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Discriminative Features for Text Document Classification

Abstract

The bag-of-words approach to text document representation typically results in vectors of the or-

der of 5000 to 20000 components as the representation of documents. In order to make effective

use of various statistical classifiers, it may be necessary to reduce the dimensionality of this repre-

sentation. We point out deficiencies in class discrimination of two popular such methods, Latent

Semantic Indexing (LSI), and sequential feature selection according to some relevant criterion.

As a remedy, we suggest feature transforms based on Linear Discriminant Analysis (LDA). Since

LDA requires operating both with large and dense matrices, we propose an efficient intermediate

dimension reduction step using either a random transform or LSI. We report good classification

results with the combined feature transform on a subset of the Reuters-21578 database. Drastic

reduction of the feature vector dimensionality from 5000 to 12 actually improves the classification

performance.
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Originality and Contribution

Linear Discriminant Analysis has its origins in Fisher’s work dating back to 1936. However, appli-

cation of LDA to very high dimensional data, such as to the popular bag-of-words text document

representation is difficult (and thus absent in the literature), because the LDA criterion matrix be-

comes a large and dense matrix, even if the original representation may be sparse. This paper

shows that LDA is still applicable to high dimensional data by introducing an intermediate trans-

form, either a random transform, or LSI, which can be effectively computed from large sparse

matrices. This enables a feature vector dimension reduction of 2-3 orders of magnitude without

sacrificing accuracy. Faster and more accurate on-line text classification/categorization systems

become now possible, which may be especially useful in information retrieval and search tasks.
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1 Introduction

Classification of textual documents denotes assigning an unknown document to one of predefined

classes. This is a straightforward concept from pattern recognition or from supervised machine

learning. It implies the existence of a labeled training data set, a way to represent the documents,

and a statistical classifier trained using the chosen representation of the training set.

Some classifiers are very sensitive to the representation, for example, failing to generalize to

unseen data (over-fitting) if the representation contains too much irrelevant information [2]. It

would thus be advantageous to be able to extract only that information which is pertinent to the

classification task. However, some classifiers, such as Support Vector Machines [17], are able to

tolerate better the existence of irrelevant information. Either case, in general, it is computationally

cheaper to operate the classifier in low dimensional spaces. If this can be done without sacrificing

the accuracy of the classifier, the better.

We present a fairly straightforward application of Linear Discriminant Analysis (LDA) to doc-

ument classification, when vector space document representations are employed. LDA is a well

known method in statistical pattern recognition literature. Its aim is to learn adiscriminativetrans-

formation matrix from the original high-dimensional space to a desired dimensionality [11]. The

idea is to project the documents into a low dimensional space in which the classes are well sepa-

rated. This can also be viewed as extracting features that only carry information pertinent to the

classification task. A subsequent classification task should then become easier.

This paper proceeds as follows. We discuss document representation methods and approaches

to reduce their dimensionality, especially Latent Semantic Indexing (LSI) [7]. We discuss why

LSI cannot result in optimal representation for document classification. Methods to select a num-

ber of relevant features, as well as their shortcomings are then discussed. We introduce LDA,
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and we present two avenues to solve the difficulties related to processing large and dense matri-

ces that arise in applying LDA to very high dimensional data. Classification experiments using

derived LDA-features with a support vector machine classifier on the Reuters-21578 database are

presented. We discuss the computational complexity of the approach, and possibilities to enhance

the interpretation of the derived basis vectors.

The point of view of this paper is that of statistical pattern recognition. This means that we

approach the problem as a classification task with exclusive classes aiming to maximize the classi-

fication accuracy. Performance is evaluated by assigning a single label to each unknown document.

This label can be either correct or incorrect, and the accuracy is defined as the number of correctly

assigned labels divided by the total number of documents in the test set. This is not the usual case

in information retrieval where documents may carry several labels (or cover several topics). Given

a document collection, the aim is to retrieve all documents relevant to a particular topic or class.

Performance is measured as precision and recall [15], that cannot be related to the mere classifi-

cation accuracy. Thus, in the last section of the paper we also discuss extensions to information

retrieval tasks.

2 Vector Space Document Representations

The dominant vectorial text document representation is based on the so called bag-of-words ap-

proach, in which each document is essentially represented as a histogram of terms, or as a function

of the histogram. One straightforward function is normalization: the histograms are divided by the

number of terms of the document to account for different document lengths.

What are the terms that are counted in the histograms? Terms (words) that occur in every

document obviously do not convey much useful information for classification. Same applies to
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rare terms that are found only in a few documents. These, as well as common stop words, are

usually filtered out of the corpus. Furthermore the words may be stemmed. These operations leave

a term dictionary that can range in size from thousands to tens of thousands. Correspondingly, this

is the dimension of the space in which documents now are represented as vectors. Although the

dimension may be high, a characteristic of this representation is that the vectors are sparse.

For many statistical pattern classification methods this dimensionality may be too high. Thus

dimension reduction methods are called for. Two possibilities exist, either selecting a subset of the

original features, or transforming the features into new ones, that is, computing new features as

some functions of the old ones. We examine both in turn.

3 Feature Selection

Optimal feature selection coupled with a pattern recognition system leads to a combinatorial prob-

lem since all combinations of available features need to be evaluated, by actually training and

evaluating a classifier. This is called thewrapperconfiguration [21, 24]. Obviously the wrapper

strategy does not allow to learn parametric feature transforms, such as linear projections, because

all possible transforms cannot be enumerated.

Another approach is to evaluate some criterion related to the final classification error that would

reflect the “importance” of a feature or a number of features jointly. This is called thefilter con-

figuration in feature selection [21, 24]. What would be an optimal criterion for this purpose? Such

a criterion would naturally reflect the classification error rate. Approximations to the Bayes error

rate can be used, based on Bhattacharyya bound or an interclass divergence criterion. However,

these joint criteria are usually accompanied by a parametric, such as Gaussian, estimation of the

multivariate densities at hand [13, 29], and are characterized by heavy computational demands.
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In document classification problems, the dominant approach has been sequential greedy selec-

tion using various different criteria [33, 4, 25]. This is dictated by the sheer dimensionality of the

document-term representation. However, greedy algorithms based on sequential feature selection

using any criterion are suboptimal because they fail to find a feature set that wouldjointly optimize

the criterion. For example, two features might both be very highly ranked by the criterion, but they

may carry the same exact information about class discrimination, and are thus redundant.

Thus, feature selection through any joint criteria such as the actual classification error, leads

to a combinatorial explosion in computation. For this very reason finding atransformto lower

dimensions might be easier than selecting features, given an appropriate objective function.

4 Latent Semantic Indexing

One well known dimension reducing transform is the principal component analysis (PCA), also

called Karhunen-Loeve transform. PCA seeks to optimallyrepresentthe data in a lower dimen-

sional space in the mean squared error sense. The transform is derived from the eigenvectors

corresponding to the largest eigenvalues of the covariance matrix of training data.

In the information retrieval community this method has been named Latent Semantic Index-

ing (or LSI) [7]. The covariance matrix of data in PCA corresponds now to the document-term

matrix multiplied by its transpose1. Entries in the covariance matrix represent co-occurring terms

in the documents. Eigenvectors of this matrix corresponding to the dominant eigenvalues are now

directions related to dominant combinations of terms occurring in the corpus. These dominant

combinations can be called “topics” or “semantic concepts”. A transform matrix constructed from

these eigenvectors projects a document onto these “latent semantic concepts”, and the new low

1The only difference to PCA is that in PCA the mean of the data is removed in computing the covariance matrix.
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dimensional representation consists of the magnitudes of these projections. The eigenanalysis can

be computed efficiently by a sparse variant of singular value decomposition of the document-term

matrix [7, 1].

Let D denote thet× d document-term matrix with rankr where each of thed columns repre-

sents a document vector of dimensiont. The singular value decomposition results in

D = UΣVT , (1)

whereΣ is anr × r diagonal matrix of singular values ofD, U is a t × r matrix of left singular

column vectors, andV is ad× r matrix of right singular vectors ofD. Dropping all butk largest

singular values and corresponding singular vectors gives the truncated approximation ofD

Dk = UkΣkVk
T . (2)

The approximation is the best rankk approximation ofD in the sense of minimizing the sum of

squared differences between the entries ofD andDk (the Frobenius 2-norm).

The t × k matrix Uk can now be used as a projection matrix to map each subsequentt × 1

document column vectord into ak-dimensional representation

dk = Uk
Td. (3)

LSI was introduced to improve precision/recall, and it has been proven to be extremely useful in

various information retrieval tasks. However, it is not an optimal representation for classification.

LSI/PCA is completely unsupervised, that is, it pays no attention to the class labels of the existing

training data. LSI aims at optimalrepresentationof the original data in the lower dimensional

space in the mean squared error sense. This representation has nothing to do with the optimal

discriminationof the document classes.
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Independent component analysis (ICA) has also been proposed as a tool to find “interesting”

projections of the data [12, 32, 20]. Girolami et al. maximize negentropy to find a subspace

on which the data has the least Gaussian projection [12]. The criterion corresponds to finding a

clustered structure in the data, and bears a close relationship to projection pursuit methods [10].

This appears to be a very useful tool revealing non-Gaussian structures in the data. However, as

PCA, the method is completely unsupervised with regard to the class labels of the data, and it is

not able to enhance class separability.

Sammon mapping [28], multidimensional scaling (MDS) [22], and FastMap [9] are exam-

ples of further methods that map data points into a lower dimensional space trying to preserve

the mutual distances in the original high-dimensional space. These methods pay no attention to

class labels either, only to the goodness of the representation. Thus,supervisedfeature extraction

schemes are called for. We describe one such method, Linear Discriminant Analysis.

5 Linear Discriminant Analysis

The term linear discriminant analysis (LDA) refers to two distinct but related methods. The first

is classifier design. Given a number of variables as the data representation, each class is modeled

as Gaussian (with a covariance matrix and a mean vector). Observations are now classified to

the class of the nearest mean vector according to Mahalanobis distance. The decision surfaces

between classes become linear if the classes have a shared covariance matrix. In this case the

decision surfaces are called Fisher discriminants, and the procedure of constructing them is called

Linear Discriminant Analysis [11, 2].

The second use of the term LDA refers to a discriminative feature transform that is optimal for

certain cases [11]. This is what we denote by LDA throughout this paper. In the basic formulation,
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LDA finds eigenvectors of matrix

T = S−1
w Sb. (4)

HereSb is the between-class covariance matrix, that is, the covariance matrix of class means.

Sw denotes the within-class covariance matrix, that is equal to the weighted sum of covariance

matrices computed for each class separately.S−1
w captures the compactness of each class, andSb

represents the separation of the class means. ThusT captures both. The eigenvectors correspond-

ing to largestk eigenvalues ofT form the rows of the transform matrixW, and new discriminative

featuresdk are derived from the original onesd simply by

dk = Wd. (5)

The relation to LDA as a classifier design is that these eigenvectors span the same space as

directions orthogonal to the decision surfaces of Fisher discriminants.

The straightforward algebraic way of deriving the LDA transform matrix is both a strength

and a weakness of the method. LDA makes use of only second-order statistical information, the

covariances. Furthermore, LDA assumes that all classes have the same covariance, through using

a shared within-class covariance matrix. Thus it is optimal for data in which each class has a

unimodal Gaussian density with well separated means and similar covariances. Large deviations

from these assumptions may result in sub-optimal features. Also the maximum rank ofSb in

this formulation isNc − 1, whereNc is the number of different classes. Thus basic LDA cannot

produce more thanNc− 1 features. This is, however, simple to remedy by projecting the data onto

a subspace orthogonal to the computed eigenvectors, and repeating the LDA analysis in this space

[26].

Further extensions to LDA exist. For example, Heteroscedastic Discriminant Analysis (HDA)

allows the classes have different covariances [23]. However, simple linear algebra is no longer
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sufficient to compute the solution. One must resort to iterative optimization methods. Same applies

to methods that further relax the Gaussianity assumptions of the classes [29, 31].

The following section discusses what difficulties arise applying LDA to high-dimensional

document-term data, how those can be solved, and why LDA and the assumptions behind it are

thereafter well suited to document-term data.

6 Linear Discriminant Analysis for Document-Term Data

To our knowledge, LDA feature transforms have not been applied earlier to document classification

tasks, although LDA has been used before in the sense of designing a linear classifier [16, 30]. In

contrast, we suggest LDA as a means of deriving efficient features, which can be classified by any,

possibly nonlinear, classifier.

If LDA is such a well known and well-behaving method why is it not in wider use in the

document analysis community? LDA is, of course, only applicable when labeled training data

exists, and this represents only a part of possible document analysis tasks. Unsupervised tasks,

such as clustering are thus excluded. However, nothing prevents applying LDAafter clustering to

find features that best separate the clusters, then repeating the clustering using new features, and

iterating this a few times.

One high barrier in applying LDA directly to document-term data of tens of thousands dimen-

sions is the following. Unlike the document-term matrix, the criterion matrixT in LDA is no

longer sparse. Thus efficient methods for inversion, singular value decomposition, or eigenanaly-

sis, of sparse matrices cannot be used. For example, if the number of termst = 20.000, T requires

memory of 3.2GB. Since inversion of a matrix requires computationO(t3), only the inversion of

Sw would take approximately 12 hours of CPU time on a 700MHz machine (on which the inversion
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of a 1000x1000 matrix takes 5.6 seconds).

However, a simple remedy exists. Random projections have been shown to be very useful in

various dimension reduction tasks where the source data has had extremely high dimensionality

[3, 27, 6]. Random projections tend to Gaussianize the data. This is because each resulting com-

ponent is a sum of a large number of original components each multiplied by a random weight.

In this respect, data after a random projection conforms well to the assumptions behind LDA. A

straightforward method is thus to generate a random matrix with, say, normally distributed en-

tries, to transform the original dimension down by an order of magnitude, thereafter followed by

a conventional LDA transformation with one or two more orders of magnitude further dimension

reduction.

Another convenient option is to perform a conventional LSI-based dimension reduction by

an order of magnitude starting from the original document-term matrix. This is a feasible task

because the document-term matrix is a sparse matrix, and efficient SVD methods can be used [1].

This initial transform can again be followed by LDA. This is illustrated in Fig. 1.

Since both types of suggested initial transforms, as well as the LDA transform, are linear, the

two sequential transforms can be combined into a single matrix multiplication. The following

section reports experiments using these approaches.

7 Document Classification Experiments

Experiments were performed using the Reuters-21578 database2. We used the ”ModLewis” split

of the database into training and testing parts. Since the aim is classification, in which each doc-

ument has an exclusive category, we discarded documents with no label or with multiple labels.

2http://www.research.att.com/ lewis/reuters21578.html
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Furthermore, those rare classes were discarded that did not occur at least once in both training and

testing set. The resulting training set has 6535 documents, and the test set 2570 documents with

52 document classes.

Granted, from the information retrieval standpoint this is an artificial task, which makes it

difficult to compare our results to those of others. However, this facilitated a straightforward

application of statistical pattern classification tools to the task. Possible improvements in class

discrimination within this classification task are very likely to carry over to a retrieval task.

The term dictionary was constructed by discarding stop words, too frequent words, too infre-

quent words, and words shorter than three letters. Porter stemmer was used. This resulted in a term

dictionary of 5718 terms. Normalized term histograms of this dimension were thus produced from

the corpus.

As the classifier, we used a Support Vector Machine implementation called SVMTorch3, which

is well suited for large scale and/or sparse problems [5]. In all experiments we used a Gaussian

kernel (width = 10), andC = 100 as the trade-off between training error and margin. These are

the default values of SVMTorch. A binary classifier was trained for each of the 52 classes by using

each class at a time as positive examples with the rest of the data as negative examples.

Each unknown vector from the test set is presented to all 52 SVM-classifiers. The output

of an SVM is positive when it decides that an unknown test vector belongs to the class it was

trained for. Since there may be several simultaneous such claims, and since the setting is exclusive

classification, a simple maximum selector is applied to the SVMs to make the final decision for an

exclusive class.

The LSI analysis was done using SVDPAKC/las24 [1].

3http://www.idiap.ch/learning/SVMTorch.html
4http://www.netlib.org/svdpack/
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Results are depicted in a single chart in Fig. 2. The horizontal axis denotes the dimension

of the document representation. Instead of precision/recall we are reporting just a single number,

the classification accuracy, which is common in pattern recognition literature. This is defined

as the number of correctly classified documents divided by the total number of documents. The

classification accuracy is represented by the vertical axis of the chart. Naturally, the classifier is

trained using only the training set, and the accuracy is evaluated using only the testing set.

The single diamond represents the accuracy using the original 5718-dimensional normalized

term histograms as the document representation (88.8%). Results on features generated using

completely random transform matrices to various output dimensions are plotted as black triangles.

Each point is an average of results from five random trials (standard deviation plotted). Variance

is high at low dimensions depending whether and how pertinent information happened to be in-

cluded in the features. Results with LSI are plotted as squares ranging from an order of magnitude

dimension reduction (513) down to one. LSI with dimension 513 is very close to the original ac-

curacy (88.6%), but deteriorates approximately logarithmically. Halving the dimension decreases

the accuracy by 4-5 percentage points, which resembles the behavior of a random projection [3],

and shows that LSI does not really provide good features for discrimination.

In contrast, LDA exhibits higher accuracies (open triangles). The starting point of LDA was

the 513-dimensional representation produced by LSI, which was transformed down to 1-64 dimen-

sions. It is remarkable that a document representation of only twelve features achieves an accuracy

as high as 91.1%. The optimal dimension appears to be somewhat higher. With dimension 64 we

achieved an accuracy of 92.2%. LDA computed from a 513-dimensional random projection be-

haved very similarly (diamonds). These figures are again averages of five random trials. Standard

deviations are also plotted but they are so tight to be almost invisible. LSI appears to be able to pro-

vide somewhat more pertinent information to the 513-dimensional data for classification purposes,
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than a mere random transformation matrix, which LDA takes advantage of.

We also tested the signifigance of the difference between results of full dimensional data, and

12-dimensional LDA-from-LSI data. Theχ2 statistic of McNemar’s test is 18.9, which indicates a

significant difference beyond all confidence limits.

A transform to a lower dimension can only retain or reduce relevant information of the original

data. If an SVM was completely immune to irrelevant information, the accuracy should only

decrease as the dimension is reduced. Since higher accuracies were achieved, this is not obviously

the case. Furthermore, this difference should be much more pronounced using classifiers, such as

neural networks or decision trees that are more susceptible to overfitting than SVMs.

As opposed to feature transform methods that produce new features, each being a function of

a large number of original features, we made a comparison to a scheme that selects a number of

original features by evaluating each of them individually. We implemented average mutual infor-

mation (also called as information gain) between a feature and the labels as the feature selection

criterion [33]. Results are plotted as circles in Fig. 2. Selection fails almost completely at very

low dimensions, and appears to behave slightly better than random projections, and slightly worse

than LSI at medium dimensions. This is in line with experiments reported in [33], where selection

of as many 1000 features was necessary to produce good results using Reuters database.

The top part of Figure 3 depicts an example projection of the training data onto a discriminative

subspace of dimension two (which resulted in an accuracy of 65.1%). This projection uses the

two best basis vectors as determined by LDA-criterion. In the bottom part of the figure the data

is projected onto basis vectors ranked first and fourth by the criterion. Figure also lists all the

categories present in this experiment. Comparing the two projections highlights an issue with the

LDA-criterion. Since it attempts to combine both average class compactness and average class

separation, either one could be increased to improve the criterion. When projected onto the first

14



and second best ranked basis vectors, the data appears to have more compact clusters, but with

the expense of class separation. For example, the two largest categories,acqandearnboth have

quite compact clusters but unfortunately the clusters are partly on top of another. The projection

at the lower half of the figure produces class clusters not quite as compact, but separation actually

appears to be better.

Figure 4 depicts the same exact projections but displaying only seven of the classes in order

not to clutter the picture.

In these projections, class distributions appear to be Gaussian-like, with unequal covariances,

though. Thus there might be hope that projections based on HDA [23], or on joint maximum

mutual information [31], might provide even better results in discrimination. This is also suggested

by the compromise in compactness and separation of LDA illustrated in Figure 3.

8 Discussion

8.1 Computational Complexity.

The classification process with an SVM consists of evaluating the kernel between an unknown

vector and all the support vectors. Applying a kernel that makes use of an inner product, the bulk

of computations consists of evaluating those inner products. The document-term data is sparse by

nature, and since support vectors are actual samples of the data, the inner products are computed

between two sparse vectors. In the Reuters-21578 experiments in this paper the dimension of the

sparse vectors is 5718, but on the average, each vector has only 36 non-zero components. The inner

product between two such vectors requires on the average 72 indexing operations of which some

may lead to actual multiply-accumulate operations. We count this as 72 operations/vector. Direct
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application of the SVM to the document-term data and to the 52 binary classification problems

produced 10496 support vectors altogether in the 52 classifiers. Roughly, the total number of

operations in classifying one unknown vector is thus10496×72 = 755712 operations. We compare

now this to LDA.

Assuming an LDA transform to dimension 12, the transform matrix size is12 × 5718. Com-

puting the transform consists of evaluating the 12 inner products between the sparse input vector

and each row of the dense transform matrix. This takes on the average 36 indexing operations

and as many multiply/accumulates. We count this as 72 operations/vector, too, which results in

only 12 × 72 = 864 operations. This amount is independent of whether LSI or a random projec-

tion is applied prior to LDA, because the final transform matrix is a product of the two matrices,

and it is computed beforehand. Assuming the same number of support vectors, we have now

10496× 12 = 125952 operations in the recognition phase of the SVM. Thus even with an efficient

sparse implementation of the SVM, using LDA features cuts the computation down to one fifth of

the original. Comparing to the direct application of an SVM to the data, the breakeven point ap-

pears to be at the LDA transform dimension of about twice the average number of nonzero entries

in the original document vectors. The exact point depends, of course, on the implementation. For

example, inner products with LDA vectors, as they are dense, can be executed using the vector

instructions of the processor.

A Gaussian kernel is somewhat less favorable to the direct sparse SVM implementation without

LDA, because computing the difference between two sparse vectors effectively doubles the number

of nonzero elements in the result. The squared norm of the difference is then computed as an inner

product with itself. This doubling of the size does not happen with dense and low-dimensional

LDA vectors.

Computation in SVM training appears to retain the same proportions as the testing phase.
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Computing the LSI and LDA are extra, but the LSI takes only a few minutes for the Reuters

collection, and the LDA no more than 30 seconds (on a 700 MHz Pentium III), and these only

need to be computed once. Of course, the training data needs to be transformed, but this is again

an insignificant amount of computation and it only needs to be done once.

8.2 Application to Retrieval Tasks.

The largest difference between a classification and a retrieval task is the occurrence of multiple

labels per document in retrieval tasks. There are now two options to incorporate them into the

LDA. The first is what has been done in this paper: Assume that the documents possessing multiple

labels do not carry information about class separation and ignore them in the computation of the

LDA basis vectors.

This is not entirely true, of course, since a multi-labeled document carries information about

the separation of the labeled classes from all other classes. The second option is thus to account for

multiply labeled documents multiple times, once for each label, weighted by the reciprocal of the

number of labels. For example, when computing the class mean vectors and covariance matrices

required forSw andSb, a document carrying three labels is added to the mean vectors of all those

three classes, but only by a weight of one third each. This may have an effect of smearing class

distinctions, and needs to be experimentally evaluated.

The actual SVM approach is straightforward to modify to make use of training data with mul-

tiple labels. Since a multi-class SVM can consist of a number of binary classifiers where one class

is set against all others, all documents carrying a particular label, independent of whether they also

have other labels or not, are counted as positive examples of that class, and the rest as negative.

Setting the decision thresholds for desired precision/recall is then another matter that requires a
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validation data set.

8.3 Interpretation of the LDA Basis Vectors.

It would be interesting to study to what original terms these discriminating features correspond.

However, these 12 basis vectors are dense and have both positive and negative entries, which

makes the interpretation hard. Now, as the transform, we can have any 12 vectors that span the

same subspace as the original basis vectors. It is possible to find a rotation of this 12-dimensional

subspace such that the basis vectors become positive and sparse. This has been suggested by

Kabán and Girolami as a means to make LSI more amenable to interpretation [18]. They propose

projection pursuit with askewnessprojection index. Same method could now be applied after

LDA, if interpretability by means of the original terms is desired.

8.4 Other Work on Feature Selection and Feature Transforms.

Comparing this work to others on both feature selection and feature transforms using the same

database, Joachims reports SVM experiments with 86.4% precision using 9962 features [17]. Yang

and Pedersen report an average precision of about 90% with 2000 selected features on a same task

[33]. They used a k-NN classifier, but kept multiply labeled documents in the train and test sets.

A few papers report classification error rate (or accuracy which is one minus error rate) on a uni-

labeled subset of Reuters-21578. Han et al report a classification accuracy of 90% also by using

2000 selected features, and a weighted k-NN approach [14]. Karypis et al describe a method that

determines the columns of the projection matrix as the differences of the means between clusters

or classes in the data [19]. This is a similar but slightly more heuristic criterion than using only

the between-class covariance matrix in LDA and paying no attention to class compactness. This
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criterion has been used earlier in data visualization [8]. Their results are 82-85% classification

accuracy on small subsets of Reuters using 50 transformed features.

9 Conclusion

This paper shows how Linear Discriminant Analysis can be used to reduce drastically the dimen-

sion of document representation in classification tasks without sacrificing the accuracy. In fact, the

classification error rate decreased from 11.2% to 8.9% when reducing the original 5718 dimen-

sional document representation into mere 12 features.

Although these results can not be directly compared to previous work on the same database

due to different methods of selecting the train/test data and different scoring methods, the trend is

visible: Previous work shows that a high accuracy is possible with a large subset of features. This

work points out that a high accuracy in document classification is possible with a small number

of discriminative features. This offers some computational advantages even with Support Vector

Machines that take advantage of the sparse nature of the data.
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Figure 1: Dimension reduction in two steps: The first step is performed either using a random

projection or by LSI, which is efficient on sparse matrices. This allows the second dimension

reduction step, LDA, to operate on dense matrices of manageable size.
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Figure 2: Classification accuracies on Reuters-21578 test data using feature transforms (LDA,

LSI, random projections, and combinations of LDA with LSI and random projections), and feature

selection.
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Figure 3: LDA projection of the Reuters-21578 training set onto a two-dimensional discriminative

subspace. The top image depicts projection onto the two best basis vectors as determined by the

LDA-criterion. The bottom part uses basis vectors ranked first and fourth by the criterion.
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Figure 4: LDA projection of a few most numerous classes of the Reuters-21578 training set onto a

two-dimensional discriminative subspace. The top image depicts projection onto the two best basis

vectors as determined by the LDA-criterion. The bottom part uses basis vectors ranked first and

fourth by the criterion. This demonstrates the compromise that LDA-criterion makes: LDA ranks

higher basis vectors that produce more compact clusters with the expense of class separation.
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