
correlation model at each threshold.

With the growth of multimodal biometrics work, [11]
Rosset al [17, ], there is growing interest in the
correlation between different classifiers. Because the
correlation between any two matchers is dependent
on the variance of each, it is important to first tregt
and assess the performance each matcher individu-
ally as we have done here. It will be important t 13
an accurate understanding of multibiometric perfor-
mance to derive models similar to those given here.
Likewise it is also important to consider inferentiall4!
methods for looking at the relationship and possibly
significant differences between the performance of
two or more biometric authentication systems. Thi&>]
will no doubt be dependent on the correlations in the
decisions for each system. This serves to underscore]
the important of getting the correlation structure for
biometric authentication decisions correct. [17]
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