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ABSTRACT

CHEN, K. Y., and D. R. BASSETT, JR. The Technology of Accelerometry-Based Activity Monitors: Current and Future. Med. Sci.
Sports Exerc., Vol. 37, No. 11(Suppl), pp. S490–S500, 2005. Purpose: This paper reviews accelerometry-based activity monitors,
including single-site first-generation devices, emerging technologies, and analytical approaches to predict energy expenditure, with
suggestions for further research and development. Methods: The physics and measurement principles of the accelerometer are
described, including the sensor properties, data collections, filtering, and integration analyses. The paper also compares these properties
in several commonly used single-site accelerometers. The emerging accelerometry technologies introduced include the multisensor
arrays and the combination of accelerometers with physiological sensors. The outputs of accelerometers are compared with criterion
measures of energy expenditure (indirect calorimeters and double-labeled water) to develop mathematical models (linear, nonlinear,
and variability approaches). Results: The technologies of the sensor and data processing directly influence the results of the outcome
measurement (activity counts and energy expenditure predictions). Multisite assessment and combining accelerometers with physio-
logical measures may offer additional advantages. Nonlinear approaches to predict energy expenditure using accelerometer outputs
from multiple sites and orientation can enhance accuracy. Conclusions: The development of portable accelerometers has made
objective assessments of physical activity possible. Future technological improvements will include examining raw acceleration signals
and developing advanced models for accurate energy expenditure predictions. Key Words: HARDWARE, ANALYSIS, MODELING,
ENERGY EXPENDITURE, PIEZOELECTRIC SENSOR

Physical activity (PA) has been studied for the pur-
poses of understanding the basic characteristics of
human movement (e.g., gait analyses) and the rela-

tionship of PA to chronic diseases such as cardiovascular
disease and cancer. Healthy People 2010 has even recog-
nized PA as a leading health indicator (49). The accurate
and detailed measurement of PA is therefore a crucial pre-
requisite to exploring its association with health and disease.

Numerous methods have been used to measure PA in the
short and long terms. They vary greatly in their applicability
in epidemiological research, intervention studies, clinical
practice, and personal assessment. These methods fall into
four general classes: subjective reports and observations,
indirect calorimetry, double-labeled water (DLW), and por-
table monitors. This paper a) reviews the methodologies of
the portable PA monitors, particularly the accelerometry-
based PA monitors; b) compares the technical and practical
aspects of several commonly used accelerometers; c) ex-
plores the emerging technologies in the monitor designs;
and d) discusses the analytical modeling of monitor outputs
in predicting energy expenditure (EE) of PA.

METHODOLOGIES

Accelerometers are devices that measure body move-
ments in terms of acceleration, which can then be used to
estimate the intensity of PA over time. Most accelerometers
in current use are piezoelectric sensors that detect acceler-
ation(s) in one to three orthogonal planes (anteroposterior,
mediolateral, and vertical). Processed data can be recorded
by internal memory and then downloaded through computer
ports.

To better understand the accelerometry-based PA moni-
tors, we should understand the basic concepts of the target,
namely, the motion or movement associated with PA, the
technology of the sensors, and the processes involved from
data collection to analyses of outputs.

Basic physics: speed versus acceleration. Speed
is the change in position with respect to time. Acceleration is
the change in speed with respect to time. Acceleration is
usually measured in gravitational acceleration units (g; 1 g �
9.8 m·s�2). When acceleration is zero, the body of interest is no
longer changing its speed, though it may still be moving if the
body has a constant speed associated with it.

Because acceleration is proportional to the net external
force involved, and therefore more directly reflective of the
energy costs, measuring PA using acceleration is preferred
to using speed. From a technical standpoint, it is also more
desirable to measure acceleration because it generates an
information-rich signal that can be postprocessed into speed
and distance signals using integration with respect to time,
thereby conserving signal integrity that would be lost if
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postprocessing was performed by differentiation with re-
spect to time (53).

Piezoelectric sensor principles and properties.
Most accelerometry-based PA monitors use one or multiple
piezoelectric accelerometers. A piezoelectric acceleration
sensor consists of a piezoelectric element and a seismic
mass, housed in an enclosure (Fig. 1). When the sensor
undergoes acceleration, the seismic mass causes the piezo-
electric element to experience deformation in the forms of
bending (in beam sensors) or direct tension or compression
(in the newer integrated chip (IC) sensors). These confor-
mational changes cause displaced charge to build up on one
side of the sensor, which can generate a variable output
voltage signal that is proportional to the applied accelera-
tion. In the case of a beam configuration, the piezoelectric
element is the most sensitive in the bending direction; hence
it is often referred to as uniaxial. However, deformations in
other directions or planes can also results in acceleration
signals. Some define this type of piezoelectric sensor as
omnidirectional, which means it senses accelerations not
only in the axis of bending (e.g., vertical to ground), but also
the other planes or directions (horizontal and lateral). Fur-
thermore, the difference in sensitivity in each direction is
determined by the geometry (cross-sectional area and
length), material property (stiffness), and the positioning of
the seismic mass on its beam. In fact, all piezoelectric beam
accelerometers have various degrees of such omnidirec-
tional effect. The output from these accelerometers com-
bines signals from all directions, while the contributions
from each direction are not differentiable.

To measure accelerations in multiple directions, several
unidirectional translational accelerometer units must be
mounted orthogonally to one another. This process can be
performed either manually or through the use of a multiaxial
IC accelerometer. Piezoelectric sensors are useful because
they have high outputs for small strains and the potential of
a large dynamic range (48).

A major limitation of most piezoelectric accelerometers is
that they can only reliably be used to detect dynamic events.
This is because of a phenomenon known as “leakage,”
which occurs when the initial change in charge in the
piezoelectric element dissipates in time, even if the static
loading that caused the initial change is still present. The
rate at which leakage occurs depends on the time constant,
a physical property of the piezoelectric material (48). The

inability of most accelerometers to detect the static compo-
nent of the acceleration means that they are not well suited
for measuring the angles (with respect to gravity) of the
attached surfaces and postures. In other words, they cannot
detect body postures (standing vs sitting). However, recent
advances in solid-state technology and digital filters have
allowed the measurements of static acceleration and hence
can provide information on body position.

Data acquisition, filtering, process, and storage.
The rate of data acquisition is determined by the sampling
frequency of the monitor computer. To ensure that the full
range of human motions are captured independently, the
sampling frequency should fulfill the Nyquist criterion (38),
which specifies that the sampling frequency must be at least
twice the frequency of the highest frequency of movement.
If this criterion is not met, measurements of rapid motions
(higher frequency domain) will be distorted. The general
frequency in normal nonimpact PA of the center of mass in
humans is below 8 Hz (during running in the vertical direc-
tion) (57); however, the upper limit could be as high as 25
Hz in specific movements of the arms. The sampling fre-
quency for commercially available PA monitors thus gen-
erally range from 1 to 64 Hz.

After the data have been sampled, sensor output is filtered
using a band pass filter. Band pass filtering allows frequen-
cies between a preset low- and high-frequency limit to pass
while all other frequencies are attenuated. This type of
filtering increases the linearity of the output (measured
acceleration) with respect to the true signal (body acceler-
ation). The band pass filter also reduces the influences from
artifacts such as aging of piezoelements or temperature-
related sensor drifts, which are in the very low frequency
domain (hours to months or �0.1 Hz) and electrical or
electronic noise, which is in the higher frequency domain
(�60 Hz). The currently used ranges by most commercial
PA monitors are somewhere between 0.25 and 7 Hz. After
passing the filter, the linearity is typically �0.98 (R2) within
a range of 1–2 g in most industry standard accelerometers.
The limits of the band pass filter are also determined by the
type of movement the device is intending to capture (50) and
is generally in the range of 0.1–10 g. The acceleration
components at the pelvis (vertical, anteroposterior, and me-
diolateral) generally range from 0.05–0.5 g during level
walking (1–5 m·s�1), even after considering the variability
in irregular surfaces (SD of 0.3 g) (32).

FIGURE 1—Schematic of the two common piezoelectric accelerometer configurations.

METHODOLOGY OF ACCELEROMETERS Medicine & Science in Sports & Exercise� S491



The selection of an appropriate frequency response range
for a bandwidth filter could be significant. An overly wide
bandwidth would allow noises that are not physiologically
related (baseline drift or the hardware, vibrations such as
operating a motor vehicle, or electrical artifacts) to be in-
cluded in the signals. On the other hand, a narrow bandwidth
could cause incomplete data collection of all activities. It
has been reported that several currently available PA mon-
itors are not as sensitive to activities that are of less than
moderate intensities (20,47), and plateau in vigorous inten-
sities (4,27).

What is a “count”? The raw outputs of accelerom-
eters in PA monitors are known as counts. However, it is
often unclear what a count truly means, physically or
physiologically.

The initial signals for most accelerometry sensors are
bidirectional. In other words, they can be positive and neg-
ative. This voltage signal, after being filtered and amplified
(in most cases), is then sampled at a prefixed frequency by
the device to convert the analog voltage signal to a digital
series of numbers (A/D conversion), which are called “raw
counts.” The amplitude of this digital signal (raw counts) is
determined by the system hardware including the analog
voltage, the amplification factor, and the A/D conversion
factor. In a common 8-bit conversion, each point signal’s
amplitude (raw counts) can range from �128 to �128 (28 �
256). However, these are not the same counts as the output
of the current PA monitors. After these digital data strings
reach the processor (microcomputer chips), different ana-
lytical approaches can be applied. The first approach is to
use a digital counter to accrue the number of times the signal
crosses a preset threshold. This threshold could be a value of
zero (often referred as the zero-crossing method) or a “sig-
nificant” value that is thought to represent motion. The
second approach is to use an algorithm that can determine
the maximum value for a selected time period (epoch) to
represent the count for that time window. The third and most
commonly applied method is to use the area under the curve
(integration or average) algorithm.

Before the integration algorithm, the steps of the digital
signal processing normally include converting the negative
counts into positive ones (full-wave rectification, more com-
mon, Fig. 2) or taking only the positive side (half-wave
rectification). This is to ensure that the integration does not
include both positive and negative counts. The digital inte-
gration algorithm then sums the “raw counts” for each given
time window (normally 1 min). The end result is often
called the PA counts from each accelerometer.

The advantages of using the integrated signals include the
simplicity for general understanding, the ease of processing
for both hardware and software needs, and statistical robust-
ness (integrated algorithm). However, the use of such pro-
cessing techniques to extract PA measurements does have
significant limitations. First, the integration process dimin-
ishes the details of the signals within each time window. The
common duration for such time windows, at least in adults,
is 1 min. However, it should be recognized that the time
period over which accelerometer counts are averaged

(termed an epoch) can affect the interpretation of data.
Choosing a short epoch yields higher resolution of bout
durations, which may be important if PA is accumulated in
multiple short bouts. On the other hand, a disadvantage of
short epochs is that the EE associated with 10- to 30-s
epochs has little physiological value. Choosing a longer
epoch has the normal data-smoothing advantage of time
averaging. The main drawback is that if a long epoch con-
tains a mixture of two activities of different intensity, then
the data will be averaged to reflect an intermediate intensity.
If the bout of a higher intensity PA within a particular epoch
is shorter than the width of the epoch, the averaged PA count
for the epoch will be lower than the actual PA intensity. This
can lead to misclassifying higher intensity PA that are more
intermittent into moderate or light categories. Thus, there is
a trade-off between choosing shorter versus longer epochs.
For most applications, 1-min epochs appear to be a reason-
able compromise.

The detailed signal characteristics could be crucial to
assessing PA types and intensities. Figure 3 demonstrates
some clearly different signal patterns: the first set of signals
simulates a consistent but low-intensity level of PA, the
second a moderate-intensity PA over a period of time (or a
bout), and the third a sporadic but higher intensity PA.
However, the integrated outputs for these three signals for
this time window are identical. No current standard cur-
rently exists for the units of PA counts across device man-
ufacturers. As mentioned before, these are arbitrary param-
eters that depend on the A/D conversion, sensors, and
amplification factors and are thus less physically meaning-
ful in relationship to PA, particularly to the intensity or type
of PA.

Reliability issues. The measures of intra- and inter-
monitor coefficients of variance (CV) and intraclass corre-

FIGURE 2—Analytical processing of the acceleration data. 1. Raw: a
60-s window of a digitized raw signal collected at 32 Hz and using a
8-bit A/D conversion. 2. Rectification: all negative signal from (1) was
turned into positive. 3. Integration: 15-s epochs.
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lation coefficient (ICC) are normally used to define reliabil-
ity in accelerometers. Reliability studies can be done using
a calibration device (mechanical apparatus) with the advan-
tages of better standardization and wider signal range. Al-
ternatively, human trials can offer more “real-life” condi-
tions. Welk et al. (54) have reviewed these issues in detail.

CURRENT TECHNOLOGY

Montoye et al. (34) were the first to recognize the poten-
tial of accelerometers to assess of the intensity of PA ob-
jectively. Currently used accelerometry PA monitors can be
separated into two generations. The first generation consists
of a single accelerometer placed on the waist (the most
common position because it is closest to the center of body
mass) or on an ankle or wrist. The Caltrac, Tritrac-R3D,
RT3, ActiGraph, Actical, and Actiwatch are just a few
commonly used PA monitors that are currently available for
purchase in the United States. The technical and practical
specifications of the currently marketed first generation PA
monitors also are included in Table 1. The following pro-
vides a detailed description of those first generation PA
monitors that have appeared most frequently in the pub-
lished literature.

ActiGraph, formally known as Computer Science and
Applications (CSA) and Manufacturing Technology Inc.
(MTI) (ActiGraph, LLC, Fort Walton Beach, FL), is a
uniaxial accelerometer device (51 � 41 � 15 mm, 43 g with
a watch battery). The sensor is configured as a cantilever
beam and is most sensitive in the vertical direction. It is
waterproof. The manufacturer also makes a calibration de-
vice that is similar to a rotating shaker. If the calibration for
a specific unit exceeds the preset sensitivity range, the user
can manually adjust the unit by changing the hardware
setting under the enclosure. The standard ActiGraph model

7164 model has 64 kbyte of internal random access memory
(RAM) for data storage of 22 d using a 1-min epoch. The
newly available ActiGraph model 71256 increases the mem-
ory storage capacity by four times (256 kbyte RAM). The
piezoelectric accelerometer has a dynamic range of 0.05–2.0
g with a frequency response between 0.25 and 2.5 Hz. The
ActiGraph has a sampling frequency of 10 Hz. It has mul-
tiple configurations to allow attachments to the wrist, ankle,
or waist. Multiple studies have been conducted to establish
the calibration of the ActiGraph for predicting EE in adults
and children. These studies are reviewed by Matthews (32)
and Freedson et al. (18).

RT3 Triaxial Research Tracker (StayHealthy, Inc., Mon-
rovia, CA), is built on the original Tritrac-R3D technology.
It is the size of a pager (71 � 56 � 28 mm and weighs 65 g
with one AAA size battery) and is worn clipped onto the
waist. It uses piezoelectric accelerometers and measures
motion in three orthogonal dimensions and provides triaxial
vector data in activity units. The sensor range, sampling
frequency, frequency response, and A/D converting resolu-
tion are proprietary. The manufacturer’s software estimates
a subject’s resting EE using published equations and asso-
ciated EE (EEACT, or the absolute intensity of PA) using the
vector magnitude of the activity counts and a proprietary
linear regression algorithm. The RT3 is capable of collect-
ing and storing data up to 8.5 d (for triaxial output data
mode). The significant improvement in technology from the
original Tritrac-R3D to the RT3 was the conversion from
three hand-soldered piezoelectric beam sensors to a triaxial
IC chip setting. This minimizes the interinstrument errors
and the risks of beam failure. The original Tritrac-R3D
monitor included a backup battery (coin cell) to ensure no
data storage loss when the main battery (9 V) was either too
low or taken out. However, this feature no longer exists on
the RT3, which can cause data loss (particularly in pediatric
applications). The RT3 (or Tritrac-R3D) is not waterproof
and does not allow manual adjustments for sensitivity.

Actical (Mini Mitter Co., Inc., Bend OR) is the newest
and the smallest uniaxial accelerometer (28 � 27 � 10 mm,
17 g with a watch battery). It is worn at the hip of the
subject. This device can record PA counts for up to 45 d
using a 1-min epoch. The sampling frequency is 32 Hz, and
sensitivity is 0.01 g. It collects motions in the frequency
range of 0.5–3 Hz.

FIGURE 3—Three sets of arbitrary data vectors (20 points each) with
the same digital integrated output, but very different SD.

TABLE 1. Technical details of several commonly used accelerometry-based
PA monitors.

Actigraph
(MTI/CSA) RT3 Actical

Manufacturer MTI StayHealthy Mini Mitter
Battery type Coin Cell 1 AAA Coin cell
Battery life 160 d 30 d 180 d
Epoch 1 s–10 min 1 s or 1 min 15 s–15

min
No. of axes Uniaxial Triaxial Uniaxial
Sampling frequency 10 Hz Unpublished 32 Hz
Frequency response 0.25–2.5 Hz Unpublished 0.5–3 Hz
Intermonitor CV 4–5% (31–33)a 4–26% (40)a 4–19%a,b

ICC (55,56) 0.80 0.73–0.87 0.62
a Tested with a mechanical device.
b Unpublished data from our laboratory.
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Actiwatch (Mini Mitter Co., Inc., Bend, OR), the prede-
cessor of the Actical, has been used extensively in sleep
research. The technology for Actical and Actiwatch is very
similar, except that the Actical has the sensor oriented to
detect vertical acceleration, has narrower bandwidth (com-
pared with 0.5–7 Hz in Actiwatch) filter, and integrates raw
counts over the epoch (rather than taking maximum signal
over 1-s range then integrating over the epoch for Acti-
watch). Both the Actiwatch and the Actical are waterproof
and do not allow the user to manually adjust its sensitivity
settings.

Collectively, the advantages of this class of accelerometry
devices include their small size and the fact that they are
wireless, noninvasive, and minimally intrusive to normal
subject movements during daily activities. Thus, they are
easy to use for subjects and testers. Compared to uniaxial
sensors, a triaxial accelerometer provides a theoretically
more comprehensive assessment of the body movements,
shown by its higher correlation with measured EE in adults
(20,58) and in children (15,30,39). However, the current
analytical approach of combining the three axes into one
summarized outcome parameter may not take the full ad-
vantage of the three-dimensional data (12), as we demon-
strate later. These monitors normally record the PA using a
quantitative but arbitrary intensity scale (PA counts) over a
relatively extended measuring period (minute-by-minute
data for up to 28 d), which makes free-living PA monitoring
more feasible. However, this generation of PA monitors also
has some limitations: a) they selectively record movement
of the specific part of the body to which they are attached,
and thus differences in PA types are mostly indistinguish-
able or unmeasured, and b) PA counts over a predetermined
time epoch may have limited power for predicting EEACT of
a wide range of types and intensities.

EMERGING TECHNOLOGIES

Realizing the limitations of the waist-mounted PA mon-
itors, several research labs and companies have set out to
develop the next generation of monitors, which have imple-
mented two separate strategies: a) they use multisensor
arrays applied at different body segments and b) they com-
bine accelerometry with physiological sensor(s) in a single-
site device.

Multisensor accelerometers. The approach of mul-
tiple measurements at different body segments was shown
by Swartz et al. (47) in combining two accelerometers
(ActiGraph) at the wrist and hip to determine whether
EEACT prediction improved using a bivariate regression
equation. This resulted in a statistically significant but small
improvement (R2 � 0.34, P � 0.002) compared with a
univariate regression model using the hip sensor alone (R2

� 0.32). In some research and development labs, the accel-
erometer sensors were arranged in parallel arrays and posi-
tioned at different body segments (mainly the chest and
thighs) to monitor the types of activities by postural iden-
tification (6,17,23,24,28,50,52).

The target application for many of these prototype PA
monitors, which have been tested primarily in small re-
search labs in Europe, was rehabilitation in patients with leg
amputation, back surgery, and chronic heart failure; al-
though some “able-bodied” subjects were sometimes used
as controls, the number of subjects and the types of PA used
for development and validation were generally small
(7,8,51). This class of investigational accelerometry moni-
tors has the potential to detect postural changes and slow
motions, which were the main limitations of the first-gen-
eration waist-mounted accelerometry-based PA monitors.
However, these multiple-site monitors contain several
wires, are not available outside the developing labs, and are
expensive, all of which make them difficult for investigators
to validate or apply in their field research.

Recently, the Intelligent Device for Energy Expenditure
and Activity (IDEEA, MiniSun LLC, Fresno, CA), a new
microcomputer-based portable PA measurement device has
become commercially available. The IDEEA monitor uses
continuous movement data from miniature accelerometry
sensors (16 � 14 � 4 mm, the size of a thumb nail,
weighing �1 g) attached with hypoallergic tape at five sites
(five total sensors): the chest (upper sternum), midthigh of
both legs, and both feet. The scale of the sensors is �2 g.
Three thin and flexible wires (outside diameter � 1.7 mm)
connect the sensors to the minicomputer (70 � 54 � 17 mm,
weighing 59 g, and powered by one AA battery) clipped at
the waist belt. Up to 7 d of continuous raw data (32 Hz
sampling rate) in eight synchronous channels (sensors on
the chest and both feet are biaxial accelerometers) can be
compressed using an advanced algorithm and then stored in
the IDEEA computer (200-MB storage capacity). Because
both RAM and flash memories are used, data can be ac-
cessed quickly but without the risk of loss even with no
power from the battery.

The IDEEA was designed to measure the complex as-
pects of PA, particularly for accurately determining PA
modes. In a recent study, Zhang et al. (59) reported that the
IDEEA monitor correctly identified postures, leg move-
ments, and gaits (98.5%). Pooled correlation between pre-
dicted and actual speeds of walking and running also was
high (r � 0.986, P � 0.0001). In a subsequent paper, these
authors also reported that the estimated mean EE from the
IDEEA was accurate (�95%) compared to the measured
values in a calorimetry chamber (60). Although a correlation
coefficient value of 0.96 was reported, the SEE (defined as
the SD of the difference between predicted and the criterion
measures) was not reported from this study.

Devices that combine accelerometry with other
physiological measurements. In the second approach,
single-unit monitoring devices are being developed that
combine accelerometer(s) with other physiological mea-
surements, such as HR, temperature, and others. As long as
accelerometers have been in use, HR monitors also have
been used as a simple method of estimating PA, EEACT, and
even total EE, based on a linear or close to linear (R2 � 0.5)
relationship between EEACT and HR throughout a wide
range of aerobic exercise levels (29,46). However, using HR
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for PA assessment would require individually fitted curves
(EE prediction), and controlling for various factors, includ-
ing fatigue, state of hydration, body temperature, emotional
state, and use of substances such as caffeine and ephedrine
(26,37,58). Another disadvantage is that HR is not a good
predictor of EE at low levels of PA (29). Investigators also
have tried to combine HR with accelerometers (in separate
monitors) and demonstrated significant improvements in
prediction accuracy (35). The details of methods combining
HR and accelerometry have been reviewed by Strath et al.
(46) and Brage et al. (3). Combining acceleration with HR
and other measurements in a single unit would simplify the
processes of application and data download and synchroni-
zation. Two monitors of this approach are now available to
researchers. However, the incomplete measurement of dif-
ferent PA types associated with the nature of one-site move-
ment detection with this approach is not significantly im-
proved over the first-generation monitors.

Recently, the Actiheart (Mini Mitter Co., Inc.) device has
integrated their accelerometer (uniaxial) with an ECG signal
process for the simultaneous detection of HR and body
movements. The Actiheart monitor consists of a 33-mm
(diameter) main sensor and a 7-mm secondary sensor con-
necting through a flexible wire (188 mm total length). It
weighs 10 g and has an internal rechargeable battery. The
published range for the acceleration sensing is �2 g, with an
8-bit A/D resolution, and 32-Hz sampling rate. The ECG
(two lead between the main and the secondary sensors) is
collected at 128 Hz and uses the standard R-wave detection
algorithm to calculate HR (35–255 bpm). The Actiheart
sensor is attached to the subject’s chest with two standard
stick-on ECG electrodes and has a recoding time of 11 d
using 1-min epoch. Brage et al. (3) have demonstrated that
the Actiheart-predicted EE, from an accelerometer/HR
model, was significantly more accurate than using either
parameter alone.

The SenseWear Armband (Bodymedia Inc., Pittsburgh,
PA) is another newly available monitor (85 � 54 � 20 mm,
85 g with an internal lithium-ion battery) that is contoured
to be worn at the upper arm. The internal sensors include an
accelerometry sensor, heat flux sensor, galvanic skin re-
sponse sensor, skin temperature sensor, and a near-body
ambient temperature sensor. The accelerometer in the arm-
band is a two-axis accelerometer that uses a microelectro-
mechanical sensor device that measures motion. A polysili-
con spring supports a small mass that moves when subjected
to external acceleration, namely, body movements. The
scale for the sensor is �2 g with an 8-bit A/D converter (256
counts at 3.66 mg per count). The sampling rate is 32 Hz and
has 512 kbyte RAM of data storage. The manufacturer’s
software calculates a subject’s EEACT using a proprietary
algorithm that combines acceleration, heat flux, and other
parameters. However, it is unclear what percentage of each
parameter (�20 total possible output parameters) contribute
to the prediction equation. The SenseWear is capable of
collecting and storing data up to 5.5 d using a 1-min epoch.
Jakicic et al. (21) recently found that the SenseWear arm-
band (using its built-in algorithms) underestimated EE dur-

ing walking, cycling, and stepping (6.9–17.7%), while over-
estimated EE during arm ergometer exercise (29%). This
further illustrates the limitation of the single-site monitoring
approach and underlines the importance of better analytical
development for the EE prediction models.

Shoe and ankle-mounted accelerometers. Al-
though the accelerometers are primarily used in research, it
is worth knowing that they may also be used to improve step
counting and speed assessments during walking and running
for the consumer market. Several large commercial compa-
nies (Nike Triax and Polar S1 foot pod) and developing
companies (FitSense FS-1 and Dynastream AMP331) have
incorporated the accelerometers in their products. The tech-
nical basis of these products is to measure the acceleration
of the foot (by attaching the sensor to the shoe lace or ankle)
and analyze the pattern of the movement (walking vs run-
ning) to estimate stride lengths and frequency. Signals are
stored internally within the device (AMP 331) or transmit-
ted through radiofrequency signals to a specially designed
watch for speed display, storage, or combining with HR
(FitSense, Nike Triax and Polar) to calculate energy cost.
These devices are mostly downloadable to a computer for
post hoc analyses.

Conger et al. (13) found that the FitSense device provides
a reasonable estimate of speed and distance in level walking
and running (for speeds ranging from 4.8 to 11.2 km·h�1).
This is impressive given that most devices (e.g., waist-worn
pedometers and accelerometers) cannot do that. Drawbacks
of the FitSense speedometer were that it did not work well
during uphill running, and it underestimated EE in the
transition between walking and running. A preliminary
study by Karabulut et al. (personal communication) exam-
ined the validity of the AMP 331 ankle-mounted acceler-
ometer for measuring walking. The AMP was accurate for
counting steps over a range of walking speeds from 40 to
107 m·min�1, though it consistently underestimated dis-
tance by a small amount. It also was insensitive to most
sources of error, such as heel tapping, stationary cycling,
and car driving. The FitSense speedometer and AMP 331
show promise for estimating EE of human gait patterns.
However, the validity of ankle- and shoe-mounted acceler-
ometers in nonwalking or running PA needs be further
investigated.

ANALYTICAL APPROACHES TO
PREDICTING EE

The four principal characteristics of PA are intensity,
type, duration, and frequency. The absolute intensity of PA
is defined as its EEACT. Many investigators thus use the
minute-to-minute EEACT values predicted from the acceler-
ometers to classify daily PA into intensity categories, bor-
dered by cut points, to enable the duration and frequency of
light, moderate, and vigorous PA to be recorded. Thus,
errors of EEACT prediction could lead to misclassification of
duration and frequency of PA. The various outcome mea-
sures from the accelerometry (or the combinational) devices
should be calibrated against well-measured EEACT, as it is
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discussed in detail by Welk (54). Furthermore, the validity
of using different PA monitors to estimate the intensity
categories of PA (in metabolic equivalents, or METs) in
adults and children is reviewed by Matthews (32) and Freed-
son et al. (18). The technological developments in acceler-
ometry devices also include advancements in analytical
modeling approaches.

As the criterion measure, EEACT can be assessed using
indirect calorimetry or the DLW techniques. Indirect calo-
rimetry measures O2 consumption and CO2 production pro-
spectively and with precision, from which the rate of EE
(kcal·min�1) is determined by standard predictive models.
EEACT during any time window can be readily obtained
after removing the resting EE and summing the area under
the curve. This method is the most appropriate for precise
and detailed comparisons in a well-controlled environment,
but does not sufficiently assess all activities of the daily
living. DLW is based on the difference in the rates of
turnover of H and O in body water. This is achieved by
measuring CO2 production and disappearance rates of the
isotopes (2H and 18O) in urine, blood, or saliva (43–45).
EEACT during the entire study period (7–28 d) is then
resolved as total EE � resting EE � thermic effect of food.
As the gold standard for measuring free-living EE, DLW
provides an accumulative measure for the entire measure-
ment period, but does not reveal the day-to-day variations in
EEACT (42,44,45).

Linear approaches. Most validation studies in the
literature have evaluated the correlation coefficient between
the activity counts from monitors with the single acceler-
ometer configuration and EE measured using indirect calo-
rimeters (metabolic carts, portable metabolic units, or room
calorimeter) or DLW. In several validation studies con-
ducted in laboratory settings, correlation values between EE
measured by indirect calorimetry and accelerometer read-
ings ranged from 0.58 to 0.92 during various activities
(1,2,5,9,12,19,20,22,32,37). Level walking showed the
highest correlation with the waist-worn triaxial accelerom-
eters, with the r as high as 0.99 (27). Using a room calo-
rimeter, we have shown that the group (N � 125) correlation
between measured daily EEACT and the vector magnitude of
a triaxial accelerometer activity counts was 0.54 on a sed-
entary day and 0.74 on a day with some nonintense activity
added (12). Inspired by the significant correlations, many (if
not most) investigators and device manufactures have ap-
plied linear regression equations to the monitors’ output (PA
counts) as the predictive models for EEACT. The classic
development of such linear correlation approaches was
demonstrated by Freedson et al. (19) in a pooled (N � 35)
sample of young subjects exercising on a treadmill at three
different intensities while wearing a uniaxial ActiGraph
monitor at the hip (R2 � 0.82). A subsequent study (36) also
used the regression equations developed individually during
a walking trial (r � 0.77 for ActiGraph and 0.89 for Tritrac-
R3D) and applied them to the signals from more habitual PA
types (r � 0.59 for ActiGraph and 0.62 for Tritrac-R3D). It
should be noted that the correlation values in many of these
studies associated activity counts with EE for the study

group rather than for each individual. Although this method
is sufficient for answering the question regarding validity as
a group, it often does not account for important between-
individual variations. Furthermore, within individuals, a PA
monitor could underestimate certain PA while overestimat-
ing others, such that the total sum of predicted EEACT ends
up being comparable to the measured overall EEACT.
In turn, this significant error would lead to misclassification
of the other key characteristics of the PA—duration and
frequency.

A limited number of studies have explored the correla-
tions between longer term EEACT predicted by accelerom-
eters and measured EEACT using DLW. In a 7-d study of 13
normal young women under free-living conditions, Leend-
ers et al. (25) found that, although the average PA counts
from the ActiGraph and the Tritrac-R3D both significantly
correlated with EEACT measured by DLW (r � 0.45 and
0.54, respectively), their predictive equations underesti-
mated EEACT by 59 and 35%, respectively. Ekelund et al.
(14) also found a similar correlation (0.54) in a group of
9-yr-old schoolchildren between total PA counts from a
ActiGraph monitor and a 14-d DLW-measured EEACT.

Waist-worn accelerometers underestimate the EE of free-
living individuals for a number of reasons (1,20). Failure to
detect the additional EE resulting from arm activity, stand-
ing posture, vertical work (i.e., stair climbing or uphill
walking), pushing or pulling objects, carrying extra weight
(e.g., book bags, computers), nonweight-bearing exercise
(e.g., bicycling), and PA in water (e.g., swimming) contrib-
utes to the error. Finally, waist-worn accelerometers that
measure vertical acceleration generally cannot detect in-
creases in EE that occur at running velocities over 9 km·h�1

(4), and they underestimate the EE of activities that require
rapid changes in horizontal acceleration, such as tennis (1).
The major advantage of the linear regression approach is its
simplicity. This means that the output from the accelerom-
eters can be readily calculated into predicted EEACT using
popular software such as a spreadsheet. However, a major
limitation is that the accuracy of the linear regression ap-
proach significantly depends on the types of PA performed
(1,16).

Nonlinear approaches. Mathematically, the linear
model is a simplification of more general nonlinear models,
in which either the power parameter(s) equal to one or the
logarithmic function is used to convert the input-output
parameters. Physiological evidence also may support the
nonlinear relationship between acceleration of body move-
ments and EEACT. For example, it has been demonstrated
that the EEACT was nonlinearly associated with the speed of
walking and stepping in healthy adults (10).

Chen et al. (12) demonstrated the advantages of using a
nonlinear power model to predict EEACT using PA counts from
the Tritrac-R3D. Briefly, the whole-room indirect calorimeter
was used as the gold standard and a two-component (vertical
and horizontal) power model was developed to translate each
individual’s activity counts from the Tritrac-R3D to minute-
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to-minute EEACT in a cross-sectional sample (N � 125) of
heterogeneous normal men and women:

EEACT � a*��Ax
2 � Ay

2	p1 � b*Az
p2

In this model, Az represents the vertical acceleration
counts, and counts in the Ax and Ay directions are combined
to represent acceleration in the horizontal plane. The coef-
ficients a, b, p1, and p2 were determined by a traditional
unconstrained nonlinear optimization algorithm for each
study individual. Compared with the manufacturer’s predic-
tion equation (linear model with vector magnitude of x, y,
and z axes), this model’s prediction of minute-by-minute
EEACT was significantly improved in terms of correlation
(r � 0.81–0.98, P � 0.01) and the SEE (0.35 � 0.08
kcal·min�1, P � 0.001). The improved prediction from the
nonlinear two-component model was clearly evident for
the same subject by comparing Figure 4 (Tritrac-R3D
model) to Figure 5. For the group (N � 125), the model was
able to improve the significant group underestimation of
total EEACT from about 50% by the Tritrac-R3D model (Fig.
6) to about 3% (Fig. 7). Furthermore, this study was de-
signed with two separate study visits for each subject, with

1 d randomized to include several 10-min moderate exercise
bouts (denoted the exercise day) and the other day’s PA was
entirely spontaneous (the normal day). When apply the
individual models developed from the exercise day were
applied to the normal day Tritrac-R3D acceleration counts,
the group prediction errors of total EEACT were also signif-
icantly improved. It could be further demonstrated that the
individual models (N � 125) could then be generalized by
using the multiple regression approach and reduced model
coefficients (a, b, p1, and p2) to contain only the subject’s
gender and body weight without losing significant accuracy
in predicting EEACT (12). The generalized results of the

FIGURE 5—.Same subject as in Figure 4. Predicted EE using the
modified two-component nonlinear model (thin black line) vs the cal-
orimeter-measured EE (thick black line). r � 0.94, SEE � 0.27
kcal·min�1.

FIGURE 7—Same group as in Figure 6. Compared with the calorim-
eter-measured total EEACT, the two-component nonlinear prediction
model significantly improved the estimation for the normal day and
the exercise day. The open circles represent the normal day and the
closed circles represent the exercise day.

FIGURE 4—Subject: a woman age 32 yr, body mass 67.4 kg, resting
EE � 1.06 kcal·min�1. Tritrac-predicted EE (thin black line) vs the
calorimeter-measured EE (thick black line) during the waking period
of a 24-h stay in the room calorimeter. r � 0.88, SEE � 0.48
kcal·min�1.

FIGURE 6—Calorimeter-measured vs Tritrac-predicted total EEACT.
Group: 53 men, 72 women. The Tritrac-R3D underestimated (below
the line of identity) total EEACT. The open circles represent the normal
day and the closed circles represent the exercise day.
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power coefficients (p1 and p2) were both less than 1, sug-
gesting the model tends to amplify the signals of light-
intensity PA compared to PA of higher intensities. As an
independent validation, Campbell et al. (9) applied this
generalized model in a group of women during standard
exercises (e.g., walking, jogging, stair climbing) and found
significant (P � 0.05) improvement in EEACT prediction
compared to the Tritrac-R3D models.

To follow this study, Chen et al. (11) have recently shown
that this multicomponent power model approach to predict
EEACT using accelerometer outputs could be extended to
multiple devices. In a study of 60 healthy sedentary women,
24-h PA was measured by the same Tritrac-R3D triaxial
accelerometer (worn at the hip) while adding a wrist uni-
axial accelerometer (Actiwatch) on the dominant arm for
simultaneous upper body movement measurements, in
which the combined model was able to further improve the
accuracy of predicting total EEACT. Comparing with mod-
eling data from each individual, pooled sample data can be
ascertained from a group where the prediction equation(s)
can be derived for EEACT prediction. Puyau et al. (41) took
a group of 32 children and developed a nonlinear predictive
equation that associated (R2 � 0.74–0.79 with the inclusion
of weight, height, age, and sex) PA counts from two uniaxial
monitors (Actiwatch and Actical, respectively) with mea-
sured EEACT during PA of various types and intensities. The
advantage of the group model is its generalizability. How-
ever, it should be noted that the SEE (0.63–0.70
kcal·min�1) also were substantially greater than the indi-
vidual models that we have shown previously. Thus, the
group prediction model should be used with caution in
individual EE predictions.

The major advantage of nonlinear modeling is its im-
proved precision to predict EEACT in individuals and in
groups. However, nonlinear models do have the tendency to
be unstable (if the power parameter is �1) or to plateau too
quickly (power parameter is �1) for higher intensity exer-
cises. Our models (11,12) and those from Puyau et al. (41)
all yielded to power parameters �1 . One solution to min-
imize the plateau effect is to design higher intensity exer-
cises during model development stages. The other limitation
of the nonlinear models is the computational complexity.
However, with current and future technological advance-
ments in microprocessors, this should be a minor concern.

Analyzing the variability in accelerometer
counts. It is possible that analyzing the variability in
accelerometer counts between several successive epochs
may provide a closer estimate of EE than using counts
alone. Bassett et al. (1) reflected on data from an earlier
study. In that study, acceleration and EE data were collected
for 28 different lifestyle activities falling into the general
categories of lawn and garden, occupation, housework, fam-
ily care, conditioning, and recreation. It was evident that
uniaxial waist-mounted accelerometers (Kenz, Caltrac, and
ActiGraph) overestimated the EE of walking, but underes-
timated the EE of virtually all other activities. Furthermore,
it was possible to distinguish walking from other lifestyle
activities because the variability in acceleration counts was

less for walking than for other activities. Lifestyle activities
such as gardening, vacuuming, sweeping, ironing, laundry,
tennis, and golf are intermittent in nature and have more
minute-to-minute variation in acceleration counts per
minute than walking. This suggests a method whereby one
might be able to improve on the estimation of EE by
constructing two regression lines, one for walking and one
for other activities.

SUMMARY

The role of PA in preventing and treating many chronic
diseases has been recognized for some time, but improved
methods of quantifying PA are now allowing us to refine our
knowledge. Many instruments measure PA, and they vary
by particular needs, feasibility, and accuracy. Small and
wearable PA monitors, particularly accelerometers, are con-
tinually being refined as potentially very useful techniques
in the accurate and detailed measurement of free-living PA.

Past and current research has mostly used waist-mounted
accelerometers, which are compact, durable, and relatively
inexpensive and have been proven reliable. However, the
sensitivity and precision in determining the intensity of PA,
particularly for the individual prediction of EEACT, need to
be reexamined if they are to be used in clinical studies.
Future accelerometry monitors must be designed to signif-
icantly improve their ability to predict EEACT. Moreover, in
order to be portable and rugged enough for free-living
applications, several crucial criteria should be followed: 1)
they should be compact and contain no or a minimum
amount of wires, and 2) they must have sufficient data-
processing and storage capabilities to record continuous
data for an extensive period. However, before all these
criteria are realized in an ideal PA monitor design, careful
studies must elucidate the components of raw accelerations
that significantly contribute to the accurate predictions of
EEACT. Crucial advancements in this process could lead to
major improvements in determining not only the optimum
data-processing algorithms, but also optimum sensor place-
ment. Hypothetically, rather than using the time-averaged
signals from a hip sensor, a combination of parameters that
represent the high-frequency components of the arms (for
upper body movements during sedentary PA), a postural
parameter extracted from the chest that represents locomo-
tion and intensity components extracted from leg move-
ments can be uniquely combined to generate a significantly
more accurate EEACT prediction.

In addition to the approaches presented here, advanced
modeling techniques could also be used to develop accurate
methods to link accelerometry output with EEACT. Particu-
larly, with multidimensional measurements in body accel-
eration and other physiological parameters that are possible
to collect using the emerging technologies, the nontradi-
tional deterministic techniques may be more efficient to
yield more reliable and consistent results.

For example, the artificial neural network (ANN) ap-
proach is a powerful information-processing paradigm in-
spired by the way the densely interconnected parallel struc-
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ture of the mammalian brain processes information. An ANN
is a collection of mathematical models that emulate some of the
observed properties of biological nervous systems and draw on
the analogies of adaptive biological learning. By systematically
adjusting the “weights” applied to the multiple input parame-
ters (e.g., acceleration signals) according to the overall predic-
tion error compared to the target criterion (e.g., measured
EEACT), this approach can help guide us to develop improved
prediction models. This analytical framework can also be used
to determine the optimum parameters from raw acceleration
signals, other than the integrated PA counts, that are more
suitable for the accurate prediction of EEACT. Thus, these types
of research approaches could have the potential to guide the
future designs of the accelerometry-based activity monitors,
both in their hardware (sensors), software (models), and appli-
cations (location of wear). However, the main limitation of the

ANN is the complex and “black-box” nature, thus are not
readily implemented in current portable activity monitors with
unsophisticated microprocessors. Advances that will allow re-
searchers to deconvolute these models and generalizing them
for such applications will be crucial to the success of imple-
menting such approaches in accelerometry-based activity mon-
itor designs.

The authors acknowledge Megan Neumann, R.D., and Megan
Rothney, M.S., for their assistance in preparing this manuscript.

The work was supported by NIH grants RR00095 (Vanderbilt
GCRC) and DK26657 (Vanderbilt CNRU). Dr. Chen is supported by
NIH grants DK02973 and DK069465, and DOD Grant DAMD17-02-
1-0716. Dr. Bassett is supported by the International Life Sciences
Institute Center for Health Promotion and the American Heart As-
sociation Southeast Research Consortium.

The results of the present study do not constitute endorsement
by the authors or ACSM of the products described in this paper.

REFERENCES

1. BASSETT, D. R., B. E. ANISWORTH, A. M. SWARTZ, S. J. STRATH,
W. L. O’BRIEN, and G. A. KING Validity of four motionsensors in
measuring moderate intensity physical activity. Med. Sci. Sports
Exerc. 32:S471–S480, 2000.

2. BOUTEN, C. V., K. R. WESTERTERP, M. VERDUIN, and J. D. JANSSEN.
Assessment of energy expenditure for physical activity using a
triaxial accelerometer. Med. Sci. Sports Exerc. 12:1516–1523,
1994.

3. BRAGE, S., N. BRAGE, P. W. FRANKS, L. B. ANDERSEN, and K.
FROBERG. Branched equation modeling of simultaneous acceler-
ometry and heart rate monitoring improves estimate of directly
measured physical activity energy expenditure. J. Appl. Physiol.
96:343–351, 1996.

4. BRAGE, S., N. WEDDERKOPP, P. W. FRANKS, L. B. ANDERSEN, and K.
FROBERG. Reexamination of validity and reliability of the CSA
monitor in walking and running. Med. Sci. Sports Exerc. 35:1447–
1454, 2003.

5. BRAY, M. S., W. W. WONG, J. R. MORROW, N. F. BUTTE, and J. M.
PIVARNIK. Caltrac versus calorimeter determination of 24-hour
energy expenditure in female children and adolescents. Med. Sci.
Sports Exerc. 26:1524–1530, 1994.

6. BUSSER, H. J., J. OTT, M. UITERWAAL, R. C. VAN LUMMEL, and R.
BLANK. Ambulatory monitoring of children’s activity. Med. Eng.
Physics 19:440–445, 1997.

7. BUSSMAN, J. B. J., W. L. J. MARTENS, J. H. M. TULEN, et al.
Measuring daily behavior using ambulatory accelerometry: the
activity monitor. Behav. Res. Methods Inst. Comp. 33:349–356,
2001.

8. BUSSMANN, H. B. J., P. H. REUVEKAMP, P. J. VELTINK, W. L. J.
MARTENS, and H. J. STAM. Validity and reliability of measurements
obtained with an “activity monitor” in people with and without a
transtibial amputation. Phys. Ther. 78:989–998, 1998.

9. CAMPBELL, K. L., P. R. CROCKER, and D. C. MCKENZIE. Field
evaluation of energy expenditure in women using Tritrac accel-
erometers. Med. Sci. Sports Exerc. 34:1667–1674, 2002.

10. CHEN, K. Y., S. A.ACRA,C. L. DONAHUE, M. SUN, and M. S.
BUCHOWSKI. Efficiency of walking and stepping: relationship to
body fatness. Obes. Res. 12:982–989, 2004.

11. CHEN, K. Y., S. A. ACRA, K. M. MAJCHRZAK, et al. predicting
energy expenditure of physical activity using hip and wrist worn
accelerometers. Diabetes Technol. Ther. 5:1023–1033, 2003.

12. CHEN, K. Y., and M. SUN. Improving energy expenditure estima-
tion by using a triaxial accelerometer. J. Appl. Physiol. 83:2112–
2122, 1997.

13. CONGER, S. A., S. J. STRATH, and D. R. BASSETT. Validity and
reliability of the Fitsense FS-1 speedometer during walking and
running. Int. J. Sports Med. 2005.

14. EKELUND, U. SJOSTRUM, M., A. YNGVE, et al Physical activity
assessed by activity monitor and doubly labeled water in children.
Med. Sci. Sports Exerc. 33:275–281, 2001.

15. ESTON, R. G., A. V. ROWLANDS, and D. INGLEDEW. Validity of heart
rate, pedometry, and accelerometry for predicting the energy cost
of children’s activities. J. Appl. Physiol. 84:362–371, 1998.

16. FEHLING, P., C. D. L. SMITH, S. E. WARNER, and G. P. DALSKY.
Comparison of accelerometers with oxygen consumption in older
adults during exercise. Med. Sci. Sports Exerc. 31:171–175, 1999.

17. FOERSTER, F., and J. FAHRENBERG. Motion pattern and posture:
correctly assessed by calibrated accelerometers. Behav. Res. Meth-
ods Inst. Comp. 32:457, 2000.

18. FREEDSON, P. S., D. POBER, and K. F. JANZ. Calibration of accel-
erometer output for children. Med. Sci. Sports Exerc. 37:S523–
S530, 2005.

19. FREEDSON, P. S., E. MELANSON, and J. SIRARD. Calibration of the
Computer Science and Applications, Inc. accelerometer. Med. Sci.
Sports Exerc. 30:777–781, 1998.

20. HENDELMAN, D., K. MILLER, C. BAGGET, E. DEBOLD, and P. FREED-
SON. Validity of accelerometry for the assessment of moderate
intensity physical activity in the field. Med. Sci. Sports Exerc.
32:S442–S449, 2003.

21. JAKICIC, J. M., M. MARCUS, K. I. GALLAGHER, et al. Evaluation of
the SenseWear Pro Armband[TM] to assess energy expenditure
during exercise. Med. Sci. Sports Exerc. 36:897–904, 2004.

22. JAKICIC, J. M., C. WINTERS, K. LAGALLY, J. HO, R. J. ROBERTSON,
and R. R. WING. The accuracy of the TriTrac-R3D accelerometer
to estimate energy expenditure. Med. Sci. Sports Exerc. 31:747–
754, 1999.

23. KIANI, K., C. J. SNIJDERS, and E. S. GELSEMA. Computerized anal-
ysis of daily life motor activity for ambulatory monitoring. Tech.
Health Care 5:318, 1997.

24. KIANI, K., C. J. SNIJDERS, and E. S. GELSEMA. Recognition of daily
motor activity classes using an artificial neural network. Arch.
Phys. Med. Rehabil. 79:147–154, 1998.

25. LEENDERS, N. Y., W. M. SHERMAN, H. N. NAGARAJA, and C. L.
KIEN. Evaluation of methods to assess physical activity in free-
living conditions. Med. Sci. Sports Exerc. 33:1233–1240, 2001.

26. LEONARD, W. R., P. T. KATZMARZYK, M. A. STEPHEN, and A.
G. P.ROSS. Comparison of the heart rate-monitoring and factorial
method: assessment of energy expenditure in highland and coastal
Ecuadoreans. Am. J Clin. Nutr. 61:1146–1152, 1995.

27. LEVINE, J. A., P. A. BAUKOL, and K. R. WESTERTERP. Validation of
the Tracmor triaxial accelerometer system for walking. Med. Sci.
Sports Exerc. 33:1593–1597, 2001.

28. LEVINE, J. A., E. L. MELANSON, K. R. WESTERTERP, and J. O. HILL.
Measurement of the components of nonexercise activity thermo-
genesis. Am. J Physiol. Endocrinol. Metab. 281:670–675, 2001.

29. LIVINGSTONE, M. B. E. Heart-rate monitoring: the answer for as-
sessing energy expenditure and physical activity in population
studies? Br. J. Nutr. 78:869–871, 1997.

30. LOUIE, L., R. G. ESTON, A. V. ROWLANDS, K. K. TONG, D. K.
INGLEDEW, and F. H. FU. Validity of heart rate, pedometry, and

METHODOLOGY OF ACCELEROMETERS Medicine & Science in Sports & Exercise� S499



accelerometry for estimating the energy cost of activity in Hong
Kong Chinese boys. Pediatr. Exerc. Sci. 11:229–239, 1997.

31. MELANSON, E. L., and P. S. FREEDSON. Validity of the Computer
Science and Applications, Inc. (CSA) activity monitor. Med. Sci.
Sports Exerc. 27:934–940, 1995.

32. MATTHEWS, C. E. Calibration of accelerometer output for adults.
Med. Sci. Sports Exerc. 37:in press, 2005.

33. METCALF, B. S., J. S. H. CURNOW, C. EVAN, L. D. VOSS, and
T. J.WILKIN. Technical reliability of the CSA activity monitor: the
Early Bird Study. Med. Sci. Sports Exerc. 34:1533–1537, 2002.

34. MONTOYE, H. J., R. WASHBURN, S. SERVAIS, A. ERTL, J. G. WEBSTER,
and F. J. NAGLE. Estimation of energy expenditure by a portable
accelerometer. Med. Sci. Sports Exerc. 15:403–7, 1983.

35. MOON, J. K., and N. F. BUTTE. Combined heart rate and activity
improve estimates of oxygen consumption and carbon dioxide
production rates. J. Appl. Physiol. 81:1754–61, 2004.

36. NICHOLS, J. F., C. G. MORGAN, J. A. SARKIN, J. F. SALLIS, and K. J.
CALFAS. Validity, reliability, and calibration of the Tritrac accel-
erometer as a measure of physical activity. Med. Sci. Sports Exerc.
31:908–912, 1999.

37. NIELSEN, B., A. ASTRUP, P. SAMUELSEN, H. WENGHOLT, and N. J.
CHRISTENSEN. Effect of physical training on thermogenic response
to cold and ephedrine in obesity. Int. J. Obes. Relat. Metab.
Disord. 17:383–390, 1993.

38. OPPENHEIM, A.V., A. L. WILLSKY, and W. T. YOUNG, Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall,1983.

39. OTT, A. E., R. R. PATE, S. G. TROST, and D. S. WARD, R. SAUNDERS.
The use of uniaxial and triaxial accelerometers to measure chil-
dren’s “free play” physical activity. Pediatr. Exerc. Sci. 12:360–
370, 2000.

40. POWELL, S. M., D. I. JONES, and A. V. ROWLANDS. Technical
variability of the RT3 accelerometer. Med. Sci. Sports Exerc.
35:1773–1778, 2003.

41. PUYAU, M. R., A. L. ADOLPH, F. A. VOHRA, I. ZAKERI, and N. F.
BUTTE. Prediction of activity energy expenditure using accelerom-
eters in children. Med. Sci. Sports Exerc. 36:1625–1631, 2004.

42. RACETTE, S. D., A. SCHOELLER, and R. F. KUSHNER. Comparison of
heart rate and physical activity recall with doubly labelled water in
obese women. Med. Sci. Sports Exerc. 27:126–133, 1995.

43. SCHOELLER, D. A., and J. M. HLINICKA. Reliability of the doubly
labeled water method for the measurement of total daily energy
expenditure in free-living subjects. J. Nutr. 26:348S–354S, 1996.

44. SCHOELLER, D. A., E. RAVUSSIN, Y. SCHUTZ, P. ACHESON, P. BAERTS-
CHI, and E. JEQUUIER. Energy expenditure by doubly labeled water:
validation and proposed calculation. Am. J. Physiol. 250:R823–
R830, 1982.

45. SCHOELLER, D. A., P. B. TAYLOR, and K. SHAY. Analytical require-
ments for the doubly labeled water method. Obes. Res. 3:15–20,
1995.

46. STRATH, S. J., A. M. SWARTZ, W. L.BASSETT,D. R.O’BRIEN, G. A.

KING, and B. E. AINSWORTH. Evaluation of heart rate as a method
for assessing moderate intensity physical activity. Med. Sci. Sports
Exerc. 32(suppl):465–470, 2000.

47. SWARTZ, A. M., S. J. STRATH, W. I. BASSETT,D. R. O’BRIEN, G. A.
KING, and B. E. ANISWORTH. Estimation of energy expenditure
using CSA accelerometers at hip and wrist sites. Med. Sci. Sports
Exerc. 32:S450–S456, 2000.

48. TOGOWA, T., T. TAMURA, and P. A. OBERG. Motion and force
measurement. medical instrumentation: application and design.
New York: CRC Press; 1998. pp. 183–220.

49. U.S. Department of Health and Human Services. Healthy People
2010. 2000.

50. UITERWAAL, M., E. B. GLERUM, H. J. BUSSER, and R. C. VAN

LUMMEL. Ambulatory monitoring of physical activity in working
situations, a validation study. J. Med. Eng. Tech. 22:168–172,
1998.

51. VAN DEN BERG-EMONS, R. J. G., J. B. J. BUSSMANN, A, H. M. M.
BALK, and H. J. STAM. Validity of ambulatory accelerometry to
quantify physical activity in heart failure. Scand. J Rehabil. Med.
32:187–192, 2000.

52. WALKER, D. J., P. S. HESLOP, C. J. PLUMMER, T. ESSEX, and S.
CHANDKER. A continues patient activity monitor: validation and
relation to disability. Physiol. Meas. 18:59, 1997.

53. WEBSTER, G. J. Amplifiers and Signal Processing. Medical Instru-
mentation: Application and Design. New York: John Wiley and
Sons; 1998. pp. 89–120.

54. WELK, G. Principles of design and analyses for the calibration of
accelerometry-based activity monitors. Med. Sci. Sports Exerc.
37:S501–S511, 2005.

55. WELK, G. J. S. N. BLAIR, K. WOOD, S. JONES, and R. W. THOMPSON.
A comparative evaluation of three accelerometry-based physical
activity monitors. Med. Sci. Sports Exerc. 32:S489–S497, 2000.

56. WELK, G. J., J. A. SCHABEN, and J. R. MORROW. Reliability of
accelerometry-based activity monitors: a generalizability study.
Med. Sci. Sports Exerc. 36:1637–1645, 2004.

57. WINTER, D. A, A. O. QUANBURY, and G. D. REIMER. Analysis of
instantaneous energy of normal gait. Biomechanics 9:253–257,
1976.

58. YOSHIDA, T., N. SAKANE, T. UMEKAWA, and M. KONDO. Relation-
ship between basal metabolic rate, thermogenic response to caf-
feine, and body weight loss following combined low calorie and
exercise treatment in obese women. Int. J. Obes. Relat. Metab.
Disord. 18:345–350, 1994.

59. ZHANG, K., F. X. PI-SUNYER, and C. N. BOOZER. Improving energy
expenditure estimation for physical activity. Med. Sci. Sports
Exerc. 36:883–889, 2004.

60. ZHANG, K., P. WERNER, M. X. SUN, C. N. PI-SUNYER, and
C.BOOZER. Measurement of human daily physical activity. Obes.
Res. 11:33–40, 2003.

S500 Official Journal of the American College of Sports Medicine http://www.acsm-msse.org


