Generating Small Combinatorial Test Suites to Cover Input-Output Relationships

Christine Cheng Adrian Dumitrescu Patrick Schroeder
Department of Computer Science
University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
{ccheng, ad, pats}@cs.uwm.edu

Abstract

In this paper, we consider a problem that arises in black box testing: generating small test suites (i.e., sets of test cases) where the combinations that have to be covered are specified by input-output parameter relationships of a software system. That is, we only consider combinations of input parameters that affect an output parameter. We also do not assume that the input parameters have the same number of values. To solve this problem, we revisit the greedy algorithm for test generation and show that the size of the test suite it generates is within a logarithmic factor of the optimal. Unfortunately, the algorithm's main weaknesses are its time and space requirements for construction. To address this issue, we present a problem reduction technique that makes the greedy algorithm and possibly any other test suite generation method more efficient if the reduction in size is significant.

1 Introduction

Software testing remains an important topic in software engineering. A recent report generated for the National Institute of Standards and Technology (NIST) found that software defects cost the U.S. economy 59.9 billion dollars annually [14]. While current technologies cannot hope to remove all errors from software, the report goes on to estimate that 22 billion dollars could be saved through earlier and more effective defect detection.

Black-box testing is a type of software testing that ensures a program meets its specification from a behavioral or functional perspective. The number of possible black-box test cases for any non-trivial software application is extremely large. The challenge in testing is to reduce the number of test cases to a subset that can be executed with available resources and can also exercise the software adequately so that majority of software defects are exposed.

One popular method for performing black-box testing is the use of combinatorial covering designs (e.g., [7, 2, 4], etc.) based on techniques developed in designing experiments for statistical sampling. These designs correspond to test suites (i.e., a set of test cases) that cover, or execute, combinations of inputs in a systematic and effective way and are most applicable in testing data-driven systems where the manipulation of data inputs and the relationship between input parameters is the focus of testing. As pointed out by Dunietz, et al, [7] a technical challenge that remains in applying this promising technique in software testing is the construction of covering designs. There are two issues that need to be considered: the first and perhaps more important one is the size of the covering design since it dictates the number of test cases, and consequently, the amount of resources needed to test a software system; the second are the time and space requirements of the construction itself.

A lot of research work has been devoted to generating small test suites (e.g., [10, 5, 17] and references therein). Most researchers focus on uniform coverage of input parameters with uniform ranges; i.e., they consider test suites that cover all t-wise combinations of the input parameters ¹ for some integer t and the input parameters are assumed to have the same number of values. While such test suites apply to a large number of situations, in practice not all t-wise combinations of input parameters have equal priority in testing, nor are all parameter domains of the same size. Testers often prioritize combinations of input parameters that influence a system's output parameters over those that do not. Determining which set of input parameters influence a system's output parameters can be accomplished using existing analyses [6, 11, 15] or can be discovered in the process of determining the expected result of a test case. ² Given a sys-

¹Suppose I_1, I_2, \ldots, I_k are the input parameters and I_s has l_s values for $s=1,\ldots,k$. A *t-wise combination* of the input parameters is a *t*-tuple (v_{s_1},\ldots,v_{s_t}) where v_{s_j} is a value for parameter I_{s_j} for $j=1,\ldots,t$.

²In order to determine the expected result of a test case, the tester must know which input parameters influence, or affect the computation of the system's output parameters.

tem's input-output relationships, a tester may wish to create a test suite that covers only those combinations of input parameters that influence the program outputs in lieu of a test suite that covers all t-wise combinations of uniform input parameters. How should such a test suite be generated so that its size is small and its construction is efficient? In this paper, we revisit the *greedy algorithm* for test generation which was first analyzed by Cohen et al [2] in the context of t-wise coverage of input parameters with the same ranges. Not only is the greedy algorithm applicable in this general setting, but we will also prove that the size of the test suite it generates is relatively small – it is within a logarithmic factor of the optimal. Unfortunately, its main weaknesses are that its time and space requirements become prohibitive as the number of input parameters increases. To address this issue, we present a problem reduction technique that makes the greedy algorithm and possibly any other test suite generation method more efficient if the reduction in size is significant.

In section 2 of this paper, we define our terms and discuss the greedy algorithm further. In section 3, we present our problem reduction technique and analyze its merits. Initially, we assume that the input parameters have the same number of values; later on, we suggest two different approaches on how to extend our technique when the assumption is no longer true. We then evaluate the technique for several systems.

2 Constructing small combinatorial test suites

Assume that a software system has k input parameters which influence n output parameters. Let $\mathcal{I} = \{I_1, \ldots, I_k\}$ be the set of the input parameters where parameter I_s has l_s values for $s=1,\ldots,k$. For simplicity, we represent the l_s values as the numbers $1,2,\ldots,l_s$. Let O_j be the subset of input parameters that affect the jth output parameter and $\mathcal{O} = \{O_1,\ldots,O_n\}$. If all the parameters have the same number of values then we say that the parameters have $uniform\ ranges$; if all the t-wise combinations of the parameters are considered in \mathcal{O} (i.e., \mathcal{O} consists of all size-t subsets of \mathcal{I}) then we say that the parameters have $uniform\ coverage$. As we mentioned earlier, we will assume that the parameters need not have uniform ranges nor uniform coverage.

A test case T for the problem instance $(\mathcal{I}, \mathcal{O})$ is a k-tuple (t_1, t_2, \ldots, t_k) where, for $s = 1, \ldots, k$, t_s is a value of I_s . Let $O_j = \{I_{s_1}, I_{s_2}, \ldots, I_{s_r}\}$. The test case T covers one combination of O_j : $t_{s_1}, t_{s_2}, \ldots, t_{s_r}$. A test suite T for $(\mathcal{I}, \mathcal{O})$ is a set of test cases of the problem instance that covers all the $l_{s_1} \times l_{s_2} \times \ldots \times l_{s_r}$ combinations of O_j for each $O_j \in \mathcal{O}$. In software testing, the goal is to construct T so that its size (i.e., the number of test cases it contains) is

as small as possible.

Finding optimal test suites for arbitrary instances, however, is difficult. For instance, Seroussi and Bshouty [16] has shown that deciding if an arbitrary $(\mathcal{I}, \mathcal{O})$ can be covered by a test suite of size four is NP-complete even in the simple instance when all the parameters in \mathcal{I} are binary and all the sets in \mathcal{O} have the same size. Next, we analyze the following greedy algorithm for test suite generation: at each iteration, pick the unused test case that covers the maximum number of uncovered combinations. Cohen, et al [2] were the first to obtain an upper bound on the number of test cases the greedy algorithm generates in the context of pairwise coverage of parameters with uniform ranges. (They also mentioned a similar bound for t-wise coverage.) They proved the theorem below.

Theorem 2.1 [2] Let \mathcal{I} consist of k parameters, each of which has l values. If all the pairwise combinations of the parameters in \mathcal{I} have to be covered then the greedy algorithm will generate a test suite whose size is at most $\lceil l^2(\log l^2 + \log \binom{k}{2}) \rceil = O(l^2(\log k + \log l))$.

To extend this result for the general setting, we consider the *set-covering problem*. An instance of the set-covering problem consists of a finite set X and a collection $\mathcal F$ of subsets of X. The goal is to find the smallest subcollection $C\subseteq \mathcal F$ so that every element in X is covered by some set in C. The set-covering problem is NP-hard [9]. To find a subcollection C, we can also use the same greedy algorithm we just described above. This time, at each iteration, the algorithm picks the unused set that covers the most remaining uncovered elements in X. It is known that the size of the resulting set cover is at most $(1 + \ln |S_{\max}|)$ times the optimal where S_{\max} is the largest set in $\mathcal F$ and \ln is the natural \log [3].

Let us now cast the test generation problem as a set-covering problem. Let X consist of all combinations of $(\mathcal{I},\mathcal{O})$ that have to be covered. For example, if $O_j=\{I_{s_1},\ldots,I_{s_r}\}$ then all $l_{s_1}\times\ldots\times l_{s_r}$ combinations of O_j are in X. Let us also express each test case T of $(\mathcal{I},\mathcal{O})$ as a set which consists of all the combinations it covers in X and let \mathcal{F} consist of all the possible test cases. Since each test case covers exactly one combination of O_j for $j=1,\ldots,n$, every set in \mathcal{F} has size n. Once the transformation we have described is complete, finding the optimal test suite for $(\mathcal{I},\mathcal{O})$ is the same as finding the optimal set cover for (X,\mathcal{F}) . Consequently, we have the following result:

Theorem 2.2 Suppose a software system has k input parameters and n output parameters and the combinations that need to be covered are described by the instance $(\mathcal{I}, \mathcal{O})$. The greedy algorithm for test generation produces a test suite whose size is at most $(1 + \ln n) \times OPT$ where OPT is the size of the optimal test suite.

We emphasize that the approximation factor of the greedy algorithm depends only on the number of output parameters but not on the number of input parameters nor their ranges. In the case when \mathcal{O} consists of all 2-subsets of \mathcal{I} (as in the situation described in Theorem 2.1), $n=\binom{k}{2}$ so our theorem states that the number of test cases produced by greedy is at most $(1+\ln\binom{k}{2})\times OPT$.

3 A problem reduction technique

The greedy algorithm has many attractive features: it is simple to implement, flexible and generates a relatively small number of test cases. Its main weakness, however, is that its time and space requirements become prohibitive as the number of input parameters increases. This is due to the fact that at each iteration it needs to find the unused test case that covers the most number of uncovered combinations. If there are 10 parameters with 5 values each, for example, then at each iteration it must check the coverage of approximately 9 million test cases. It is this issue that we seek to address in this section. One obvious approach is to design a faster (and a more space-efficient) algorithm for generating test suites. This was taken by Cohen, et al [2] where, instead of doing a brute force search at each iteration, they implemented a greedy random heuristic that finds an unused test case that covers a large (but perhaps not the maximum) number of uncovered combinations. Our approach, on the other hand, is to make test generation more efficient via problem reduction. That is, given $(\mathcal{I}, \mathcal{O})$, we reduce this instance to $(\mathcal{I}', \mathcal{O}')$ so that (i) $|\mathcal{I}'| \leq |\mathcal{I}|$ and $|O_j'| \leq |O_j|, \forall j$ and (ii) any test suite \mathcal{T}' for $(\mathcal{I}', \mathcal{O}')$ can be transformed efficiently to a test suite \mathcal{T} for $(\mathcal{I}, \mathcal{O})$. If such a reduction is possible, then we just have to find a test suite for $(\mathcal{I}', \mathcal{O}')$. We can either use the greedy algorithm or any other test generation method (for the general setting) and, since the inputs to these methods are now smaller, we expect them to run faster and require less space. Indeed, the smaller $(\mathcal{I}', \mathcal{O}')$ is with respect to $(\mathcal{I}, \mathcal{O})$, the greater will be the gain in efficiency. First, we mention two simple reductions.

- R1: If $O_i \subseteq O_j$, delete O_i from \mathcal{O} . This reduction is valid because any test suite that covers the combinations of O_j also covers the combinations of any of its subsets.
- R2: If I_r has only 1 value, delete I_r from \mathcal{I} and from all O_j 's that contain I_r . Suppose \mathcal{T}' is a test suite for the reduced problem instance $(\mathcal{I}', \mathcal{O}')$. For each test case $T' \in \mathcal{T}'$, create a test case T for the original problem instance by setting I_r equal to its only value and all other parameters to their values in T'. Since the test cases of \mathcal{T}' cover all combinations of O'_j , the corresponding test cases for the original problem must cover all combinations of $O'_j \cup \{I_r\}$.

For now, we will assume that the parameters in \mathcal{I} have the same number of values l>1. Later on, we will extend our technique to parameters that have non-uniform ranges. Our general technique for problem reduction finds a base set of parameters \mathcal{I}' , which is a subset of \mathcal{I} . Each $I_r \in \mathcal{I}$ is then mapped to a parameter in \mathcal{I}' , say I_s , so that in creating a test case T, the value of I_r is set equal to the value of I_s . One implication of this mapping is that if I_r and I_s influence the same output, say O_j , then I_r cannot be mapped to I_s ; otherwise, some combinations of O_j will not be covered. We use a graph to model this restriction.

Let G be the graph whose vertices correspond to the k input parameters of the system. Two nodes are adjacent if and only if their corresponding input parameters are part of the same set O_j , for some j. (Sometimes we will use the input parameters to refer to their nodes in G.) Let us call G the relationship graph of the problem instance $(\mathcal{I}, \mathcal{O})$. We now construct the mapping between parameters and generate the test cases in the following manner:

- Step 1: Properly color G (using as few colors as you can); i.e., assign a color to each node of G so that no two adjacent nodes are assigned the same color. Let c be the number of colors used.
- Step 2: For each color s, pick a parameter I'_s whose corresponding node in G is colored s. Let $\mathcal{I}' = \{I'_1, I'_2, \ldots, I'_c\}$.
- Step 3: For each O_j , construct O_j' where I_s' is an element of O_j' if and only if one of the parameters in O_j was colored with s. (That is, map every parameter colored s to I_s' .) Since no two parameters in O_j are assigned the same color because they are adjacent in G, it must be the case that $|O_j| = |O_j'|$, for all j. Apply reduction R1 to $\{O_1', \ldots, O_n'\}$ and call the resulting set O_j' .
- Step 4: Construct a test suite \mathcal{T}' for $(\mathcal{I}', \mathcal{O}')$.
- Step 5: Finally, for each test case $T' \in \mathcal{T}'$, construct a corresponding test case T for $(\mathcal{I}, \mathcal{O})$ in the following way: for each I_r , if I_r was colored s then set its value in T equal to the value of I'_s in T'. Let \mathcal{T} denote the resulting test suite for $(\mathcal{I}, \mathcal{O})$. Note that $|\mathcal{T}| = |\mathcal{T}'|$.

An example. Let us now illustrate the reduction technique for the following example. Let $\mathcal{I}=\{I_1,I_2,\ldots,I_8\}$ where all the input parameters are binary. Let $\mathcal{O}=\{\{I_1,I_2,I_8\}$, $\{I_2,I_3\}$, $\{I_3,I_4,I_8\}$, $\{I_4,I_5,I_7\}$, $\{I_5,I_6\}$, $\{I_1,I_6,I_7\}$, $\{I_7,I_8\}\}$. The graph G that models the relationships of the input parameters based on how they influence the output parameters is shown in Figure 1. We color G with four colors: red (R), blue (B), yellow (Y), green (G). Let us pick one parameter for each color: I_1 for red, I_2 for blue, I_7 for yellow and I_8 for green. Hence,

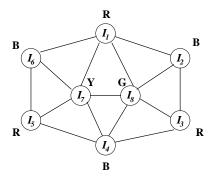


Figure 1. The graph for the problem instance where $\mathcal{I} = \{I_1, I_2, \dots, I_8\}$ and $\mathcal{O} = \{\{I_1, I_2, I_8\}, \{I_2, I_3\}, \{I_3, I_4, I_8\}, \{I_4, I_5, I_7\}, \{I_5, I_6\}, \{I_1, I_6, I_7\}, \{I_7, I_8\}\}.$

 $\mathcal{I}' = \{I_1, I_2, I_7, I_8\}. \text{ Let us now replace the parameters in each } O_j \text{ with their corresponding parameters in } \mathcal{I}' \colon \{I_1, I_2, I_8\} \to \{I_1, I_2, I_8\}, \{I_2, I_3\} \to \{I_2, I_1\}, \{I_3, I_4, I_8\} \to \{I_1, I_2, I_8\}, \{I_4, I_5, I_7\} \to \{I_2, I_1, I_7\}, \{I_5, I_6\} \to \{I_1, I_2\}, \{I_1, I_6, I_7\} \to \{I_1, I_2, I_7\}, \text{ and } \{I_7, I_8\} \to \{I_7, I_8\}. \text{ Applying reduction R1, } \mathcal{O}' = \{\{I_1, I_2, I_8\}, \{I_1, I_2, I_7\}, \{I_7, I_8\}\}. \text{ The table below contains a test suite } \mathcal{T}' \text{ for } (\mathcal{I}', \mathcal{O}').$

I_1	1	1	1	0	0	0	1	0
I_2	1	1	0	1	0	1	0	0
I_7	1	0	1	1	1	0	0	0
I_8	1	0	0	0	0	1	1	1

Next, we transform \mathcal{T}' into a test suite \mathcal{T} for $(\mathcal{I}, \mathcal{O})$ according to step 5.

I_1	1	1	1	0	0	0	1	0
I_2	1	1	0	1	0	1	0	0
I_3	1	1	1	0	0	0	1	0
I_4	1	1	0	1	0	1	0	0
I_5	1	1	1	0	0	0	1	0
I_6	1	1	0	1	0	1	0	0
I_7	1	0	1	1	1	0	0	0
I_8	1	0	0	0	0	1	1	1

Theorem 3.1 \mathcal{T} *is a test suite for* $(\mathcal{I}, \mathcal{O})$ *. That is,* \mathcal{T} *covers all combinations of* \mathcal{O} .

Proof. Let $O_j \in \mathcal{O}$ and (v_1, v_2, \ldots, v_r) be a particular combination of O_j . For each $I_a \in O_j$, let us denote by c_a the color assigned to node I_a in G. Thus, $O'_j = \{I'_{c_1}, I'_{c_2}, \ldots, I'_{c_r}\}$. Since \mathcal{T}' covers O'_j then there is a test case $T' \in \mathcal{T}'$ that covers the combination (v_1, v_2, \ldots, v_r) of O'_j . Consequently, the corresponding test case T of T'

must also cover the same combination for O_j . Since we chose O_j and its combination arbitrarily, we have proven that \mathcal{T} does cover all combinations of \mathcal{O} .

The next theorem describes the relationship between \mathcal{T}' at step 4 and \mathcal{T} at step 5.

Theorem 3.2 Suppose $(\mathcal{I}, \mathcal{O})$ was reduced to $(\mathcal{I}', \mathcal{O}')$ using steps 1 to 3 of our algorithm. If \mathcal{T}_{opt} and \mathcal{T}'_{opt} are optimal test suites for $(\mathcal{I}, \mathcal{O})$ and $(\mathcal{I}', \mathcal{O}')$ respectively then $|\mathcal{T}_{opt}| \leq |\mathcal{T}'_{opt}|$. In addition, if $\mathcal{O}' \subseteq \mathcal{O}$ then $|\mathcal{T}_{opt}| = |\mathcal{T}'_{opt}|$.

Proof. According to Theorem 3.1, step 5 of our algorithm transforms \mathcal{T}'_{opt} into a test suite for $(\mathcal{I}, \mathcal{O})$ whose size is $|\mathcal{T}'_{opt}|$. Hence, $|\mathcal{T}'_{opt}| \geq |\mathcal{T}_{opt}|$. On the other hand, when $\mathcal{O}' \subseteq \mathcal{O}$, \mathcal{T}_{opt} can also be transformed into a test suite for $(\mathcal{I}', \mathcal{O}')$ in the following manner. For each $T \in \mathcal{T}_{opt}$, construct T' by setting each $I'_s \in \mathcal{I}'$ equal to its value in T. That is, if we arrange the test cases in \mathcal{T}_{opt} as columns in a $k \times |\mathcal{T}_{opt}|$ array, and whose rows are indexed by I_1, \ldots, I_k , then the test suite for $(\mathcal{I}', \mathcal{O}')$ is formed by considering only the rows indexed by the input variables in \mathcal{I}' . Since each $O'_j \in \mathcal{O}'$ is also in \mathcal{O} , this means that the rows in \mathcal{T}_{opt} indexed by the input parameters in O'_j cover all the combinations of O'_j . But $O'_j \subseteq \mathcal{I}'$, so the test suite we have created for $(\mathcal{I}', \mathcal{O}')$ also covers all combinations of O'_j , for each $O'_i \in \mathcal{O}'$.

The next corollary follows immediately.

Corollary 3.3 Suppose $\mathcal{O}' \subseteq \mathcal{O}$. If \mathcal{T}' is the test suite generated at step 4, and $|\mathcal{T}'| \leq \alpha |\mathcal{T}'_{opt}|$ for some $\alpha \geq 1$ then $|\mathcal{T}| \leq \alpha |\mathcal{T}_{opt}|$, where \mathcal{T} is the test suite generated at step 5.

Note that $|\mathcal{T}_{opt}| = |\mathcal{T}'_{opt}|$ may occur even when $\mathcal{O}' \not\subseteq \mathcal{O}$. In our example, the set $\{I_1, I_2, I_7\}$ lies in \mathcal{O} but not in \mathcal{O}' . On the other hand, $\{I_1, I_2, I_8\} \in \mathcal{O} \cap \mathcal{O}'$, so at least eight test cases are needed to cover all combinations in both $(\mathcal{I}, \mathcal{O})$ and $(\mathcal{I}', \mathcal{O}')$. Since the test suites we presented for both instances have eight test cases each, they must be optimal. It is also possible that $|\mathcal{T}_{opt}| < |\mathcal{T}'_{opt}|$ when $\mathcal{O}' \not\subseteq \mathcal{O}$. In the appendix, we present such an example from [12].

Corollary 3.4 Suppose the number of colors used in step 1 is c, and there exists an $O_i \in \mathcal{O}$ such that $|O_i| = c$. If the greedy algorithm is used in step 4 to generate \mathcal{T}' , then the test suite produced in step 5 is an optimal test suite for $(\mathcal{I}, \mathcal{O})$.

Proof. Since $O_i \in \mathcal{O}$, all combinations of O_i must be covered by any test suite for $(\mathcal{I}, \mathcal{O})$. Hence, $|\mathcal{T}_{opt}| \geq l^{|O_i|} = l^c$. On the other hand, since c colors were used in step 1, $\mathcal{I}' = O_i' = \{I_1', \ldots, I_c'\}$. This means that every other O_j' is a subset of O_i' so $\mathcal{O}' = \{O_i'\}$ after step 3. In step 4, if we

use the greedy algorithm, then according to Theorem 2.2, the algorithm will find an optimal test suite \mathcal{T}' for $(\mathcal{I}', \mathcal{O}')$. Its size is $l^{|\mathcal{O}_i'|} = l^c$. 3 Since step 5 produces a valid test suite \mathcal{T} for $(\mathcal{I}, \mathcal{O})$, and $|\mathcal{T}| = |\mathcal{T}'| = l^c$, \mathcal{T} is optimal. \square

The situation described in Corollary 3.4 typically happens when the size of the largest set in \mathcal{O} is significantly larger than most of the other subsets in \mathcal{O} . We present another situation when $|\mathcal{T}'_{opt}| = |\mathcal{T}_{opt}|$. The result is implied in [12]. Recall that for a graph G = (V, E), $\omega(G)$, the clique number of G, is the size of the largest $V' \subseteq V$ such that all vertices in V' are pairwise adjacent, and $\chi(G)$, the chromatic number of G, is the minimum number of colors needed to color G. It is well known that $\omega(G) \leq \chi(G)$.

Corollary 3.5 Suppose every set in \mathcal{O} consists of exactly two parameters. Let G be the relationship graph of $(\mathcal{I}, \mathcal{O})$. If step 1 uses $\omega(G)$ colors (i.e., $\chi(G) = \omega(G)$) then $|\mathcal{T}_{opt}| = |\mathcal{T}'_{opt}|$.

Proof. Suppose $\mathcal{I}''\subseteq\mathcal{I}$ forms the largest clique in G. Let \mathcal{O}'' consists of all pairs of parameters in \mathcal{I}'' . Since $\mathcal{O}''\subseteq\mathcal{O}$, if \mathcal{T}''_{opt} is the optimal test suite for $(\mathcal{I}'',\mathcal{O}'')$, then $|\mathcal{T}_{opt}|\geq |\mathcal{T}''_{opt}|$. Since step 1 uses $\omega(G)$ colors, $\mathcal{I}'=\{I'_1,\ldots,I'_{\omega(G)}\}$. Different colors were assigned to all the parameters in \mathcal{I}'' . Thus, \mathcal{O}' consists of all pairs of parameters in \mathcal{I}' . But $|\mathcal{I}'|=|\mathcal{I}''|$, so $|\mathcal{T}'_{opt}|=|\mathcal{T}''_{opt}|$. And since $|\mathcal{T}'_{opt}|\geq |\mathcal{T}_{opt}|$, it follows that $|\mathcal{T}'_{opt}|=|\mathcal{T}_{opt}|$.

We note that there are many graphs G where $\omega(G) = \chi(G)$, including the family of perfect graphs.

Implications and limitations. We have noted that the main weakness of the greedy algorithm for test generation is that at each iteration it needs to check the coverage of almost all the possible test cases of $(\mathcal{I}, \mathcal{O})$. In our case, $|\mathcal{I}| = k$ and each parameter has l values each, so there are a total of l^k test cases. As l and k increase, the time and space requirements of the greedy algorithm become prohibitive. The problem reduction approach we introduced tries to make the greedy algorithm more feasible in practice. When say $|\mathcal{I}'| = k' \ll k$, then the total number of test cases is reduced to $l^{k'} \ll l^k$. In addition, if $|\mathcal{O}'| < |\mathcal{O}|$, then the number of combinations that need to be covered is also less. Both the time and space requirements of the algorithm can drop significantly. Unfortunately, it is possible that by applying the problem reduction technique, we will end up with a smaller problem instance whose optimal test suite is larger than our original instance's optimal test suite. Theorem 3.2 and the subsequent corollaries states sufficient conditions as to when our problem reduction technique preserves the optimality of the test suite size.

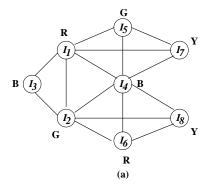
When is $|\mathcal{I}'| \ll |\mathcal{I}|$? This happens when c, the number of colors used for G, is small relative to the number of nodes in G. In general, this would mean that the relationships between the input parameters based on their occurrences in the O_j 's are relatively "simple". On the other hand, when every pair of the input parameters occur together in some O_i , then G is a complete graph. Consequently, $|\mathcal{I}'| = |\mathcal{I}|$ and $|\mathcal{O}'| = |\mathcal{O}|$, and our technique does not reduce the size of the problem. We note, however, that this is the only instance when no reduction in the number of input parameters is possible. When G is not a complete graph and V is its vertex set, there is always a vertex v whose degree is at most |V| - 2. The subgraph induced by $V - \{v\}$ can be colored with |V|-1 colors while v can be assigned one of the |V|-1 colors since it is not adjacent to all of the vertices in $V - \{v\}$. Hence, $\chi(G) < |V| - 1$ and \mathcal{I} can always be reduced by one parameter. Therefore, if we reduce $(\mathcal{I}, \mathcal{O})$ to $(\mathcal{I}', \mathcal{O}')$, and the relationship graph of $(\mathcal{I}', \mathcal{O}')$ is not a complete graph, then we can again apply our problem reduction technique to $(\mathcal{I}', \mathcal{O}')$. This observation and the fact that there is only a finite number of parameters leads us to the following result.

Theorem 3.6 Suppose the input parameters in $(\mathcal{I}, \mathcal{O})$ have uniform range. Our problem reduction technique can be repeatedly applied to $(\mathcal{I}, \mathcal{O})$ until the relationship graph of the resulting problem instance is a complete graph.

Assuming that a reduction in problem size occurs, we will most likely have our greatest gain when G is colored with as few colors as possible. However, coloring an arbitrary graph is NP-complete [9]. When the size of the graph is not too large, exact algorithms for optimal coloring may be feasible. See [8, 1] for some recent improved algorithms for exact graph coloring. A simple heuristic allows coloring G using at most $\Delta+1$ colors, where Δ is the maximum degree in G [18]. Similarly, we know of no algorithm that can efficiently generate an optimal test suite for an arbitrary $(\mathcal{I}', \mathcal{O}')$. Hence, we rely on other sub-optimal algorithms such as the greedy algorithm for generating \mathcal{T}' .

Extensions to parameters with non-uniform ranges. Recall that in our reduction technique, for each color s, we picked an arbitrary parameter I_s' whose node in G was colored s. In transforming a test case T' to T, the values of all parameters whose nodes in G were colored s in T are then set equal to the value of I_s' in T'. If the range of I_s' is less than the range of one of these parameters then some combinations of \mathcal{O} may not be covered. We suggest one of the following two approaches and make use of the following problem instance which we have encountered in our programs for illustration: $\mathcal{I} = \{I_1(5), I_2(5), I_3(5), I_4(5), I_5(6), I_6(6), I_7(2), I_8(2)\}$, where the numbers in parenthesis indicate the range of each parameter, and

³Note that because $\mathcal{O}' = \{O'_i\}$, straightforward enumeration of all combinations of O'_i in step 4 produces the same result.



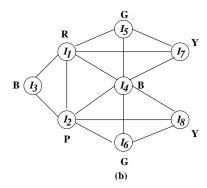


Figure 2. The two graphs are used for generating a test suite for $\mathcal{I} = \{I_1(5), I_2(5), I_3(5), I_4(5), I_5(6), I_6(6), I_7(2), I_8(2)\}$, where the numbers in parenthesis indicate the range of each parameter, and $\mathcal{O} = \{O_1 = \{I_1, I_4, I_5, I_7\}, O_2 = \{I_2, I_4, I_6, I_8\}, O_3 = \{I_1, I_2, I_3\}\}$. The first graph has a coloring that uses the fewest number of colors. The second graph has a coloring where no two parameters with different range sizes are assigned the same color.

$$\mathcal{O} = \{O_1 = \{I_1, I_4, I_5, I_7\}, O_2 = \{I_2, I_4, I_6, I_8\}, O_3 = \{I_1, I_2, I_3\}\}.$$

Approach 1. For each color s, choose I_s' so that among all the parameters whose nodes in G are colored s, its range is the largest. The test suite generated by our algorithm is guaranteed to cover all combinations of \mathcal{O} . The associated graph for the example is shown in Figure 2(a). We color it with four colors, the fewest number of colors possible, and choose $I_R' = I_6$, $I_G' = I_5$, $I_B' = I_4$ and $I_Y' = I_7$ so $\mathcal{I}' = \{I_4, I_5, I_6, I_7\}$. We also have $O_1' = O_2' = \{I_4, I_5, I_6, I_7\}$ and $O_3' = \{I_4, I_5, I_6\}$ so $\mathcal{O}' = \{\{I_4, I_5, I_6, I_7\}\}$. Generating a test suite for $(\mathcal{I}', \mathcal{O}')$ is straightforward. The corresponding test suite for $(\mathcal{I}, \mathcal{O})$ will have $5 \times 6 \times 6 \times 2 = 360$ test cases.

Approach 2. Do not assign two parameters the same color if their ranges are different. One way to implement this is to add an edge in G between two parameters with unequal ranges. Again, our algorithm will generate a test suite that

covers all combinations of \mathcal{O} . Figure 2(b) shows a coloring of graph G of the example where only parameters with the same ranges are assigned the same color. This modification forces us to use five colors. We set $I_R' = I_1$, $I_B' = I_4$, $I_Y' = I_8$, $I_G' = I_5$ and $I_P' = I_2$ so $\mathcal{I}' = \{I_1, I_2, I_4, I_5, I_8\}$. The new output sets are $O_1' = \{I_1, I_4, I_5, I_8\}$, $O_2' = \{I_2, I_4, I_5, I_8\}$, and $O_3' = \{I_1, I_2, I_4\}$. We have reduced the number of parameters in \mathcal{I} but not the number of output sets in \mathcal{O} .

A hybrid approach: The weakness of the first approach is we may end up combining parameters with large ranges in the same O_j' when these parameters were never combined in the original O_j . Consequently, we may produce a test suite \mathcal{T}' whose size is significantly larger than that of the optimal test suite for $(\mathcal{I}, \mathcal{O})$. To alleviate the problem, we can assign the same color to input parameters with similar ranges. For example, add an edge between parameters whose range sizes differ by at least a certain value in the relationship graph and use the coloring on this graph to constuct the reduced problem instance. (Approach 2 had a stricter rule.) This way, we can gain some reduction in problem size and at the same time prevent \mathcal{T}' from being too large when compared to the optimal test suite.

Case Studies. The importance of finding efficient techniques for generating test suites for non-uniform instances became apparent in our current research in black-box testing. We have to generate test suites that cover all combinations of input parameters that influence output parameters. The input parameters have non-uniform ranges and the output parameters are often influenced by a different number of input parameters. Currently, we generate test suites using a greedy heuristic similar to the one presented in [2]. As the systems we experimented with grew in size and complexity, we found that the time and space required to generate these test suites became very large.

Our goal for these case studies was to evaluate the effectiveness of the problem reduction technique in practice. To do so, we implemented the greedy algorithm for test generation on three systems and compared its running time before and after applying the problem reduction technique. We also considered the sizes of the resulting test suites in both instances. Two of the systems we used in the case study are industrial systems that one of the authors was associated with while employed in the software industry. The Digital Access Cross-connect System (DACS) is a hardware and software system used to configure and test digital trunks in telephone systems. The program was written at AT&T Bell Laboratories to provide an easy way to rapidly configure and reconfigure digital trunks in the laboratories where the DACS is used in testing telephone switches. The Data Management and Analysis System (DMAS) is used by analytical chemists in the pharmaceutical industry to perform regression analysis on data collected from experiments conducted using liquid and gas chromatography. The third program we used is the Loan Arranger System (LAS), a software used to support the mortgage-back securities business and is described in [13]. LAS is used as a software engineering project at the University of Wisconsin–Milwaukee.

For this study, we determined each system's input-output (I/O) relationships using the automated technique described in [15]. All programs were executed on a 1.6 Ghz processor with 512 MB of memory. Initially, we ran the greedy algorithm to generate the test suites. The results are shown below. The fourth row indicates the number of input parameters that influence the output parameters. The last row indicates the size of the optimal test suite. For two of the three systems, the greedy algorithm generated the smallest possible test suite.

System	DACS	LAS	DMAS
$ \mathcal{I} $	6	15	23
$ \mathcal{O} $	3	20	42
Sizes of O_j	3	1–6	1 – 13
Generation time	.39 sec	22.30 sec	870.33 sec
$ \mathcal{T} $	158	1536	5120
$ \mathcal{T}_{opt} $	150	1536	5120

To implement the problem reduction technique, we constructed the relationship graph for each system, used the greedy coloring scheme [18] and approach 2 to color the graph. That is, no two parameters' nodes were assigned the same color if their ranges were different. Once $(\mathcal{I}', \mathcal{O}')$ was constructed, we used the greedy algorithm to generate \mathcal{T}' at step 4 and the procedure at step 5 to generate the test suite. The results are presented below.

System	DACS	LAS	DMAS	
$ \mathcal{I}' $	4	7	13	
$ \mathcal{O}' $	3	2	1	
Generation time	.05 sec	.66 sec	3.41 sec	
$ \mathcal{T}' = \mathcal{T} $	162	1536	5120	

In each of these systems, the problem reduction technique proved to be an effective way to generate test suites. The generation times are at least one order of magnitude faster, while the resulting test suite sizes are equal or close to that of the optimal test suite.

4 Conclusion

In this paper, we addressed the need to generate small test suites efficiently where the combinations that have to be covered are specified by the input-output relationships of

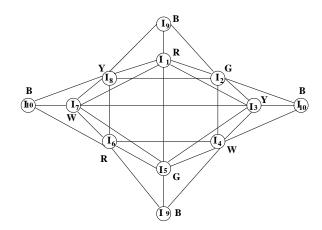


Figure 3. The relationship graph for the $(\mathcal{I}, \mathcal{O})$ given in the appendix. We drew nodes I_9 and I_10 twice to make the symmetry of the graph more apparent.

the software system. That is, we do not assume that the input parameters have uniform coverage nor that their ranges have the same size. We revisited the greedy algorithm for test generation and proved that the number of test cases it generates in this setting is at most $(1+\ln n)\times OPT$ where n is the number of output parameters and OPT is the size of the optimal test suite. We then presented a problem reduction technique so that when the reduction in problem size is significant, the greedy algorithm and possibly any other test generation method is more efficient in practice. Some of the questions we would like to pursue further are:

- Suppose $(\mathcal{I}, \mathcal{O})$ was reduced to $(\mathcal{I}', \mathcal{O}')$ by our problem reduction technique. Recall that \mathcal{T}_{opt} and \mathcal{T}'_{opt} are optimal test suites for $(\mathcal{I}, \mathcal{O})$ and $(\mathcal{I}', \mathcal{O}')$ respectively. Does there exist a constant β such that $|\mathcal{T}'_{opt}| \leq \beta |\mathcal{T}_{opt}|$?
- Can the problem reduction technique be modified so that $|\mathcal{T}_{opt}|$ always equals $|\mathcal{T}'_{opt}|$?

5 Appendix

We present an example from Meagher and Stevens [12] for which our problem reduction technique does not preserve the optimality of the test suite size. Consider the following instance:

 $\mathcal{I} = \{I_1, I_2, \dots, I_{10}\}$ where all the parameters are binary.

$$\mathcal{O} = \; \{ \{I_1, I_2\}, \{I_1, I_3\}, \{I_1, I_5\}, \{I_1, I_7\}, \{I_1, I_8\}, \{I_1, I_9\}, \\ \{I_2, I_3\}, \{I_2, I_4\}, \{I_2, I_8\}, \{I_2, I_9\}, \{I_2, I_{10}\}, \{I_3, I_4\}, \\ \{I_3, I_5\}, \{I_3, I_7\}, \{I_3, I_{10}\}, \{I_4, I_5\}, \{I_4, I_6\}, \{I_4, I_9\}, \\ \{I_4, I_{10}\}, \{I_5, I_6\}, \{I_5, I_7\}, \{I_5, I_9\}, \{I_6, I_7\}, \{I_6, I_8\}, \\ \{I_6, I_9\}, \{I_6, I_{10}\}, \{I_7, I_8\}, \{I_7, I_{10}\}, \{I_8, I_9\}, \\ \{I_8, I_{10}\} \}$$

The relationship graph for $(\mathcal{I}, \mathcal{O})$ is shown in Figure 3. To make the symmetry of the graph more apparent, we followed the suggestion in [12] to repeat nodes I_9 and I_{10} in the drawing. The graph can be 5-colored, as shown in the figure. Applying steps 2 and 3 of the problem reduction technique, we have $\mathcal{I}' = \{I_1, I_2, I_3, I_4, I_9\}$ and \mathcal{O}' consists of all pairs of parameters in \mathcal{I}' ; i.e., the relationship graph of $(\mathcal{I}', \mathcal{O}')$ is K_5 , the complete graph on five vertices. It is known that the optimal test suite for $(\mathcal{I}', \mathcal{O}')$ contains six test cases, so $|\mathcal{T}'_{opt}| = 6$. On the other hand, the following is a test suite for the original $(\mathcal{I}, \mathcal{O})$.

I_1	0	0	1	1	1
I_2	0	1	1	0	0
I_3	0	1	0	1	1
I_4	0	0	1	0	1
I_5	0	1	1	1	0
I_6	0	0	0	1	1
I_7	0	1	1	0	1
I_8	0	1	0	1	0
I_9	0	1	0	0	1
I_{10}	0	0	1	1	0

Hence, $|\mathcal{T}_{opt}| \leq 5$, so $|\mathcal{T}_{opt}| < |\mathcal{T}'_{opt}|$. If we consider the array formed by rows indexed by I_1, I_2, I_3, I_4 and I_9 , the combination (0,1) for $\{I_1, I_4\}$ and $\{I_3, I_9\}$ are not covered.

References

- [1] J. M. Byskov, Algorithms for *k*-coloring and finding maximal independent sets, *Proceedings of the Fourteenth ACM-SIAM Symposium on Discrete Algorithms* (2003), 456–457.
- [2] D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C. Patton, The AETG system: an approach to testing based on combinatorial design, *IEEE Transactions on Software Engineering*, 23(7) (2000), 437–444.
- [3] T. Cormen, C. Leiserson and R. Rivest, *Introduction to Algorithms*, MIT Press, 1996, 974–977.
- [4] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C. Lott, G. C. Patton and B.M. Harowitz, Model-based testing in practice, *Proceeding of the International Conference on Software Engineering* (1999), 285–294.
- [5] S.R. Dalal and C.L. Mallows, Factor-covering designs for testing software, *Technometrics*, 40(3) (1998), 234–242.
- [6] E. Duesterwald, R. Gupta, and M.L. Soffa, Rigorous data flow testing through output influences, *Proceedings of the Second Irvine Software Symposium* (1992), 131–145.

- [7] I.S. Dunietz, W.K. Ehrlich, B.D. Szablak, C.L. Mallows and A. Iannino, Applying design of experiments to software testing, *Proceedings of the Nineteenth International Conference on Software Engineering* (1997), 205–215.
- [8] D. Eppstein, Small maximal independent sets and faster exact graph coloring, Proceedings of the Seventh Workshop on Algorithms and Data Structures, vol. 2125 of Lecture Notes in Computer Science (2001), 462–470.
- [9] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness., W.H. Freeman and Company, 1979.
- [10] A. Hartman, Software and hardware testing using combinatorial covering suites, to appear in *Interdisci*plinary Applications of Graph Theory, Combinatorics and Algorithms (ed. M. Golumbic), manuscript, July 2002.
- [11] B. Korel, The program dependence graph in static program testing, *Information Processing Letters* 24(2) (1987), 103–108.
- [12] K. Meagher and B. Stevens, Covering Arrays on Graphs, *submitted to Journal of Combinatorial Theory*, *Series B*, 2002.
- [13] S.L. Pfleeger, *Software Engineering: Theory and Practice*, Prentice-Hall, 2001.
- [14] Research Triangle Institute, NIST Planning Report 02-3: The Economic Impacts of Inadequate Infrastructure for Software Testing", March 5, 2003, http://www.nist.gov/director/progofc/report02-3.pdf.
- [15] P.J. Schroeder, B. Korel, and P. Faherty, Generating expected results for automated black-box testing, Proceedings of the International Conference on Automated Software Engineering (2002), 139–48.
- [16] G. Seroussi and N. H. Bshouty, Vector sets for exhaustive testing of digital circuits, *IEEE Transactions on Information Theory*, 34(3) (1988), 513–522.
- [17] N. J. A. Sloane, Covering arrays and intersecting codes, *Journal of Combinatorial Designs*, 1 (1993), 51–63.
- [18] D. West, *Introduction to Graph Theory*, Prentice Hall, 1996, p. 176.