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A parametric correlation framework for the
statistical evaluation and estimation of

biometric-based classification performance
in a single environment

Michael E. Schuckers

Abstract— In this paper, we propose a parametric
correlation models for assessment of biometric clas-
sification error rates. Correctly specified correlations
are integral to variance estimation and the corre-
sponding inferential quantities which depend upon
these estimates. We present methodology here for both
false match and false non-match error rates for a
single environment. This paper generalizes other work
that has previously appeared in the bioauthentica-
tion literature. Since both symmetric and asymmetric
matching algorithms are used in practice, we present
a general correlation structure for both types of
algorithms. Along with the correlation structure, we
describe estimators for the parameters in these models.
The correlation structure described here for binary
decision data is then used to derive explicit confidence
intervals and sample size calculations for estimation of
false match and false non-match error rates. We then
apply the correlation structure described herein to two
match scores databases to illustrate our approach.
A discussion of the utility and consequences of this
correlation structure is also provided.

Index Terms— false accept rate , false reject rate
, false match rate, false non-match rate, biometric
authentication, variance structure, effective sample
size, confidence intervals, sample size calculations

I. BACKGROUND

Bio-authentication devices have become increas-
ingly prevalent and increasingly important for se-
curing a wide range of locations, applications and
data. One important facet of these devices is their
matching performance — how well they make ac-
curate decisions about whom to allow and whom to
deny access. To estimate the matching performance
error rates, some statistical methodologies have been
proposed, e.g. Mansfield and Wayman [10]. Most of
this previous work focuses on assessing matching
performance through the false match and/or false
non-match rate. We note here that false match
and false non-match rates are averages of zero’s
and one’s and, consequently, they follow statistical
methodology for averages and linear combinations.
Our goal here is methodology – confidence intervals
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and sample size calculations – for the statistical
evaluation and assessment of matching performance
in a single environment and not methodology for im-
proved matching performance. To accomplish this,
we propose a new parametric correlation structure
for binary classification decisions that is useful in
estimation of the variability in false match and false
non-match rates. We use parametric here, not in the
sense of Bolle et al. [2] who stated that “[p]arametric
... methods impose assumptions about the shape
of the distribution....” Instead we use parametric
in the sense that we are specifying the first two
moments of the distributions of interest and the
parameters involved in those moments; however, we
arenot, as will become clear, assuming a particular
shape of the distribution. It is important to properly
specify the correlation structure, and, hence, the
variance structure, for statistical inference. Incorrect
assumptions or other misspecifications regarding the
correlations can lead to inaccurate standard errors
and to confidence intervals for estimation of these
error rates that are drastically too large or too small.
Estimation of the parameters in the correlation struc-
ture using a method of moments approach is also
presented.

The correlation structure is an integral aspect
of assessing the variability in an estimate. This is
especially important since biometric decision data,
though binary, is thought to not be binomial, Mans-
field and Wayman [10], and, hence, not uncorrelated.
Methodologies such as those proposed by Givens et
al [7], Mitra [11] and Schuckers [20] depend heavily
on a correctly specified correlation structure for their
approaches. Misspecification of such models can
have significant consequences for the outcomes of
any study. Here we will propose the first general
parametric correlation structure that accounts for
the source of the correlations, the same individual
being used for multiple comparisons in biometric
decision data. It is possible to estimate the variance
(and, hence, the standard errors) of the false match
and false non-match rates without assigning various
components to a particular parameter; however, be-
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cause we are also interested in sample size calcula-
tions we use parameters for the various components
of the variance. Wayman [23] proposed an estima-
tor for the variance of a FNMR assuming only a
single image per individual. That estimator seems
to be based on simplified version of the correlation
structure we will propose here. Bolleet al [2], Poh
et al [14] and Schuckers [19] previously assumed an
implicit correlation structure as part of their work.
We generalize all of these approaches here. Our
approach is designed specifically for decision data,
i.e. the binary decision by an algorithm to claim a
match or non-match since that is required for use
when one reports error rates. See Maet al. [9] for a
taxonomy of biometric data types. The parameter
estimates are dependent on the chosen threshold;
however, the general structure itself is not. For no-
tational simplicity we will not explicitly denote this
dependence. That the estimates differ by threshold
is made clear upon application of the model to data
using varying thresholds. Additionally, we will deal
with correlation for a single environment over which
the process has a stationary covariance, that is for
which the process has a fixed mean and variance.

We begin the description of our approach by
presenting the theoretical basis for each parametric
correlation structure. Following this, we provide
moments-based estimators for the correlation pa-
rameters. Confidence interval approaches and sam-
ple size calculations are then derived based upon
these methods. Our confidence interval approach
is one that can be carried out solely on observed
data; while the sample size approach depends - like
all statistical sample size calculations - on some
estimates of the process parameters. This is followed
by illustrations of our approach by applying this
methodology to several datasets. The structure of
this paper is as follows. We begin by introducing
the correlation structure for false non match rates in
Section II. Section III discusses correlation structure
for estimation of false match rates. Both symmetric
and asymmetric classification algorithms are dis-
cussed. We illustrate these methods by applying
them to biometric data from multiple modalities in
Section IV. Finally, we discuss the implications for
these correlation structures in Section V.

II. FALSE NON-MATCH RATE

In this section, we present a parametric correlation
structure for decisions made when comparing two
biometric captures from the same individual. This
correlation structure is necessary for estimation of
the the false non-match rate (FNMR). (Here we will
use FNMR and FMR rather than False Reject Rate
and False Accept Rate, respectively, to be consistent
with Mansfield and Wayman [10].) Since we are
interested in the FNMR, our decisions will be based

on comparisons from two biometric captures from
the same individual. These intra-individual decisions
are derived from dichotomizing the genuine distri-
bution, where the genuine distribution is defined as
the match scores from intra-individual comparisons.
Conditional on the error rate, we utilize a model that
ignores — treats as zero — correlations between
different individuals. We begin by introducing our
correlation structure, then deriving the variance for
the estimated error rate. That is followed by con-
fidence intervals and sample size calculations for
estimation of the FNMR.

A. Correlation Structure

Let Yij represent the decision for thejth pair of
captures collected on theith individual, wheren is
the number of individuals,i = 1, . . . , n and j =
1, . . . , mi. Thus, the number of capture pairs that
are compared for theith individual is mi, andn is
the number of different individuals being compared.
We then define

Yij =





1 if jth pair of captures from
individual i is declared a non-match

0 otherwise.
(1)

We assume for theYij ’s that E[Yij ] = πG and
V [Yij ] = πG(1 − πG) where E[X] and V [X]
represent the mean and variance ofX, respectively.
Thus,πG represents the FNMR and G here stands
for genuine. The correlation structure for theY ′

ijs is

Corr(Yij , Yi′j′) =





1 if i = i′, j = j′

ρ if i = i′, j 6= j′

0 otherwise
(2)

This correlation structure for the FNMR is based
upon the idea that the there will only be correlations
between decisions made on the same individual but
not between decisions made on different individuals.
Thus, conditional upon the error rate, there is no
correlation between decisions on theith individual
and decisions on thei′ th individual, wheni 6= i′.
The degree of correlation is summarized byρ.

Then

V [π̂G] = V [N−1
G 1T YG] = N−2

G V [1T YG]

= N−2
G 1T ΣG1 = N−2

G πG(1− πG)1T ΦG1

= N−2
G πG(1− πG)

×
[
NG + ρ

n∑
i=1

mi(mi − 1)

]
(3)

where ΣG = V ar(YG), NG =
∑n

i=1 mi,
ΦG = Corr(YG), 1 = (1, 1, . . . , 1)T ,
π̂G = (NG)−11T YG and YG = (Y11, . . . , Y1m1 ,
Y21, . . . , Y2m2 , . . . , Yn1, . . . , Ynmn)T . Fleiss et al.
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[6] has suggested the following estimator forρ

ρ̂ =

(
π̂G(1− π̂G)

n∑
i=1

mi(mi − 1)

)−1

×
n∑

i=1

mi∑
j=1

mi∑

j′=1
j′ 6=j

(Yij − π̂G)(Yij′ − π̂G). (4)

Note that this is equivalent to averaging all of the
terms in the estimated correlation matrix that corre-
spond toρ to get a single estimate. Models like that
found in Equation (2) are known as intra-individual
or intra-class models and have been studied exten-
sively in the statistics literature, e.g. Williams [24]
or Ridoutet al [15]. The parameterρ in the models
above represents the intra-class correlation. That is,
it measures the degree of similarity between the
binary decisions made on each individual. If all
of the decisions on every individual are the same
(all ones or all zeros), thenρ will be one. If the
decisions on each individual are varying in a way
that suggests that the decisions are not dependent
upon the individual thenρ is zero, meaning that the
observations are uncorrelated. Note that because we
are considering correlations of binary observations
that the usual intuition based upon, for example,
Pearson’s correlation coefficient is not applicable.
Negative values ofρ are possible but such values
suggest that decisions on captures from the same
individual are less similar to each other than they
are to all of the other decisions. This seems unlikely
to be the case in the context of biometric authen-
tication. Schuckers [18] implicitly used the model
in Equation (2) to create confidence intervals and
to derive sample size calculations. Several authors,
including Fleiss et al. [6], have suggested using the
following approximation to Equation (3)

V [π̂G] = N−1
G πG(1− πG)(1 + (m0 − 1)ρ) (5)

wherem0 = n−1
∑n

i=1 mi−(nm̄)−1
n∑

i=1

(mi−m̄)2.

If mi = m for all i, thenNG = nm and the variance
of π̂G from Equation (5) becomes

V [π̂] =
πG(1− πG)

(nm)2
∗ (nm + ρnm(m− 1))

= (nm)−1(1 + (m− 1)ρ). (6)

As mentioned aboveρ represents the intra-class
correlation. This quantity has a direct relationship
with the variance of̂π found in Equation (3) and
the simplified version found in Equation (6). As
ρ increases, the variance in both cases increases.
This is a consequence of the lack of independent
information from each individual. Ifρ is large, then
each additional decision on a previously observed
individual is providing little new information.

B. Statistical Estimation Methods

Being able to make statistical inference about an
error rate based upon observed data is often of in-
terest for evaluators of biometric authentication de-
vices. Being able to determine the margin of error or
the width of confidence intervals is often of interest
to testers for determining the number of individuals
and the number of attempts per individual. One
advantage that a parametric approach to variance
estimation enjoys is the ability to invert confidence
intervals to determine the sample sizes necessary to
achieve a particular margin of error for a confidence
interval. Schuckers [18] has noted that there are
effectively two quantities involved in any sample
size calculation for biometric matching testing. The
first is the number of individuals to be tested and the
second is the number of times that each individual is
to be tested. Below we describe confidence interval
(CI) and sample size calculations for estimation of
the FNMR. These methods are dependent on the
correlation structure given above in Equation (2).
Our estimand here isπG. A 100(1−α)% CI for πG

is then

π̂G ± z1−α
2

√
π̂G(1− π̂G)[1 + (m0 − 1)ρ̂]

NG
, (7)

where z1−α
2

is the 1 − α
2

th percentile of a stan-
dard Gaussian distribution. We assume a Gaussian
distribution following the generalized Central Limit
Theorem in Moore [12]. Recall thatNG is the total
number of decisions used to estimateπG.

We now turn to sample size calculations. In order
to create sample size calculations for a confidence
interval, it is necessary to determine, among other
things, the desired margin of error,B, for the inter-
val. As mentioned above there are effectively two
sample sizes when dealing with performance evalu-
ation for biometric authentication devices. Here we
will focus on the number of individuals,n, that
need to be tested and assume that the number of
decisions per individual is fixed and known. This
is equivalent to assuming thatmi = m for all i
and thatm is known. In practice it will be possible
to determine different values forn by varying m
before proceeding with a evaluation. We can obtain
the following sample size calculation for making a
100(1− α)% CI with a margin of error of B.

n =

⌈
z2
1−α

2
πG(1− πG)(1 + (m− 1)ρ)

mB2

⌉
(8)

having replacedm0 in Equation (7) withm. As with
all sample size calculations it is important to note
that we must specifya priori values for the param-
eters in the model. In this case we must estimate
values forπG andρ before we determine the number
of individuals, n. Traditionally, there are several
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ways to obtain estimates for these quantities. The
two primary choices are to use previously collected
similar data or to conduct a small pilot study. Having
obtained those estimates, it is straightforward to then
determinen.

III. FALSE MATCH RATE

We next focus on correlation models for false
match rate (FMR) estimation in verification mode.
As with the FMNR correlation sturctures, these
models are based upon binary decisions because all
biometric authentication decisions result in either
an acceptance or a rejection. We are concerned
here with the correlation between decisions made
between two individuals and another decision made
on two other individuals with the possibility of
overlap among the individuals involved in each
decision. The amount and type of overlap in individ-
uals will be crucial to this structure. Thus, we aim
to model the correlation between inter-individual
decisions. These inter-individual decisions are based
on dichotomizing match scores from the imposter
distribution. We follow Mansfield and Wayman [10]
in using the term imposter distribution to refer
to match scores from inter-individual comparisons.
Below we differentiate between classification algo-
rithms that are symmetric and those that are asym-
metric. Symmetric matching algorithms are those for
whom the order of the individual captures does not
matter and asymmetric ones are those for whom the
order does matter. Thus for asymmetric matchers
comparing capture A against capture B may result
in a different decision than comparing capture B
against capture A. The decisions resulting from
a symmetric matching algorithm would always be
the same regardless of the order of the captures.
Below we propose a general correlation structure for
the asymmetric case and show that the correlation
structure for a symmetric matcher is a special case
of this. As with the FNMR, we provide confidence
intervals and sample size calculations based upon
this structure.

A. General Correlation structure

In this section we derive a general correlation
structure for use in estimation of the FMR. This
general structure allows for the matching algorithm
to be asymmetric. See Bistarelli et al. [1] for an
example of such a matching algorithm. LetYik`

represent thèth decision from the comparison pair
(i, k), ` = 1, . . . ,mik, i = 1, . . . , n, 1 ≤ k ≤ n, k 6=
i. Also let n be the total number of individuals
from whom biometric data has been taken and let
mik ≥ 0 represent the number of comparisons on
the pair of individuals(i, k) where the order of the
pair matters, i.e. thatmik is not necessary equal

to mki. It is possible formik = 0 when decisions
for a particular comparison pair are not observed. In
the general case, we consider both comparison pairs
(i, k) and(k, i). This allows for possible asymmetry
in the decisions,Yik` not guaranteed to equalYki`,
is because we assume that when we compare the
`th decision from the comparison pair,(i, k) to the
`th decision from the pair(k, i) based on the same
captures that the resulting decision may be different.
We assume that the data is well ordered in the sense
that it is possible to assume that the order of the
captures for a given pair of individuals(i, k) is the
same for the pair(k, i). Define

Yik` =





1 if `th pair of captures from
individual i and individualk is
declared a match

0 otherwise.
(9)

Let E[Yik`] = πI and V [Yik`] = πI(1 − πI).
Thus the mean error rate or FMR is assumed
to be πI . We estimated this quantity through
π̂I = N−1

I 1T YI , where 1 = (1, 1, . . . , 1)T .
Further, let Yik = (Yik1, . . . , Yikmik

)T and
YI = (YT

12, YT
13, . . . , YT

1n, YT
21, YT

23, YT
24, . . .,

YT
2n, . . . , YT

n1, YT
n2, . . . , YT

nn−1)T . Here I stands for
imposter.

As before all structure is dependent on the thresh-
old from the matching process, but we will suppress
that dependence for notational simplicity. Then,

Corr(Yik`, Yi′k′`′) =




1 if i = i′, k = k′, ` = `′

η if i = i′, k = k′, ` 6= `′

ω1 if i = i′, k 6= k′, i 6= k, i 6= k′

ω2 if i 6= i′, k = k′, i 6= k, i 6= k′

ω3 if i = k′, i′ 6= k, i 6= i′, i 6= k
ω3 if i′ = k, i 6= k′, i′ 6= i, k 6= k′

ξ1 if i = k′, k = i′, i 6= i′, k 6= k′, ` = `′

ξ2 if i = k′, k = i′, i 6= i′, k 6= k′, ` 6= `′

0 otherwise

(10)

This correlation structure is necessarily more com-
plicated than the FNMR equivalent presented in
(15) because of the correlation between decisions
on captures from different individuals. In this cor-
relation structure,η represents the correlation be-
tween decisions when the same individuals appear
in the same order but the captures considered are
different. In other words if the first decision is
the 2nd capture from the 1st and 3rd individuals,
Y132, and the second decision is the 4th capture
from the 1st and 3rd individuals,Y134, then the
correlation between these two decisions will be
denoted byη = Corr(Y132, Y134). This is then
an intra-comparison pair correlation similar toρ in
Equation (2). Theω’s here represent the correla-
tion between two decisions when those decisions
contain one and only one individual in common.
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ω1 represents the case when the first individual in
each decision is the same. For example, the first
decision is based on individuals 1 and 2,Y12`, and
the second decision is based on individuals 1 and 3,
Y13`′ . ω1 = Corr(Y12`, Y13`′). When the second
individual is the same in each decision, we will
assume that correlation will be represented byω2.
An example of this would be when the first decision
involves individuals the 3rd and 4th individuals,Y34`

and the second decision involves the 2nd and 4th
individuals, Y24`′ . Then, ω2 = Corr(Y34`, Y24`′).
When an individual is shared between the decisions
in either the ’inside’ or the ’outside’ positions, we
will assume the correlation isω3. For example, the
first decision might involve the 2nd and 4th individ-
uals,Y24`, and the second decision might involve the
4th and 1st individuals,Y41`′ . In that case we would
assume the correlation between those decisions is
ω3 = Corr(Y24`, Y41`′) = Corr(Y41`, Y24`′). The
correlations denoted by theξ’s are those where the
individuals are the same in each decision but the
order is reversed. That is, decisions involved must
include the same individuals, but the order of those
individuals is different in one of the decisions.ξ1

represents the case where the capture is the same
but the order is different; whilexi2 represents the
case where the captures are not the same and the
order is not the same. To illustrate this, consider the
3rd and 4th capture on the individuals 5 and 7. So
ξ1 = Corr(Y573, Y754) andξ2 = Corr(Y573, Y754).
Further, we assume that if all individuals involved
in the decisions are all distinct then the correla-
tion, conditional on the FMR, is zero. For exam-
ple Corr(Y24`, Y37`′ . In that case we will assume,
conditional on the error rate, that the decisions are
uncorrelated or have correlation zero. In general, we
will assume that all of the correlation parameters
here are non-negative. A negative correlation for
the binary decisions described above would imply
that having individuals in common would make
decisions less likely to be same than those involving
four distinct individuals. In a biometrics context
this seems counterintuitive. Thus we assume a non-
negative correlation when the same individual is
part of both comparisons, but assume no correlation
when four distinct individuals are part of these
comparisons.

Using the structure in Equation (10), we can
calculate the variance of our estimated error rate

V [π̂I ]

= V [N−1
I 1T YI ]

= N−2
I V [1T YI ]

= N−2
I 1T ΣI1

= N−2
I πI(1− πI)1

T ΦI1.

(11)

This can be expanded to

V [π̂I ]

=
πI(1− πI)

N2
I


NI + η

n∑
i=1

n∑
k=1
k 6=i

mik(mik − 1)

+ ω1

n∑
i=1

n∑
k=1
k 6=i

mik




n∑

k′=1
k′ 6=i,k′ 6=k

mik′




+ ω2

n∑
i=1

n∑
k=1
k 6=i

mik




n∑

i′=1
i′ 6=i,i′ 6=k

mi′k




+ ω3

n∑
i=1

n∑
k=1
k 6=i

mik




n∑

i′=1
i′ 6=i,i′ 6=k

mi′i+

n∑

k′=1
k′ 6=i,k′ 6=k

mkk′




+ ξ1

n∑
i=1

n∑
k=1
k 6=i

mki

+ ξ2

n∑
i=1

n∑
k=1
k 6=i

mki(mki − 1)




(12)

where ΣI = V [YI ] and ΦI = Corr(YI). We
derive parameter estimators using a method of mo-
ments approach by setting the sample variance of
Y, (YI − π̂I1)(YI − π̂I1)T , equal to the model
variance,ΣI , whose correlation structure is defined
in Equation (10) and solving for the correlation
parameters. As in the previous section, this is equiv-
alent to averaging the individual components of the
sample correlation matrix that correspond to each
correlation parameter. The moment-based estimator
for η is then

η̂ =


π̂I(1− π̂I)

n∑
i=1

n∑
k=1
k 6=i

mik(mik − 1)




−1

×
n∑

i=1

n∑
k=1
k 6=i

mik∑

`=1

mik∑

`′=1
`′ 6=`

(Yik` − π̂I)(Yik`′ − π̂I).

(13)

Note the similarities in this estimator to the estima-
tor for ρ in the previous section. The other moment-
based estimators for the correlation parameters are
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ω̂1 =
π̂I(1− π̂I)

n∑

i=1

n∑
k=1
k 6=i

mik




n∑

k′=1
k′ 6=i,k′ 6=k

mik′







−1

×




n∑

i=1

n∑
k=1
k 6=i

n∑

k′=1
k′ 6=i
k′ 6=k

mik∑

`=1

mik′∑

`′=1

(Yik` − π̂I)(Yik′`′ − π̂I)




,

ω̂2 =
π̂I(1− π̂I)

n∑

i=1

n∑
k=1
k 6=i

mik




n∑

i′=1
i′ 6=i,i′ 6=k

mi′k







−1

×




n∑

i=1

n∑
k=1
k 6=i

n∑

i′=1
i′ 6=i
i′ 6=k

mik∑

`=1

mi′k∑

`′=1

(Yik` − π̂I)(Yi′k`′ − π̂I)




,

ω̂3 =


π̂I(1− π̂I)




n∑

i=1

n∑
k=1
k 6=i

mik

n∑

i′=1
i′ 6=i
i′ 6=k

mi′i+

n∑

i=1

n∑
k=1
k 6=i

mik

n∑
k=1
k 6=i

mkk′







−1

×




n∑

i=1

n∑
k=1
k 6=i

n∑

i′=1
i′ 6=i
i′ 6=k

mik∑

`=1

mi′i∑

`′=1

(Yik` − π̂I)(Yi′i`′ − π̂I)

+

n∑

i=1

n∑
k=1
k 6=i

n∑

k′=1
k′ 6=i
k′ 6=k

mik∑

`=1

mkk′∑

`′=1

(Yik` − π̂I)(Ykk′`′ − π̂I)




,

ξ̂1 =
π̂I(1− π̂I)

n∑

i=1

n∑
k=1
k 6=i

mki




−1

×




n∑

i=1

n∑
k=1
k 6=i

mki∑

`=1

(Yki` − π̂I)(Yki` − π̂I)


 ,

ξ̂2 =
π̂I(1− π̂I)

n∑

i=1

n∑
k=1
k 6=i

mkimki




−1

×




n∑

i=1

n∑
k=1
k 6=i

mki∑

`=1

mki∑

`′=1
`′ 6=`

(Yki` − π̂I)(Yki`′ − π̂I)


 .

(14)

Below we describe some possible simplifications
to the general structure in Equation (10). We then

provide confidence interval and sample size method-
ology.

B. Some simplified models of the general FMR
correlation

Under certain conditions, it is reasonable to sim-
plify the model in Equation (10). One such simplifi-
cation could occur when the matcher is symmetric.
As a consequence of this the correlation parameters
ξ1 andξ2, become1 andη respectively. This is be-
cause the symmetric case results in identical results
regardless of the order of the captures. Consequently
with a symmetric matcher the correlationξ1 = 1 and
the correlationξ2 = η. This can be written as

Corr(Yik`, Yi′k′`′) =



1 if i = i′, k = k′, ` = `′,
η if i = i′, k = k′, ` 6= `′,
ω1 if i = i′, k 6= k′, i 6= k′,
ω2 if k = k′, i 6= i′, k 6= k′,
ω3 if i′ = k, i 6= k′, i 6= i′, k 6= k′

ω3 if i = k′, i′ 6= k, i 6= i′, k 6= k′

0 otherwise.

(15)

Estimation for this symmetric version of Equation
(10) follows from the method of moments approach
described previously.

For some statistical methods, including sample
size calculations, a simplified version of the general
model is helpful. Several such constrained models
are reasonable. We discuss one of these below. Here
we let ω = ω1 = ω2 = ω3. This is equivalent to
stating that the correlation between decisions is the
same when two and only two of the four individuals
involved in the decisions is the same. This yields a
correlation structure of

Corr(Yik`, Yi′k′`′) =




1 if i = i′, k = k′, ` = `′

η if i = i′, k = k′, ` 6= `′

ω if i = i′, k 6= k′, i 6= k, i 6= k′

ω if i 6= i′, k = k′, k 6= i, k 6= i′

ω if i = k′, i′ 6= k, i 6= i′, i 6= k
ω if i′ = k, i 6= k′, i′ 6= i, i′ 6= k′

ξ1 if i = k′, k = i′, i 6= i′, k 6= k′, ` = `′

ξ2 if i = k′, k = i′, i 6= i′, k 6= k′, ` 6= `′

0 otherwise.

(16)

Other simplified models – e.g.ω1 = ω2 = ω3,
ξ1 = ξ2 – may be reasonable for a given data
collection or with some additional knowledge about
a particular matching algorithm. For a given simpli-
fied model, deriving the method of moments based
estimation for the correlation parameters should be
straightforward.

C. Statistical Estimation Methods

We begin by deriving a confidence interval for
the error rate of interest, the FNMR, based upon
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the estimated variance of our estimator. Here that
error rate is the FMR,πI . Thus a100(1− α)% CI
for πI is

π̂I ± z1−α/2

√
V̂ [π̂I ] (17)

where

V̂ [π̂I ] = N−2
I π̂I(1− π̂I)

×




n∑
i=1

n∑
k=1
k 6=i

mik + η̂

n∑
i=1

n∑
k=1
k 6=i

mik(mik − 1)

+ ω̂1

n∑
i=1

n∑
k=1
k 6=i

mik




n∑

k′=1
k′ 6=i,k′ 6=k

mik′




+ ω̂2

n∑
i=1

n∑
k=1
k 6=i

mik




n∑

i′=1
i′ 6=i,i′ 6=k

mi′k




+ ω̂3

n∑
i=1

n∑
k=1
k 6=i

mik




n∑

i′=1
i′ 6=i,i′ 6=k

mi′i

+

n∑

k′=1
k′ 6=i,k′ 6=k

mkk′




+ ξ̂1

n∑
i=1

n∑
k=1
k 6=i

mki

+ ξ̂2

n∑
i=1

n∑
k=1
k 6=i

mki(mki − 1)


 . (18)

The above interval is based upon the general
correlation structure given in Equation (10). We
get the estimated variance,̂V [π̂I ], by substituting
our parameter estimates into Equation (11). It is
possible to derive confidence intervals by assuming
a simplified correlation structure and following this
same process. Our assumption of Gaussianity is
asymptotically valid since the estimate error rateπ̂I

is a linear combination, Christofides and Mavrikiou
[3] If we assume thatmik = m for all i and that
ω1 = ω2 = ω3 = ω, then the variance given in
Equation (18) becomes

V [π̂I ] = π̂I(1− π̂I)[n(n− 1)m]−1[(1 + ξ̂1)

+ (η̂ + ξ̂2)(m− 1) + 4ω̂(n− 2)]. (19)

We can then invert Equation (19) and solve forn.
As we did above, we will assume that the number
of decisions per comparison pair is constant and
known,mjk = m, and then determine the value for
n based upon this. Doing this and further assuming
that n ≈ n− 1 ≈ n− 2, we get

n =

⌈
2z2

1−α/2ωπI(1− πI)

B2m

+

((
2z2

1−α/2ωπI(1− πI)

B2m

)2

+
z2
1−α/2πI(1− πI)

B2m

× [(1 + ξ1) + (η + ξ2)(m− 1)])1/2
⌉

. (20)

Here, as before,B is the margin of error desired
andz1−α/2 is the1−α/2th percentile of a standard
Normal distribution. (That is, the desired confidence
interval is π̂I ± B.) A priori estimates of the pa-
rametersπ, ω, ξ1, ξ2 and η need to be determined
before these confidence intervals can be made. We
also note that for a givenn the total number of
decisions will beNI = n(n − 1)m assuming that
all cross-comparisons are run. For Equation (20)
we use only the ’plus’ part of the solution to the
quadratic equation. We do this since the only way
for the ’minus’ part of the quadratic equation to
yield a positive result is for theη+ξ2 to be negative.
Negative values for these parameters in the con-
text of biometric authentication decisions indicate
negative correlations. This seems counterintuitive in
the biometrics context and, thus, we truncate these
correlations at zero. Other sample size calculations
can be derived from the simplified models above.
Similar calculations can also be found based on the
symmetric correlation model found in the appendix.

IV. I LLUSTRATION

In this section we apply the methods from the
two previous sections to actual biometric authen-
tication data. The data we use here comes from
two sources. The first set of data was collected at
Michigan State University and will be referred to
as the MSU database, [16]. The second database
to which we apply our methods is the XM2VTS
database as processed under the Lausanne Protocol
I [13]. Estimates for the parameters of the correla-
tion structures, both symmetric and asymmetric, are
given for a range of error rates and thresholds. In

addition, we give the standard errors,
√

V̂ [π̂], for the
estimated error rates. These quantities are essential
for making confidence intervals forπ. Note that the
standard errors would be(N−1π̂(1− π̂))1/2 if all of
the correlation parameters are zero. The larger the
correlation parameters the larger the variance. The
impact of each particular correlation parameter is
governed by the number of times that correlation
appears within the correlation matrix,Φ. Again
these estimates are assumed to be non-negative and
so are truncated at zero when estimates are negative.
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It is worth clarifying here that the correlations we
are studying are for decisions made on the same
device not the correlation between two devices or
between two classifiers. We will discuss these issues
further in Section V below The results below are
not meant to be representative of possible values
for all classifiers but rather they are meant to serve
as illustrations of the methodology proposed above.

A. MSU database

The MSU database is a collection of similarity
scores from three different biometric modalities -
face, fingerprint and hand geometry. To convert
these similarity scores to decisions, we dichotomize
by a threshold,τ . Thresholds were chosen as rea-
sonable choices for possible applications or to fa-
cilitate understanding of the consequences of differ-
ent thresholds on the correlation structure. Tables
I to IV have estimated parameters from applying
the methods described in Sections II and III. The
algorithms that produced the imposter match scores
in this data set are all asymmetric. For each modality
50 individuals were involved in the data collection
and each individual was compared against all of
the others. The inter-individual data (or imposter
data) contained50 × 49 different comparison pairs
each of which were observed5 times. Thus there
were NI = 12250 total imposter match scores for
the MSU database. This number is the same across
all three modalities for this database. For the intra-
individual or genuine comparisons, each individual
was compared against themselves10 times. Thus,
there areNG = 500 genuine match scores for each
modality in the MSU database. For both the genuine
and imposter match scores, we dichotomize each of
these match scores by reasonable thresholds below
to obtain decision data.

Table I contains parameter estimates based upon
the correlation model given in Equation (10) for
each of the three modalities in the MSU database.
We denote by∗ estimates that are treated as zero
since they take negative values. From this table,
we can see the impact of the correlations on the
standard errors through the relationship between
correlation and effective sample size is also de-
pendent on the number of decisions that comprise
each parameter estimate. As mentioned above, the
higher the correlation the higher the standard error.
Clearly, the standard error for the hand geometry
FMR is much more than the equivalent for the
facial or fingerprint FMR. This is expected based
on two factors: the estimated error rate,π̂I , and the
estimated correlation parameters. Both are directly
related to the size of the standard error when the
error rate is less than0.5. The standard errors for
the hand geometry, fingerprint and facial FMR’s
would be0.0036, 0.0022, and0.0019, respectively,

if the decisions where uncorrelated. Thus we can
see that the hand geometry’s standard error is most
inflated by the correlations in this model. The larger
magnitude of theω1 plays a large role here since
it is so much larger than the other values of the
ω’s in this table. ω’s because of the number of
permutations that they encompass tend to be present
in the correlation matrix in larger numbers thanη,
ξ1 or ξ2. As a consequence, small differences in the
ω’s propagate to larger differences in the standard
errors. Lastly regarding this Table I, we note thatψ̂
is truncated at zero for all three classifiers.

Table II focuses on the FNMR’s for the facial
classifier in the MSU database. Each row of this
table corresponds to a different threshold,τ . We
calculate the parameter estimates at each threshold
to illustrate that the estimates are different for each
threshold. For this face classifier, we also observe
several trends in this table. First, the parameter
estimates differ from one threshold to the next. For
example,̂ω1 takes values that fluctuate from positive
to truncated at zero. Second, we see that the standard
errors vary significantly but they decrease as the
error rate decreases. There is one exception to this
whenτ = 70. This aberration is due to the estimated
correlations -ω̂1, ω̂2 and ω̂3 - between decisions
when they share a single individual. It is possible
for a very small correlation, e.g.̂ω1 = 0.0033
when τ = 80, to have a large impact on the
standard error because of the number of pairs of
decisions to whicĥω3 is multiplied. For this case,
the standard error for the correlated model is50%
larger,0.0048 than the standard error would be in the
uncorrelated case,(0.1994(1 − 0.1994)/12250)1/2.
Note that uncorrelated standard error is the same
estimate that we should get by applying either the
user-specific bootstrap of Pohet al [14] or the
Beta-binomial approach of Schuckers [18] Recall
Equation (10) for more details. Third,̂η and ξ̂2 are
consistently near zero or truncated at zero indicating
that the correlation between decisions on the same
comparison pair is zero if different captures are
being considered regardless of order. As we will see
this seems to be peculiar to this particular matcher.
Lastly, we see that̂ω3 take positive values when the
threshold,τ , is 40, 60 or 70. This is in contrast to
the previous table where estimates ofω3 were zero.
Thus, we reiterate that the correlation parameters are
dependent upon the threshold.

In Table III we move to presenting parameter
estimates for the decisions based upon genuine
match score data. The estimates here are based upon
the correlation model found in Equation (2). Recall
that for the MSU databasemij = 10 intra-individual
comparisons were observed for each of50 individu-
als. Thus the total number of decisions here isNG =
500. Table III calculates the estimated error rate,



9TABLE I
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS FROMMSU DATABASE,

FALSE MATCH RATE, ASYMMETRIC MATCHERS, NI = 12250

Modality τ π̂I η̂ ω̂1 ω̂2 ω̂3 ξ̂1 ξ̂2

√
V̂ [π̂I ]

Hand 100 0.2031 0.0205 0.0209 0.0036 *0.0000 *0.0000 0.0061 0.0096
Finger 20 0.0603 0.0049 0.0003 0.0016 *0.0000 0.0193 0.0143 0.0027
Face 50 0.0443 *0.0000 0.0005 0.0042 *0.0000 0.0037 *0.0000 0.0027

* indicates truncated at zero

TABLE II
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS FROMMSU DATABASE,

FALSE MATCH RATE, FACE, ASYMMETRIC MATCHER, NI = 12250

τ π̂I η̂ ω̂1 ω̂2 ω̂3 ξ̂1 ξ̂2

√
V̂ [π̂I ]

100 0.3773 *0.0000 0.0048 0.0023 *0.0000 0.0035 0.0000 0.0072
90 0.2811 *0.0000 0.0006 0.0020 *0.0000 0.0120 *0.0000 0.0052
80 0.1994 *0.0000 *0.0000 0.0033 *0.0000 *0.0000 *0.0000 0.0048
70 0.1357 *0.0000 0.0008 0.0058 0.0008 0.0031 *0.0000 0.0053
60 0.0863 *0.0000 0.0010 0.0052 0.0009 0.0029 *0.0000 0.0044
50 0.0443 *0.0000 0.0005 0.0042 *0.0000 0.0037 *0.0000 0.0027
40 0.0167 *0.0000 0.0008 0.0087 0.0001 0.0229 *0.0000 0.0021
30 0.0040 *0.0000 *0.0000 0.0042 *0.0000 *0.0000 *0.0000 0.0008

* indicates truncated at zero

TABLE III
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS

FROM MSU DATABASE,

FALSE NON-MATCH RATE, ASYMMETRIC MATCHERS,

NG = 500

Modality τ π̂G ρ̂

√
V̂ [π̂G]

Hand 100 0.1120 0.0392 0.0164
Finger 20 0.0760 *0.0000 0.0119
Face 50 0.0660 0.0086 0.0115

* indicates truncated at zero

π̂G, the estimated intra-class correlationρ̂ for each
threshold,τ , as well as the standard error for each
estimated error rate. For the FNMR, the relationship
between the observed correlation and the standard
errors is clearer than for the FMR since there is
only a single correlation term. Here we also note
that the decisions for the false non-match rate of the
fingerprint classifier effectively have a correlation
of zero which results in the standard errors being
what we would expect them to be for uncorrelated
data. To see that the parameter estimates change for
a particular classifier as the threshold changes for
the correlation structure of the FNMR, we present
Table IV. We note thatρ takes positive values only
whenτ = 50 or 60. Thus, it is necessary to estimate
all of the parameters each time we are interested
in a different threshold. This table uses the same
thresholds and the same classifiers that appeared in
Table II. For the FNMR the correlation estimates
change little as the thresholds change.

TABLE IV
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS

FROM MSU DATABASE,

FALSE NON-MATCH RATE, FACE, ASYMMETRIC MATCHER,

NG = 500

τ π̂G ρ̂

√
V̂ [π̂G]

100 0.0040 *0.0000 0.0028
90 0.0040 *0.0000 0.0028
80 0.0060 *0.0000 0.0035
70 0.0180 *0.0000 0.0059
60 0.0500 0.0129 0.0103
50 0.0660 0.0086 0.0115
40 0.1320 *0.0000 0.0151
30 0.2140 *0.0000 0.0183

* indicates truncated at zero

B. XM2VTS database

This data was processed by Poh and Bengio under
the Lausanne Protocol I [13]. Included in this data
are both speaker and facial recognition match scores.
With the results of estimating the correlation models
above, we include the matching algorithm as well as
the modality for data from the XM2VTS database.
More details on these classifiers and the data pro-
cessing can be found in [13]. The methodology
for this data collection ensured that not all cross-
comparisons were considered. Individuals were par-
titioned into a gallery and a probe set for the inter-
individual or imposter comparisons. Individuals in
each of those groups were only compared against
members of the other group, not against members of
their own group. Because of this structure to the data
collection, we forceω3 = 0 since no data is avail-
able for estimation of this quantity. Additionally,
the order of the comparisons was never reversed, so
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that in cases where a comparison of a capture from
individual A versus an capture from individual B
was recorded there is no comparison reversing the
order of the individuals. As a consequence of this,
we will treat all of the classifiers in this database
as symmetric. There were200 individuals in the
gallery and25 in the probe.8 match scores were
recorded for each inter-individuals comparison pair.
Thus, the total number of imposter decisions is
NS = 200×25×8 = 40000. For the intra-individual
or genuine comparisons, the200 gallery individuals
were each compared to themselves3 times. This
yields NG = 600 total genuine decisions.

Table V has the parameter estimates for the
symmetric correlation model found in Equation (15)
applied to the XM2VTS database. We selected a
range of thresholds to achieve different error rates
for the different classifiers. The estimated correla-
tions for this data are appreciably larger than those
for the MSU database, cf. Table I. One conse-
quence of these larger correlations is standard errors
that would be much larger than if the decisions
were uncorrelated. For example, consider the Facial
matcher DCTb, MLP. The observed standard error
using our correlation model is0.0072 while the
standard error assuming uncorrelated decisions is
(0.0580(1−0.0580)/40000)1/2 = 0.0012. Thus the
former is six times larger than the naı̈ve uncorre-
lated approach. The estimated correlations between
decisions on the same comparison pair,η, are much
higher for the XM2VTS database relative to the
equivalent quantities,η, ξ1 and ξ2, in the MSU
database. This is clearly one reason for the large
standard errors that we observe here. Similarly,
the other correlation parameters estimates are con-
sistently larger in magnitude than the equivalent
estimates for the MSU database. The results in Table
V also illustrate that the same modality may have
different correlation parameter estimates depending
upon the classifier. This can easily be seen by
looking at the columns corresponding toω̂1 andω̂2.

The last table of output we consider contains
estimates of the correlation structure for the FNMR
found in Equation (2) for the XM2VTS database.
These results can be seen in Table VI. Here we
utilize the same thresholds and the same matchers
as found in Table V. As we noted in the previous
paragraph, the estimates for the XM2VTS database
are generally much larger than those for the MSU
database. This is again true for the results in esti-
mates of the correlation parameters for the FNMR.
However, the impact on the effective sample size
are not as drastic since the number of comparisons
that go into estimation ofρ is smaller relative to the
number of comparisons that go into estimation of the
parameters of the symmetric false match correlation
model. Similarly the effective sample sizes are larger

relative to the sample size for the FNMR than for
the FMR in the XM2VTS database.

In this section we have applied the correlation
structure proposed in Sections III and II to data from
the MSU and XM2VTS databases. The results of
this application, found in Tables I to VI, have illus-
trated the utility of the method of moments estima-
tors we have proposed here. To further demonstrate
the consequences of the correlation structures we
propose, we introduced the effective sample size.
From these results here it is clear that the estimated
correlations vary from threshold to threshold even
for the same classifier.

V. D ISCUSSION

This paper presents parametric correlation struc-
tures for the evaluation of the matching performance
of a single biometric authentication device. This cor-
relation structure is based upon binary decisions of
match or non-match. In addition to these correlation
structures we have introduced confidence interval
and sample size calculations based upon this struc-
ture. For decision data involving inter-individual
comparisons (imposter decisions) we have proposed
correlation structures for both symmetric and asym-
metric matching algorithms. The correlation struc-
ture for false match decision data is much simpler
than the correlation structure for false non-match
decision data. This is due to the need to address
correlations between two decisions that involve one
or more individual that is part of both decisions.
False non-match data only involves intra-individual
comparisons and, hence, the correlation structure
is more straightforward. We have also provided
method of moments estimators for the parameters
in these models. The models we have proposed
are specific to verification or one-to-one mode.
However, the model for false non-match decisions
might reasonably be applied to identification mode
decisions for false match data because identification
mode only specifies a single individual and so
we might reasonably assume that the correlation
between repeated decisions concerning that same
individual were correlated but there would be no
correlation between identification decisions for dif-
ferent individuals.

Along with the general correlation models presented
above, we have presented constrained models which
simplify these structures. The correlation models
here, both the more general and the simplified,
are the first to be explicitly provided for biometric
data of any kind. The models presented here are a
generalization of the implicit correlation structures
found in work by Schuckers [18], Pohet al [14]
and in Bolleet al. [2]. The first two works implicitly
assume the model we have explicitly described here.



11TABLE V
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS FROMXM2VTS DATABASE,

FALSE MATCH RATE, SYMMETRIC MATCHERS, NI = 40000

Modality Matcher τ π̂S η̂ ω̂1 ω̂2 ω̂3

√
V̂ [π̂S ]

Face (FH, MLP) 0.0 0.0038 0.2271 0.0014 *0.0000t0.0000 0.0007
Face (DCTs, GMM) 0.0 0.0582 0.2935 0.0163 0.0193t0.0000 0.0067
Face (DCTb, GMM) 0.2 0.0041 0.2599 0.0009 0.0009t0.0000 0.0007
Face (DCTs, MLP) -0.8 0.1057 0.3484 0.0165 0.0075t0.0000 0.0086
Face (DCTb, MLP) -0.5 0.0580 0.2565 0.0215 0.0067t0.0000 0.0072
Speaker (LFCC, GMM) 3.0 0.0142 0.3329 0.0226 0.0184t0.0000 0.0039
Speaker (PAC, GMM) 2.0 0.0570 0.3500 0.0324 0.0247t0.0000 0.0090
Speaker (SSC, GMM) 1.0 0.0692 0.4435 0.0339 0.0505t0.0000 0.0105

* indicates truncated at zero
t indicates that it is a theoretical zero in the case of this data since the combinations of (i,k) that lead to the estimation
of these parameters did not occur in this data.

TABLE VI
ESTIMATES FOR CORRELATION STRUCTURE PARAMETERS FROMXM2VTS DATABASE,

FALSE NON-MATCH RATE, SYMMETRIC MATCHERS,NG = 600

Modality Matcher τ π̂G ρ̂

√
V̂ [π̂G]

Face (FH, MLP) 0.0 0.0350 0.3091 0.0095
Face (DCTs, GMM) 0.0 0.0400 0.1319 0.0090
Face (DCTb, GMM) 0.2 0.0283 0.2130 0.0081
Face (DCTs, MLP) -0.8 0.0033 *0.0000 0.0024
Face (DCTb, MLP) -0.5 0.0400 0.2188 0.0096
Speaker (LFCC, GMM) 3.0 0.0050 0.3300 0.0037
Speaker (PAC, GMM) 2.0 0.0583 0.3628 0.0126
Speaker (SSC, GMM) 1.0 0.0267 0.3579 0.0086

* indicates truncated at zero

In the case of the latter, Bolleet al. aim to make the
subsets of observations ”as independent as possible”
(p.15). This works well for the FNMR decision data;
however, if theω’s in the FMR correlation model
in Equation (10) are non-zero then this approach
underestimates the variances of the estimated error
rates. There are some analogies here to the difficul-
ties of bootstrapping spatial data. See Solow [21],
Cressie [4] and Tang [22] for more details. The
work of Lahiri [8] holds some potential for non-
parametric inference for the full correlation structure
described here. Our approach is quite flexible in
the type of correlation structure among decisions
that it addresses and thus our approach generalizes
these previous methodologies. Our resulting struc-
ture provides a more thorough understanding of the
variability in error rate estimation as well as a more
accurate approach to inference that comes with such
knowledge. With a misspecified correlation structure
it is possible to overestimate the precision of the
FMR or to claim that a FNMR is significantly less
than a given value when that is not the case.

We have also presented here methods for confi-
dence intervals , Equations (7) and (17), and sample
size calculations, Equations (8) and (20). These
methods allow for appropriate inference to be made
about a single error rate and for the determination of
the number of individuals that need to be tested. We

recommend that these confidence interval methods
only be used whenN – eitherNG or NI is large,
i.e. whenN

[
π̂(1−π̂)/N

V̂ [π̂]

]
π̂ ≥ 10. This corresponds

to an effective sample size times our estimated error
rate being greater than or equal to10. See Eng[5]
for discussions of the effective sample size. These
correlation structures also have application to other
statistical methods already in the literature which de-
pend upon specification of the correlation structures,
e.g. Givenset al. [7], Mitra [11] and Schuckers
[20]. While our focus has been on decision data,
it is likely that a similar correlation structure would
apply to match score/similarity score data. While
the correlation structure may be appropriate, the
individual variances will clearly be different. It
will be necessary to replace theπ(1 − π) in each
variance equation with a general term, perhapsσ2

for the variance of the match scores. The models and
structures specified here will also find application in
the estimation of ROC curves. In particular, it may
be possible to create confidence region estimates for
the entire ROC curve. This approach would utilize
the improved variance estimation techniques given
here to derive these regions.

As part of this work, we have also offered
methodology for estimating the correlation parame-
ters that are part of each model. These estimators
are based on a method-of-moments methodology.



12
It should be clear from the examples that we have
given that the larger the correlation the the larger
the variance of the estimated error rates. Further,
we have illustrated how these methods can be
applied to various decision data from a range of
modalities. While these estimating equations are
lengthy there application using a software package
such as MatlabTM or the statistical softwareR
is straightforward. It is clear from these examples
that it is important to understand this correlation
structure in order to properly estimate and infer
about biometric matching error rates. Additionally,
we again note that the correlations for our proposed
models may vary from threshold to threshold. Thus
it is important to re-estimate the parameters of the
correlation model at each threshold.

With the growth of multimodal biometrics work,
Rosset al [17, ], there is growing interest in the
correlation between different classifiers. Because the
correlation between any two matchers is dependent
on the variance of each, it is important to first treat
and assess the performance each matcher individu-
ally as we have done here. It will be important to
an accurate understanding of multibiometric perfor-
mance to derive models similar to those given here.
Likewise it is also important to consider inferential
methods for looking at the relationship and possibly
significant differences between the performance of
two or more biometric authentication systems. This
will no doubt be dependent on the correlations in the
decisions for each system. This serves to underscore
the important of getting the correlation structure for
biometric authentication decisions correct.
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