
Debugging Type Errors (Full version)Karen L. Bernstein and Eugene W. Stark �Department of Computer ScienceState University of New York at Stony BrookStony Brook, NY 11794-4400 USANovember 8, 1995AbstractCompilers for programming languages such as Standard ML are able to �nd many program-ming errors at compile time, however the diagnostic messages from the type inference algorithmdo not always clearly identify the source of type errors. We argue that an extended type def-inition, which assigns types to open expressions as well as closed expressions, can serve as thebasis for a programming environment that helps programmers debug type errors. We presentsuch a type de�nition, which is closely related to the Damas/Milner de�nition, but which inaddition provides principal typings for open expressions. We present an algorithm that performstype inference with respect to our type system and give a simple direct proof of its correctness.Finally we describe a prototype implementation.Keywords: Programming environments, Type Inference1 IntroductionThe Standard ML type system permits ML [MTH90] compilers to identify certain kinds ofprogramming errors at compile time by inferring a \most general" or \principal" type for eachclosed expression. One problem for ML programmers, especially novice programmers, is thatthe source of these type errors can be hard to �nd. In this paper, we present a conservativeextension to the current type system which provides support for tracking down the source oftype errors.Generating useful diagnostic messages for type errors is a di�cult problem, which has beenthe subject of several papers [Wan86, JW86, DB94]. One issue is that the source of the error canbe quite distant from where the symptom of the error (and the error message) occurs. Anotherproblem is that some of the inferred types, especially for subexpressions internal to the program,are complicated and can be hard to understand. Finally, a large number of type constraints cancontribute to the inferred type for a single variable and in general reasoning about large sets ofconstraints is hard.We propose to extend the current ML programming environment in order to provide addi-tional support for �nding the source of type errors. The Standard ML type inference algorithminfers principal types only for closed expressions; that is, for expressions with no free variables.In this paper, we suggest that inferred types for open expressions would be a valuable tool for�Research supported in part by NSF grant CCR-93208461

2\debugging" type errors and in Section 2 we give an example of how this extension can providea kind of \breakpoint" facility for extracting type information from inside of programs.Extending ML type inference to open expressions is problematic because the ML type systemdoes not directly support a notion of principal type for such expressions. The usual typeinference algorithm for ML takes a expression and a type environment as parameters and returnsa principal type, where a type environment is a mapping that assigns types to all variables thatoccur free in the expression, and the principal type is \most general" in the sense that all otherpossible types for the expression are instances of it. An obvious thing to try is to modify thealgorithm so that it takes an open expression as a parameter and returns a principal typing,consisting of a type for the expression together with an assignment of types to free variables, insuch a way that all other typings of the expression are instances of the principal typing. Thisdoes not work, however, since such principal typings do not exist.As an example, consider the ML expression:fn a) ((f a; f 1); (g a; g true))The �-bound variable a imposes a constraint that f and g be functions that take the same typeof parameter. In addition, f is a function that takes an integer parameter and g is a functionthat takes a boolean parameter. We can see that there is no way to unify these three constraints.One solution is to generalize g, so that g's parameter is polymorphic:[f : int! �; g: 8�:�!
] ` fn a) ((f a; f 1); (g a; g true)) : (� � �) � (
 �
)Another solution is to generalize f , so that f 's parameter is polymorphic:[f : 8�:�! �; g: bool!
] ` fn a) ((f a; f 1); (g a; g true)) : (� � �) � (
 �
)Since there is no valid typing having both of these as a common instance, neither typing isprincipal.In this paper, we present a type system which does support principal typings and is stillvery closely related to the ML type system. In this type system, a typing for an expression is apair consisting of a type for the expression and a set of monomorphic (quanti�er-free) types foreach variable that occurs free in the expression. We call a mapping from program variables tosets of monomorphic types an assumption environment. With this type system the expressionin the previous example has the following principal typing:[f : f�! �; int! �0g; g: f�!
; bool!
0g]. fn a) ((f a; f 1); (g a; g true)) : (� � �0) � (
 �
0)This same solution was also used by Shao and Appel [SA93] in order to de�ne the \minimum"interface so that compilation units never need to be recompiled unless their implementationchanges. A major di�erence between their work and ours is that they are interested in a compilerinterface and we are interested in a user interface. In their work it is most important that theinterface be able to identify every case where the compilation unit needs to be recompiled; inour case it is more important that the interface be of practical use to a programmer who mayknow little about the implementation of the compiler.In Section 2, we present an example debugging session with our proposed programmingenvironment. In Section 3, we give a type de�nition with assumption environments and provethat the type de�nition is very closely related to the Standard ML type de�nition. We alsopresent a version of the type inference algorithm presented by Shao and Appel [SA93] andsketch a simple direct proof of the correctness of the algorithm which shows that the algorithmcomputes principal typings for our type de�nition. A complete proof can be found in theappendix. We feel that our proof has the advantage of being simpler and more straightforward

3that the one given by Shao and Appel for their algorithm. In Section 4, we discuss our prototypeimplementation (in the ML Kit [BRTT93]) and in the conclusion we discuss some possible futurework.The type inference algorithm for the ML type discipline (Algorithm W) was presented byDamas and Milner in the paper, Principal Type Schemes for Functional Programs [DM82], andwas proven correct in Damas' PhD dissertation [Dam85]. Most of the research in this area hasconcentrated on improving the diagnostic messages generated by the type inference algorithm.Wand [Wan86] presented a type inference algorithm that keeps a record of the pieces of codethat contribute to each type deduction. This information is then used to explain why the typeerror happened. Duggan and Bent present a re�nement of Wand's approach that addressesissues such as repeated explanations and aliasing of type variables as well as some practicalimplementation issues such as path compression [DB94]. Johnson and Walz apply a maximal
ow technique to the set of type constraints in order to identify the most likely source of thetype error [JW86].Jim [Jim95] demonstrates the value of principal typings for a variety of problems (althoughnot the problem we discuss in this paper) and suggests the use of a variant of rank 2 intersectiontypes (called P2) as a type system that is closely related to the ML type system and supportsprincipal typings. The type system we describe is a restriction of the rank 2 intersection typesand therefore seems to be a more conservative choice of a type system for our purposes.2 An Example Debugging SessionBy extending the type inference algorithm to infer types for open terms, we can provide anenhanced programming environment that assists programmers in �nding the source of typeerrors. We propose to include type information with the error messages for unbound identi�ers.We will show how such an enhancement would be useful by considering the following simpleprogram, which computes the average of a list of numbers and has several type errors:fun avg numList = letval sum = fold op + (0,numList)val count = fold inc (0,numList)in (sum/count) endWe will assume that this program is part of a larger program, that inc is de�ned somewhereelse in the program and has type int -> int, and that fold is a library function that has thetype: ('a * 'b -> 'b) -> 'a list -> 'b -> 'bRecall also that in Standard ML the keyword \op" is used to inform the parser that the usualin�x status of the immediately following operator is to be ignored for this occurrence.First, the enhanced programming environment allows the programmer to reason about theprogram in a bottom-up fashion. Let us say that the programmer would like to cut and pastethe de�nition of sum to the ML prompt in order to see if the de�nition seems correct. Usually,by trying this, the programmer would generate the following error message, since numList is aparameter to the function avg.- val sum = fold op + (0,numList);Error: unbound variable: numListIn our enhanced environment, the error message is annotated with type information and typeinformation is computed for the function sum:

4- val sum = fold op + (0,numList);Error: unbound variable: numList: int listval sum = fn : int list -> intFrom the type elaboration, the programmer can see that the de�nition of sum assumes thatnumList is a list of integers and as a result sum is a function from a list of integers to an integervalue. Notice that the programmer was able to break the information hiding imposed by thelet construct, but did not de�ne any new bindings at the top-level; all of the type informationis just a part of the error message.Suppose now that the programmer decides that numList is actually supposed to be a list ofreal values. However, even after the programmer modi�es the program by replacing the integerliteral \0" with the real literal \0.0" appropriately, there still is a type error:Error: operator and operand don't agree (tycon mismatch)operator domain: 'Z * 'Y -> 'Zoperand: int -> intin expression:fold incThe programmer can tell that there is a problem in the de�nition of count where fold is beingapplied to inc, but the cause is not obvious. The programmer now inserts a \breakpoint" (anunbound identi�er, in this case 'b') to extract the type information at the location reported bythe compiler:fun avg numList = letval sum = fold op + (0.0,numList)val count = fold (b inc) (0.0,numList)in (sum/count) end;Error: unbound variable: b: (int -> int) -> real * real -> realval avg = fn : real list -> realNow the programmer can see that the function inc (the input for breakpoint b) is a function oftype int -> int and that fold expects a parameter (the output for breakpoint b) of type real* real -> real. By extracting type information from inside the program, the programmerrealizes that the de�nition of inc is not appropriate.This proposed programming environment is a conservative extension to the current environ-ment; the only changes are type annotations to some error messages. As a result, the changesare unobtrusive and easy to ignore when they are not needed. However, these type annotationscan be quite useful. They allow the programmer to use the type inference algorithm to writeand debug programs more e�ectively. The new environment allows the programmer to evaluatetype information for pieces of the program as well as to extract type information from insidethe program.3 Type De�nitionFor this paper, we are interested in the programming language mini-ML, which is basic lambdacalculus extended with a polymorphic \let" construct. The expressions in the language arede�ned by the following grammar, where a ranges over a countable set of variables.e ::= a j e1 e2 j fn a) e j let a = e1 in e2We will denote the set of free variables of the programming language expression e by fv(e).

5� � �(a)� ` a: � V AR� ` e1: � 0 ! � � ` e2: � 0� ` e1 e2: � APP� + [a: � 0] ` e: �� ` fn a) e: � 0 ! � ABS� ` e1: �1 � + [a:�] ` e2: �2 � = Gen(�; �1)� ` let a = e1 in e2 : �2 LETFigure 1: ML Type De�nitionSimple types (written �) include type variables �, base types int and bool and function types.Type schemes (written �) are simple types with some universally quanti�ed type variables. Thetype expressions for our language are de�ned by the following grammar.� ::= � j int j bool j �1 ! �2 � ::= � j 8�:�We will denote the set of type variables that occur free in the type scheme � by tyvars(�). Wewill treat type schemes that are equivalent up to the renaming of bound variables as equal.A type environment � is a �nite mapping from variables to type schemes. For any typeenvironment � we write � + [a:�] for the type environment that maps the variable a to thetype scheme � and otherwise behaves like �. We will denote the domain of � by dom(�).A substitution � is a �nite mapping from type variables to simple types. We will denote thesubstitution that maps the type variable � to the type � by [�=�]. Substitutions are extendedfrom type variables to type schemes and type environments in the usual way. The type scheme� = 8�1:::�n:� is a generic instance of the type scheme �0 = 8�1:::�m:� 0 (written � � �0) if andonly if � = [�i=�i]� 0 for some types �1; :::; �m, and none of the type variables �j are free in �0.Let Gen(�; �) be the type scheme 8�1; :::�n:� where f�1; :::; �ng = tyvars(�) n tyvars(�).The type de�nition given in Figure 1 is based on the type de�nition from Tofte's dissertation[Tof87]. For a more complete discussion of the type de�nition see Reade's textbook [Rea89] orMitchell's handbook article [Mit90].3.1 Type De�nition with Assumption EnvironmentsIn this section, we present a type de�nition with assumption environments. This type de�nitionadmits principal typings and in addition is very closely related to the ML type system. We willsee (Theorem 2) that for any expression in the programming language there is a distinguishedtyping that subsumes all other typings and also (Theorem 1) that a type can be proven for aprogramming language expression under the ML type system if and only the same type canbe proven under the type de�nition with assumption environments. Furthermore, there is aclose relationship between the corresponding type environments and assumption environmentsfor which the type can be proven.An assumption environment � is a �nite mapping of variables to sets of simple types (nottype schemes). We will write � = �1[�2 to mean that for all variables a, �(a) = �1(a)[�2(a).We will write �(a) = ; if a is not in the domain of �. We will write �na to mean the assumption

6[a: f�g] . a: � V AR�1 . e1: � 0 ! � �2 . e2: � 0�1 [�2 . e1 e2: � APP� . e: � �(a) � f� 0g� n a . fn a) e: � 0 ! � ABS�1 . e1: �1 �2 . e2: �2 a 62 fv(e2)�1 [�2 . let a = e1 in e2 : �2 LET 0�1 . e1: �1 �2 . e2: �2 �� �1 = �; all � 2 �2(a) a 2 fv(e2)(S�2�2(a) ���1) [(�2 n a) . let a = e1 in e2 : �2 LETFigure 2: Type De�nition with Assumption Environmentsenvironment � with a removed from the domain. For any assumption environment � we write� + [a:�] for the assumption environment that maps the variable a to the set of simple types� and otherwise behaves like �. We will denote the domain of � by dom(�). Substitutionsare extended from type variables to assumption environments in the usual way. An assumptionenvironment � is a generic instance of type environment � (written � � �) if and only if forall variables a in the domain of � and for all types � in �(a), the type � is a generic instanceof �(a). Notice that with this de�nition, if � is a generic instance of � then the domain of � iscontained in the domain of �.Figure 2 gives our type de�nition with assumption environments. Notice that even thoughthe type de�nition has a polymorphic let construct, it does not use type schemes, only simpletypes. This is possible because of the use of assumption environments. Rule [LET] is actuallya rule scheme, whose correct application requires the existence of a collection of substitutionsf�� : � 2 �2(a)g such that the indicated relationships are satis�ed.In Example 3.1, we can see some of the ways that proofs with this type de�nition are di�erentfrom proofs in the ML type system. The [VAR] rule in this type de�nition is more restrictivethan the usual type de�nition in that the type in the assumption environment must correspondexactly to the type of the variable. The [APP] rule requires the same correspondence of thetypes of the subexpressions as the ML type system; however, now the [APP] rule accumulatesthe assumption environments for the subexpressions.Example 3.1[f : f(�! �)! (�! �)g]. f : (�! �)! (�! �) V AR [f : f�! �g] . f : �! � V AR[f : f(�! �)! (�! �); �! �g] . f f : �! � APPIn Example 3.2, we see how the the [ABS] rule forces all assumptions on the variable a tobe identical. The purpose of the [LET] rule is to make sure that the de�nition of the variable ain expression e1 is consistent with how the variable a is used in expression e2. The use of a isconsistent if there exists some substitution that maps the type of the expression e1 to the typeof the occurrence of a.

7Example 3.2 Notice that [�=�0](�0 ! �0) = �! � and [(�! �)=�0](�0 ! �0) = (�! �)!(�! �) and therefore the necessary substitution conditions for the [LET] are true.[a: f�0g] . a:�0 V AR[] . fn a) a : �0 ! �0 ABS see Example 3:1[f : f(�! �)! (�! �); �! �g] . f f : �! �[] . let f = fn a) a in f f : �! � LETThe [LET'] rule is the trivial case of the let de�nition, where the variable a does not occurfree in the e2. In this case, the rule simply accumulates the assumption environments for thesubexpressions.In Example 3.3, we see that if there are variables that occur free in expression e1 of the [LET]de�nition, then not only does the assumption environment required for the whole let-expressionaccumulate all the assumptions required about the free variables of the body e2 (other than thebound variable a), but in addition it includes all assumptions required about the free variablesof e1, where the latter have been suitably strengthened to take into account the consequences ofrequiring that all the uses of the bound variable a in the body match its de�nition. We can seehere that the size of the assumption environment can in general be exponential in the nestingdepth of the [LET] construct.Example 3.3 Notice that [(�! �)=�]� ! � = (�! �)! (�! �) and [�=�]� ! � = �! �and therefore the necessary substitution conditions for the [LET] are true.see Example 3:1[g: f(� ! �)! (� ! �); � ! �g]. g g : (� ! �) see Example 3:1[f : f(�! �)! (�! �); �! �g]. f f : (�! �)[g: f((�! �)! (�! �))! ((�! �)! (�! �)); (�! �)! (�! �); �! �g]. let f = g g in f f : (�! �) LETTheorem 1 states that there is a close correspondence between the ML type de�nition andour type de�nition with assumption environments. We can view assumption environments assimply more a concrete version of type environments, if we consider generalization a form ofabstraction.Theorem 1 If � ` e: � then there exists an assumption environment � such that � � � and� . e: � . Conversely, if � . e: � and � � � then � ` e: � .In the context of the second part of the theorem, observe that for every assumption environment�, the type environment � that maps each a 2 dom(�) to the type scheme 8�:�, has theproperty � � �.Proof Outline: Both directions are by induction on the height of a proof tree, and are straight-forward once several simple lemmas about the properties of generic instance (�) are proven.In the forward direction, one builds the assumption environments � required for a proof that� . e : � by collecting the assumptions about the free variables that actually appear in [VAR]rules in a given proof that � ` e : � . For the converse direction, it is merely necessary to observe,that if � � �, then � is already strong enough to imply all the assumptions about free variablesappearing in a proof of � . e : � . See the appendix for the complete proof. 23.2 Type Inference AlgorithmIn this section, we present the type inference algorithm that takes a programming languageexpression as a parameter and returns the principal typing as de�ned by the type de�nition with

8� is new[a: f�g] � a: � V AR�1 � e1: �1 �2 � e2: �2 � = Uf�1 = �2 ! �g � is new�(�1 [�2) � e1 e2: �� APP� � e: � � = Uf� = � j � 2 �(a)g � is new�(� n a) � fn a) e: �� ! �� ABS�1 � e1: �1 �2 � e2: �2 a 62 fv(e2)�1 [�2 � let a = e1 in e2 : �2 LET 0�1 � e1: �1 �2 � e2: �2 � = Uf[�1]� = � j � 2 �2(a)g a 2 fv(e2)� �(S�2�2 (a)[�1]�) [(�2 n a)� � let a = e1 in e2 : ��2 LETFigure 3: Type Inference Algorithmassumption environments. The algorithm we present is essentially the same as the algorithmpresented by Shao and Appel [SA93]. Our main contribution is a simple direct proof of thecorrectness of the algorithm and a presentation that avoids some of the complexity of theirPolyunify subroutine.We �rst recall some standard facts about uni�cation (see [MM82]). A constraint is anequation of the form � = � 0, where � and � 0 are type expressions. A constraint set is a �niteset of constraints. A uni�er for a constraint set is a substitution �, such that �� = �� 0 for eachconstraint � = � 0 in the set. A constraint set is uni�able if it has a uni�er. A uni�er � is amost general uni�er for a constraint set if and only if for every uni�er �0 for the constraint set,�0 is a substitution instance of �. Most general uni�ers are unique up to renaming of variables.A uni�cation algorithm accepts a constraint set as input and either outputs a most generaluni�er for the constraint set or else indicates that the constraint set is not uni�able. Uni�cationalgorithms exist. We assume that a uni�cation algorithm has been chosen, and we write U forthe function it computes.If � is a type, and x is an element of a given �nite index set, then we write [�]x to denote thetype obtained from � by \tagging" each of the type variables in � with the subscript x. Sincewe assume a countably in�nite collection of type variables, such a tagging function clearly existsand is computable. We extend the [�]x notation to assumption environments in the obviousway.Figure 3 presents our type inference algorithm. Though it is presented in the form of inferencerules, it is in fact a bottom-up algorithm for computing a typing given an expression. Notice howthe unifying substitutions are applied to specialize the assumption environments as we applyeach of the rules to infer a typing for an expression from typings for the subexpressions. Themost interesting rule is [LET]. The constraint set that is being uni�ed in this rule expresses therequirement that each use of the bound variable a match its de�nition. The \taggings" [�1]� ofthe type expression �1 are used to allow each occurrence of a in the body to have a type thatmatches its de�nition, without forcing all of these types to be equal.As a result of Theorem 2 below, we know that every programming language expression has

9a principal typing and that the principal typing is computed by the type inference algorithm.Theorem 2 If � . e: � then there exists an assumption environment �0, type � 0, and sub-stitution �, such that �0 � e: � 0, with ��0 = � and �� 0 = � . Conversely, if � � e: � then� . e: � .Proof Outline: The proof of both directions is again by induction on the height of a prooftree. For the forward direction, given a proof of � . e: � , we inductively construct a proof of�0 � e: � 0, together with the connecting substitution �. The \most general" property of theuni�er computed by U is used at each stage to \factor out" the connecting substitution for thenext stage.Conversely, a straightforward induction shows that if we have a proof of � � e: � then bysystematically applying the unifying substitutions used in it to the proof tree we obtain a proofof � . e: � . See the appendix for the complete proof. 2In Example 3.4, we see a similar proof to that in Example 3.1. Notice that the typing inthis example is principal and any provable typing of the programming language expression (i.e.Example 3.1) is a substitution instance of the typing presented in the example.Example 3.4[f : f�1g] � f : �1 V AR [f : f�2g] � f : �2 V AR [�2 ! �3=�1] = Uf�1 = �2 ! �3g[f : f�2 ! �3; �2g] � f f : �3 APP4 A Prototype ImplementationThe main obstacle to a direct, practical implementation of the algorithm of Figure 3 is that theassumption environment can be large { in general the size can be exponential in the nestingdepth of the [LET] construct. In their paper, Shao and Appel [SA93] suggest an optimization forremoving \isolated" and \redundant" assumptions in order to reduce the size of the assumptionenvironment. As the size explosion arises from the tagging operation performed on �1 in theconclusion of the [LET] rule, which e�ectively copies the information in �1 a number of timesequal to the number of types in the set �2(a), another idea for avoiding the explosion would beto try to postpone actually \multiplying out" these copies until forced to do so. Thus, it seemsthat there are reasonable possibilities for avoiding the size explosion in practical situations, andthat an e�cient, direct implementation of the algorithm of Figure 3 is a worthwhile goal forfuture research. However, in our attempt to investigate the suitability of principal typings fordebugging type errors, we took the alternative approach of introducing simple modi�cations toAlgorithm W so that, in case there are unbound variables, the type information produced is anapproximation to the assumption environment of the principal typing.An approximate implementation has practical value as well, since the user might �nd it verydi�cult to understand the implications of a principal typing containing an exponential numberof assumptions about an unbound variable. For example, consider the following simple program:letfun k a b = aval g = k (h 1) (h true)in let val f = k (g 1) (g true)in (f 1, f true) endendThe only variable that occurs free in this expression is h, but if we were to compute and printthe entire principal typing, the error message would be:

10Error: unbound variable: h: int -> int -> int -> 'aError: unbound variable: h: int -> int -> bool -> 'bError: unbound variable: h: int -> bool -> int -> 'aError: unbound variable: h: int -> bool -> bool -> 'bError: unbound variable: h: bool -> int -> int -> 'aError: unbound variable: h: bool -> int -> bool -> 'bError: unbound variable: h: bool -> bool -> int -> 'aError: unbound variable: h: bool -> bool -> bool -> 'bval it = 'a * 'bOur original design goal was to produce messages that are easy to understand for the noviceprogrammer, yet unobtrusive when they are not needed. As the example above shows, thisgoal is not satis�ed by error messages annotated with the complete type information, whenthe assumption environment is very large. Fortunately, in practical situations, the assumptionenvironment often only contains one type for each occurrence of the unbound variable. Noticethat this was case in the sample debugging session given in Section 2. Our modi�ed AlgorithmW produces the following more manageable output for this example:Error: unbound variable: h: 'int -> 'aError: unbound variable: h: 'bool -> 'bval it = 'e * 'fOur modi�ed version of Algorithm W works as follows: each time an unbound programvariable is encountered, a new type variable is generated and assigned as the type for theunbound variable. When the traversal of the expression is complete, the normal uni�cationprocedure performed by Algorithm W will in general have resulted in a re�nement of the typeof the unbound variable from a type variable to some larger type expression. Then, insteadof simply reporting \Unbound variable", the system also prints out the �nal type assigned tothat variable. Each type in the principal typing will be a substitution instance of the typeproduced by the modi�ed Algorithm W. What is omitted by the modi�ed Algorithm W is thepropagation of constraints imposed by the body of a let-expression on free variables appearingin the de�nition part. This avoids the multiplicative e�ect described above and still producesinformation of practical value to the user.Our prototype implementation demonstrates the usefulness of our proposed programmingenvironment. However, it is not clear how much of an issue large assumption environmentsreally are in practice. In the near future, we intend to do a direct implementation of the of thealgorithm of Figure 3 in order to investigate these issues.5 ConclusionsIn this paper we presented a novel solution to the problem of diagnosing type errors. Wepresented an unobtrusive extension to the programming environment that facilitates �nding thesource of type errors. We were able to give a simple description of the programming environment,by means of a type de�nition and a corresponding type inference algorithm. We also described aprototype implementation of the programming environment which only requires minor changesto the current implementation.We plan to implement a more realistic version of the programming environment, perhapsin SML of New Jersey. In addition, the programming environment that we propose does noteliminate the need for diagnostic messages and it would be interesting to integrate the workdescribed in this paper with the existing work on diagnostics. Another possible extension wouldbe to describe a similar programming environment for modules.

11References[BRTT93] Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The ML Kit,Version 1, 1993.[BS95] Karen L. Bernstein and Eugene W. Stark. Debugging type errors (full version).Technical report, State University of New York at Stony Brook, Computer ScienceDepartment, 1995. http://www.cs.sunysb.edu/�stark/REPORTS/INDEX.html.[Dam85] Luis Damas. Type Assignment in Programming Languages. PhD thesis, Universityof Edinburgh, Edinburgh, U.K., 1985.[DB94] Dominic Duggan and Frederick Bent. Explaining type inference. Technical ReportCS-94-14, University of Waterloo, Waterloo, Canada, 1994.http://nuada.uwaterloo.ca/dduggan/papers.html.[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional programming.In Ninth Annual ACM Symposium on Principles of Programming Languages, pages207{212. Association for Computing Machinery, ACM Press, 1982.[Jim95] Trevor Jim. What are principal typings and what are they good for? TechnicalReport MIT/LCS/TM-532, Massachusetts Institute of Technology, Laboratory forComputer Science, August 1995.[JW86] Greg F. Johnson and Janet Walz. A maximum-
ow approach to anomaly isolation inuni�cation-based incremental type inference. In Thirteenth Annual ACM Symposiumon Principles of Programming Languages, pages 44{57. Association for ComputingMachinery, ACM Press, January 1986.[Mit90] John C. Mitchell. Type systems for programming languages. In Handbook of The-oretical Computer Science, volume B, pages 367{458. Elsevier Science Publishers,1990.[MM82] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm. ACM Trans-actions on Programming Languages and Systems, 4(2):258{282, April 1982.[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MITPress, Cambridge, MA, 1990.[Rea89] Chris Reade. Elements of Functional Programming. Addison-Wesley PublishingCompany, 1989.[SA93] Zhong Shao and Andrew Appel. Smartest recompilation. In Twentieth Annual ACMSymposium on Principles of Programming Languages. Association for ComputingMachinery, ACM Press, January 1993.[Tof87] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis,University of Edinburgh, Edinburgh, U.K., November 1987.[Wan86] Mitchell Wand. Finding the source of type errors. In Thirteenth Annual ACMSymposium on Principles of Programming Languages, pages 38{43. Association forComputing Machinery, ACM Press, January 1986.

12A ProofsLemma A.1 Some basic properties of generic instance (�) that follow immediately from thede�nitions.Recall that we are using the following naming conventions: � for type environments, � forassumption environments, � for simple types, � for type schemes, � for substitutions, a forvariables and � for sets of simple types.1. �1 � � and �2 � � if and only if �1 [�2 � �2. If � � � and �(a) = � then �(a) � f�g3. If � � � then (� n a) � (� n a)4. For � = Gen(�; � 0), � � � if and only if 9�; �� 0 = � and dom(�) \ tyvars(�) = ;5. If � � � and (dom(�) \ tyvars(�)) = ; then �� � �6. If � � � and a 62 dom(�) then � � � + [a:�]7. If � � � and for all � 2 �, � � � then �+ [a:�] � � + [a:�]8. If � � � and dom(�) = dom(�) then tyvar(�) � tyvar(�)Lemma A.2 For all �, e and � such that � . e: � ,a 2 dom(�) () a 2 fv(e)Proof: Straightforward structural induction.Lemma A.3 Substitution Lemma. If � . e: � then �� . e: �� .Proof: Straightforward structural induction.Theorem 1 If � ` e: � then there exists an assumption environment � such that � � � and� . e: � . Conversely, if � . e: � and � � � then � ` e: � .Proof: The �rst part of the proof is by induction on the height of the proof tree. For ourinduction hypothesis we will assume that if we have a proof of height less than k that � ` e: �then there exists an assumption environment � such that � � � and � . e: � . We will thendemonstrate that this assumption is su�cient to show that if we have a proof of height k that� ` e: � then there exists an assumption environment � such that � � � and � . e: � . For ourproof, we will consider each possible bottom rule in the proof tree separately.Case 1 [VAR] The proof is of the form:� � �(a)� ` a: � V ARtherefore we also have: [a: f�g] . a: � V ARwhere it is immediate from the de�nition of generic instance that [a: f�g]� �.Case 2 [APP] The proof is of the form:� ` e1: � 0 ! � � ` e2: � 0� ` e1 e2: � APP

13By the induction hypothesis, there exists �1 and �2 such that �1 . e1: � 0 ! � and �2 . e2: � 0,where �1 � � and �2 � �. Therefore we have:�1 . e1: � 0 ! � �2 . e2: � 0�1 [�2 . e1 e2: � APPWhere by lemma A.1(1), �1 [�2 � �.Case 3 [ABS] The proof is of the form:� + [a: � 0] ` e: �� ` fn a) e: � 0 ! � ABSBy the induction hypothesis, we have � . e: � where � � � + [a: � 0]. By lemma A.1(2),�(a) � f� 0g and we have: � . e: � �(a) � f� 0g� n a . fn a) e: � 0 ! � ABSSince we have � � � + [a: � 0], by lemma A.1(3) it follows that (� n a) � �.Case 4 [LET] The proof is of the form:� ` e1: �1 � + [a:�] ` e2: �2 � = Gen(�; �1)� ` let a = e1 in e2 : �2 LETBy the induction hypothesis, we have that �1 . e1: �1 and �2 . e2: �2 where �1 � � and�2 � � + [a:�]. Let us consider the case where a 62 fv(e2) separately from a 2 fv(e2).If a 62 fv(e2) then we have:�1 . e1: �1 �2 . e2: �2 a 62 fv(e2)�1 [�2 . let a = e1 in e2 : �2 LET 0Since we have �2 � � + [a:�], by lemma A.1(3), (�2 n a) � �. Since a 62 fv(e2), by lemmaA.2 a 62 dom(�2) and �2 n a = �2. Therefore we have that �2 � � and by lemma A.1(1),�1 [�2 � �.If a 2 fv(e2) then since �2 � � + [a:�], by lemma A.1(4), we have that for each � in �2(a)there exists some �� such that �� �1 = � and dom(��) \ tyvars(�) = ;. Therefore we have:�1 . e1: �1 �2 . e2: �2 �� �1 = �; all � 2 �2(a) a 2 fv(e2)(S�2�2(a) ���1) [(�2 n a) . let a = e1 in e2 : �2 LETSince for each � 2 �2(a), dom(��)\ tyvars(�) = ;, by lemma A.1(5), we have ���1 � �. Sincewe have that �2 � �+ [a:�], by lemma A.1(3), (�2 n a) � �. Since �2(a) is �nite, by repeatedapplication of lemma A.1(1), it follows that (S�2�2 (a) ���1) [(�2 n a) � �.Part 2: The second part of the proof is also by induction on the height of the proof tree.For our induction hypothesis we will assume that if we have a proof of height less than k that� . e: � and � � � then � ` e: � . We will then demonstrate that this assumption is su�cient toshow that if we have a proof of height k that � . e: � and � � � then � ` e: � . For our proof,we will consider each possible bottom rule in the proof tree separately.Case 1: [VAR] The proof is of the form:[a: f�g] . a: � V AR

14For all � such that � � �(a), (that is [a: f�g]� �), we have:� � �(a)� ` a: � V ARCase 2 [APP] The proof is of the form:�1 . e1: � 0 ! � �2 . e2: � 0�1 [�2 . e1 e2: � APPBy the induction hypothesis, we have that for all �1 such that �1 � �1, �1 ` e1: � 0 ! � and forall �2 such that �2 � �2, �2 ` e2: � 0. Choose � such that (�1 [�2) � �. By lemma A.1(1),�1 � � and �2 � �, so we have � ` e1: � 0 ! � and � ` e2: � 0 and:� ` e1: � 0 ! � � ` e2: � 0� ` e1 e2: � APPCase 3 [ABS] The proof is of the form:� . e: � �(a) � f� 0g� n a . fn a) e: � 0 ! � ABSChoose � such that (� n a) � �. Since �(a) � f� 0g, by A.1(7) we have � � � + [a: � 0] and bythe induction hypothesis, � + [a: � 0] ` e: � . Therefore:� + [a: � 0] ` e: �� ` fn a) e: � 0 ! � ABSCase 4 [LET'] The proof is of the form:�1 . e1: �1 �2 . e2: �2 a 62 fv(e2)�1 [�2 . let a = e1 in e2 : �2 LET 0By the induction hypothesis, we have that for all �1 such that �1 � �1, �1 ` e1: �1 and forall �2 such that �2 � �2, �2 ` e2: �2. Choose � such that (�1 [�2) � �. By lemma A.1(1),�1 � � and �2 � �. Since a 62 fv(e2), by lemma A.2, a 62 dom(�) and therefore by lemmaA.1(6), �2 � � + [a:�]. By the induction hypothesis, � ` e1: �1 and � + [a:�] ` e2: �2 and:� ` e1: �1 � + [a:�] ` e2: �2 � = Gen(�; �1)� ` let a = e1 in e2 : �2 LETCase 5 [LET] The proof is of the form:�1 . e1: �1 �2 . e2: �2 �� �1 = �; all � 2 �2(a) a 2 fv(e2)(S�2�2(a) ���1) [(�2 n a) . let a = e1 in e2 : �2 LETBy the substitution lemma we can rename type variables such that tyvars(�1)\tyvars(�2) = ;.We can also rename the �� appropriately so that �� �1 = � is true and restrict the �� such thatdom(��) � tyvars(�1) and ran(��) � tyvars(�2). Therefore we have that tyvars(���1) \dom(��) = ;.Choose �0 such that (S�2�2(a) ���1)[(�2na) � �0 and dom(�0) = dom((S�2�2 (a) ���1)[(�2 n a)). By lemma A.1(8), tyvars(�0) � tyvars((S�2�2 (a) ���1) [(�2 n a)) and thereforetyvars(�0) \ dom(��) = ;. Let � = Gen(�; �1). By lemma A.1(4), for all � 2 �2(a), � � �.Therefore by A.1(7) �2 � �0 + [a:�].

15Choose � such that (S�2�2(a) ���1) [(�2 n a) � � (� does not have the same restrictionthat �0 had on it's domain). Since � has a �nite domain, by repeated application of lemmaA.1(6), we know that �1 � � and �2 � � + [a:�]. Therefore by the induction hypothesis,� ` e1: �1 and � + [a:�] ` e2: �2. Therefore we have:� ` e1: �1 � + [a:�] ` e2: �2 � = Gen(�; �1)� ` let a = e1 in e2 : �2 LETTheorem 2 If � . e: � then there exists an assumption environment �0, type � 0, and sub-stitution �, such that �0 � e: � 0, with ��0 = � and �� 0 = � . Conversely, if � � e: � then� . e: � .Proof:Part 1: We can show by induction on the height of the proof that if we have a proof that� . e: � there exists an assumption environment �0, type � 0, and substitution , such that�0 � e: � 0, with �0 = � and � 0 = � .[VAR] The proof is of the form: [a: f�g] . a: � V ARTherefore we have: � is new[a: f�g] � a: � V ARwhere = [�=�].[APP] The proof is of the form:�1 . e1: � 0 ! � �2 . e2: � 0�1 [�2 . e1 e2: � APPBy the induction hypothesis, we know that there exists �01, �02, �1, �2, 1 and 2 such that� �01 � e1: �1� �02 � e2: �2� 1�01 = �1� 1�1 = � 0 ! �� 2�02 = �2� 2�2 = � 0We may assume, without loss of generality, that the type variables that occur in �01 and �1 aredistinct from the type variables that occur in �02 and �2, since we can rename type variables, ifnecessary, by the substitution lemma (lemma A.3). Notice that since these sets of type variablesare disjoint, the substitutions 1 and 2 commute.Let 0 = (1 � 2)+ [�=�]. Now we have that 0�1 = � 0 ! � and 0(�2 ! �) = � 0 ! � so �1and �2 ! � are uni�able and there exists some � such that:�01 � e1: �1 �02 � e2: �2 � = Uf�1 = �2 ! �g � is new��01 [��02 � e1 e2: �� APPSince � is the most general uni�er for �1 and �2 ! � we know there exists some such that 0 = � �. Therefore we have, (��01 [��02) = �1 [�2 and (��) = � .[ABS] The proof is of the form: � . e: � �(a) � f� 0g� n a . fn a) e: � 0 ! � ABS

16First let us consider the trivial case where �(a) is empty and therefore the set f� = � j � 2�(a)g is trivially uni�able by the empty substitution, id. We immediately have:� � e: � id = Uf� = � j � 2 �(a)g � is new� n a � fn a) e: � ! � ABSand = [� 0=�].Now let us consider the case where �(a) = f� 0g. By the induction hypothesis, we knowthere exists �1; �1; 1 such that� �1 � e: �1� 1�1 = �� 1�1 = �Let 0 = 1 + [� 0=�]. Therefore 0(�1(a)) = �(a) = f� 0g and f� = � j � 2 �1(a)g isuni�able, so there exists some � such that:�1 � e: �1 � = Uf� = � j � 2 �1(a)g � is new��1 n a � fn a) e: �� ! ��1 ABSSince � is the most general uni�er of f� = � j � 2 �1(a)g there exists some such that 0 = � �. Therefore we have (��1 n a) = � n a and (�� ! ��1) = � 0 ! � .[LET'] The proof is of the form:�1 . e1: �1 �2 . e2: �2 a 62 fv(e2)�1 [�2 . let a = e1 in e2 : �2 LET 0By the induction hypothesis, we know that there exists �01, �02, � 01, � 02, 1 and 2 such that� �01 � e1: � 01� �02 � e1: � 02� 1�01 = �1� 1� 01 = �1� 2�02 = �2� 2� 02 = �2Therefore we have: �01 � e1: � 01 �02 � e2: � 02 a 62 fv(e2)�01 [�02 � let a = e1 in e2 : � 02 LET 0We may assume, without loss of generality, that the type variables that occur in �01 and � 01 aredistinct from the type variables that occur in �02 and � 02, since we can rename type variables, ifnecessary, by the substitution lemma (lemma A.3). Notice that since these sets of type variablesare disjoint, the substitutions 1 and 2 commute.Let = 1 � 2. Therefore we have (�01 [�02) = �1 [�2 and � 02 = �2.[LET] The proof is of the form:�1 . e1: �1 �2 . e2: �2 �� �1 = �; all � 2 �2(a) a 2 fv(e2)(S�2�2(a) ���1) [(�2 n a) . let a = e1 in e2 : �2 LETBy the induction hypothesis, we know that there exists �01, �02, � 01, � 02, 1 and 2 such that� �01 � e1: � 01� �02 � e1: � 02

17� 1�01 = �1� 1� 01 = �1� 2�02 = �2� 2� 02 = �2We may assume, without loss of generality, that the type variables that occur in �01 and� 01 are distinct from the type variables that occur in �02 and � 02, since we can rename typevariables, if necessary, by the substitution lemma (lemma A.3). Notice that since these sets oftype variables are disjoint, the substitutions 1 and 2 commute. We may also assume, withoutloss of generality, that dom(��) � tyvars(�1).Let � 0 = �(2� 0) � ((1 � []�1� 0) � 2) and let 0 be the composition of the � 0 for all� 0 2 �02(a) where []�1� 0 is the function that removes the subscript � 0. We have that 0 uni�esf[� 01]� 0 = � 0 j � 0 2 �02(a)g and therefore there exists some � such that:�01 � e1: � 01 �02 � e2: � 02 � = Uf[� 01]� 0 = � 0 j � 0 2 �02(a)g a 2 fv(e2)� �(S� 02�02(a)[�01]� 0) [(�02 n a)� � let a = e1 in e2 : �� 02 LETSince � is the most general uni�er of f[� 01]� 0 = � 0 j � 0 2 �02(a)g there exists some such that 0 = ��. Therefore we have (� �(S� 02�02(a)[�01]� 0) [(�02 n a)�) = (S�2�2 (a) ���1)[(�2 na)and (�� 02) = �2.Part 2: We can show by induction on the height of the proof that if we have a proof that� � e: � then we can construct a proof that � . e: � .[VAR] The proof is of the form: � is new[a: f�g] � a: � V ARTherefore we have [a: f�g] . a: � V AR[APP] The proof is of the form:�1 � e1: �1 �2 � e2: �2 � = U(�1 = �2 ! �) � is new�(�1 [�2) � e1 e2: �� APPBy the induction hypothesis, we know that �1 . e1: �1 and �2 . e2: �2. Therefore by thesubstitution lemma we have ��1 . e1: ��2 ! �� and ��2 . e2: ��2.��1 . e1: ��2 ! �� ��2 . e2: ��2�(�1 [�2) . e1 e2: �� APP[ABS] The proof is of the form:� � e: � � = Uf� = � j � 2 �(a)g � is new�(� n a) � fn a) e: �� ! �� ABSBy the induction hypothesis, we know that � . e: � . Therefore by the substitution lemma wehave �� . e: �� . By construction � is the most general uni�er of the elements of �(a), therefore��(a) � f��g. and we have: �� . e: �� ��(a) � f��g�� n a . fn a) e: �� ! �� ABS

18[LET'] The proof is of the form:�1 � e1: �1 �2 � e2: �2 a 62 fv(e2)�1 [�2 � let a = e1 in e2 : �2 LET 0Therefore by the induction hypothesis we immediately have:�1 . e1: �1 �2 . e2: �2 a 62 fv(e2)�1 [�2 . let a = e1 in e2 : �2 LET 0[LET] The proof is of the form:�1 � e1: �1 �2 � e2: �2 � = Uf[�1]� = � j � 2 �2(a)g a 2 fv(e2)� �(S�2�2 (a)[�1]�) [(�2 n a)� � let a = e1 in e2 : ��2 LETBy the induction hypothesis, we know that �1 . e1: �1 and �2 . e2: �2. By the substitutionlemma we have ��2 . e2: ��2. Let �� = � � []� . Therefore we have:�1 . e1: �1 ��2 . e2: ��2 �� �1 = �; all � 2 �2(a) a 2 fv(e2)(S�2�2(a) ���1) [(��2 n a) . let a = e1 in e2 : �2 LET2

