
© Kluwer, 2003. Pre-published version of: Telecommunications Systems Journal, 24:1, 61-94, September 2003

An Evaluation of Scenario Notations and Construction Approaches
for Telecommunication Systems Development

Daniel Amyot

School of Information Technology and Engineering, University of Ottawa
800 King Edward, Ottawa, Ontario, K1N 6N5, Canada

e-mail: damyot@site.uottawa.ca
URL: http://www.site.uottawa.ca/~damyot/

Armin Eberlein

Department of Electrical & Computer Engineering, University of Calgary
2500 University Drive NW, Calgary, Alberta, T3A 5S5, Canada

e-mail: eberlein@enel.ucalgary.ca
URL: http://www.enel.ucalgary.ca/People/eberlein/

Abstract

The elicitation, modeling and analysis of requirements have consistently been one of the main challenges
during the development of complex systems. Telecommunication systems belong to this category of sys-
tems due to the worldwide distribution and the heterogeneity of today’s telecommunication networks.
Scenarios and use cases have become popular for capturing and analyzing requirements. However, little
research has been done that compares different approaches and assesses their suitability for the telecom-
munications domain. This paper defines evaluation criteria and then reviews fifteen scenario notations. In
addition, twenty-six approaches for the construction of design models from scenarios are briefly com-
pared.

Keywords
Design, Model, Requirements, Scenario, Synthesis, Telecommunications, Use Case

Introduction

The modeling of telecommunication systems requires an early emphasis on non-functional requirements,
followed by behavioral aspects such as interactions between the system and the external world and users,
on the cause-to-effect relationships among these interactions, and on intermediate activities performed by
the system. Over the years, several approaches have been used to provide notations for describing behav-
ioral aspects of emerging telecommunication systems and services. On one hand, proponents of formal
methods have claimed to solve the problem by providing unambiguous and mathematical notations and
verification techniques, but the penetration of these methods in industry and in standardization bodies
(especially in North-America) remains, unfortunately, low [6][13][45]. On the other hand, scenario-driven
approaches, although often less formal, have raised a higher level of interest and acceptance, mostly be-
cause of their intuitive representation of services [48][49][63][107]. Such semi-formal notations are a
good compromise between informal and formal approaches: they are more precise than natural language
and more convivial than formal languages. Their application to requirements and the early stages of the
design process raises new hopes for the availability of concise, descriptive, maintainable, and consistent
documents, standards, and design specifications that need to be understood by a variety of readers. More-
over, scenarios pave the way towards the construction of detailed (formal) models and implementations
through analytic and synthetic approaches. These construction approaches promise to generate models
and implementations faster and at a lower cost while improving their correctness and traceability with
respect to the requirements.

For several years, scenarios have been very popular in the telecommunications domain. Telecommu-
nication systems consist of many distributed components that interact through information flows. Over
the last 150 years, the global telecommunications network has become the largest, distributed network
worldwide, and is characterized by a tremendous heterogeneity. It contains components with different
functionalities, age, and standards, which are located in different countries and other types of administra-

 p. 1

mailto:damyot@site.uottawa.ca
http://www.site.uottawa.ca/~damyot/
mailto:eberlein@enel.ucalgary.ca
http://www.enel.ucalgary.ca/People/eberlein/

tive domains. Despite this diversity, these components have to interwork in a reliable manner. The dis-
tributed, interactive and incremental nature of telecommunication systems makes scenario notations one
of the best means of modeling the interactions between the various components. In fact, one of the first
scenario notations, the so-called Message Sequence Charts (MSCs), has its roots in the telecommunica-
tion domain and has since then been standardized by the International Telecommunications Union (ITU)
as Z.120 [57]. Over the years, scenario notations have become a state-of-the-art modeling tool in tele-
communication service development.

Because of the tremendous interest in the very active field of scenario techniques and because there is
a lack of comprehensive surveys for the telecommunication domain, this paper presents an evaluation of
state-of-the-art notations and techniques for the scenario-based development of telecommunication sys-
tems and services. This paper serves different purposes:
• To give an overview of typical scenario notations applicable to the telecommunications domain. Fif-

teen such notations are briefly reviewed in Section 1.
• To provide means of comparing and quickly evaluating scenario notations based on several criteria

relevant to the development of telecommunication systems. These criteria are also introduced in Sec-
tion 1, and they are used to compare the selected scenario notations. Table 2, which summarizes this
evaluation, can be used as an index to determine notations of interest, which can vary depending on
the target development phase (requirements, design, implementation, testing, etc.).

• To give an overview and brief comparison of selected analytic and synthetic approaches for the con-
struction of detailed models (e.g. analysis, designs and implementations) from scenarios (Section 2).
Table 4 provides an evaluation summary which can be also used as an index for finding relevant
techniques based on particular source scenario notations or on target modeling languages.

• To discuss challenges and hopes for the future, with a special emphasis on ITU-T's upcoming User
Requirements Notation (URN) and on the Unified Modeling Language (UML) 2.0 (Sections 3 and 4).

• To provide readers with an extensive and current bibliography.

Given the scope of this study and the number of surveyed notations and techniques, this paper can
neither offer illustrative tutorials or examples, nor can it provide an empirical comparison based on a
common case study. However, we believe that this paper will still provide readers with knowledge useful
for making informed decisions about the suitability of particular notations and techniques in their devel-
opment process.

1 Scenario Notations

1.1 Why Scenarios?

Scenarios are known to help describing functional requirements, uncovering hidden requirements and
trade-offs, as well as validating and verifying requirements. The introduction of use cases in the object-
oriented community confirmed this trend about a decade ago [62]. Scenarios are used not only to elicit
requirements and produce specifications, but also to drive the design, the testing, the overall validation,
and the evolution of systems.

The exact definition of a scenario may vary depending on used semantics and notations, but most
definitions include the notion of a partial description of system usage as seen by its users or by related
systems [89]. There is no agreed distinction between the meanings of use case and scenario. In UML, use
cases are defined as sequences of actions a system performs that yield observable results of value to a
particular user (actor) [83]. In the object-oriented community, use cases are interpreted as classes of re-
lated scenarios, where scenarios are sequential and where use case parameters are instantiated with con-
crete values. Hence, a scenario is a specific realization of a use case [83][88]. However, the requirements
engineering community sometimes sees multiple use cases as being contained in a scenario. In this paper,
the terms “use cases” and “scenarios” are used interchangeably.

One frequent problem requirements engineers and designers are faced with is that stakeholders may
have difficulties expressing goals and requirements in an abstract way [71][92]. Typical usage scenarios

 p. 2

for a hypothetical system may be easier to obtain than goals or properties when the system understanding
is in its infancy. This fact has been recognized in cognitive studies on human problem solving [17] and in
research on inquiry-based requirements engineering [86].

The use of scenarios for requirements/software engineering bears benefits and drawbacks. A non-
exhaustive list of the most relevant ones follows in Table 1. These benefits and drawbacks are not exclu-
sive to the telecommunications domain, but telecommunications specifics are sometime emphasized.

Benefits Drawbacks

• Scenarios are intuitive and relate closely to
the requirements. Different stakeholders,
such as designers and users, can understand
them. They are particularly well suited for
operational descriptions (which are critical
in many reactive systems and telecommu-
nication systems).

• They can be introduced in iterative and
incremental design processes (which are
frequent when dealing with new telecom-
munication features or services).

• They can abstract from the underlying sys-
tem structure, if necessary (e.g. when de-
veloping a platform-independent standard).

• They are most useful for documentation
and communication.

• They can guide the requirements-based
tests generation for validation at different
levels (specification, design and implemen-
tation).

• They can guide the construction of more
detailed models and implementations (this
theme is revisited in Section 2)

• Since scenarios are partial representations, complete-
ness and consistency of a set of scenarios are difficult
to assess, especially when the scenarios are not de-
scribed at a uniform abstraction level (e.g. when pro-
duced by different design teams or contributors to
standards).

• Scenarios are often unable to express many non-
functional requirements (such as robustness, reliabil-
ity, etc.) other than by giving examples or instances.

• Scenarios often leave required properties about the
intended system implicit.

• The synthesis of components behavior, from a collec-
tion of scenarios, remains a complex problem.

• The use of scenarios leads to the usual problems re-
lated to traceability with other models used in the de-
velopment process.

• Getting and maintaining the right granularity for the
scenarios can be a real challenge.

• Design approaches based on scenarios are rather re-
cent and seldom possess a high level of maturity.
Scalability and maintainability represent notably im-
portant issues (especially given the complexity of
telecommunication systems).

Table 1 Benefits and Drawbacks of Scenarios

The increasing popularity of scenarios suggests that their benefits outweigh their drawbacks. Further,

scenario notations do not have to be used in isolation, and combining them with other languages or tech-
niques can sometimes cure several of the drawbacks identified. For instance, many construction tech-
niques presented in Section 2 use formal target languages to enable completeness and consis-
tency/granularity checking. Combining scenarios with goal-oriented languages also help expressing non-
functional requirements.

1.2 Evaluation Criteria

The following collection of nine criteria will be used to categorize and compare many scenario notations
relevant to the development of telecommunication systems and services. Some of these criteria (e.g. de-
composition and abstraction) are domain-independent and focus on scenario aspects essential to any soft-
ware/system development process. Others focus on issues of particular importance to the proper modeling
of telecommunication services (e.g. component focus and ordering). Both aspects are necessary and often
they overlap.
• Component focus: Scenarios can be described in terms of communication events between system

components (i.e. component-centered), or else independently from components, in a pure functional
style (i.e. component-independent). This is a very important criterion as many notations focus solely

 p. 3

on interactions between components, while in our view these interactions often belong to detailed de-
sign. Many telecommunication services and standards can first be described independently from an
underlying architecture (which is often vendor-specific or technology-specific). An early focus on
messages at the functional requirements level may lead to system overspecification, may prune out
other appropriate options, and may introduce unnecessary difficulties when evolving systems and ser-
vices towards different infrastructures and product families.

• Hiding: Scenarios could describe system behavior with respect to their environment only (black-box),
or they could include internal (hidden) information as well (gray-box). According to Chandrasekaran,
the most important reason that impeded the progress of various large projects he studied is the lack of
internal details in scenarios [23]. Essentially, treating the system like a black box in a scenario model
means that there shall be no consideration of implementation constraints while describing scenarios.
It does not mean that a scenario shall not delve into details of requirements on internal system func-
tionality. Zave and Jackson present a different viewpoint and claim that when it comes to require-
ments, the environment is not the most important thing: it is the only thing [112]. They suggest avoid-
ing any implementation bias on the basis that requirements are supposed to describe what is observ-
able at the interface between the environment and the system, and nothing else about the system. Our
opinion is more in line with Chandrasekaran's: shared events, whether they are controlled by the sys-
tem or by the environment, are insufficient. Many implementation constraints are not necessarily
premature design decisions, but in fact non-functional requirements, which are often stringent in tele-
communication systems (e.g. performance and fault-tolerance). Additionally, there comes a point
where the gap between requirements and high-level designs or implementations needs to be filled,
and descriptions of activities performed internally by the system can then be of tremendous help.

• Representation: Scenarios can be described in various ways, for instance with semi-formal pictures,
natural language, structured text, logic, grammars, trees, state machines, tables, visual paths, and se-
quence diagrams. Graphical representations are often better understood by a wide range of stake-
holders (especially telecommunication engineers and standardization bodies), whereas structured tex-
tual languages are often less constrained in terms of expressiveness. The level of formality has also an
impact on the usefulness of a notation: less formality is better for requirements, but more formality is
desirable for detailed design and automated model transformations or code generation.

• Ordering: Scenarios represent a collection of events that can be ordered sequentially or causally.
Causal ordering is very important when concurrency is involved (as it is the case in most telecommu-
nication systems due to multiple threads or distributed implementations), otherwise concurrent ac-
tions expressed with a sequential ordering might result in logical fallacies and other incorrect assump-
tions at the requirements level. Causal ordering also includes sequential ordering.

• Time: Support for expressing time constraints and timeout mechanisms is essential to several tele-
communication applications (e.g. multimedia services). Different notations support time to different
degrees that we qualify as none, partial, and full (i.e. with appropriate data types and evaluation
mechanisms).

• Decomposition: Due to the complexity of telecommunication systems, it is often necessary to de-
compose lengthy scenarios into smaller, reusable pieces. Decomposition in a scenario notation can be
hierarchical (which improves scalability) or be achieved through dependencies (e.g. references, con-
tains, etc.). Dependencies are usually more flexible in nature but less prone to formal analysis. Refer-
ences to other scenarios are considered here as partial support for decomposition.

• Abstraction: An abstract scenario is generic, with formal parameters, whereas a concrete scenario
focuses on one specific instance, with concrete data values. Abstraction is beneficial in the early
stages of design (e.g. requirements capture) and for capturing families of scenarios that differ only by
their concrete values. Notations that focus on concrete scenarios however, ease the transition towards
detailed models (e.g. state machines), test cases, and implementations. Abstraction is beneficial in
telecommunication systems because many data parameters are usually involved, and hence related
concrete scenarios can be regrouped. A scenario notation can also support both abstract and concrete
scenarios.

 p. 4

• Identity: Scenarios can focus on one actor or target many actors at once. The latter view improves
the expressiveness of notations when describing end-to-end situations whereas the former view is use-
ful for component-oriented implementations.

• Dynamicity: A scenario notation is dynamic when it enables the description of behavior that modifies
itself at run-time, otherwise it is said to be static. Emerging telecommunication services enabled by IP
networks, agent systems, Web services, and negotiation mechanisms can benefit from notations that
can express dynamicity.

Other criteria such as multiplicity (where multiple related traces can be connected as one scenario)
and modality (acceptance or rejection scenario) are not really helpful in distinguishing scenario notations
because most notations support these criteria. Other sets of criteria have also been defined in the litera-
ture. For instance, Cockburn uses four dimensions to use case descriptions, namely purpose, content, plu-
rality, and structure [26]. Purpose can be either for stories (explanations) or for requirements. Content can
be contradicting, consistent prose, or formal content. Plurality is either 1 or multiple, in a way similar to
multiplicity. Structure can be unstructured, semi-formal, or formal. This dimension shares some common
characteristics with our representation criterion. Rolland et al. propose another classification based on
four views (form, content, purpose, lifecycle), which are composed of more fine-grained criteria [91]. The
first two views are very much in line with many of the criteria introduced in this section, whereas the last
two views relate to the usage of scenarios in development activities (outside the scope of our study). In a
European industrial survey, Arnold et al. further extended these four views to produce a classification
taxonomy for scenarios usage in industrial projects [14]. Their criteria are grouped under five main divi-
sions: project properties, scenario contents and representation, goals, process, and experiences and expec-
tations. They surveyed twelve industrial projects from various domains (telecommunications, sales, medi-
cal, software development, insurance, banking) where scenarios are used. Their second division is where
our criteria focus, but we offer a stronger emphasis on telecommunications aspects.

Given their nature, some scenario notations are more suitable than others for particular development
stages. For instance, abstract and component-independent notations will be more useful in early require-
ments activities whereas concrete and component-centered notations will be more suitable for detailed
design and for testing. Hence, there is no single notation that can cover all stages of a development cycle
properly, and a complete development methodology may involve multiple scenario notations.

1.3 Selected Notations

There are dozens of scenario notations used for the description of system usage, goals, and business logic.
Hurlbut’s thesis surveyed nearly sixty different scenario, use case, and policy formalisms and models, and
others have emerged since then [48][49]. This section focuses on a selection of fifteen scenario notations
particularly relevant to the telecommunications domain (some of which are briefly illustrated in Figure 1),
and it provides a concise comparison in terms of the criteria introduced in Section 1.2. These notations
were selected based on the experience of the authors with many collaborative industrial and standardiza-
tion projects. Other scenario notations may be applicable to the telecommunications domain (including
proprietary notations), but we believe that the main trends are covered by our selection.

 p. 5

req Alice

busy Aliceupd SN

vrfy Switch

ring Bob

avail busy

req Alice

busy Aliceupd SN

vrfy Switch

ring Bob

avail busyAlice Switch

SN

Bob

req
ring

vrfy

upd

busy

[avail]

[busy]

Alice Switch

SN

Bob

req
ring

vrfy

upd

busy

[avail]

[busy]

Alice Switch SN Bob

vrfy updreq ring

busy

[avail]

[busy]

Alice Switch SN Bob

vrfyvrfy updupdreqreq ringring

busybusy

[avail]

[busy]

Alice Bob:Switch :SN

req

m1

ring

vrfy()

upd()

m2

Alice Bob:Switch :SN

req

m1

ring

vrfy()

upd()

m2

Alice Switch SN Bob
req

msg1

vrfy

upd

busy

when avail

otherwise

alt

msc MSCexample

msg2
ring

Alice Switch SN Bob
req

msg1

vrfy

upd

busy

when avail

otherwise

alt

msc MSCexample

msg2
ring

vrfy

upd

req

busy

ring

AliceIdle

reqSent

checkingBob

avail

BobRinging

busy

NoConnectionConnecting

vrfy

upd

req

busy

ring

AliceIdle

reqSent

checkingBob

avail

BobRinging

busy

NoConnectionConnecting

ScenarioExample
ALICE initiates request to Bob
SWITCH verifies Bob’s availability
WHEN Bob IS available

SWITCH updates service node status
SWITCH rings Bob

WHEN Bob IS busy
SWITCH replies with busy tone

a) Message Sequence Chart

b) UML Sequence Diagram

c) UML Use Case Diagram d) Use Case Map e) Chisel Diagram

f) UML Activity Diagram

g) Structured Text (Somé’s) h) Petri Net

Alice Bob

Connect-
Ring

Connect-
Busy

«extends»
AliceAlice BobBob

Connect-
Ring

Connect-
Busy

«extends»

req Alice

busy Aliceupd SN

vrfy Switch

ring Bob

avail busy

req Alice

busy Aliceupd SN

vrfy Switch

ring Bob

avail busyAlice Switch

SN

Bob

req
ring

vrfy

upd

busy

[avail]

[busy]

Alice Switch

SN

Bob

req
ring

vrfy

upd

busy

[avail]

[busy]

Alice Switch SN Bob

vrfy updreq ring

busy

[avail]

[busy]

Alice Switch SN Bob

vrfyvrfy updupdreqreq ringring

busybusy

[avail]

[busy]

Alice Bob:Switch :SN

req

m1

ring

vrfy()

upd()

m2

Alice Bob:Switch :SN

req

m1

ring

vrfy()

upd()

m2

Alice Switch SN Bob
req

msg1

vrfy

upd

busy

when avail

otherwise

alt

msc MSCexample

msg2
ring

Alice Switch SN Bob
req

msg1

vrfy

upd

busy

when avail

otherwise

alt

msc MSCexample

msg2
ring

vrfy

upd

req

busy

ring

AliceIdle

reqSent

checkingBob

avail

BobRinging

busy

NoConnectionConnecting

vrfy

upd

req

busy

ring

AliceIdle

reqSent

checkingBob

avail

BobRinging

busy

NoConnectionConnecting

ScenarioExample
ALICE initiates request to Bob
SWITCH verifies Bob’s availability
WHEN Bob IS available

SWITCH updates service node status
SWITCH rings Bob

WHEN Bob IS busy
SWITCH replies with busy tone

a) Message Sequence Chart

b) UML Sequence Diagram

c) UML Use Case Diagram d) Use Case Map e) Chisel Diagram

f) UML Activity Diagram

g) Structured Text (Somé’s) h) Petri Net

Alice Bob

Connect-
Ring

Connect-
Busy

«extends»
AliceAlice BobBob

Connect-
Ring

Connect-
Busy

«extends»

Figure 1 Illustration of Several Scenario Notations

• Message Sequence Charts (MSCs). The scenario notation that is the most commonly used by tele-

communications companies and standards bodies is undoubtedly Message Sequence Charts [57]. This
notation describes exchanges of messages (arrows) between communicating entities (vertical lines).
MSCs are essentially graphical (although a textual machine-processable format exists), composed of
abstract or concrete events (messages), and centered towards components. MSCs can represent inter-
nal actions and multiple actors. While basic MSCs mostly focus on simple traces, High-Level MSCs
(HMSCs) enable the structuring and hierarchical decomposition of scenarios. Causality is supported
at both levels through inline expressions, coregions, and parallel composition. MSCs also include

 p. 6

good support for timers and various time constraints. MSCs have been used by many people to for-
malize scenarios. Kimbler et al. use them to create Service Usage Models, which describe the dy-
namic behavior of system services from the user's perspective [65][88]. Andersson and Bergstrand
also present a method to formalize use cases that introduces an unambiguous syntax via MSCs [12].

• Use Cases. Jacobson’s use cases are prose descriptions of behavior from the user’s perspective [62].
They are mostly black-box, i.e. they focus on the interactions between actors and systems. Use cases
can be of two kinds: basic courses for normal scenarios, and alternative courses, which include fault-
handling scenarios. Use cases are based on sequential ordering, they represent abstract scenarios, and
they may involve many actors.

• UML Use Case Diagrams. These diagrams offer a graphical means by which use cases can be re-
lated to each other and to external actors [83]. They offer dependencies such as uses and extends,
which allow for use cases to reuse other scenarios or part thereof (although hierarchical decomposi-
tion is not supported as such). Use Case Diagrams provide a contextual view of who participates in a
use case and of various dependencies, but they provide little insight on the precise nature of scenarios
(not even the ordering of events) without looking at the use cases themselves.

• UML Sequence Diagrams. Similar to MSCs, these diagrams describe patterns of interaction among
objects, but in a more limited way [83]. UML Sequence Diagrams are sequential in nature, without
decomposition mechanism, and without specific support for time. The same information can be repre-
sented in another form called Collaboration Diagrams, which show the system structure (in two di-
mensions) and the component interactions (numbered sequentially) involved in a scenario. UML Se-
quence Diagrams are often used to formalize use cases in Use Case Diagrams.

• CREWS-L’Ecritoire. CREWS, the European ESPRIT project on Cooperative Requirements Engi-
neering With Scenarios, proposes structured narrative text for capturing requirements scenarios, to-
gether with a set of style and content guidelines [16]. This notation is supported by a tool called
L’Ecritoire [91] and, to some extent, by the SAVRE tool [77]. In a way similar to Jacobson’s use
cases, the textual scenarios are divided into two main categories: normal scenarios and extension sce-
narios. The latter can be either normal (alternatives) or exceptional, depending on whether they allow
to reach the associated goal or not. This notation supports multiple actors and abstract scenarios, fo-
cuses on external events, is centered towards components, and is sequential. Decomposition and
structuring can be achieved through connections to AND-OR goal networks. Leite et al. [72] offer an
interesting alternative to CREWS’ scenarios (structured textual language, with hierarchical decompo-
sition based on a bottom-up approach) but to our knowledge it has not been used in a telecommunica-
tion context.

• Scenario Trees. Hsia et al. suggest the use of scenario trees that represent all scenarios for a particu-
lar user [47]. Scenario trees are composed of nodes, which capture system states, and of arcs repre-
senting events that allow the transition from one state to the next. They also focus on interactions be-
tween actors and the system, they use time ordering, and they can be abstract. This notation is best
suited for a single thread of control and well-defined state transition sequences that have few alterna-
tive courses of action and no concurrency, which is seldom the case in real telecommunications sys-
tems. Regular expressions are used to formally express the user scenario that results in a deterministic
finite state machine.

• Use Case Trees (UCTs). Boni Bangari proposes Use Case Trees as a text-based notation for describ-
ing scenarios related to one entity [18]. This notation, inspired from the TTCN-2 testing notation [51],
captures sequential and alternative scenarios in terms of messages. These messages are sent and re-
ceived through points of control and observations (PCOs) belonging to an actor under test. The
grammar-like representation allows for sub-trees, timer events and data parameters (assignments, op-
erations and qualifiers) to be defined and used. An interesting property of UCTs is that sequential
scenarios can be generated automatically from the grammar (usually in the form of Message Se-
quence Charts) and characterized as normal, low risk, or high-risk scenarios. This notation is poten-
tially useful for defining compact validation test suites targeted towards the system as a whole or to-
wards single components. However, the lack of support for causality, multiple entities and hiding lim-
its its usefulness as a requirements notation.

 p. 7

• Chisel Diagrams. Aho et al. have performed empirical studies with telecommunication engineers to
create the Chisel notation [2]. The graphical language Chisel is used for defining requirements of
telecommunication services. Chisel diagrams are trees whose branches represent sequences of (syn-
chronous) events taking place on component interfaces. Nodes describe these events (multiple con-
current events can take place in one node) and arcs, which can be guarded by conditions, link the
events in causal sequences. Multiple abstract scenarios and actors can be involved, but internal ac-
tions are not covered. Decomposition is partially supported through references, and there is no lan-
guage construct for the explicit support of time.

• Statechart Diagrams. Glinz uses Harel’s Statechart notation [39], now part of UML [83], as a way
of capturing scenarios [36]. This results in a formal notation for validating and simulating a behav-
ioral model representing the external view of a system. Scenarios must be structured such that they
are all disjoint. Any overlapping scenarios must be either merged into a single scenario or partitioned
into several disjoint ones. Such structuring allows for each scenario to be modeled by a closed State-
chart, i.e. a single initial state and a single terminal state, with other states in between. Composition of
scenarios is performed though sequence, alternative, iteration, or concurrency declarations. These
scenarios support causal ordering, multiple actors, and multiple abstract scenario sequences.

• Live Sequence Charts (LSCs). Damm and Harel propose LSCs [27], which enrich a subset of MSCs
with a concept called liveness. Through the same representation, their formal support for liveness en-
ables one to specify forbidden scenarios (e.g. to capture safety requirements) and to distinguish be-
tween mandatory and optional scenarios. This can lead to more accurate requirements, component de-
scriptions, and test cases. Like MSCs, LSCs support decomposition (through sub-charts), causality,
and time (through timers and clock variables). LSCs do not have a higher-level view like HMSC, but
such a view (High-Level LSCs) is proposed by Bontemps and Heymans [19]. Concrete values can be
used in scenarios, and symbolic values also provide an appealing support for abstract scenarios. Dy-
namicity is in a way supported by symbolic messages and instances, and by the dynamic creation and
destruction of symbolic instances.

• Somé’s Scenarios. Somé et al. represent timed scenarios with structured text, but also with a formal
interpretation where preconditions, triggers, sequence of actions, reactions and delays are speci-
fied [99][100]. Scenarios are interpreted as timed sequences of events, which make them appropriate
for real-time systems. External events represent interactions between components, including actors,
whereas actions can be internal. These textual scenarios can also be represented graphically. Somé
extended a previous version of the MSC notation (MSC 1992) to support additional scenario elements
such as conditions and expiration delays (now covered to some extent by the MSC 2000 standard).
Multiple abstract scenarios and actors can be considered by these component-based notations. They
are ordered sequentially, although non-linear causality appears when composing the scenarios to-
gether to form an automaton.

• RATS. In the RATS (Requirements Acquisition and specification for Telecommunication Services)
methodology [33], Eberlein uses three different scenario representations: textual (natural language),
structured (in text, but with pre/post/flow conditions) and formalized (structured text, more compo-
nent-centered). The aim of having these three notations is to allow a smooth and gradual transition
from a service description in natural language to a formal specification in SDL. Scenarios are divided
into normal, parallel/alternative, and exceptional behavior, in order to help the developer to focus first
on the most common behavior and then later on the less common system functionality. The use cases
can be structured hierarchically in overall use cases of higher abstraction. Most scenarios are abstract
and linear, although overall scenarios capture multiple scenarios, with a causal ordering. The meth-
odology has been implemented in a prototype of the RATS tool, which is a client-server-based expert
system.

• Petri Nets (PNs). Petri Nets, which have existed for decades [90], are abstract machines used to de-
scribe system behavior visually with a directed graph containing two types of nodes: places and tran-
sitions. Places, represented by circles, contain tokens whereas transitions, represented by lines or rec-
tangles, allow tokens to move between places. An event usually corresponds to the firing of a transi-
tion, which is allowed when all arrows entering the transition originate from places with tokens. PNs

 p. 8

can be used to capture sequential, alternative, and concurrent scenarios in a component-independent
way. PNs with data types are now being standardized by ISO/IEC as High-Level Petri Nets [52],
which will include a textual format described in SGML. Although the first version of the standard
will not support time and decomposition explicitly, future versions will likely integrate language fea-
tures found in various PN extensions such as Object Coloured PNs (dynamicity, class nets and inheri-
tance) or Hierarchical CPNs (subnets).

• Use Case Maps (UCMs). The Use Case Map notation is used for describing causal relationships be-
tween responsibilities, which may optionally be bound to underlying organizational structures of ab-
stract components [22][61]. Responsibilities are generic and can represent actions, activities, opera-
tions, tasks to perform, and so on. Components are also generic and can represent software entities
(objects, processes, databases, servers, functional entities, network entities, etc.) as well as non-
software entities (e.g. users, actors, processors), which can encapsulate the responsibilities they con-
tain. The relationships are said to be causal because they involve concurrency and partial orderings of
activities and because they link causes (e.g., preconditions and triggering events) to effects (e.g. post-
conditions and resulting events). In a way, UCMs visually show multiple abstract and related use
cases in a map-like diagram. Yet, UCMs do not specify message exchanges between components,
which would implement the causal flow of responsibilities. These messages are left to a more detailed
stage of the design process. UCMs can also capture run-time self-modifying behavior through dy-
namic stubs and dynamic responsibilities, and they have partial support for time constructs with tim-
ers and time-out paths. Concrete scenarios can be extracted using a simple path data model (Boolean
variables) and scenario definitions, where initial values and triggered start points are provided.

• UML Activity Diagrams [83]. This type of UML behavioral diagram stands out as an interesting
way of capturing scenarios. Activity diagrams capture the dynamic behavior of a system in terms of
operations. They focus on end-to-end flows driven by internal processing and can be component in-
dependent. Activity diagrams share many characteristics with UCMs: focus on sequences of actions,
guarded alternatives, and concurrency; complex activities can be refined; and simple mapping of be-
havior to components can be achieved through vertical swimlanes. However, Activity Diagrams do
not capture dynamicity well, they do not support time constructs, and the binding of actions to “com-
ponents” is semantically weak in the current UML standard.

1.4 Summary of Evaluation

The fifteen scenario notations compared in this paper are summarized in Table 2.
MSCs, LSCs, and UML Sequence Diagrams are very useful for single scenarios, especially when de-

scribing lengthy black-box interactions between actors and a given system (something that UML Activity
Diagrams and UCMs do not do well) during the development of detailed requirements, designs, and test
cases. Unlike (H)MSCs and LSCs, UML Sequence Diagrams do not really support decomposition, cau-
sality, and time. LSCs promise interesting benefits over the more established MSC notation (e.g. liveness
and some dynamicity). Use cases and UCTs are generally not used to describe internal responsibilities
and they do not support causal ordering. UML Use Case Diagrams provide some structuring useful as an
overview mechanism, but their lack of ordering makes them incapable of expressing operational scenarios
on their own. CREWS’ scenarios improve on use cases by using structured text and guidelines, yet they
have essentially the same limitations. Scenario trees and UCTs focus on only one actor at a time, which
limits their usefulness for distributed systems composed of communicating entities. Chisel diagrams rep-
resent a good alternative to scenario trees, but they still focus on components interactions and lack sup-
port for time and hiding. Somé’s scenarios lack first-class causal ordering, which only appears when sce-
narios are transformed into component automata. Given their nature, Statecharts tend to bring the focus
too quickly on component behavior.

RATS, Petri Nets, UCMs, and UML Activity Diagrams support component-independent scenarios,
which are useful for early descriptions of requirements and help avoiding early commitments to a specific
architecture. Unlike the other notations, the upcoming Petri Net standard does not support the allocation
of scenarios to components (useful when moving towards the design phase), and it does not support de-
composition. Where RATS use structure text, UCMs and UML Activity Diagrams show graphically the
allocation of scenario elements to components. However, the UCM representation uses a 2-D architec-

 p. 9

tural view (where components can contain sub-components) whereas UML Activity Diagrams are limited
to vertical swimlanes, which are less evocative (compare diagrams d and f in Figure 1). UCMs have par-
tial support for time constructs and they can also capture dynamicity through dynamic stubs (with multi-
ple sub-maps selected at run-time) and dynamic responsibilities (which can move components and sub-
maps around and store them in pools). This useful feature, fairly unique to UCMs, enables the description
of emerging telecommunication services based on agents and dynamic selection of negotiation mecha-
nisms.

Sc
en

ar
io

 n

ot
at

io
n

C
om

p.
-c

en
t./

C

om
p.

-in
de

p.

H
id

in
g

Re
pr

es
en

-
ta

tio
n

O
rd

er
in

g

Ti
m

e

D
ec

om
po

-
si

tio
n

Ab
st

ra
ct

io
n

Id
en

tit
y

D
yn

am
ic

ity

MSC C-C Yes Sequence diagram Causal Full Hierarchical Both Many Static
Use Case C-C No (Structured) text Seq. None References Abstract Many Static
UML Use

 Case Diag. C-I Yes Graph None None Dependencies Abstract Many Static

UML Seq.
Diag. C-C Yes Sequence diagram Seq. None None Both Many Static

CREWS' C-C No Structured text Seq. None References Abstract Many Static
Scen. Tree C-C No Tree & grammar Seq. None None Abstract One Static

UCT C-C No Text & grammar Seq. Partial Hierarchical Concrete One Static
Chisel C-C No Tree Causal None References Abstract Many Static

Statechart C-C No State machine Causal None Hierarchical Abstract Many Static
LSC C-C Yes Sequence diagram Causal Full Hierarchical Both Many Dynamic

Somé's C-C Yes Structured text &
Sequence diagram Seq. Partial None Abstract Many Static

RATS Either Yes Structured text Causal None Hierarchical Both Many Static
Petri Nets C-I No Graph Causal None None Abstract Many Static

UCM Either Yes Paths on
2-D components Causal Partial Hierarchical Abstract Many Dynamic

UML Act.
Diagrams Either Yes Paths on

linear swimlanes Causal None Hierarchical Abstract Many Static

Table 2 Evaluation of the Selected Scenario Notations

The next section presents various construction approaches that target the construction of detailed be-
havior models from some of these scenario notations. These models are usually in the form of automata,
(UML) Statecharts, or formal specification languages such as ITU-T's SDL (Specification and Design
Language) [55] and ISO's LOTOS (Language Of Temporal Ordering Specification) [50]. Such models are
usually executable and suitable for validation, verification, test derivation, code generation, and under-
standing/evolution of legacy applications.

2 Construction Approaches

2.1 Why Construction Approaches?

In the scenario-driven development of telecommunication systems and services, it is important to leverage
the investment in scenarios in order to generate systems rapidly, at low cost, and with a high quality. To
support the progression from scenarios capturing requirements and high-level functionalities to detailed
designs and implementations based on communicating entities, we can learn much by examining different
construction approaches used in the protocol engineering discipline, where the construction of a model
based on another model is a concept supported by many techniques. In [87][94][95], Saleh and Probert

 p. 10

present two categories of construction approaches for communication protocols that are also applicable to
other areas of the telecommunication domain:
• Analytic approach: this is a build-and-test approach where the designer iteratively produces versions

of the model by defining messages and their effects on the entities. Due to the manual nature of this
construction approach, which often results in an incomplete and erroneous model, an extra step is re-
quired for the analysis, verification (testing), and correction of errors.

• Synthetic approach: a partially specified model is constructed or completed such that the interac-
tions between its entities proceed without manifesting any error and (ideally) provide the set of speci-
fied services. For properties preserved by such approaches, no verification is needed as correctness is
insured by construction.

Synthetic approaches may or may not be fully automated. Sometimes, they require the interactive
participation of the designer as some decisions need to be taken along the way. In both cases, synthetic
approaches require the source model to be described formally (usually with some automata or with formal
description techniques), whereas analytic approaches may start with semi-formal or informal models. In
general, analytic and (interactive or automated) synthetic approaches have other benefits and drawbacks,
many of which are summarized in Table 3:

 Benefits Drawbacks

A
na

ly
tic

• No formal source model required.
• Both the source and target models can exploit the

richness and expressiveness of their respective
modeling language to their full extent.

• The constructed model can more easily take into
consideration design or implementation con-
straints (e.g. to reflect the high-level design), and
be optimized accordingly.

• Non-functional requirements (e.g. performance,
robustness) can more easily be taken into consid-
eration.

• Transformation mostly manual.
• Errors may result from the construction.
• Verification is required.
• Many iterations may be required to fix the errors

detected during verification.
• Time-consuming.

Sy
nt

he
tic

, I
nt

er
ac

tiv
e

• Precise algorithmic transformation.
• Improper synthetic constructions can be avoided

by interacting with the designer.
• Correctness "ensured" by construction (under

certain assumptions). Many faults are therefore
avoided.

• Verification theoretically not required.
• Only one iteration required.
• Quick construction.

• Not fully automated.
• Requires formal and detailed source models.
• May require a partially constructed model to be

available.
• Both source and target modeling languages are

usually restricted in style and content.
• Difficult to take into consideration de-

sign/implementation constraints, optimizations, and
non-functional requirements.

• Resulting model usually hard to understand, main-
tain and extend.

Sy
nt

he
tic

, A
ut

om
at

ed
 • Precise algorithmic transformation.

• Fully automated.
• Correctness "ensured" by construction (under

certain assumptions). Many faults are therefore
avoided.

• Verification theoretically not required (for cer-
tain properties).

• Only one iteration required.
• Very quick construction.

• Requires formal source models.
• Both source and target modeling languages are

usually restricted in style and content.
• May result in improper synthetic constructions in

ambiguous cases (the algorithm makes the decision,
not the designer).

• Requires more details in the source model than non-
automated approaches.

• Resulting model often hard to understand, maintain
and extend.

Table 3 Benefits and Drawbacks of Construction Approaches

 p. 11

We have no intention of surveying the myriad of approaches for the synthesis of protocols or convert-
ers. However, we can build on the benefits and drawbacks presented here to evaluate construction tech-
niques based on scenarios that are applicable to telecommunication systems in general.

2.2 Evaluation Criteria

The construction of models that integrate scenarios represents a problem similar to those faced by the
protocol engineering community. A collection of scenarios often needs to be checked for completeness,
consistency, and absence of undesirable interactions. To do so, most verification techniques require that a
model that integrates these scenarios be available. Also, it is often desirable to map the scenarios onto a
component architecture at design time in order to enable the generation of component behavior in distrib-
uted applications (e.g. telecommunication systems). These two construction levels are described below:
C1) Integration of a collection of requirements scenarios in an abstract model used for the analysis of

requirements. No components are required here.
C2) Integration of a collection of scenarios in a component-based model used not only for the analysis of

requirements, but also as a high-level design which considers some implementation issues.

Different approaches targeting these two levels are already available, twenty-six of which are re-
viewed next. Additional evaluation criteria for the selection of a suitable technique in a given context
include:
• Type of construction approach: analytic, synthetic non-automated (includes interactive synthesis), or

synthetic automated. The benefits of each option were presented in Table 3.
• Source scenario notation, such as the ones described in Section 1.3. Previous investments in a particu-

lar notation, with associated tools and expertise, is an important factor to consider when selecting a
suitable approach.

• Whether the scenario model requires explicit components and messages. This can influence the
choice of the development phase (e.g. requirements or design) where the notation should be used.

• Target construction model (SDL, UML Statecharts, automata, LOTOS, etc.). This obviously will affect
the potential usages of the target model (e.g. analysis or code generation). Again, previous invest-
ments in a particular language may restrict users to compatible approaches.

On various occasions, tool support will also be discussed informally.

2.3 Selected Approaches

This section focuses on twenty-six construction approaches particularly relevant to the telecommunication
domain, and it provides a concise comparison in terms of the criteria seen in Section 2.2. Again, these
techniques were selected by the authors based on previous experiments with collaborative industrial and
standardization projects, and on results from various conferences and workshops on scenarios.

Non-Automated Analytic Approaches

• The Usage Oriented Requirements Engineering (UORE) approach proposed by Regnell et
al. [88][89] builds on the Objectory methodology [62] and adds a construction phase (unfortunately
called synthesis in that approach) where use cases are integrated manually into a Synthesized Usage
Model (SUM). This “synthesis”, which addresses level C1, is composed of three activities: formaliza-
tion of use cases (using an extended MSC notation), integration of use cases (which produces usage
views, one for each actor/component), and verification (through inspection and testing). The resulting
SUM is a set of automata whose purpose is to serve as a reference model for design, testing, and vali-
dation activities. No automated support is provided.

• In RATS, Eberlein provides informal guidelines [33]. Non-functional requirements have to be re-
fined into either functional requirements or implementation constraints. The functional requirements
have to be expressed in textual use cases. The user then has to define states in the system behavior.
Adding pre-, flow- and post-conditions results in structured use cases. The most formal use-case nota-

 p. 12

tion here uses atomic actions, which still contain textual descriptions. These formalized use cases are
then mapped to SDL flowchart constructs in order to address level C2. The approach does not go in
depth into the construction of the SDL model as RATS focuses more on the acquisition and the speci-
fication of requirements (including non-functional ones).

• Bordeleau addresses C2 with the Real-Time TRaceable Object-Oriented Process (RT-TROOP) [20],
which combines the use of scenario textual descriptions (use cases), UCMs, MSCs, and ROOM (now
UML-RT) [98]. Included is an approach where UCM scenarios are first transformed into HMSCs,
and then into hierarchical communicating finite state machines (ROOMCHARTS) [21]. No construction
algorithm is proposed, but the use of transformation patterns is suggested instead. Several such pat-
terns are provided for the UCM-HMSC mapping, and for the construction of ROOMCHARTS from
HMSCs. HMSCs are used to fill the gap between UCMs, which abstract from message exchanges,
and the state machines, which describe the behavior of the actors/components involved. Traceability
relationships are also defined in this process. RT-TROOP focuses more on design than on require-
ments validation because verification of the ROOM model is limited. ObjecTime, ROOM’s tool, only
supports animation and a limited form of testing based on MSCs, but at the same time it supports
automatic code generation.

• Krüger et al. present a related technique for the transformation of a set of MSCs to a Statechart
model [70], hence addressing C2. The construction takes into consideration the type of semantics as-
sociated with MSCs, e.g. whether there are fewer, more, or the same number of components in the
system than what is found in the MSCs, or whether additional messages (from another scenario) are
allowed or forbidden between two messages in a component, etc. This technique is however very
immature at this point and it is not supported by algorithms or tools.

• Amyot addresses C2 with the Specification and Validation Approach with LOTOS and UCMs (SPEC-
VALUE) [7][8][10], where UCMs describe functional scenarios optionally bound to architectural
components, and where LOTOS [50] formalizes the integration of scenarios and (if needed) the distri-
bution of behavior over communicating entities. LOTOS is a formal language that has constructs simi-
lar to those found in the UCM notation, and it complements UCMs weaknesses in the area of execu-
tability and verification. Guidelines are provided for the manual construction of LOTOS models from
UCMs, but no automation is provided. SPEC-VALUE also includes a pattern language for the manual
extraction of test cases used to validate the LOTOS model against the UCMs, and hence against the
functional requirements. The LOTOS testing theory and tools are used to perform this validation, to
provide coverage measures, and to detect unexpected and undesirable interactions between the sce-
narios.

• According to Lamsweerde and Willemet, a drawback of scenarios is that system properties are often
left implicit. If these properties were explicit (e.g. in declarative terms), then consistency and com-
pleteness analysis would be much easier to carry out. Lamsweerde and Willemet address C1 by ex-
ploring the process of inferring (by induction) formal specifications of such properties (goals) from
scenario descriptions [71]. Their scenarios are sequential and synchronous interaction diagrams
whereas their goals are linear temporal logic (LTL) properties expressed in the KAOS language. The
scenarios can either be positive (must be covered) or negative (must be excluded). Their technique
represents a novel and promising contribution, but it remains analytic: it requires validation to be per-
formed because inductive inference is not sound. This approach is not yet supported by tools.

• Heymans and Dubois offer rules, heuristics, and templates that enable the construction of Albert II
specifications from Action Sequence Charts (ASCs) [44]. The ASC scenario notation is a subset of
the MSC language with several extensions to model causality (with actions, re-actions, and composi-
tion) and semantics in line with the Albert II language. Albert II is a formal language based on real-
time temporal logic which supports declarative and operational descriptions of functionalities [31].
Although the source scenario notation requires components, the target model is global, hence address-
ing C1. Albert II specifications are mathematical formulae, which are sometimes difficult to read.
This motivates the need for a more informal and intuitive source notation (scenarios) and for an ani-
mator. The Albert II animator tool presented in [43] supports model validation (e.g. against the ASCs)
and exploration.

 p. 13

• Yee and Woodside have developed a transformational approach to process partitioning using timed
Petri Nets [111], which addresses C2. An abstract scenario model combining both the system and its
environment (Process Specification of Requirements — PSR) is partitioned, using a collection of cor-
rectness preserving transformations (abstraction, refinement, sequentialization, partitioning, and re-
source access control), into a collection of communicating processes that can represent system com-
ponents (called proto-design). Both the source and the target models are described using timed Petri
Net, and the transformations ensure their behavioral equivalence from the environment viewpoint.
Being executable, the target model can be used for analysis and for performance evaluation of alter-
native architectures. The source model does not require any component, but the selection and applica-
tion of the transformations are manual.

• Dano et al. use Petri Nets as an intermediate formalism in their construction approach [29]. Domain
experts first produce scenarios using a tabular/textual notation, where the states of the objects in-
volved can be shown. Scenarios are sequential, but alternatives can be captured. Objects are not re-
quired to be identified at first, but the target model can be component-based (C2) once they are intro-
duced. Scenarios are formalized as Synchronized Coloured Petri Nets through the application of
mapping rules. The formalized scenarios are then integrated using seven types of temporal links
which define how two scenarios overlap (or not) over time. Another set of transformation rules is
used to generate the target (OMT) state transition diagrams for each object type.

• Chen and Ural present rules used to construct deadlock-free designs and communication protocols
from sequential scenarios called observations, which focus on transmissions and receptions of mes-
sages [24]. Since the suggested application of this approach is the reverse-engineering of process be-
havior from execution histories, there is no concrete representation of the source scenario model, but
common subsets of MSCs and UML Sequence Diagrams can be used in a forward-engineering con-
text. The target model is a set of communicating finite state machines (CFSMs) connected through
FIFO queues (C2). The number of components is fixed. The rules aim the avoidance of deadlocks and
unspecified receptions in the CFSM model, as well as the reduction of the number of states. They
guarantee the absence of deadlocks in models with two entities only.

Non-Automated Synthesis Approaches

• Desharnais et al. propose a synthesis approach for the integration of sequential scenarios represented
in state-based relational algebra [30]. The initial scenarios involve the system and a single actor (con-
currency is not considered), and the result is one large scenario represented again in relational algebra
(thus C1 is addressed). Although the authors claim that data and complex conditions being incorpo-
rated in the formalism represent an advantage over other approaches, their technique appears some-
what limited in terms of usability and scalability for realistic telecommunication systems.

• Somé presents a composition algorithm that transforms his scenarios into Alur’s timed automata [3],
one for each component (hence addressing C2) [99][100]. This synthesis algorithm is implemented in
a prototype tool, where consistency and completeness issues in the scenarios are resolved through the
interactive assistance of the requirements engineer. One original point to notice is that the synthesis is
based on the common preconditions rather than on the sequences of actions. Super-states are used
when the preconditions of one scenario are included in that of a second scenario. The algorithm pre-
serves the temporal constraints associated with the scenarios, which is seldom the case of other (semi-
automated) synthesis techniques. This work was further extended by Salah et al. with improved sup-
port for automation [93].

• Harel and Kugler propose an algorithm for the synthesis of Statecharts from a subset of the Live Se-
quence Chart (LSC) notation, without data or conditions [38][40]. This algorithm decides the satisfy-
ability and consistency of a set of LSCs, something that is harder to do than for MSCs due to the pos-
sibility of expressing mandatory and forbidden scenarios. The proof of consistency produces a global
system automaton (which can be quite large). In order to address C2, this global automaton can be
distributed (as Statecharts) over the set of components involved in the LSCs. These components share
all their information with each other, which simplifies the synthesis algorithm. This work is promis-
ing but it is not yet supported by tools. However, Damm and Klose developed a verification tool (in-

 p. 14

tegrated to the STATEMATE tool) where LSCs are used to test a Statechart model [28]. Bontemps and
Heymans have also initiated work towards the synthesis of Büchi automata from (High-Level) LSCs
[19]. However, the resulting automaton is global (hence addressing C1) and they are working towards
refining their work to generate one automaton per instance.

• Alur et al. have an algorithm that transforms a set of stateless basic MSCs into communicating state
machines of various types (C2) [5]. This technique supports the detection of implied scenarios result-
ing from the composition of multiple MSCs. Alur’s algorithm uses a language-theoretic framework
with closure conditions. Its emphasis is on safety and on efficiency (it executes in polynomial time
and deadlocks are automatically avoided under some conditions), and it can generate counter-
examples for non-realizable sets of MSCs. The detection is based on previous work done in collabo-
ration with Holzmann and Peled [4], who extended this work in another direction to support HMSCs
during requirements analysis with the tool uBET [46].

• Mäkinen and Systä have developed an approach and tool to synthesize UML Statechart diagrams
from a set of UML Sequence Diagrams [78][101], hence addressing C2. Since fully automated syn-
thesis may overgeneralize the Statechart and may introduce more scenarios than described in the Se-
quence Diagrams, the MAS (Minimally Adequate Synthesizer) approach is interactive. MAS models
the synthesis process as a language inference problem and translates Sequence Diagrams first into
traces, then into finite state automata, and finally into Statechart diagrams. The interactive part of the
tool asks membership queries visualized as Sequence Diagrams (in a nutshell: “Is this sequence dia-
gram acceptable?”), which allow the derivation of a consistent and deterministic Statechart diagram.
Counter-examples can be provided when appropriate. This work was extended by Koskinen et al.
[69] to support inaccurate answers during interactive sessions (probably yes, probably no, I don’t
know, etc.).

Automated Synthesis Approaches

• With their SCED methodology [67], Koskimies et al. propose a synthesis algorithm that integrates
scenario diagrams, an extension of the basic MSC’92 notation with iterations, conditions, and sub-
scenarios (thus more in line with the MSC 2000 standard). The algorithm outputs OMT state dia-
grams, which are based on Harel’s Statecharts. The synthesis is supported by the SCED tool [68],
which also contains visual editors for scenario diagrams and state diagrams. The state machine gener-
ated by the tool is minimal with respect to the number of states necessary to support the scenarios.
The authors claim that their approach is not tied to the OMT methodology, and hence can be reused in
other contexts to address C2.

• Schönberger et al. have developed another algorithm based on a similar idea [97], only this time they
start with another type of scenario notation: UML Collaboration Diagrams. Their synthesis procedure
addresses C2 by generating UML Statecharts, which make extensive use of concurrency constructs to
satisfy the inherent concurrency found in Collaboration Diagrams (but absent from Koskimies’ sce-
nario diagrams). Although their algorithm does not output a minimized state machine, the authors
provide several state diagram compression techniques. This procedure has a polynomial complexity
and is not incremental, whereas Koskimies’ approach is incremental but with an exponential com-
plexity. A prototype tool implements this algorithm and can be used to generate graphical user inter-
faces automatically, provided that the initial Collaboration Diagrams are enriched with necessary user
interface information (e.g. selection of buttons, display of text fields, etc.) [35].

• Whittle and Schumann propose an algorithm for the generation of UML Statecharts from a collec-
tion of UML Sequence Diagrams (C2) [108]. It allows for conflicts to be detected and resolved
through UML’s Object Constraint Language (OCL) and global state variables. These Statecharts can
be non-deterministic. The target Statechart model is intended to be highly structured (hierarchical)
and readable in order to be modified and refined by designers. This algorithm shares similarities with
the work of Schönberger [97] and Somé [99] as the hierarchical nature of the states is inferred. How-
ever, the synthesis is also influenced by structure elements found in other types of UML diagrams
such as class diagrams. The approach is supported by a prototype tool linked to the MagicDraw UML

 p. 15

environment. In a recent application to an air control system, the authors adapted their work towards
the support of existential, universal, and generalized scenarios, more in line with LSCs [109].

• Uchitel and Kramer [104] address C2 with a synthesis algorithm that transforms MSCs into Finite
Sequential Processes (simple process algebra) [76]. The source MSC semantics is given in terms of
labeled transition systems with parallel composition, and HMSCs are used to structure (sequential)
MSCs. State labels on the MSCs indicate component states. The authors claim this helps taking into
consideration domain-specific assumptions (e.g. when should states be merged) directly at the MSC
level rather than in the synthesis algorithm itself or in complementary languages (like the use of OCL
by Whittle and Schumann). Their algorithm is implemented in Java, and the resulting Finite Sequen-
tial Processes can be fed to an analyzer for model checking and animation [76][105].

• Leue et al. have developed two algorithms for the automated synthesis of Real-Time Object-Oriented
Modeling (ROOM) models from standard HMSC scenarios [73]. Essentially, ROOMCHARTS are gen-
erated for each actor in the HMSCs, hence addressing C2. One major assumption is that the basic
MSCs referenced by the HMSC are mutually exclusive, i.e. unlike SCED, only one scenario is active
at any time. This results in simpler synthesis algorithms, at the cost of a major limitation for describ-
ing realistic telecommunication systems. The first algorithm, called maximum traceability, preserves
the HMSC structure in the synthesized model. The second one, called maximum progress, generates
smaller state machines but sacrifices traceability with respect to HMSCs. The properties preserved by
these algorithms are still under investigation. Both algorithms are implemented in the MESA tool-
set [15], which also supports Promela as target languages. Their authors claim that their work can be
adapted to support SDL and UML.

• Mansurov and Zhukov address C2 and target the automated generation of SDL models from
HMSCs [79]. The scenarios are first sliced by actor, and then communicating finite state machines are
generated for each actor. These FSMs are made deterministic and minimal, and then transformed into
SDL processes. SDL object types are generated for type-based entities (roles) in MSCs. The resulting
SDL system usually allows more traces than those defined by the HMSCs and, although the algorithm
attempts not to add anything wrong, deadlocks may also result from composing incoherent scenarios.
Several constraints on the source HMSCs must be satisfied (e.g., no inline statements, no parallel
constructs, and high level of detail). This technique is implemented in MOST, the Moscow Synthesizer
Tool, in now commercialized by KLOCwork and has recently been integrated to Tau 4.4 (Telelogic’s
SDL tool) as the MSC2SDL Synthesizer. An application of this technique to the reverse-engineering
and evolution of telecommunications software is illustrated in [80].

• Li and Horgan target the architectural analysis of telecommunications systems with an algorithm for
the semi-automated synthesis of SDL models from architectures described using component, links,
and archflows [74]. Archflows are sequential workflows where the steps are observable events, inter-
nal events, or sending/reception of messages performed by components (hence addressing C2). The
resulting SDL model is complete and assumed to be valid when it contains all the archflow traces.
Workflows are assumed not to conflict with each others, hence they should be consistent and have no
undesirable interaction, which is of limited use for early validation. Non-determinism is allowed, and
the model can be supplemented with performance information for performance prediction evalua-
tions. The method is supported by a toolset, the Workflow-to-SDL-Direct-Simulation.

• Khendek and Vincent propose an approach for the incremental construction of an SDL model given
an existing SDL model, whose properties need to be preserved (an extension relation is provided),
and a set of new MSC scenarios [64]. The synthesis algorithm considers only input/output signals, not
the actions in the transitions. The semi-automated construction is done in three steps: add new com-
ponents if necessary (manually), synthesize the new architecture behavior from MSCs using the
MSC2SDL tool [1], and then merge the behavior descriptions of the old SDL with the increment
SDL, on a per process basis. If non-determinism that violates the extension relation is added along the
way, then the tool reports the problem (error detection only). If an MSC description of the old SDL
specification is available, then the approach can be simplified to adding new MSCs to the old MSCs
and regenerate the new specification using the MSC2SDL tool. However, the extension relation may
also be violated by this approach.

 p. 16

• Turner presents an approach called CRESS (Chisel Representation Employing Systematic Specifica-
tion), which defines tightly defined rules for the syntax and static semantics of an enhanced version of
Chisel diagrams [103]. This improved notation has formal denotations in both LOTOS and SDL, hence
enabling the synthesis of formal models in order to support the rapid creation, specification, analysis
and development of features. Although CRESS often represents scenarios as trees (more precisely as
directed acyclic graphs), the tree nodes represent interactions between components. Hence, this ap-
proach is roughly comparable to the ones starting from HMSCs (although CRESS’ interactions are
synchronous and directionless) and it also addresses C2. CRESS is supported by a set of tools for pars-
ing, checking and translating diagrams. However, the synthesis algorithm remains undocumented and
hence little is known about the design decisions taken by the translation tools.

• Guan provides a synthesizer for the generation of LOTOS models (useful for exploration and formal
validation) from Use Case Map scenarios [37]. Her work automates many of the construction rules
proposed in Amyot’s SPEC-VALUE [10] as well as others in a Java tool called Ucm2LotosSpec,
which uses as input the XML files produced by the UCM Navigator tool [82]. Input scenarios may or
may not be allocated to components, but if they are then the resulting model becomes component-
based (C2). These scenarios must be expressed using a subset of the UCM notation (timers, aborts,
explicit loops, dynamic components, dynamic responsibilities, and the UCM path data model are not
supported). When a scenario traverses many components, messages are created automatically to pre-
serve causality across components and enumerated data types are generated accordingly in the LOTOS
model. The resulting specification can be used for formal analysis and animation.

• Dulz et al. present an approach where performance prediction models (in SDL) are also automatically
synthesized from MSC scenarios, but this time supplemented with performance annotations [32].
Their goal is to obtain performance estimates early in the design process (various other techniques for
the construction of performance models from UML and SDL are reported in [110]). The synthetic
SDL model (addressing C1) is intended to be a throwaway prototype, but it is nonetheless used to
generate the code for the target system whose performance is evaluated. The approach is supported by
a prototype tool (LISA), however the algorithm remains obscure; it is not even clear whether two
MSCs that start with a similar transition should be composed as alternatives, as sequences, or in par-
allel.

2.4 Summary of Evaluation

Several aspects of the construction approaches reviewed in Section 2.3 are summarized in Table 4. These
aspects correspond to the evaluation criteria specified in Section 2.2.

Most of the techniques surveyed here require the use of scenario notations based on messages ex-
changed between communicating entities (see column Component-Based in Table 4). MSC-like notations
such as (H)MSCs, various extensions to MSCs, LSCs, and UML Sequence Diagrams are commonly used
as source scenario models for construction approaches. Techniques based on HMSCs can further benefit
from theoretical results on necessary conditions for the synthesis of communicating automata from
HMSCs [42]. For target construction models, communicating finite state machines, whether they are hier-
archical ((UML) Statecharts, ROOMCHARTS, or OMT state diagrams) or not (SDL or plain CFSMs) are
very common. Algebraic languages (e.g. Albert II, KAOS, LOTOS, Finite Sequential Processes) represent
another popular family of target languages. Most techniques addressing construction level C1 produce
global target models.

It is difficult to determine the best construction approach for component-based scenarios as they use
many different combinations of source and target models. Most techniques are still immature, require
more industrial-scale experimentation, and are not supported by industrial-strength commercial tools1.
Synthesis approaches also have different sets of constraints and design decisions embedded in their algo-
rithms, or different ways of letting users guide such decisions (e.g. use of OCL, state labels, or interactive
queries).

1 http://www-i2.informatik.rwth-aachen.de/Research/AG/MCS/MSC/ discusses many tools related to MSCs.

 p. 17

http://www-i2.informatik.rwth-aachen.de/Research/AG/MCS/MSC/

Construction
Approach

Level
C1/C2

Type of
Approach Scenario Model Comp.-

Based
Construction

Model
Regnell et al.

(UORE) C1 Analytic Extended MSC Y Automata

Eberlein
(RATS) C2 Analytic Structured text N SDL

Bordeleau
(RT-ROOP) C2 Analytic UCMs, HMSCs N ROOMCHARTS

Krüger et al. C2 Analytic MSCs Y Statecharts
Amyot

(SPEC-VALUE) C2 Analytic UCMs N LOTOS

Lamsweerde
& Willemet C1 Analytic Sequential and

synchronous MSCs Y LTL properties
in KAOS

Heymans and Du-
bois C1 Analytic Action Sequence Charts Y Albert II

Yee and
Woodside C2 Analytic Timed Petri Nets N Timed Petri Nets

Dano et al. C2 Analytic Tabular/Textual N State Transition
Diagrams (OMT)

Chen and Ural C2 Analytic Sequential Sequence
Diagrams Y CFSMs

Desharnais
et al. C1 Synthetic,

non-automated
State-based relational

algebra Y State-based
relational algebra

Somé C2 Synthetic,
non-automated

Structured text and ex-
tended MSCs Y Timed automata

Harel and
Kugler C2 Synthetic,

non-automated LSCs Y Statecharts

Alur et al. C2 Synthetic,
non-automated Basic MSCs Y CFSMs

Mäkinen and Systä
(MAS) C2 Synthetic,

non-automated
UML Sequence

Diagrams Y UML Statecharts

Koskimies et al.
(SCED) C2 Synthetic,

automated Extended MSCs Y OMT state
diagrams

Schönberger
et al. C2 Synthetic,

automated
UML Collaboration

Diagrams Y UML Statecharts

Whittle and
Schumann C2 Synthetic,

automated
UML Sequence

Diagrams Y UML Statecharts

Uchitel and
Kramer C2 Synthetic,

automated HMSCs Y Finite Sequential
Processes

Leue et al. C2 Synthetic,
automated HMSCs Y ROOMCHARTS

Mansurov
and Zhukov C2 Synthetic,

automated HMSCs Y SDL

Li and
Horgan C2 Synthetic,

automated Archflows Y SDL

Khendek
and Vincent C2 Synthetic,

automated MSCs, SDL Y SDL

Turner
(CRESS) C2 Synthetic,

automated
Extended

Chisel diagrams Y SDL or LOTOS

Guan
(SPEC-VALUE) C2 Synthetic UCMs N LOTOS

Dulz et al. C1 Synthetic,
automated Extended MSCs Y SDL

Table 4 Evaluation of the Selected Construction Approaches

 p. 18

Only six of the techniques surveyed do not start from scenarios expressed in terms of components and
messages, and five of them are analytic construction approaches. Half use tables or Petri Nets whereas the
other half starts from Use Case Maps. These source scenario notations can abstract from component
communication aspects, they are less coupled to a specific architecture, and they are closer to being pure
operational requirements. However, the information related to exchanges of messages (e.g. protocols and
negotiation mechanisms) needs to be provided while constructing a target component-based model.

An interesting characteristic of the UCM and LOTOS languages is that they can both address C1 and
C2, with or without components. UCM scenario paths, like UML Activity Diagrams but unlike compo-
nent-based notations, do not require the presence of any entity to be meaningful. Similarly, LOTOS is ab-
stract enough to specify scenario behavior without any reference to components. CFSM-like modeling
languages (Statecharts, SDL, etc.) usually require the explicit definition of such components. SPEC-
VALUE is therefore fairly unique in that it enables the construction of executable and validatable models
in the presence or in the absence of components. This is particularly useful in the early stages of the de-
sign process where the architecture is still undefined, or when it is desirable to remain independent from
any architecture. Later in the design process, an architecture may become available and both models
(UCM scenarios and LOTOS) can be evolved accordingly.

3 Hopes and Challenges

Scenario-based modeling, analysis, and transformations are currently the focus of much attention and
research activities. Conferences dedicated exclusively to these topics have started to appear, particularly
in the software engineering, OO/UML, requirements engineering, and formal methods communities
(e.g. [34][102]). Industrial interest transpires through tool builders, user groups, and various standardiza-
tion committees at the ITU-T (International Telecommunications Union) and at the OMG (Object
Management Group), to name a few. In order for a scenario notation to become widely accepted in
industry, good tool support is required together with interfaces to other existing notations and tools.

Current plans for UML 2.0 at the OMG include an improved semantic basis for Activity Diagrams
and the integration of most features of Message Sequence Charts (to replace the current Sequence Dia-
grams) [84]. UML 2.0 should be available in 2003. Additionally, the OMG and ITU-T Study Group 17
are working towards the integration of their scenario-based approaches and notations [58]. UML 2.0 pro-
files for SDL, MSC, TTCN, URN and others are planned to appear in 2003 and 2004. Hopefully, this will
lead to better and more unified approaches for the synthesis of component-based models (SDL, State-
charts, etc.) from standard scenario notations. Such approaches could improve the penetration and accep-
tance of formal methods and of new requirements, design, and analysis techniques. One main challenge
however is the reconciliation of all these notations at a semantic level. In particular, one issue is to deter-
mine a suitable and common metamodel capturing part of this semantics in order to simplify transforma-
tions from one notation to the next.

ITU-T Study Group 17 has also initiated work towards the standardization of a User Requirements
Notation (URN) [11][59], which targets the representation of requirements for future telecommunication
systems and services. The current proposal combines two complementary notations: one for business
goals and non-functional requirements (NFRs), and a scenario notation for functional requirements. The
goal/NFR notation is the Goal-oriented Requirements Language (GRL) [60], which is based in part on the
NFR Framework [25]. NFRs are seldom captured explicitly in design processes (even in UML), and URN
represents a first standardization effort towards solving this issue. The scenario notation is Use Case Maps
and hence it abstracts from message exchanges [61]. URN fits nicely in the very first stage of existing
ITU-T methodologies (such as I.130 [53] and Q.65 [54]) and smoothes the transition towards later stages
of development processes. Liu and Yu illustrate the potential of GRL combined with UCMs in [75]. On
top of traceability links between goals, NFRs and scenarios, the proposed standard intends to provide
additional insights on the derivation of MSCs [82] and the generation of formal models [7][8][21][96] and
performance models [85] from URN models. Links to the UML standard [9] and tool support are also
being investigated [81][106].

The recent integration of important concepts like liveness into scenario notations (as done in LSCs)
also offers new hopes for automation. For example, Harel and Marelly envision an environment where

 p. 19

users can execute requirement specifications given in LSCs directly, without the need to build or synthe-
size a system model consisting of Statecharts or code [41]. In a sense, the scenarios combined to the un-
derlying execution engine would become the final implementation itself.

It is our hope that future development processes for telecommunication systems will make good use
of standardized scenario notations and construction approaches. Current and emerging work and commu-
nities focusing on scenarios and their transformation represent a major step in that direction. One of the
main challenges now consists in establishing common grounds and objectives so that standardized con-
struction approaches may eventually become reality. Other major challenges include the integration of
scenarios with other types of requirements in requirements management systems, as well as scenario evo-
lution.

4 Conclusions

The development of current and emerging telecommunication systems can benefit today from scenario
notations, both at the requirements stage and at the design stage. Due to prolific and enthusiastic research-
ers worldwide, many scenario-based approaches are now available.

Section 1 focused on fifteen state-of-the-art notations and provided an evaluation against nine criteria
relevant to the telecommunications domain. Most of the reviewed notations are centered around messages
exchanged between system components whereas a few focus on end-to-end behavior, independently of
component architectures. The former are most useful for describing lengthy scenarios involving external
actors and the system as a unique component, and for detailed design involving multiple system compo-
nents. The latter are more appropriate for capturing functional requirements before committing to specific
architectures and protocols.

The transition from scenario models to more detailed design and implementation-oriented models is
discussed in Section 2. Twenty-six analytic and synthetic construction approaches are reviewed and
briefly compared. Most of them target the generation of component-based design models from scenario
models that are also component-based. A handful of construction approaches attempt to bridge the gap
between requirements and design by abstracting from message exchanges, but they remain largely ana-
lytic. Further investigation on common case studies would be beneficial in providing more detailed cost-
benefit evaluations.

Even if many challenges remain, it is our hope that research will produce better scenario notations
and construction approaches, which will be widely adopted in industrial practices. The high interest dem-
onstrated towards scenarios for telecommunication systems and towards emerging standards like the User
Requirements Notation is certainly a good indication that industry and academia are heading in the right
direction.

Acknowledgement

We are most thankful to Prof. Luigi Logrippo, Gunter Mussbacher, and Prof. Tarja Systä for useful com-
ments on an earlier version of this paper. This work was supported in part by NSERC, FCAR, CITO,
Mitel Networks, and Nortel Networks.

References

[1] Abdalla, M.M., Khendek, F. and Butler, G. (1999) "New Results on Deriving SDL Specifications from
MSCs". SDL'99, Proceedings of the Ninth SDL Forum, Montréal, Canada. Elsevier.

[2] Aho, A., Gallagher, S., Griffeth, N., Scheel, C., and Swayne, D. (1998) "Sculptor with Chisel: Requirements
Engineering for Communications Services". K. Kimbler and L. G. Bouma (Eds), Fifth International Workshop
on Feature Interactions in Telecommunications and Software Systems (FIW'98), Lund, Sweden, September
1998. IOS Press, 45-63. http://www-db.research.bell-labs.com/user/nancyg/sculptor.ps

[3] Alur, R. and Dill, D. (1994) "A Theory of Timed Automata". Theorerical Computer Science, 126:183-235.
[4] Alur, R. Holzmann, G. and Peled, D. (1996) "An Analyzer for Message Sequence Charts". Software Concepts

and Tools, 17(2):70-77. http://cm.bell-labs.com/cm/cs/what/ubet/papers/aAfMSCs.ps.gz

 p. 20

[5] Alur, R., Etessami, K., and Yannakakis, M. (2000) "Inference of Message Sequence Charts". 22th Interna-
tional Conference on Software Engineering (ICSE 2000), Limerick, Ireland, ACM Press, 304-313.

[6] Amyot, D., Andrade, R., Logrippo, L., Sincennes, J., and Yi, Z. (1999) "Formal Methods for Mobility Stan-
dards". IEEE 1999 Emerging Technology Symposium on Wireless Communications & Systems, Richardson,
Texas, USA, April 1999. http://www.UseCaseMaps.org/pub/ets99.pdf

[7] Amyot, D., Buhr, R.J.A., Gray, T., and Logrippo, L. (1999) "Use Case Maps for the Capture and Validation of
Distributed Systems Requirements". RE'99, Fourth IEEE International Symposium on Requirements Engineer-
ing, Limerick, Ireland, June 1999, 44-53. http://www.UseCaseMaps.org/pub/re99.pdf

[8] Amyot, D. and Logrippo, L. (2000) "Use Case Maps and LOTOS for the Prototyping and Validation of a Mo-
bile Group Call System". Computer Communication, 23(12), 1135-1157.
http://www.UseCaseMaps.org/pub/cc99.pdf

[9] Amyot, D. and Mussbacher, G. (2000) "On the Extension of UML with Use Case Maps Concepts".
<<UML>>2000, 3rd International Conference on the Unified Modeling Language, York, UK, October 2000.
LNCS 1939, 16-31. http://www.UseCaseMaps.org/pub/uml2000.pdf

[10] Amyot, D. (2001) Specification and Validation of Telecommunications Systems with Use Case Maps and
LOTOS. Ph.D. thesis, SITE, University of Ottawa, Canada. http://www.UseCaseMaps.org/pub/da_phd.pdf

[11] Amyot, D. and Mussbacher, G. (2002) "URN: Towards a New Standard for the Visual Description of Re-
quirements". 3rd SDL and MSC Workshop (SAM’02), Aberystwyth, U.K., June 2002.
http://www.UseCaseMaps.org/pub/sam02-URN.pdf

[12] Andersson, M. and Bergstrand, J. (1995) Formalizing Use Cases with Message Sequence Charts. Master the-
sis, Department of Communication Systems, Lund Institute of Technology, Sweden, May 1995.
http://www.efd.lth.se/~d87man/EXJOBB/Title_Abstract_Preface.html

[13] Ardis, M.A., Chaves, J.A., Jagadeesan, L. J., Mataga, P., Puchol, C., Staskauskas, M.G., and Olnhausen, J.V.
(1996) "A Framework for Evaluating Specification Methods for Reactive Systems — Experience Report".
IEEE Transactions on Software Engineering, 22 (6), 378-389.

[14] Arnold, M., Erdmann, M., Glinz, M., Haumer, P., Knoll, R., Paech, B., Pohl, K., Ryser, J., Studer, R., Weiden-
haupt K. (1998) Survey on the Scenario Use in Twelve Selected Industrial Projects. Technical Report,
Aachener Informatik Berichte (AIB), No. 98-7, RWTH Aachen, Fachgruppe Informatik, Germany.

[15] Ben-Abdallah, H. and Leue, S. (1997) MESA: Support for scenario-based design of concurrent systems. Tech-
nical Report 97-12, Department of Electrical & Computer Engineering, University of Waterloo, Canada, Octo-
ber. http://tele.informatik.uni-freiburg.de/Mesa/index.html

[16] Ben Achour, C., Rolland, C., Maiden, N.A.M., and Souveyet, C. (1999) "Guiding Use Case Authoring: Results
of an Empirical Study". RE'99, Fourth IEEE International Symposium on Requirements Engineering, Limer-
ick, Ireland, June 1999, 36-43.

[17] Benner, K.M., Feather, M.S., Johnson, W.L., and Zorman, L.A. (1993) "Utilizing Scenarios in the Software
Development Process". Information System Development Process, Elsevier Sc., B.V. North-Holland, 117-134.

[18] Boni Bangari, A. (1997) A Use Case Driven Validation Framework and Case Study. M.Sc. thesis, SITE, Uni-
versity of Ottawa, Ottawa, Canada.

[19] Bontemps, Y. and Heymans, P. (2002) "Turning High-Level Live Sequence Charts into Automata". Scenarios
and state machines: models, algorithms, and tools, ICSE 2002 Workshop, Orlando, USA.

[20] Bordeleau, F. and Buhr, R.J.A. (1997) "The UCM-ROOM Design Method: from Use Case Maps to Communi-
cating State Machines". Conference on the Engineering of Computer-Based Systems, Monterey, USA, March
1997. http://www.UseCaseMaps.org/pub/UCM-ROOM.pdf

[21] Bordeleau, F. (1999) A Systematic and Traceable Progression from Scenario Models to Communicating Hier-
archical Finite State Machines. Ph.D. thesis, School of Computer Science, Carleton University, Ottawa, Can-
ada. http://www.UseCaseMaps.org/pub/fb_phdthesis.pdf

[22] Buhr, R.J.A. (1998) "Use Case Maps as Architectural Entities for Complex Systems". IEEE Transactions on
Software Engineering, Special Issue on Scenario Management. Vol. 24, No. 12, December 1998, 1131-1155.
http://www.UseCaseMaps.org/pub/tse98final.pdf

[23] Chandrasekaran, P. (1997) "How Use Case Modeling Policies Have Affected the Success of Various Projects
(Or How to Improve Use Case Modeling)". Addendum to the 1997 ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications (OOPSLA'97), 6-9.

[24] Chen, X.J. and Ural, H. (2002) "Construction of Deadlock-free Designs of Communication Protocols from
Observations". The Computer Journal, Vol. 45, No. 2, 162-173.

 p. 21

[25] Chung, L., Nixon, B.A., Yu, E. and Mylopoulos, J. (2000) Non-Functional Requirements in Software Engi-
neering. Kluwer Academic Publishers.

[26] Cockburn, A. (1997) “Structuring Use cases with goals”. Journal of Object-Oriented Programming
(JOOP/ROAD), 10(5), September 1997, 56-62. http://members.aol.com/acockburn/papers/usecases.htm

[27] Damm, W. and Harel, D. (2001) "LCSs: Breathing Life into Message Sequence Charts". Formal Methods in
System Design, 19(1).

[28] Damm, K. and Klose, J. (2001) "Verification of a Radio-based Signalling System using the STATEMATE
Verification Environment". Formal Methods in System Design, 19(2):121–141.

[29] Dano, B., Briand, H., and Barbier, F. (1997) "A Use Case Driven Requirements Engineering Process". RE'97,
Third IEEE Intl. Symposium on Requirements Engineering, Annapolis, USA.

[30] Desharnais, J., Frappier, M., Khédri, R., and Mili, A. (1997). "Integration of Sequential Scenarios". ESEC'97,
Sixth European Engineering Conference, LNCS 1301, Springer-Verlag, 310-326.

[31] Du Bois, P. (1997) The Albert II reference manual: language constructs and informal semantics. Research
report RR-97-002, Computer Science Department, University of Namur, Belgium, July 1997.
ftp://ftp.info.fundp.ac.be/publications/RR/RR-97-002.ps.Z

[32] Dulz, W., Gruhl, S., Lambert, L., and Söllner, M. (1999) "Early performance prediction of SDL/MSC speci-
fied systems by automated synthetic code generation". SDL'99, Proceedings of the Ninth SDL Forum, Mon-
tréal, Canada. Elsevier.

[33] Eberlein, A. (1997) Requirements Acquisition and Specification for Telecommunication Services. PhD thesis,
University of Wales, Swansea, UK. http://www.enel.ucalgary.ca/People/eberlein/publications/thesis.zip

[34] Egyed, A., Systä, T., Uchitel, S., and Zündorf, A. (2002) "A Summary of the ICSE 2002 Workshop on Scenar-
ios and State Machines: Models, Algorithms, and Tools", ACM Software Engineering Notes, 27(5).

[35] Elkoutbi, M.., Khriss, I., and Keller, R.K. (1999) "Generating User Interface Prototypes from Scenarios".
RE'99, Fourth IEEE International Symposium on Requirements Engineering, Limerick, Ireland, June 1999,
150-158. ftp://ftp.iro.umontreal.ca/pub/gelo/Publications/Papers/isre99.pdf

[36] Glinz, M. (1995) "An Integrated Formal Model of Scenarios Based on Statecharts". Proceedings of the 5th
European Software Engineering Conference (ESEC 1995), Sitges, Spain.

[37] Guan, R. (2002) From Requirements to Scenarios through Specifications: A Translation Procedure from Use
Case Maps to LOTOS, M.Sc. thesis, University of Ottawa, Canada, September 2002.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/rg_msc.pdf

[38] Harel, D. (2000) "From Play-In Scenarios To Code: An Achievable Dream". Fundamental Approaches to
Software Engineering (FASE2000), LNCS 1783, Springer-Verlag, 22-34.
http://www.wisdom.weizmann.ac.il:81/Dienst/UI/2.0/Describe/ncstrl.weizmann_il/MCS00-06

[39] Harel, D. and Gery, E. (1996) "Executable Object Modeling with Statecharts". Proceedings of the 18th Inter-
national Conference on Software Engineering, Berlin, IEEE Press, March 1996, 246-257.

[40] Harel, D. and Kugler, H. (2002) "Synthesizing State-Based Object Systems from LSC Specifications". Int. J.
of Foundations of Computer Science (IJFCS), 13(1):5–51, Febuary 2002. (Also Fifth International Conference
on Implementation and Application of Automata (CIAA 2000), LNCS, Springer-Verlag, July 2000).

[41] D. Harel and R. Marelly, Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine,
Springer-Verlag, 2003.

[42] Hélouët, L. and Jard, C. (2000) "Conditions for synthesis of communicating automata from HMSCs". 5th
International Workshop on Formal Methods for Industrial Critical Systems, Berlin, April 2000.
http://www.fokus.gmd.de/research/cc/tip/fmics/abstracts/helouet.html

[43] Heymans P. (1997) The ALBERT II specification animator. Tech. Rep. CREWS report 97-13. University of
Namur. http://Sunsite.Informatik.RWTH-Aachen.DE/CREWS/.

[44] Heymans, P., and Dubois, E. (1998) "Scenario-Based Techniques for Supporting the Elaboration and the Vali-
dation of Formal Requirements". Requirements Engineering, 3:202-218.

[45] Hodges, J. and Visser, J. (1999) "Accelerating Wireless Intelligent Network Standards Through Formal Tech-
niques". IEEE 1999 Vehicular Technology Conference (VTC’99), Houston (TX), USA.
http://www.UseCaseMaps.org/pub/vtc99.pdf

[46] Holzmann, G.J., Peled, D., and Redberg, M. (1997) "Design tools for requirements engineering". Bell Labs
Technical Journal, 2(1):86-95. http://www.lucent.com/minds/techjournal/winter_97/pdf/paper07.pdf
http://cm.bell-labs.com/cm/cs/what/ubet/

 p. 22

[47] Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y. and Chen, C. (1994) "Formal Approach to Scenario
Analysis". IEEE Software, 1994, 33-40.

[48] Hurlbut, R. (1997) A Survey of Approaches for Describing and Formalizing Use Cases. Technical Report 97-
03, Department of Computer Science, Illinois Institute of Technology, USA.
http://www.iit.edu/~rhurlbut/xpt-tr-97-03.html

[49] Hurlbut, R. R. (1998) Managing Domain Architecture Evolution Through Adaptive Use Case and Business
Rule Models. Ph.D. thesis, Illinois Institute of Technology, Chigago, USA. http://
www.iit.edu/~rhurlbut/hurl98.pdf

[50] ISO (1989), Information Processing Systems, Open Systems Interconnection, LOTOS — A Formal Description
Technique Based on the Temporal Ordering of Observational Behaviour, IS 8807, Geneva.

[51] ISO/IEC (1997) OSI CTMF Part 3: The Tree and Tabular Combined Notation — Second Edition, IS 9646-3:
1997, Geneva.

[52] ISO/IEC (2000) High-level Petri Nets - Concepts, Definitions and Graphical Notation, Final Draft Interna-
tional Standard 15909, Version 4.7.1, October 28, 2000

[53] ITU-T (1988) Recommendation I.130, Method for the characterization of telecommunication services sup-
ported by an ISDN and network capabilities of ISDN. CCITT, Geneva.

[54] ITU-T (2000) Recommendation Q.65, The unified functional methodology for the characterization of services
and network capabilities including alternative object-oriented techniques. Geneva.

[55] ITU-T (2000) Recommendation Z.100, Specification and Description Language (SDL). Geneva.
http://www.itu.int/ITU-T/studygroups/com17/languages/Z.100_1199.pdf

[56] ITU-T (2000) Recommendation Z.109, SDL combined with UML. Geneva.
[57] ITU-T (2001) Recommendation Z. 120: Message Sequence Chart (MSC). Geneva.

http://www.itu.int/ITU-T/studygroups/com17/languages/Z.120_1199.pdf
[58] ITU-T (2002) Study Group 17: Data Networks and Telecommunication Software. Geneva.
[59] ITU-T (2003) Recommendation Z.150, User Requirements Notation (URN) - Language Requirements and

Framework. Geneva, Switzerland. http://www.UseCaseMaps.org/urn/
[60] ITU-T, URN Focus Group (2002), Draft Rec. Z.151 – Goal-oriented Requirements Language (GRL). Geneva.
[61] ITU-T, URN Focus Group (2002), Draft Rec. Z.152 – UCM: Use Case Map Notation (UCM). Geneva.
[62] Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1993) Object-Oriented Software Engineering, A

Use Case Driven Approach. Addison-Wesley, ACM Press.
[63] Jarke, M. and Kurki-Suonio, R., editors. (1998) IEEE Transactions on Software Engineering, Special Issue on

Scenario Management. Vol. 24, No. 12, December 1998.
[64] Khendek, F. and Vincent, D. (2000) "Enriching SDL Specifications with MSCs". 2nd Workshop of the SDL

Forum Society on SDL and MSC (SAM2000), Grenoble, France, June 2000.
[65] Kimbler, K. and Søbirk, D. (1994) "Use case driven analysis of feature interactions". L. G. Bouma and H.

Velthuijsen (eds), Feature Interactions in Telecommunications Systems, Amsterdam, The Netherlands, May
1994. IOS Press, 167-177.

[66] Klose, J. and Wittke, H. (2001) "An automata based interpretation of live sequence chart". Proc. 7th Intl. Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’01), 2001.

[67] Koskimies, K. and Mäkinen, E. (1994) "Automatic Synthesis of State Machines from Trace Diagrams". Soft-
ware Practice and Experience, 24(7), July 1994, 643-658.

[68] Koskimies, K., Männistö, T., Systä, T., and Tuomi, J. (1996) SCED: A tool for dynamic modelling of object
systems. University of Tampere, Department of Computer Science, Report A-1996-4, July.
ftp://cs.uta.fi/pub/reports/A-1996-4.ps.Z

[69] Koskinen, J., Mäkinen, E., and Systä, T. (2001) "Minimally Adequate Synthesizer Tolerates Inaccurate Infor-
mation during Behavioral Modeling". SCASE 2001, Enschede, The Netherlands, February.

[70] Krüger, I., Grosu, R., Scholz, P. and Broy, M. (1999) "From MSCs to Statecharts". Distributed and Parallel
Embedded Systems, Kluwer Academic Publishers.
http://www4.informatik.tu-muenchen.de/papers/KGSB99.html

[71] van Lamsweerde, A. and Willemet, L. (1998) "Inferring Declarative Requirements Specifications from Opera-
tional Scenarios". IEEE Transactions on Software Engineering, Special Issue on Scenario Management. Vol.
24, No. 12, Dec. 1998, 1089-1114.

 p. 23

[72] Leite J.C.S.P., Hadad G.D.S., Doorn J.H., and Kaplan G.N. (2000) "A Scenario Construction Process". Re-
quirements Engineering, 5:38-61.

[73] Leue, S., Mehrmann, L. and Rezai, M. (1998) "Synthesizing ROOM Models from Message Sequence Chart
Specifications". Technical Report 98-06, ECE Dept., University of Waterloo, Canada, April 1998. Short paper
version in: 13th IEEE Conference on Automated Software Engineering, Honolulu, Hawaii, October 1998.
http://sven.uwaterloo.ca:80/~sleue/publications.files/tr98-06.ps.gz

[74] Li, J.J. and Horgan, J.R. (2000) “Applying formal description techniques to software architectural design”.
Computer Communications, 23(12), 1169-1178.

[75] Liu, L. and Yu, E. (2001) "From Requirements to Architectural Design — Using Goals and Scenarios". From
Software Requirements to Architectures Workshop (STRAW 2001), Toronto, Canada, May 2001.

[76] Magee, J. and Kramer, J. (1999) Concurrency: State Models and Java Programs. John Wiley & Sons Ltd.,
New York, USA. http://www-dse.doc.ic.ac.uk/~su2/Synthesis/

[77] Maiden, N.A.M. (1998) "SAVRE: Scenarios for Acquiring and Validating Requirements". Journal of Auto-
mated Software Engineering, 5, 419-446.

[78] Mäkinen, E., and Systä, T. (2001) "MAS – An Interactive Synthesizer to Support Behavioral Modeling in
UML". 23rd Intl. Conference on Software Engineering (ICSE'01), Toronto, Canada, May 2001.

[79] Mansurov, N. and Zhukov, D. (1999) "Automatic synthesis of SDL models in use case methodology". SDL'99,
Proceedings of the Ninth SDL Forum, Montréal, Canada. Elsevier.

[80] Mansurov, N. and Probert, R.L. (2001) "A Scenario-Based approach to Evolution of Telecommunications
Software". IEEE Communications, October 2001.

[81] Miga, A. (1998) Application of Use Case Maps to System Design with Tool Support. M.Eng. thesis, Dept. of
Systems and Computer Engineering, Carleton University, Ottawa, Canada.
http://www.UseCaseMaps.org/pub/am_thesis.pdf

[82] Miga, A., Amyot, D., Bordeleau, F., Cameron, C. and Woodside, M. (2001) "Deriving Message Sequence
Charts from Use Case Maps Scenario Specifications". Tenth SDL Forum (SDL'01), Copenhagen, Denmark.
http://www.UseCaseMaps.org/pub/sdl01-miga.pdf

[83] OMG (2003) Unified Modeling Language Specification, Version 1.5. March 2003. http://www.omg.org
[84] OMG (2002) UML Resource Page. http://www.omg.org/uml/
[85] Petriu, D., and Woodside, M. (2002) "Software Performance Models from System Scenarios in Use Case

Maps". 12th Int. Conf. on Modelling Tools and Techniques for Computer and Communication System Per-
formance Evaluation, London, U.K., April. http://www.UseCaseMaps.org/pub/tools02.pdf

[86] Potts, C., Takahashi, K., and Antòn, A.I. (1994) "Inquiry-Based Requirements Analysis". IEEE Software,
March 1994, 21-32.

[87] Probert, R.L. and Saleh, J. (1991) “Synthesis of communications protocols: survey and assessment”. IEEE
Transactions on Computers, Vol. 40, No. 4, April 1991, 468-476.

[88] Regnell, B., Kimbler, K., and Wesslén, A. (1995) "Improving the Use Case Driven Approach to Requirements
Engineering". Proceedings of Second IEEE International Symposium on Requirements Engineering, York,
U.K., March 1995, 40-47. http://www.tts.lth.se/Personal/bjornr/Papers/tts-94-24.ps

[89] Regnell, B. (1999) Requirements Engineering with Use Cases — a Basis for Software Development. Ph.D.
Thesis, Department of Communication Systems, Lund Institute of Technology, Sweden.
http://www.tts.lth.se/Personal/bjornr/thesis/

[90] Reisig, W. and Rozenberg, G.(eds) (1998) Lectures in Petri Nets. Lecture Notes in Computer Science, Vol-
umes 1491 and 1492, Springer-Verlag.

[91] Rolland, C., Ben Achour, C., Cauvet, C., Ralyte, J., Sutcliffe, A.G., Maiden, N.A.M., Jarke, M., Haumer, P.,
Pohl, K., Dubois, E., and Heymas, P. (1998) "A proposal for a Scenario Classification Framework". Require-
ments Engineering Journal, 3(1), 23-47.

[92] Rolland, C., Souveyet, C. and Ben Achour, C. (1998) "Guiding Goal Modelling using Scenarios". IEEE Trans.
on Software Engineering, Special Issue on Scenario Management. Vol. 24, No. 12, December 1998.

[93] Salah, A., Dssouli, R., and Lapalme, G. (2001) "Compiling real-time scenarios into a timed automaton". Proc.
of FORTE/PSTV’01, China.

[94] Saleh, K. (1996) "Synthesis of communications protocols: an annotated bibliography". ACM SIGCOMM Com-
puter Communications Review, Vol.26 , No.5, October, 40-59.

 p. 24

[95] Saleh, K. (1998) "Synthesis of protocol converters: an annotated bibliography". Computer Standards & Inter-
faces, 19, 105-117.

[96] Sales, I. and Probert, R. (2000) "From High-Level Behaviour to High-Level Design: Use Case Maps to Speci-
fication and Description Language". SBRC'2000, 18° Simpósio Brasileiro de Redes de Computadores, Belo
Horizonte, Brazil, May 2000.

[97] Schönberger, S., Keller, R.K., and Khriss, I. (2001) "Algorithmic Support for Model Transformation in Object-
Oriented Software Development". Concurrency and Computation: Practice and Experience, 13(5):351-383,
April 2001. Object Systems Section. John Wiley and Sons.

[98] Selic, B., Gullekson, G., and Ward, P.T. (1994) Real-Time Object-Oriented Modeling, Wiley & Sons.
[99] Somé, S., Dssouli, R., and Vaucher J. (1996) "Toward an Automation of Requirements Engineering using

Scenarios". Journal of Computing and Information, 2(1), 1110-1132.
[100] Somé, S. (1997) Dérivation de Spécifications à partir de Scénarios d'interaction. Ph.D. thesis, Département

d'IRO, Université de Montréal, Canada.
[101] Systä, T. (2000) "Incremental Construction of Dynamic Models for Object-Oriented Software Systems". Jour-

nal of Object-Oriented Programming, Vol. 13 No. 5, September, 18-27.
[102] Systä, T., Keller, R.K., and Koskimies, K. (2001) "Summary Report of the OOPSLA 2000 Workshop on Sce-

nario-Based Round-Trip Engineering". ACM SIGSOFT Software Engineering Notes, 26(2):24-28, March
2001. http://www.iro.umontreal.ca/~labgelo/Publications/Papers/oopsla-2000.pdf

[103] Turner, K.J. (2000) "Formalising the Chisel Feature Notation"'. Sixth International Workshop on Feature In-
teractions in Telecommunications and Software Systems (FIW'00), Glasgow, Scotland, UK, May 2000. IOS
Press, Amsterdam, 241-256. ftp://ftp.cs.stir.ac.uk/pub/staff/kjt/research/pubs/form-chis.pdf

[104] Uchitel, S. and Kramer, J. (2001) "A Workbench for Synthesizing Behavior Models from Scenarios". 23rd
IEEE International Conference on Software Engineering (ICSE'01). Toronto, Canada. May 2001.

[105] Uchitel, S., Kramer, J., and Magee, J. (2002) "Implied Scenario Detection in the Presence of Behaviour Con-
straints". Electronic Notes in Theoretical Computer Science, 65 No. 7, Elsevier Science B.V.

[106] Use Case Maps Web Page and UCM User Group (1999). http://www.UseCaseMaps.org
[107] Weidenhaupt, K., Pohl, K., Jarke, M., and Haumer, P. (1998) "Scenarios in System Development: Current

Practice". IEEE Software, March/April 1998, 34-45.
[108] Whittle, J. and Schumann, J. (2000) "Generating Statechart Designs From Scenarios". 22th International Con-

ference on Software Engineering (ICSE 2000), Limerick, Ireland, ACM Press, 314-323.
[109] Whittle, J. and Schumann, J. (2002) "Statechart Synthesis From Scenarios: an Air Traffic Control Case Study".

Scenarios and state machines: models, algorithms, and tools, ICSE 2002 Workshop, Orlando, USA.
[110] Woodside, C.M., Menascé, D. and Gomaa, H. eds. (2000) Proceedings of the Second International Workshop

on Software and Performance (WOSP’2000), Ottawa, Canada, September.
[111] Yee, G.M. and Woodside, C.M.. (1990) "A Transformational Approach to Process Partitioning Using Timed

Petri Nets". Proc. Int. Computer Symposium 90 (ICS90), Taiwan, December, 395-401.
[112] Zave, P. and Jackson, M. (1997) "Four dark corners of requirements engineering". ACM Transactions on Soft-

ware Engineering and Methodology VI(1), January 1997, 1-30. http://www.research.att.com/~pamela/4dc.ps

 p. 25

	Armin Eberlein
	Abstract
	Keywords

	Non-Automated Analytic Approaches
	Non-Automated Synthesis Approaches
	Automated Synthesis Approaches

