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Abstract

It is well known that the three parameters that characterize the Kerr
black hole (mass, angular momentum and horizon area) satisfy several
important inequalities. Remarkably, some of these inequalities remain
valid also for dynamical black holes. This kind of inequalities play an
important role in the characterization of the gravitational collapse. They
are closed related with the cosmic censorship conjecture. In this article
recent results in this subject are reviewed.

1 Geometric inequalities in General Relativity

A classical example of a geometric inequality is the isoperimetric inequality for
closed plane curves given by

L2 ≥ 4πA (= circle), (1)

where A is the area enclosed by a curve C of length L. In (1) equality holds if
and only if C is a circle, see figure 1. For a review on this subject see [68]. The
inequality (1) applies to complicated geometric objects (i.e. arbitrary closed
planar curves). The equality in (1) is achieved only for an object of “optimal
shape” (i.e. the circle) which is described by few parameters (in this case only
one: the radius). Moreover, this object has a variational characterization: the
circle is uniquely characterized by the property that among all simple closed
plane curves of given length L, the circle of circumference L encloses the maxi-
mum area.

General Relativity is a geometric theory, hence it is not surprising that geo-
metric inequalities appear naturally in it. Many of these inequalities are similar
in spirit as the isoperimetric inequality (1). In particular, all the geometric
inequalities discussed in this article will have the same structure as (1): the
inequality applies for a rich class of objects and the equality only applies for
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Figure 1: The isoperimetric inequality. On the left an arbitrary curve, where
the strict inequality holds. On the right the circle, where the equality holds.

an object of “optimal shape” (always indicated in parenthesis as in (1)). This
object, like the circle, can be described by few parameters and it has also a
variational characterization.

However, General Relativity is also a physical theory. It is often the case
that the quantities involved have a clear physical interpretation and the expected
behavior of the gravitational and matter fields often suggests geometric inequal-
ities which can be highly non-trivial from the mathematical point of view. The
interplay between physics and geometry gives to geometric inequalities in Gen-
eral Relativity their distinguished character. These inequalities relate quantities
that have both a physical interpretation and a geometrical definition.

The plan of this article follows this interplay between physics and mathe-
matics. In section 2 we present the physical motivations for the black holes
geometric inequalities. In section 3 we summarize some theorems where these
inequalities have been recently proved. Finally, in section 4 we list relevant
open problems and we also describe recent results on geometric inequalities for
bodies.

2 Physical picture

An important example of a geometric inequality is the positive mass theorem.
Let m be the total ADM mass on an asymptotically flat complete initial data
such that the dominant energy condition is satisfied. Then we have

0 ≤ m (= Minkowski). (2)

The mass m is a pure geometrical quantity [9][13][20]. However, from the ge-
ometrical mass definition, without the physical picture, it would be very hard
even to conjecture the inequality (2). In fact the proof of the positive mass
theorem turns out to be very subtle [71][72][82].

A key assumption in the positive mass theorem is that the matter fields
should satisfy an energy condition. This condition is expected to hold for all
physically realistic matter. This kind of general properties which do not depend
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very much on the details of the model are not easy to find for a macroscopic ob-
ject. And hence it is difficult to obtain simple and general geometric inequalities
among the parameters that characterize ordinary macroscopic objects. Black
holes represent a unique class of very simple macroscopic objects and hence they
are natural candidates for geometrical inequalities. Nevertheless, in section 4
we will present also a geometric inequality valid for ordinary bodies.

The black hole uniqueness theorem ensures that stationary black holes in
vacuum are characterized by the Kerr exact solution of Einstein equations 1. For
simplicity we will not consider the electromagnetic field in this article, however
most of the results presented here can be generalized to include that case.

It is somehow remarkable that the same family of solutions of Einstein equa-
tions that describe the unique stationary black hole (i.e. the Kerr metric) also
describe naked singularities. In effect, the Kerr metric depends on two param-
eters: the mass m and the angular momentum J . This metric is a solution of
Einstein vacuum equations for any choice of the parameters m and J . However,
it represents a black hole if and only if the following remarkably inequality holds√

|J | ≤ m. (3)

Otherwise the spacetime contains a naked singularity. Figure 2 shows the pa-
rameter space of the Kerr solution. Extreme black holes are defined by the
equality in (3). These black holes lie at the boundary between naked singu-
larities and black holes. For most of the inequalities discussed in this article,
extreme black holes play the role of the circle in the isoperimetric inequality
(1): they reach the equality and they represent objects of “optimal shape”.

The area of the horizon of the Kerr black hole is given by the simple but
very important formula

A = 8π
(
m2 +

√
m4 − J2

)
. (4)

From equation (4) we deduce that the following three geometric inequalities
hold for a Kerr black hole√

A

16π
≤ m (= Schwarzschild), (5)√

|J | ≤ m (= Extreme Kerr), (6)

8π|J | ≤ A (= Extreme Kerr). (7)

As expected from the discussion above, the inequality (6) is needed to define
the black hole horizon area in (4): if (6) does not hold, then the expression (4)
is not a real number. We have listed this inequality again here to emphasize
its connection with the other two in the following discussion. Inequalities (5)
and (7) follow from (6) and (4). Note that these inequalities relate the three
relevant parameters of the Kerr black hole (m,J,A).

1It is worth mention that important aspects of the black hole uniqueness problem remain
still open, see recent review article [25] and reference therein.

3



m

J

Ex
tr

em
eExtrem

e

S
ch
w
ar
zs
ch
il
d

Naked

Singularity

Naked

Singularity

Black Hole

Minkowski Minkowski

Naked

Singularity

Naked

Singularity

Figure 2: A point in this graph is a Kerr solution with parameters m and J . The
horizontal axis where m = 0 is Minkowski space. The Schwarzschild solution
is given by the vertical axis where J = 0. In the gray region the parameters
satisfy the inequality (3) and hence the Kerr solution describe a black hole.
The boundary of this region is given by the equality in (3), these solutions are
called extreme black holes. In the white region, excluding the horizon axis, the
Kerr solution contains a naked singularity. That includes also the negative mass
region.
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Let us discuss the physical meaning of the inequalities (5), (6) and (7). In
the inequality (5), the difference

m−
√

A

16π
, (8)

represents the rotational energy of the Kerr black hole. This is the maximum
amount of energy that can be extracted from the black hole by the Penrose
process [19]. When the difference (8) is zero, the black hole has no angular
momentum and hence it is the Schwarzschild black hole.

From Newtonian considerations, we can interpret the inequality (6) as follows
[80]. In a collapse the gravitational attraction (≈ m2/r2) at the horizon (r ≈ m)
dominates over the centrifugal repulsive forces (≈ J2/mr3).

Finally, concerning the inequality (7), the black hole temperature is given
by the following formula

κ =
1

4m

(
1− (8πJ)2

A2

)
. (9)

The temperature is positive if and only if the inequality (7) holds. Moreover
the temperature is zero if and only if the equality in (7) holds and hence the
black hole is extreme.

There exists another relevant geometrical inequality which can be deduced
from the formula (4)

8π
(
m2 −

√
m4 − J2

)
≤ A (= Extreme Kerr). (10)

Remarkably, as it was pointed out in [59] for the case of the electric charge and
in [38] for the present case of angular momentum, the inequality (10) can be
deduced purely from the inequalities (6) and (7) (i.e. without using the equality
(4)) by simple algebra. Namely

m2 =
√
m4 − J2 + J2, (11)

≤ |J |+
√
m4 − J2, (12)

≤ A

8π
+
√
m4 − J2, (13)

where in the line (12) we have used (6) and in line (13) we have used (7). In
that sense, the inequalities (5), (6) and (7) are more fundamental than (10).
However, the inequality (10) is important by itself since it related with the
Penrose inequality with angular momentum, see [59] [38].

We have seen that for stationary black holes the inequalities (5), (6) and (7)
are straightforward consequences of the area formula (4).

However, black holes are in general non stationary, see figure 3. Astrophys-
ical phenomena like the formation of a black hole by gravitational collapse or
a binary black hole collision are highly dynamical. For such systems, the black
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Figure 3: Schematic representation of an initial data for a non-stationary black
hole. The black ring represents a trapped surface. Outside and inside the
trapped surface the gravitational field is highly dynamical.

hole can not be characterized by few parameters as in the stationary case. In
fact, even stationary but non-vacuum black holes have a complicated struc-
ture (for example black holes surrounded by a rotating ring of matter, see the
numerical studies in [7]). Remarkably, inequalities (5), (6) and (7) extend (un-
der appropriate assumptions) to the fully dynamical regime. Moreover, these
inequalities are deeply connected with properties of the global evolution of Ein-
stein equations, in particular with the cosmic censorship conjecture.

To discuss the physical arguments that support these inequalities in the dy-
namical regime it is convenient to start with the inequality (7). For a dynamical
black hole, the physical quantities that are well defined are the total ADM mass
m of the spacetime and the area A of the black hole horizon. The total mass m
of the spacetime measures the sum of the black hole mass and the mass of the
gravitational waves surrounding it. In the stationary case, the mass of the black
hole is equal to the total mass of the spacetime, but this is no longer true for a
dynamical black hole. The mass m is a global quantity, it carries information
on the whole spacetime. In contrast, the area of the horizon A is a quasi-local
quantity, it carries information on a bounded region of the spacetime.

It is well known that the energy of the gravitational field cannot be repre-
sented by a local quantity (i.e. a scalar field). The best one can hope is to
obtain a quasi-local expression. The same applies to the angular momentum.
In general, it is difficult to find physically relevant quasi-local quantities like
mass and angular momentum (see the review article [77]). However, in axial
symmetry, there is a well defined notion of quasi-local angular momentum: the
Komar integral of the axial Killing vector. Moreover, the angular momentum
is conserved in vacuum. That is, axially symmetric gravitational waves do not
carry angular momentum.

Then, for axially symmetric dynamical black holes we have two well defined
quasi-local quantities: the area of the horizon A and the angular momentum J .
Note that the inequality (7) relates only quasi-local quantities.

Using A and J we can define the quasi-local mass for a dynamical black hole
by the Kerr formula (4), that is

mbh =

√
A

16π
+

4πJ2

A
. (14)
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Figure 4: The area theorem. The horizon area of a dynamical black hole increase
with time.

This is, in principle, just a definition. Since mbh is given by the Kerr formula
(4) it automatically satisfies the inequalities (6) and (5). However, the relevant
question is: does mbh describes the quasi-local mass of a non-stationary black
hole? This question is closed related to the validity of the inequality (7) in the
dynamical regime. In order to answer it let us analyze the evolution of mbh.

For a dynamical black hole, by the area theorem, we know that the horizon
area A increase with time, see figure 4. In general, the quasi-local mass of the
black hole is not expected to be a monotonically increasing quantity. Energy
can be extracted from a rotating black hole by the Penrose process. However, if
we assume axial symmetry then the angular momentum will be conserved at the
quasi-local level. On physical grounds, one would expect that in this situation
the quasi-local mass of the black hole should increase with the area, since there is
no mechanism at the classical level to extract mass from the black hole. In effect,
the Penrose process involves an interchange of angular momentum between the
black hole and the exterior. But the angular momentum transfer is forbidden
in axial symmetry. Then, both the area A and the quasi- local mass mbh should
monotonically increase with time in axial symmetry.

Let us take a time derivative of mbh. To analyze this, it is illustrative to
write down the complete differential, namely the first law of thermodynamics

δmbh =
κ

8π
δA+ ΩHδJ, (15)

where

κ =
1

4mbh

(
1− (8πJ)2

A2

)
, ΩH =

4πJ

Ambh
. (16)

In equation (15) we have followed the standard notation for the formulation
of the first law; we emphasize, however, that in our context this equation is a
trivial consequence of (14). In axial symmetry δJ = 0 and hence we obtain

δmbh =
κ

8π
δA. (17)

By the area theorem we have
δA ≥ 0. (18)
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Then δmbh ≥ 0 if and only if κ ≥ 0, that is δmbh ≥ 0 if and only if the
inequality (7) holds. Then, it is natural to conjecture that this inequality should
be satisfied for any axially symmetric black hole. If the horizon violates (7), then
in the evolution the area will increase but the mass mbh will decrease. This will
indicate that the quantity mbh does not have the desired physical meaning.
Also, a rigidity statement is expected. Namely, the equality in (7) is reached
only by the extreme Kerr black hole where κ = 0.

This inequality provides a remarkable quasi-local measure of how far a dy-
namical black hole is from the extreme case, namely an ‘extremality criteria’ in
the spirit of [17], although restricted only to axial symmetry. In the article [31]
it has been conjectured that, within axially symmetry, to prove the stability of
a nearly extreme black hole is perhaps simpler than a Schwarzschild black hole.
It is possible that this quasi-local extremality criteria will have relevant applica-
tions in this context. Note also that the inequality (7) allows to define, at least
formally, the positive temperature of a dynamical black hole κ by the formula
(16) (see Refs. [11] [10] for a related discussion of the first law in dynamical
horizons). If inequality (7) holds, then mbh defines a non-trivial quantity that
increase monotonically with time, like the black hole area A.

It is important to emphasize that the physical arguments presented above
in support of (7) are certainly weaker in comparison with the ones behind the
Penrose inequalities that support the inequalities (5) and (6) that we will discuss
bellow. A counter example of any of these inequality will prove that the standard
picture of the gravitational collapse is wrong. On the other hand, a counter
example of (7) will just prove that the quasi-local mass (15) is not appropriate
to describe the evolution of a non-stationary black hole. One can imagine other
expressions for quasi-local mass, may be more involved, in axial symmetry. On
the contrary, reversing the argument, a proof of (7) will certainly suggest that
the mass (15) has physical meaning for non-stationary black holes as a natural
quasi-local mass (at least in axial symmetry). Also, the inequality (7) provide
a non trivial control of the size of a black hole valid at any time.

In a seminal article Penrose [70] proposed a remarkably physical argument
that connects global properties of the gravitational collapse with geometric in-
equalities on the initial conditions. That argument lead to the well known
Penrose inequality (5) for dynamical black holes (without any symmetry as-
sumption). In the following we review this argument imposing axial symmetry,
where angular momentum is conserved. And, more important, we include a
relevant new ingredient: we assume that the inequality (7) holds.

We will assume that the following statements hold in a gravitational collapse:

(i) Gravitational collapse results in a black hole (weak cosmic censorship).

(ii) The spacetime settles down to a stationary final state. We will further
assume that at some finite time all the matter have fallen into the black
hole and hence the exterior region is vacuum.

Conjectures (i) and (ii) constitute the standard picture of the gravitational
collapse. Relevant examples where this picture is confirmed (and where the
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Figure 5: The Penrose diagram of a gravitational collapse. The initial Cauchy
surface is denoted by S. The area A increase along the event horizon. The mass
m decrease along null infinity. We have assumed axial symmetry and hence the
angular momentum remains constant along null infinity J = J0.

role of angular momentum is analyzed) are the collapse of neutron stars studied
numerically in [12] [48].

The black hole uniqueness theorem implies that the final stationary state
postulated in (ii) is given by the Kerr black hole. Let us denote by m0, J0, A0,
respectively, the mass, angular momentum and horizon area of the remainder
Kerr black hole. Penrose argument runs as follows. Take a Cauchy surface S
in the spacetime such that the collapse has already occurred. This is shown in
figure 5. Let Σ denotes the intersection of the event horizon with the Cauchy
surface S and let A be its area. Let (m,J) be the total mass and angular
momentum at spacelike infinity. These quantities can be computed from the
initial surface S. By the black hole area theorem we have that the area of the
black hole increase with time and hence

A0 ≥ A. (19)

Since gravitational waves carry positive energy, the total mass of the spacetime
should be bigger than the final mass of the remainder Kerr black hole

m ≥ m0. (20)

The difference m−m0 is the total amount of gravitational radiation emitted by
the system.

To related the initial angular momentum J with the final angular momentum
J0 is much more complicated. Angular momentum is in general non-conserved.
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There exists no simple relation between the total angular momentum J of the
initial conditions and the angular momentum J0 of the final black hole. For
example, a system can have J = 0 initially, but collapse to a black hole with
final angular momentum J0 6= 0. We can imagine that on the initial conditions
there are two parts with opposite angular momentum, one of them falls in to
the black hole and the other escape to infinity. Axially symmetric vacuum
spacetimes constitute a remarkable exception because the angular momentum
is conserved. In that case we have

J = J0. (21)

For a discussion of this conservation law in detail see [34] and reference therein.
We have assumed that the inequality (7) holds, then by the discussion above

we have that the quasi-local mass mbh increase with time, that is

mbh ≤ m0. (22)

We emphasize that this inequality is highly non-trivial. The quantity mbh is
computed on the initial surface S, in contrast to compute m0 we need to known
the whole spacetime. Using (22) and (20) we finally obtain√

A

16π
+

4πJ2

A
= mbh ≤ m. (23)

This inequality has the natural interpretation that the mass of the black hole
mbh should always be smaller than the total mass of the spacetime m. The
inequality (23) represents a generalization of the Penrose inequality with angular
momentum. This inequality implies√

|J | ≤ m. (24)

In fact, the inequality (24) can be deduced directly by the same heuristic ar-
gument without using the area theorem. It depends only on the following as-
sumptions

• Gravitational waves carry positive energy.

• Angular momentum is conserved in axial symmetry.

• In a gravitational collapse the spacetime settles down to a final Kerr black
hole.

Let us summarize the discussion of this section. For an axially symmetric,
dynamical black hole, the following two geometrical inequalities are expected

8π|J | ≤ A (= Extreme Kerr horizon), (25)√
A

16π
+

4πJ2

A
≤ m (= Kerr black hole). (26)
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The inequality (25) is quasi-local and the inequality (26) is global. The global
inequality (26) implies the following two inequalities√

A

16π
≤ m (= Schwarzschild), (27)√

|J | ≤ m. (= extreme Kerr black hole). (28)

That is:

The three geometrical inequalities (5), (6) and (7) valid for the Kerr
black holes are expected to hold also for axially symmetric, dynamical
black holes.

The Penrose inequality (27) is valid also without the axial symmetry as-
sumption. It is important to emphasize that all the quantities involved in the
geometrical inequalities above can be calculated on the initial surface. For sim-
plicity, we have avoided the distinction between event horizon and apparent
horizons (defined in terms of trapped surfaces) to calculate the area A. This
point is important for the Penrose inequality (see the discussion in [65]) but not
for the other inequalities which are the main subject of this review. In partic-
ular the horizon area A in (25) is the area of an appropriated defined trapped
surface.

A counter example of the global inequality (26) will imply that cosmic cen-
sorship is not true. Conversely a proof of it gives indirect evidence of the
validity of censorship, since it is very hard to understand why this highly non-
trivial inequality should hold unless censorship can be thought of as providing
the underlying physical reason behind it.

The inequalities (5), (6) and (7) can be divided into two groups:

1.
√

A
16π ≤ m: the area appears as lower bound.

2.
√
|J | ≤ m and 8π|J | ≤ A: the angular momentum appears as lower bound

and the area appears as upper bound.

The mathematical methods used to study these two groups are, up to now, very
different. This review is mainly concerned with the second group.

Finally, we mention that for the Kerr black hole there exists a remarkable
equality of the form (8πJ)2 = A+A−, where A+ and A− denote the areas of
event and Cauchy horizon (see figure 6). This equality has been proved for
general stationary spacetimes in the following series of articles [5] [50] [4]. It
has recently received considerable attention in the string community (see [27]
and [79] and references therein). The key property used in these studies is that
the product of horizon areas is independent of the mass of the black hole. It is
interesting to note that there exists, up to now, no generalization of this kind
of equality (or a related inequality) to the dynamical regime.
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3 Theorems

The Penrose inequality√
A

16π
≤ m (= Schwarzschild), (29)

has been intensively studied. It is a very relevant geometric inequality for black
holes since it is valid without any symmetry assumption. For a comprehensive
review on this subject see [65]. The most important results concerning this
inequality are the proofs of Huisken-Ilmanen [55] and Bray [18] for the Rieman-
nian case. The general case remains open. Also, there is up to now no result
concerning the Penrose inequality with angular momentum (26) discussed in
the previous section.

In the following we present a sample of the main results concerning inequal-
ities (28) and (25) that have been recently proved.

For the global inequality (28) we have the following theorem.

Theorem 3.1 Consider an axially symmetric, vacuum, asymptotically flat and
maximal initial data set with two asymptotics ends. Let m and J denote the
total mass and angular momentum at one of the ends. Then, the following
inequality holds √

|J | ≤ m (= Extreme Kerr). (30)

For the precise definitions, fall off conditions an assumptions on the initial data
we refer to original articles cited bellow.

The first proof of the global inequality (30) was provided in a series of articles
[30], [29], [28] which end up in the global proof given in [32]. The proof is based
on a variational characterization of the extreme Kerr initial data. In [21] and [23]
the result was generalized and the proof simplified. In [24] [26] the charge was
included. In [74] relevant improvements on the rigidity statements were made.
In particular in that article it was proved the first rigidity result including charge
and a measure of the distance to extreme Kerr black hole was introduced. In
[85] the result was proved with the maximal condition replaced by a small trace
assumption for the second fundamental form of the initial data. Related results
concerning the force between black holes were proved in [44]. Finally, the mass
formula and the variational techniques involved in the proof of the inequality
(30) were very recently used to study the linear stability of the extreme Kerr
black hole [36].

Under the hypothesis of theorem 3.1 (namely, vacuum and axial symmetry)
the angular momentum is defined as conserved quasi-local integral. In par-
ticular, if the topology of the manifold is trivial (i.e. R3), then the angular
momentum is zero and hence theorem 3.1 reduces to the positive mass theo-
rem. In order to have non-zero angular momentum we need to allow non-trivial
topologies, for example manifolds with two asymptotic ends as it is the case
in theorem 3.1. An important initial data set that satisfies the hypothesis of
the theorem is provided by an slice t = constant in the Kerr black hole in the
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Cauchy horizon

Event horizon

Singularity

Figure 6: Conformal diagram of the non-extreme Kerr black hole. The points
i0 represent spacelike infinity. The surface S have two identical asymptotically
flat ends i0.

standard Boyer-Lindquist coordinates, see figures 6 and 7. The non-extreme
initial data have a different geometry as the extreme initial data. The former
are asymptotically flat at both ends. In contrast, extreme initial data, which
reach the equality in (30), have one asymptotically flat end and one cylindrical
end, see figure 8. That geometry represents the “optimal shape” with respect
to the inequality (30). Figure 8 is the analog of figure 1 for the geometrical
inequality (30).

Regarding the quasi-local inequality (25) we have the following result.

Theorem 3.2 Given an axisymmetric closed marginally trapped and stable sur-
face Σ, in a spacetime with non-negative cosmological constant and fulfilling the
dominant energy condition, it holds the inequality

8π|J | ≤ A (= Extreme Kerr throat), (31)

where A and J are the area and angular momentum of Σ.

This is a pure spacetime and local result. That is, there is no mention of
a three-dimensional initial hypersurface where the two-dimension surface Σ is
embedded. Axisymmetry is only imposed on Σ. Moreover, this theorem does
not assume vacuum. The matter fields can have also angular momentum and it
can be transferred to the black hole, however the inequality (31) remains true
even for that case. It is important to note that the angular momentum that
appears in (31) is the gravitational one (i.e. the Komar integral). In fact this
inequality is non-trivial even for the Kerr-Newman black hole, see the discussion
in [34].

13



i0
S

Event horizon

ic

Singularity

Figure 7: Conformal diagram of the extreme Kerr black hole. The point i0
represents spacelike infinity, the point ic represent the cylindrical end. The
surface S has one asymptotically flat end i0 and one cylindrical end ic.

Figure 8: On the left, an the initial data with two asymptotically flat ends, like
the non-extreme Kerr black holes. For these data the strict inequality holds.
On the right, the data of extreme Kerr black hole, with one asymptotically flat
and one cylindrical end. For this data the equality holds.
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Figure 9: Axially symmetric two-surface. The axial Killing vector η is tangent
to the surface. The null vectors `a and ka are normal to S

Theorem 3.2 has the following history. The quasi-local inequality (31) was
first conjectured to hold in stationary spacetimes surrounded by matter in [8].
In that article the extreme limit of this inequality was analyzed and also numer-
ical evidences for the validity in the stationary case was presented (using the
numerical method and code developed in [7]). In a series of articles [51] [52] the
inequality (31) (including also the electromagnetic charge) was proved for that
class of stationary black holes. See also the review article [6].

In the dynamical regime, the inequality (31) was conjectured to hold in
[33] based on the heuristic argument mentioned in section 2. In that article
also the main relevant techniques for its proof were introduced, namely the
mass functional on the surface and its connections with the area. A proof (but
with technical restrictions) was obtained in [1] [43]. The first general and pure
quasi-local result was proven in [40], where the relevant role of the stability
condition for minimal surfaces was pointed out. The generalization to trapped
surfaces and non-vacuum has been proved in [57]. The electromagnetic charge
was included in [45] and [46]. This inequality has been extended to higher
dimensions in [53] and [69]. In [84] [83] and [41] it has been also extended to
Einstein-Maxwell dilaton gravity. In [47] related inequalities that involve the
shape of the black hole were proved.

To describe the concept of stable trapped surface (this condition was first
introduced in [2]) used in theorem 3.2 let us consider an axially symmetric closed
two-surface Σ with the topology of a two-sphere. The surface Σ is embedded
in the spacetime. Let `a and ka be null vectors spanning the normal plane
to Σ and normalized as `aka = −1, see figure 9. The expansion is defined by
θ(`) = ∇a`a, where ∇ is the spacetime connection. The surface Σ is marginally
trapped if θ(`) = 0. Given a closed marginally trapped surface Σ we will refer
to it as spacetime stably outermost if there exists an outgoing (−ka-oriented)
vector Xa = γ`a − ψka, with γ ≥ 0 and ψ > 0, such that the variation of θ(`)

with respect to Xa fulfills the condition

δXθ
(`) ≥ 0. (32)

Here δ denotes a variation operator associated with a deformation of the surface
Σ (c.f. for example [16] [2])). For maximal initial data the stability condition

15
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Event horizon
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Singularity

Figure 10: Location of the extreme Kerr throat surface Σ in the spacetime.

(32) is closed related with the stability condition for minimal surfaces (see [37],
[57]). The stability of a minimal surface is the requirement that the area is a
local minimum.

The extreme throat geometry, with angular momentum J , was defined in
[33] (see also [1] and [40]). This concept captures the local geometry near the
horizon of an extreme Kerr black hole. The extreme throat is the asymptotic
limit in the cylindrical end of an extreme Kerr black hole, see figure 10 and 11.
Both the intrinsic and extrinsic geometry of this surface are fixed. For example,
it has an intrinsic metric given by

|J |
(

(1 + cos2 θ)dθ2 +
4 sin2 θ

(1 + cos2 θ)
dφ2
)
. (33)

It is an oblate sphere with respect to the axis of rotation (see figure 12, on the
right).

The extreme Kerr throat achieve the equality in (31), this surface has the
“optimal shape” with respect this inequality. It has also a variational charac-
terization. Figure 12 is the analog of figures 1 and 8 for inequality (31).

The results in theorem 3.2 has been used in a recent non-existence proof of
stationary black holes binaries [67] [66] [22].

The rigidity statement in theorem 3.2 (namely that the equality in (31)
implies that the surface is an extreme Kerr throat) has been proved in a different
context: for extreme isolated horizon and near-horizon geometries of extremal
black holes in [56], [62] and [60], see also the review article [61] and reference
therein.
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Figure 11: Location of the extreme Kerr throat surface Σ on the initial data.

Figure 12: On the left, an arbitrary axially symmetric stable two surface. For
this kind of surface the strict inequality holds. On the right, the extreme throat
sphere, where the equality holds.
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4 Open problems and recent results on bodies

In this final section I would like to present the main open problems regarding
the black holes geometrical inequalities discussed in the previous sections. My
aim is to present open problems which are relevant (and probably involve the
discovery of new techniques) and at the same time they appear feasible to solve.
For more details see the review article [34]. The open problem mentioned there
regarding the inclusion of the electric charge in the quasi-local inequality (31)
have been solved [45] [46].

For the global inequality (30) there are two main open problems, which
involve generalizations of the assumptions in theorem 3.1:

• Remove the maximal condition.

• Generalization for asymptotic flat manifolds with multiple ends.

Concerning the maximal condition, as we mention above, in a recent article
[85] this assumption have been replaced by a small trace condition. See also
the discussion in [34]. The most relevant open problem is the second one. The
physical heuristic argument presented in section 2 applies to that case and hence
there little doubt that the inequality holds. This problem is related with the
uniqueness of the Kerr black hole with degenerate and disconnected horizons.
It is probably a hard problem. There are very interesting partial results in [23]
and also numerical evidences in [39].

Probably the most important open problem for geometrical inequalities for
axially symmetric black holes is the following:

• Prove the Penrose inequality with angular momentum (23).

We mention in section 2 that there is a clear physical connection between the
global inequality (30) and the Penrose inequality with angular momentum in
axial symmetry (23). However, the techniques used to prove the inequality (30)
are very different than the one used to prove the classical Penrose inequality
(29) (see the discussion in [34]).

For the quasi-local inequality (31) the two main problems are the following:

• A generalization of the inequality (31) without axial symmetry.

• A generalization of the inequality (31) for ordinary bodies.

The problem of finding versions of inequality (31) without any symmetry as-
sumption, in contrast with the other open problems presented above, is not a
well-defined mathematical problem since there is no unique notion of quasi-local
angular momentum in the general case. However, exploring the scope of the in-
equality in regions close to axial symmetry (in some appropriate sense) can
perhaps provide such a notion. From the physical point of view, we do not see
any reason why this inequality should only hold in axial symmetry. Note that
the global inequality (30) only holds in axial symmetry. This is clear from the
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Figure 13: Axially symmetric rotating body.

physical point of view (see the discussion in [34]) and in [54] highly non-trivial
counter examples have been constructed.

Finally, concerning the second problem there have been recently some results
in [35]. Consider a rotating body U with angular momentum J(U), see figure
13. Let R(U) be a measure (with units of length) of the size of the body.

In [35], the following universal inequality for all bodies is conjectured

R2(U) ?
G

c3
|J(U)|, (34)

where G is the gravitational constant and c the speed of light. The symbol ?
is intended as an order of magnitude, the precise universal (i.e. independent of
the body) constant will depend on the definition of R. We have reintroduced in
(34) the fundamental constants in order to make more transparent the discussion
bellow.

The arguments in support of the inequality (34) are based in the following
three physical principles:

(i) The speed of light c is the maximum speed.

(ii) For bodies which are not contained in a black hole the following inequality
holds

R(U) ?
G

c2
m(U), (35)

where m(U) is the mass of the body.

(iii) The inequality (34) holds for black holes.

Let us discuss these assumptions. Item (i) is clear. Item (ii) is called the
trapped surface conjecture [75]. Essentially, it says that if the reverse inequality
as in (35) holds then a trapped surface should enclose U . That is: if matter
is enclosed in a sufficiently small region, then the system should collapse to a
black hole. This is related with the hoop conjecture [78] (see also [81] [42] [64] ).
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The trapped surface conjecture has been proved in spherical symmetry [15] [14]
[58] and also for a relevant class of non-spherical initial data [63]. The general
case remains open but it is expected that some version of this conjecture should
hold.

Concerning item (iii), the area A is a measure of the size of a trapped surface,
hence the inequality (31) represents a version of (34) for axially symmetric black
holes. If we include the physical constants, this inequality has the form

A ≥ 8π
G

c3
|J |. (36)

In fact the inequality (36) was the inspiration for the inequality (34). A possible
generalization of (36) for bodies is to take the area A(∂U) of the boundary ∂U
of the body U as measure of size. But unfortunately the area of the boundary
is not a good measure of the size of a body in the presence of curvature. In
particular, an inequality of the form A(∂U) ? Gc−3|J(U)| does not holds for
bodies. The counter example is essentially given by a rotating torus in the weak
field limit, with large major radius and small minor radius. The details of this
calculation will be presented in [3].

Using the three physical principles (i), (ii) and (iii) in [35] it is argued that
the inequality (34) should hold. One of the main difficulties in the study of
inequalities of the form (34) is the very definition of the measure of size. In
fact, despite the intensive research on the subject, there is no know universal
measure of size such that the trapped surface conjecture (or, more general, the
hoop conjecture) holds (see the interesting discussions in [64] [49] [76] [47]).
However, the remarkable point is that in order to find an appropriate measure
of size R such that (34) holds it is not necessary to prove first (3), and hence we
do not need to find the relevant measure of mass m(U) for the trapped surface
conjecture. In [35] a size measure is proposed and for that measure the following
version of the inequality (34) has been proved for constant density bodies. This
theorem is a consequence of the Schoen-Yau theorem [73].

Theorem 4.1 Consider a maximal, axially symmetric, initial data set that sat-
isfy the dominant energy condition. Let U be an open set on the data. Assume
that the energy density is constant on U . Then the following inequality holds

R2(U) ≥ 24

π3

G

c3
|J(U)|. (37)

The definition of the radius R in (37) is as follow. Let RSY (U) be the Schoen-
Yau radius defined in [73]. This radius is expressed in terms of the largest torus
that can be embedded in U . See figure 14.

Consider a region U with a Killing vector ηi with norm λ, we define the
radius R by

R(U) =
2

π

(∫
U
λ
)1/2

RSY (U)
. (38)

The definition of the radius (38) is, no doubt, very involved. It is not expected
to be the optimal size measure for a body. It should be considered, together with
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RSY

Ω

Figure 14: On the left, the Schoen-Yau RSY radius for a body is defined in
terms of the biggest embedded torus. On the right, the same torus is showed
on the plane orthogonal to the axial Killing vector. On that plane the torus is
a circle, and the radius RSY is related to the radius of the biggest embedded
circle.

theorem 4.1, as an example where the conjecture (34) can be proved with the
current available mathematical techniques. For examples and further discussion
on this radius we refer to [35].

This article is based on the longer review article [34], we refer to that article
for more details. The two main differences with respect to [34] are the following.
First, several new results appeared after the publication of [34]. These results
have been included here. Second, the physical arguments in section 2 have been
significantly improved and clarified, based on the discussion in [38].
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[56] P. Hájiček. Three remarks on axisymmetric stationary horizons. Com-
mun.Math.Phys., 36(4):305–320, 1974.

[57] J. L. Jaramillo, M. Reiris, and S. Dain. Black hole Area-Angular momen-
tum inequality in non-vacuum spacetimes. Phys.Rev., D84:121503, 2011,
1106.3743.

25



[58] M. A. Khuri. The Hoop Conjecture in Spherically Symmetric Spacetimes.
Phys.Rev., D80:124025, 2009, 0912.3533.

[59] M. A. Khuri, S. Yamada, and G. Weinstein. On the Riemannian Pen-
rose inequality with charge and the cosmic censorship conjecture, 2013,
1306.0206.

[60] H. K. Kunduri and J. Lucietti. A Classification of near-horizon geometries
of extremal vacuum black holes. J.Math.Phys., 50:082502, 2009, 0806.2051.

[61] H. K. Kunduri and J. Lucietti. Classification of near-horizon geometries of
extremal black holes. Living Reviews in Relativity, 16(8), 2013.

[62] J. Lewandowski and T. Pawlowski. Extremal isolated horizons: A Local
uniqueness theorem. Class.Quant.Grav., 20:587–606, 2003, gr-qc/0208032.

[63] E. Malec. Hoop conjecture and trapped surfaces in nonspherical massive
systems. Phys.Rev.Lett., 67:949–952, 1991.

[64] E. Malec. Isoperimetric inequalities in the physics of black holes. Acta
Phys.Polon., B22:829, 1992.

[65] M. Mars. Present status of the Penrose inequality. Class. Quant. Grav.,
26:193001, 2009, 0906.5566.

[66] G. Neugebauer and J. Hennig. Stationary two-black-hole configurations: A
non-existence proof. J.Geom.Phys., 62:613–630, 2012, 1105.5830.

[67] G. Neugebauer and J. Hennig. Stationary black-hole binaries: A non-
existence proof, 2013, 1302.0573.

[68] R. Osserman. The isoperimetric inequality. Bull. Amer. Math. Soc.,
84(6):1182–1238, 1978.

[69] T.-T. Paetz and W. Simon. Marginally outer trapped surfaces in higher
dimensions, 2013, 1302.3052.

[70] R. Penrose. Naked singularities. Ann. New York Acad. Sci., 224:125–134,
1973.

[71] R. Schoen and S. T. Yau. On the proof of the positive mass conjecture in
general relativity. Comm. Math. Phys., 65(1):45–76, 1979.

[72] R. Schoen and S. T. Yau. The energy and the linear momentum of space-
times in general relativity. Comm. Math. Phys., 79(1):47–51, 1981.

[73] R. Schoen and S. T. Yau. The existence of a black hole due to condensation
of matter. Comm. Math. Phys., 90(4):575–579, 1983.

[74] R. Schoen and X. Zhou. Convexity of reduced energy and mass angular
momentum inequalities. Annales Henri Poincaré, 14(7):1747–1773, 2013.
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