
Generating Small Combinatorial Test Suites
to Cover Input-Output Relationships

Christine Cheng Adrian Dumitrescu Patrick Schroeder
Department of Computer Science

University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA.�
ccheng, ad, pats � @cs.uwm.edu

Abstract

In this paper, we consider a problem that arises in black
box testing: generating small test suites (i.e., sets of test
cases) where the combinations that have to be covered are
specified by input-output parameter relationships of a soft-
ware system. That is, we only consider combinations of in-
put parameters that affect an output parameter. We also do
not assume that the input parameters have the same number
of values. To solve this problem, we revisit the greedy algo-
rithm for test generation and show that the size of the test
suite it generates is within a logarithmic factor of the op-
timal. Unfortunately, the algorithm’s main weaknesses are
its time and space requirements for construction. To ad-
dress this issue, we present a problem reduction technique
that makes the greedy algorithm and possibly any other test
suite generation method more efficient if the reduction in
size is significant.

1 Introduction

Software testing remains an important topic in software
engineering. A recent report generated for the National In-
stitute of Standards and Technology (NIST) found that soft-
ware defects cost the U.S. economy 59.9 billion dollars an-
nually [14]. While current technologies cannot hope to re-
move all errors from software, the report goes on to esti-
mate that 22 billion dollars could be saved through earlier
and more effective defect detection.

Black-box testing is a type of software testing that en-
sures a program meets its specification from a behavioral
or functional perspective. The number of possible black-
box test cases for any non-trivial software application is
extremely large. The challenge in testing is to reduce the
number of test cases to a subset that can be executed with
available resources and can also exercise the software ad-
equately so that majority of software defects are exposed.

One popular method for performing black-box testing is the
use of combinatorial covering designs (e.g., [7, 2, 4], etc.)
based on techniques developed in designing experiments for
statistical sampling. These designs correspond to test suites
(i.e., a set of test cases) that cover, or execute, combina-
tions of inputs in a systematic and effective way and are
most applicable in testing data-driven systems where the
manipulation of data inputs and the relationship between
input parameters is the focus of testing. As pointed out by
Dunietz, et al, [7] a technical challenge that remains in ap-
plying this promising technique in software testing is the
construction of covering designs. There are two issues that
need to be considered: the first and perhaps more important
one is the size of the covering design since it dictates the
number of test cases, and consequently, the amount of re-
sources needed to test a software system; the second are the
time and space requirements of the construction itself.

A lot of research work has been devoted to generating
small test suites (e.g., [10, 5, 17] and references therein).
Most researchers focus on uniform coverage of input pa-
rameters with uniform ranges; i.e., they consider test suites
that cover all � -wise combinations of the input parameters 1

for some integer � and the input parameters are assumed to
have the same number of values. While such test suites ap-
ply to a large number of situations, in practice not all � -wise
combinations of input parameters have equal priority in test-
ing, nor are all parameter domains of the same size. Testers
often prioritize combinations of input parameters that influ-
ence a system’s output parameters over those that do not.
Determining which set of input parameters influence a sys-
tem’s output parameters can be accomplished using existing
analyses [6, 11, 15] or can be discovered in the process of
determining the expected result of a test case. 2 Given a sys-

1Suppose �������	�
���	���	��	� are the input parameters and �	� has ��� values
for �������	�	�	����� . A � -wise combination of the input parameters is a � -tuple
(� ��� ���������� ��� � where � �! is a value for parameter � �! for "#�����	�������$� .

2In order to determine the expected result of a test case, the tester must
know which input parameters influence, or affect the computation of the
system’s output parameters.

tem’s input-output relationships, a tester may wish to create
a test suite that covers only those combinations of input pa-
rameters that influence the program outputs in lieu of a test
suite that covers all � -wise combinations of uniform input
parameters. How should such a test suite be generated so
that its size is small and its construction is efficient? In this
paper, we revisit the greedy algorithm for test generation
which was first analyzed by Cohen et al [2] in the context of
� -wise coverage of input parameters with the same ranges.
Not only is the greedy algorithm applicable in this general
setting, but we will also prove that the size of the test suite it
generates is relatively small – it is within a logarithmic fac-
tor of the optimal. Unfortunately, its main weaknesses are
that its time and space requirements become prohibitive as
the number of input parameters increases. To address this
issue, we present a problem reduction technique that makes
the greedy algorithm and possibly any other test suite gen-
eration method more efficient if the reduction in size is sig-
nificant.

In section
�

of this paper, we define our terms and dis-
cuss the greedy algorithm further. In section � , we present
our problem reduction technique and analyze its merits. Ini-
tially, we assume that the input parameters have the same
number of values; later on, we suggest two different ap-
proaches on how to extend our technique when the assump-
tion is no longer true. We then evaluate the technique for
several systems.

2 Constructing small combinatorial test
suites

Assume that a software system has � input parameters
which influence � output parameters. Let �����
	�����������	����
be the set of the input parameters where parameter 	
� has� � values for ��������������� . For simplicity, we represent
the

� � values as the numbers �� � ������� � � . Let �! be the
subset of input parameters that affect the " th output param-
eter and #$�%���&�����������(')� . If all the parameters have
the same number of values then we say that the parameters
have uniform ranges; if all the � -wise combinations of the
parameters are considered in # (i.e., # consists of all size- �
subsets of �) then we say that the parameters have uniform
coverage. As we mentioned earlier, we will assume that
the parameters need not have uniform ranges nor uniform
coverage.

A test case * for the problem instance +,�-.#0/ is a � -
tuple +$�1�2	�432�������	�5��/ where, for �6�7����������� , �5� is a value
of 	�� . Let �! 8����	�� � 1	��:9���������	��:;�� . The test case * covers
one combination of �! : �5� � 	�5�492���������5�:; . A test suite < for
+,�!=#>/ is a set of test cases of the problem instance that
covers all the

� � �&? � �:9 ? ����� ? � �:; combinations of �! for
each � A@ # . In software testing, the goal is to construct <
so that its size (i.e., the number of test cases it contains) is

as small as possible.
Finding optimal test suites for arbitrary instances, how-

ever, is difficult. For instance, Seroussi and Bshouty [16]
has shown that deciding if an arbitrary +,�-.#0/ can be cov-
ered by a test suite of size four is NP-complete even in the
simple instance when all the parameters in � are binary and
all the sets in # have the same size. Next, we analyze the
following greedy algorithm for test suite generation: at each
iteration, pick the unused test case that covers the maxi-
mum number of uncovered combinations. Cohen, et al [2]
were the first to obtain an upper bound on the number of test
cases the greedy algorithm generates in the context of pair-
wise coverage of parameters with uniform ranges. (They
also mentioned a similar bound for � -wise coverage.) They
proved the theorem below.

Theorem 2.1 [2] Let � consist of � parameters, each of
which has

�
values. If all the pairwise combinations of

the parameters in � have to be covered then the greedy
algorithm will generate a test suite whose size is at mostB � 3 +DCFE�G � 3IH CJE�G>K � 3�L /:M8�N�O+ � 3 +DCFE�GP� H CJE�G � /1/ .

To extend this result for the general setting, we consider
the set-covering problem. An instance of the set-covering
problem consists of a finite set Q and a collection R of sub-
sets of Q . The goal is to find the smallest subcollectionS7T R so that every element in Q is covered by some set
in
S

. The set-covering problem is NP-hard [9]. To find a
subcollection

S
, we can also use the same greedy algorithm

we just described above. This time, at each iteration, the al-
gorithm picks the unused set that covers the most remaining
uncovered elements in Q . It is known that the size of the
resulting set cover is at most +4� H CJU>V WYX[Z1\]V / times the opti-
mal where W^X[Z1\ is the largest set in R and CFU is the natural
log [3].

Let us now cast the test generation problem as a set-
covering problem. Let Q consist of all combinations of
+,�!=#>/ that have to be covered. For example, if � �
�
	 � � ��������	 � ;�� then all

� � �)? ����� ? � � ; combinations of � are
in Q . Let us also express each test case * of +,�-.#0/ as a set
which consists of all the combinations it covers in Q and let
R consist of all the possible test cases. Since each test case
covers exactly one combination of �_ for "O�`���������5� , ev-
ery set in R has size � . Once the transformation we have de-
scribed is complete, finding the optimal test suite for +,�!=#>/
is the same as finding the optimal set cover for +aQb5R6/ . Con-
sequently, we have the following result:

Theorem 2.2 Suppose a software system has � input pa-
rameters and � output parameters and the combinations
that need to be covered are described by the instance
+,�!=#>/ . The greedy algorithm for test generation produces
a test suite whose size is at most +4� H CJU!�c/ ? �&d&* where
�&d&* is the size of the optimal test suite.

2

We emphasize that the approximation factor of the
greedy algorithm depends only on the number of output pa-
rameters but not on the number of input parameters nor their
ranges. In the case when # consists of all

�
-subsets of � (as

in the situation described in Theorem 2.1), ��� K � 3�L so our
theorem states that the number of test cases produced by
greedy is at most +4� H CFU K �3 L / ? �&d&* .

3 A problem reduction technique

The greedy algorithm has many attractive features: it
is simple to implement, flexible and generates a relatively
small number of test cases. Its main weakness, however,
is that its time and space requirements become prohibitive
as the number of input parameters increases. This is due
to the fact that at each iteration it needs to find the unused
test case that covers the most number of uncovered com-
binations. If there are � � parameters with � values each,
for example, then at each iteration it must check the cov-
erage of approximately � million test cases. It is this issue
that we seek to address in this section. One obvious ap-
proach is to design a faster (and a more space-efficient) al-
gorithm for generating test suites. This was taken by Cohen,
et al [2] where, instead of doing a brute force search at each
iteration, they implemented a greedy random heuristic that
finds an unused test case that covers a large (but perhaps not
the maximum) number of uncovered combinations. Our ap-
proach, on the other hand, is to make test generation more
efficient via problem reduction. That is, given +,�!=#>/ , we
reduce this instance to +,��� .#�� / so that (i) V ��� V�� V �_V and
V ��� V	� V � V,�
 " and (ii) any test suite <�� for +,��� .#�� / can
be transformed efficiently to a test suite < for +J�!.#0/ . If
such a reduction is possible, then we just have to find a test
suite for +J�� =#�� / . We can either use the greedy algorithm
or any other test generation method (for the general setting)
and, since the inputs to these methods are now smaller, we
expect them to run faster and require less space. Indeed,
the smaller +,��� =#�� / is with respect to +J�!.#0/ , the greater
will be the gain in efficiency. First, we mention two simple
reductions.

R1: If ��� T �! , delete ��� from # . This reduction is valid
because any test suite that covers the combinations of
� also covers the combinations of any of its subsets.

R2: If 	�� has only � value, delete 	�� from � and from all
� ’s that contain 	�� . Suppose < � is a test suite for the
reduced problem instance +,��� .#��F/ . For each test case
*�� @ <�� , create a test case * for the original problem
instance by setting 	 � equal to its only value and all
other parameters to their values in *�� . Since the test
cases of <�� cover all combinations of ��� , the corre-
sponding test cases for the original problem must cover
all combinations of ��� �� ��	���� .

For now, we will assume that the parameters in � have
the same number of values

��� � . Later on, we will extend
our technique to parameters that have non-uniform ranges.
Our general technique for problem reduction finds a base
set of parameters � � , which is a subset of � . Each 	 � @
� is then mapped to a parameter in ��� , say 	�� , so that in
creating a test case * , the value of 	 � is set equal to the
value of 	 � . One implication of this mapping is that if 	��
and 	 � influence the same output, say � , then 	�� cannot be
mapped to 	 � ; otherwise, some combinations of � will not
be covered. We use a graph to model this restriction.

Let � be the graph whose vertices correspond to the � in-
put parameters of the system. Two nodes are adjacent if and
only if their corresponding input parameters are part of the
same set � , for some " . (Sometimes we will use the input
parameters to refer to their nodes in � .) Let us call � the
relationship graph of the problem instance +,�-.#0/ . We now
construct the mapping between parameters and generate the
test cases in the following manner:

Step � : Properly color � (using as few colors as you can);
i.e., assign a color to each node of � so that no two
adjacent nodes are assigned the same color. Let � be
the number of colors used.

Step
�
: For each color � , pick a parameter 	 �� whose

corresponding node in � is colored � . Let ��� �
�
	��� 1	��3 �������1	��� � .

Step � : For each � , construct � � where 	 �� is an element
of ��� if and only if one of the parameters in � was
colored with � . (That is, map every parameter colored
� to 	��� .) Since no two parameters in � are assigned
the same color because they are adjacent in � , it must
be the case that V � V�� V ��� V , for all " . Apply reduction
R1 to ������ �����������' � and call the resulting set #�� .

Step � : Construct a test suite < � for +J�� .#�� / .
Step � : Finally, for each test case *�� @ <�� , construct a

corresponding test case * for +J�!.#0/ in the following
way: for each 	�� , if 	�� was colored � then set its value
in * equal to the value of 	!�� in *�� . Let < denote the
resulting test suite for +,�!=#>/ . Note that V < V�� V < � V .

An example. Let us now illustrate the reduction tech-
nique for the following example. Let � � �
	 � �	 3 �������1	�"2�
where all the input parameters are binary. Let # �
����	����	�32�	 " � , �
	�321	�#2� , �
	�#�1	%$�1	 " � , �
	%$�1	�&21	�'2� , �
	�&�1	�(�� ,
�
	���1	�(�1	�'�� , �
	�'�1	 " ��� . The graph � that models the re-
lationships of the input parameters based on how they in-
fluence the output parameters is shown in Figure 1. We
color � with four colors: red (R), blue (B), yellow (Y),
green (G). Let us pick one parameter for each color: 	 � for
red, 	 3 for blue, 	 ' for yellow and 	�" for green. Hence,

3

I1

I

I

I

II

I

I 2

3

4

5

6

7 8

R

B

B

RR

B

GY

Figure 1. The graph for the problem instance where������� ��� � ���
	
	
	�� �
��� and ������� ��� � ��� ����� ,
��� ��� ����� ,��� � � �
� � � � � , ����� � ��� � ����� , ����� � ����� , ��� � � ��� � ���
� , ����� � � � ��� .

��N� �
	 � 1	 3 �	 ' �	�"2� . Let us now replace the param-
eters in each � with their corresponding parameters in
� � : �
	 � 1	 3 �	�"���� �
	 � 1	 3 1	�"�� , �
	 3 �	 # ��� �
	 3 1	 � � ,
�
	 # 1	 $ 1	�"���� �
	 � 1	 3 1	�"�� , ��	 $ �	 & 1	 ' ��� �
	 3 1	 � 1	 ' � ,
�
	 & 1	 (��� �
	 � 1	 3 � , ��	 � �	 (�	 ' ��� �
	 � 1	 3 1	 ' � , and
�
	 ' 1	�"2��� �
	 ' 1	�"�� . Applying reduction R1, # � �
���
	 � 1	 3 1	�"2����
	 � 1	 3 1	 ' ����
	 ' 1	�"���� . The table below con-
tains a test suite < � for +,�� =#�� / .

	�� 1 1 1 0 0 0 1 0
	�3 1 1 0 1 0 1 0 0
	 ' 1 0 1 1 1 0 0 0
	�" 1 0 0 0 0 1 1 1

Next, we transform <�� into a test suite < for +J�!.#0/ ac-
cording to step 5.

	 � 1 1 1 0 0 0 1 0
	 3 1 1 0 1 0 1 0 0
	 # 1 1 1 0 0 0 1 0
	 $ 1 1 0 1 0 1 0 0
	 & 1 1 1 0 0 0 1 0
	 (1 1 0 1 0 1 0 0
	 ' 1 0 1 1 1 0 0 0
	�" 1 0 0 0 0 1 1 1

Theorem 3.1 < is a test suite for +J�!.#0/ . That is, < covers
all combinations of # .

Proof. Let �! @ # and +�������23���������� � / be a particular
combination of �- . For each 	� @ � , let us denote
by �� the color assigned to node 	� in � . Thus, ��� �
�
	��� � �	 �� 9 �������1	��� ; � . Since < � covers ��� then there is a test
case *�� @ <�� that covers the combination +!� � �� 3 ��������� �
/
of ��� . Consequently, the corresponding test case * of *��

must also cover the same combination for � . Since we
chose � and its combination arbitrarily, we have proven
that < does cover all combinations of # . "

The next theorem describes the relationship between <��
at step 4 and < at step 5.

Theorem 3.2 Suppose +,�!=#>/ was reduced to +J��� .#�� / us-
ing steps 1 to 3 of our algorithm. If <$#&%�' and <��#&%�' are op-
timal test suites for +J�!.#0/ and +J� � .# � / respectively then
V < #&%�' V!�`V <��#&%�' V . In addition, if # � T # then V < #(%�' V�� V < �#&%�' V .
Proof. According to Theorem 3.1, step 5 of our algorithm
transforms <��#&%�' into a test suite for +,�-.#0/ whose size is
V < �#&%�' V . Hence, V < �#&%�' V*) V < #&%�' V . On the other hand, when
#�� T # , < #(%�' can also be transformed into a test suite for
+,�� =#�� / in the following manner. For each * @ < #(%�' , con-
struct *�� by setting each 	��� @ �� equal to its value in * .
That is, if we arrange the test cases in <$#(%�' as columns in a
� ? V <+#(%�'�V array, and whose rows are indexed by 	��2�������1	�� ,
then the test suite for +,��� =#�� / is formed by considering only
the rows indexed by the input variables in ��� . Since each
� � @ # � is also in # , this means that the rows in <,#&%�'
indexed by the input parameters in ��� cover all the com-
binations of ��� . But ��� T �� , so the test suite we have
created for +J��� =#�� / also covers all combinations of ��� , for
each ��� @ #�� . "

The next corollary follows immediately.

Corollary 3.3 Suppose # � T # . If < � is the test suite gen-
erated at step 4, and V < � V	�.-PV <��#&%�' V for some -/) � then
V < V!�0- V < #(%�' V , where < is the test suite generated at step 5.

Note that V <+#&%�'�VP� V <��#(%�' V may occur even when # �21T
. In our example, the set �
	����	�3��	�'�� lies in # but not
in #�� . On the other hand, �
	���1	�3��	 " � @ #43�#�� , so at
least eight test cases are needed to cover all combinations in
both +J�!.#0/ and +,��� .#�� / . Since the test suites we presented
for both instances have eight test cases each, they must be
optimal. It is also possible that V < #(%�' V65 V <��#&%�' V when #��*1T
. In the appendix, we present such an example from [12].

Corollary 3.4 Suppose the number of colors used in step
1 is � , and there exists an � �>@ # such that V � � V � � . If
the greedy algorithm is used in step 4 to generate < � , then
the test suite produced in step 5 is an optimal test suite for
+,�!=#>/ .
Proof. Since ��� @ # , all combinations of ��� must be cov-
ered by any test suite for +,�!=#>/ . Hence, V <$#(%�'�V7) ��8 9;:<8 � � �

.
On the other hand, since � colors were used in step 1,
��Y�N���� � �
	��� �������1	��� � . This means that every other ��� is
a subset of ���� so #�� � ������ � after step 3. In step 4, if we

4

use the greedy algorithm, then according to Theorem 2.2,
the algorithm will find an optimal test suite < � for +J�� .#�� / .
Its size is

��8 9 �: 8 � � �
. 3 Since step 5 produces a valid test

suite < for +,�!=#>/ , and V < V�� V < � V�� � �
, < is optimal. "

The situation described in Corollary 3.4 typically hap-
pens when the size of the largest set in # is significantly
larger than most of the other subsets in # . We present an-
other situation when V < �#&%�' V^� V < #&%�' V . The result is implied
in [12]. Recall that for a graph �$��+ � ��>/ , �_+ � / , the
clique number of � , is the size of the largest

� � T �
such

that all vertices in
� � are pairwise adjacent, and � + � / , the

chromatic number of � , is the minimum number of colors
needed to color � . It is well known that �_+ � / ��� + � / .
Corollary 3.5 Suppose every set in # consists of exactly
two parameters. Let � be the relationship graph of +J�!.#0/ .
If step 1 uses �_+ � / colors (i.e., � + � / ���_+ � /) then
V < #&%�' V�� V <��#(%�' V .
Proof. Suppose ��� � T � forms the largest clique in � .
Let #�� � consists of all pairs of parameters in ��� � . Since
#�� � T # , if <�� �#&%�' is the optimal test suite for +,��� � =#�� � / ,
then V <+#&%�'�V) V <�� �#(%�' V . Since step 1 uses �_+ � / colors,
��>� �
	��� �������1	���
	����� . Different colors were assigned to
all the parameters in ��� � . Thus, #�� consists of all pairs of
parameters in ��� . But V ��:V]�7V ��� � V , so V <��#&%�' V)� V <�� �#(%�' V . And
since V <��#&%�' V) V <+#&%�'�V , it follows that V < �#(%�' V�� V <+#(%�'�V . "

We note that there are many graphs � where �_+ � / �
� + � / , including the family of perfect graphs.

Implications and limitations. We have noted that the main
weakness of the greedy algorithm for test generation is that
at each iteration it needs to check the coverage of almost all
the possible test cases of +,�!=#>/ . In our case, V �(V^� � and
each parameter has

�
values each, so there are a total of

� �
test cases. As

�
and � increase, the time and space require-

ments of the greedy algorithm become prohibitive. The
problem reduction approach we introduced tries to make
the greedy algorithm more feasible in practice. When say
V �� VI� � ��� � , then the total number of test cases is re-
duced to

� � � � � � . In addition, if V #��:V 5 V # V , then the
number of combinations that need to be covered is also less.
Both the time and space requirements of the algorithm can
drop significantly. Unfortunately, it is possible that by ap-
plying the problem reduction technique, we will end up with
a smaller problem instance whose optimal test suite is larger
than our original instance’s optimal test suite. Theorem 3.2
and the subsequent corollaries states sufficient conditions
as to when our problem reduction technique preserves the
optimality of the test suite size.

3Note that because ��� ���������� , straightforward enumeration of all
combinations of � �� in step 4 produces the same result.

When is V ��� V
� V �(V ? This happens when � , the number
of colors used for � , is small relative to the number of nodes
in � . In general, this would mean that the relationships be-
tween the input parameters based on their occurrences in
the �! ’s are relatively “simple”. On the other hand, when
every pair of the input parameters occur together in some
� , then � is a complete graph. Consequently, V ���:VY� V �_V
and V #�� V � V # V , and our technique does not reduce the size
of the problem. We note, however, that this is the only in-
stance when no reduction in the number of input parame-
ters is possible. When � is not a complete graph and

�
is

its vertex set, there is always a vertex � whose degree is at
most V � V�� �

. The subgraph induced by
� � ��� � can be

colored with V � V�� � colors while � can be assigned one of
the V � V��6� colors since it is not adjacent to all of the vertices
in

� � ��� � . Hence, � + � /�� V � V � � and � can always be
reduced by one parameter. Therefore, if we reduce +,�!=#>/
to +J�� .#�� / , and the relationship graph of +J��� =#�� / is not a
complete graph, then we can again apply our problem re-
duction technique to +,��� =#�� / . This observation and the fact
that there is only a finite number of parameters leads us to
the following result.

Theorem 3.6 Suppose the input parameters in +,�!=#>/ have
uniform range. Our problem reduction technique can be
repeatedly applied to +,�!=#>/ until the relationship graph of
the resulting problem instance is a complete graph.

Assuming that a reduction in problem size occurs, we
will most likely have our greatest gain when � is colored
with as few colors as possible. However, coloring an arbi-
trary graph is NP-complete [9]. When the size of the graph
is not too large, exact algorithms for optimal coloring may
be feasible. See [8, 1] for some recent improved algorithms
for exact graph coloring. A simple heuristic allows coloring
� using at most ! H � colors, where ! is the maximum
degree in � [18]. Similarly, we know of no algorithm that
can efficiently generate an optimal test suite for an arbitrary
+,�� =#�� / . Hence, we rely on other sub-optimal algorithms
such as the greedy algorithm for generating <�� .
Extensions to parameters with non-uniform ranges.
Recall that in our reduction technique, for each color � , we
picked an arbitrary parameter 	!�� whose node in � was col-
ored � . In transforming a test case *�� to * , the values of
all parameters whose nodes in � were colored � in * are
then set equal to the value of 	 �� in * � . If the range of
	 �� is less than the range of one of these parameters then
some combinations of # may not be covered. We sug-
gest one of the following two approaches and make use
of the following problem instance which we have encoun-
tered in our programs for illustration: � � �
	��2+ ��/�1	�3�+ ��/�
	 # + ��/�1	 $ + ��/=1	 & +�"�/=�	 (+�"�/�1	 ' + � /=1	�"�+ � /.� , where the numbers
in parenthesis indicate the range of each parameter, and

5

Y

B

Y

R

B I

I

I I

I

I

II

G

P

(b)

3

1

5

7

4

2

6

8

(a)

G

Y

B

Y

R

G

R

B I

I

I I

I

I

II2

3

1

5

7

4

8

G

6

Figure 2. The two graphs are used for gen-
erating a test suite for

� � ��� � ����� � � � ����� �� � ����� � �
� ����� � ��� ����� � �
� ����� � ��� ����� � � � ����� � , where the
numbers in parenthesis indicate the range of each pa-
rameter, and � �
	 � � ��� �
� � � � � � � � � � � 	 � �
��� ��� � � � � � � ����� � 	 � � ��� ��� � ��� ������� . The first graph has
a coloring that uses the fewest number of colors. The
second graph has a coloring where no two parameters with
different range sizes are assigned the same color.

� ���8� � �
	���1	%$�1	�&21	�'2����(3 � �
	�321	�$��	�(��	 " �����# �
�
	���1	�3�1	�#���� .
Approach � . For each color � , choose 	 �� so that among all
the parameters whose nodes in � are colored � , its range
is the largest. The test suite generated by our algorithm is
guaranteed to cover all combinations of # . The associated
graph for the example is shown in Figure 2(a). We color it
with four colors, the fewest number of colors possible, and
choose 	��� � 	 (, 	��� � 	 & , 	 �� � 	 $ and 	�� � 	 ' so ���[�
�
	 $ 1	 & 1	 (1	 ' � . We also have � �� � � �3 � �
	 $ 1	 & 1	 (1	 ' �
and ���# � ��	 $ �	 & �	 (� so #��P� ���
	 $ 1	 & 1	 (�	 ' ��� . Gener-
ating a test suite for +,��� =#�� / is straightforward. The corre-
sponding test suite for +J�!.#0/ will have � ? " ? " ? � �N� " �
test cases.

Approach
�
. Do not assign two parameters the same color

if their ranges are different. One way to implement this is
to add an edge in � between two parameters with unequal
ranges. Again, our algorithm will generate a test suite that

covers all combinations of # . Figure 2(b) shows a coloring
of graph � of the example where only parameters with the
same ranges are assigned the same color. This modification
forces us to use five colors. We set 	!�� � 	�� , 	��� � 	%$,
	 � � 	 " , 	 �� � 	�& and 	 �� � 	�3 so � � � �
	���1	�3�1	%$�1	�&�1	 " � .
The new output sets are ���� � �
	��21	%$�1	�&�1	 " � , ���3 �
�
	�3�1	%$�1	�&21	 " � , and ���# � �
	���1	�3�1	%$�� . We have reduced
the number of parameters in � but not the number of output
sets in # .

A hybrid approach: The weakness of the first approach is
we may end up combining parameters with large ranges in
the same � � when these parameters were never combined in
the original �! . Consequently, we may produce a test suite
<�� whose size is significantly larger than that of the optimal
test suite for +J�!.#0/ . To alleviate the problem, we can as-
sign the same color to input parameters with similar ranges.
For example, add an edge between parameters whose range
sizes differ by at least a certain value in the relationship
graph and use the coloring on this graph to constuct the re-
duced problem instance. (Approach 2 had a stricter rule.)
This way, we can gain some reduction in problem size and
at the same time prevent <�� from being too large when com-
pared to the optimal test suite.

Case Studies. The importance of finding efficient tech-
niques for generating test suites for non-uniform instances
became apparent in our current research in black-box test-
ing. We have to generate test suites that cover all combina-
tions of input parameters that influence output parameters.
The input parameters have non-uniform ranges and the out-
put parameters are often influenced by a different number of
input parameters. Currently, we generate test suites using a
greedy heuristic similar to the one presented in [2]. As the
systems we experimented with grew in size and complexity,
we found that the time and space required to generate these
test suites became very large.

Our goal for these case studies was to evaluate the effec-
tiveness of the problem reduction technique in practice. To
do so, we implemented the greedy algorithm for test genera-
tion on three systems and compared its running time before
and after applying the problem reduction technique. We
also considered the sizes of the resulting test suites in both
instances. Two of the systems we used in the case study are
industrial systems that one of the authors was associated
with while employed in the software industry. The Digital
Access Cross-connect System (DACS) is a hardware and
software system used to configure and test digital trunks
in telephone systems. The program was written at AT&T
Bell Laboratories to provide an easy way to rapidly config-
ure and reconfigure digital trunks in the laboratories where
the DACS is used in testing telephone switches. The Data
Management and Analysis System (DMAS) is used by an-
alytical chemists in the pharmaceutical industry to perform

6

regression analysis on data collected from experiments con-
ducted using liquid and gas chromatography. The third pro-
gram we used is the Loan Arranger System (LAS), a soft-
ware used to support the mortgage-back securities business
and is described in [13]. LAS is used as a software engi-
neering project at the University of Wisconsin–Milwaukee.

For this study, we determined each system’s input-output
(I/O) relationships using the automated technique described
in [15]. All programs were executed on a 1.6 Ghz proces-
sor with 512 MB of memory. Initially, we ran the greedy
algorithm to generate the test suites. The results are shown
below. The fourth row indicates the number of input pa-
rameters that influence the output parameters. The last row
indicates the size of the optimal test suite. For two of the
three systems, the greedy algorithm generated the smallest
possible test suite.

System DACS LAS DMAS
V �(V 6 15 23
V # V 3 20 42

Sizes of � 3 1– 6 1 – 13
Generation time .39 sec 22.30 sec 870.33 sec

V < V 158 1536 5120
V < #&%�' V 150 1536 5120

To implement the problem reduction technique, we con-
structed the relationship graph for each system, used the
greedy coloring scheme [18] and approach 2 to color the
graph. That is, no two parameters’ nodes were assigned the
same color if their ranges were different. Once +,� � , #�� / was
constructed, we used the greedy algorithm to generate <�� at
step 4 and the procedure at step 5 to generate the test suite.
The results are presented below.

System DACS LAS DMAS
V � � V 4 7 13
V #�� V 3 2 1

Generation time .05 sec .66 sec 3.41 sec
V <�� V�� V < V 162 1536 5120

In each of these systems, the problem reduction tech-
nique proved to be an effective way to generate test suites.
The generation times are at least one order of magnitude
faster, while the resulting test suite sizes are equal or close
to that of the optimal test suite.

4 Conclusion

In this paper, we addressed the need to generate small
test suites efficiently where the combinations that have to
be covered are specified by the input-output relationships of

7

6

5

4

3

2

1I

I

I

I

I

I

I

I

I

8

9I

10I
W

Y

Y

G

W

B

G

R

B

B B

R

10I

9

Figure 3. The relationship graph for the
� � � �

given in
the appendix. We drew nodes

� � and
� � � twice to make the

symmetry of the graph more apparent.

the software system. That is, we do not assume that the in-
put parameters have uniform coverage nor that their ranges
have the same size. We revisited the greedy algorithm for
test generation and proved that the number of test cases it
generates in this setting is at most +4� H CJU!�c/ ? �&d&* where �
is the number of output parameters and �&d&* is the size of
the optimal test suite. We then presented a problem reduc-
tion technique so that when the reduction in problem size
is significant, the greedy algorithm and possibly any other
test generation method is more efficient in practice. Some
of the questions we would like to pursue further are:

� Suppose +,�-.#0/ was reduced to +,� � =# � / by our prob-
lem reduction technique. Recall that < #(%�' and <��#&%�'
are optimal test suites for +,�-.#0/ and +,��� =#�� / respec-
tively. Does there exist a constant � such that V < �#&%�' V �
� V < #(%�' V ?

� Can the problem reduction technique be modified so
that V < #(%�' V always equals V <��#(%�' V ?

5 Appendix

We present an example from Meagher and Stevens [12]
for which our problem reduction technique does not pre-
serve the optimality of the test suite size. Consider the fol-
lowing instance:

� � �
	 � 1	 3 �������1	 ��� � where all the parameters are binary.

# � ����	����	�3������	����	�#2�����	��
1	�&2����
	
��1	�'�����
	���1	 " ����
	���1	�����
�
	�321	�#2����
	�3�1	%$�����
	�3�1	 " ����
	�3�1	�������
	�3��	���������
	�#21	�$2��
�
	�#21	�&2����
	�#�1	�'�����
	�#�1	����2�����	%$��	�&2�����	%$21	�(2����
	�$�1	�����
�
	�$�1	
�	������
	�&�1	�(2�����	�&2�	�'������	�&2�	��2�����	�(�1	�'2����
	�(21	 " ��
�
	 (1	 � ����
	 (1	 ��� �����	 ' �	�"������	 ' �	 �	� ����
	�"�1	 � ��
�
	�"21	 �	� ���

7

The relationship graph for +,�!=#>/ is shown in Figure 3.
To make the symmetry of the graph more apparent, we fol-
lowed the suggestion in [12] to repeat nodes 	 � and 	���� in
the drawing. The graph can be � -colored, as shown in the
figure. Applying steps

�
and � of the problem reduction

technique, we have ��� ���
	
��1	�3��	�#��	%$��	���� and #�� consists
of all pairs of parameters in ��� ; i.e., the relationship graph
of +,��� =#�� / is

� & , the complete graph on five vertices. It is
known that the optimal test suite for +,��� .#�� / contains six
test cases, so V < �#(%�' V)� " . On the other hand, the following
is a test suite for the original +,�!=#>/ .

	 � 0 0 1 1 1
	 3 0 1 1 0 0
	 # 0 1 0 1 1
	 $ 0 0 1 0 1
	 & 0 1 1 1 0
	 (0 0 0 1 1
	�' 0 1 1 0 1
	 " 0 1 0 1 0
	�� 0 1 0 0 1
	���� 0 0 1 1 0

Hence, V < #&%�' V � � , so V < #(%�' V+5�V <��#&%�' V . If we consider the
array formed by rows indexed by 	 � 1	 3 1	 # 1	 $ and 	 � , the
combination + � ���/ for �
	 � 1	 $ � and ��	 # �	 � � are not covered.

References

[1] J. M. Byskov, Algorithms for � -coloring and finding
maximal independent sets, Proceedings of the Four-
teenth ACM-SIAM Symposium on Discrete Algorithms
(2003), 456–457.

[2] D. M. Cohen, S. R. Dalal, M. L. Fredman and G.
C. Patton, The AETG system: an approach to testing
based on combinatorial design, IEEE Transactions on
Software Engineering, 23(7) (2000), 437–444.

[3] T. Cormen, C. Leiserson and R. Rivest, Introduction
to Algorithms, MIT Press, 1996, 974–977.

[4] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.
Lott, G. C. Patton and B.M. Harowitz, Model-based
testing in practice, Proceeding of the International
Conference on Software Engineering (1999), 285–
294.

[5] S.R. Dalal and C.L. Mallows, Factor-covering designs
for testing software, Technometrics, 40(3) (1998),
234–242.

[6] E. Duesterwald, R. Gupta, and M.L. Soffa, Rigorous
data flow testing through output influences, Proceed-
ings of the Second Irvine Software Symposium (1992),
131–145.

[7] I.S. Dunietz, W.K. Ehrlich, B.D. Szablak, C.L. Mal-
lows and A. Iannino, Applying design of experi-
ments to software testing, Proceedings of the Nine-
teenth International Conference on Software Engi-
neering (1997), 205–215.

[8] D. Eppstein, Small maximal independent sets and
faster exact graph coloring, Proceedings of the Sev-
enth Workshop on Algorithms and Data Structures,
vol. 2125 of Lecture Notes in Computer Science
(2001), 462–470.

[9] M. Garey and D. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness.,
W.H. Freeman and Company, 1979.

[10] A. Hartman, Software and hardware testing using
combinatorial covering suites, to appear in Interdisci-
plinary Applications of Graph Theory, Combinatorics
and Algorithms (ed. M. Golumbic), manuscript, July
2002.

[11] B. Korel, The program dependence graph in static
program testing, Information Processing Letters 24(2)
(1987), 103–108.

[12] K. Meagher and B. Stevens, Covering Arrays on
Graphs, submitted to Journal of Combinatorial The-
ory, Series B, 2002.

[13] S.L. Pfleeger, Software Engineering: Theory and
Practice, Prentice-Hall, 2001.

[14] Research Triangle Institute, NIST Planning Report
02-3: The Economic Impacts of Inadequate In-
frastructure for Software Testing”, March 5, 2003,
http://www.nist.gov/director/prog-
ofc/report02-3.pdf.

[15] P.J. Schroeder, B. Korel, and P. Faherty, Generat-
ing expected results for automated black-box testing,
Proceedings of the International Conference on Auto-
mated Software Engineering (2002), 139–48.

[16] G. Seroussi and N. H. Bshouty, Vector sets for exhaus-
tive testing of digital circuits, IEEE Transactions on
Information Theory, 34(3) (1988), 513–522.

[17] N. J. A. Sloane, Covering arrays and intersecting
codes, Journal of Combinatorial Designs, 1 (1993),
51–63.

[18] D. West, Introduction to Graph Theory, Prentice Hall,
1996, p. 176.

8

