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Abstract

Star networks were proposed recently as an attractive al-
ternative to the well-known hypercube models for intercon-
nection networks. Extensive research has been performed
that shows that star networks are as versatile as hypercubes.
This paper is an effort in the same direction. Based on the
well-known paradigms, we study the one-to-many parallel
routing problem on star networks and develop an improved
routing algorithm that finds n � 1 node-disjoint paths be-
tween one node and a set of other n� 1 nodes in the n-star
network. These parallel paths are proven of minimum length
within a small additive constant, and our algorithm has an
optimal time complexity. This result significantly improves
the previous known algorithms for the problem. Moreover,
the algorithm well illustrates an application of the orthog-
onal partition of star networks, which was observed by the
original inventors of the star networks but seems generally
overlooked in the subsequent study. We should also point
out that similar problems are already studied for hypercubes
and have proven useful in designing efficient and fault tol-
erant routing algorithms on hypercube networks.

1. Introduction

The star networks have received considerable attention re-
cently by researchers as a graph model for interconnection
network. Like the hypercube, the star network has rich
structural and symmetric properties, and these properties
have proven very useful in the study of network compu-
tation, communication, and fault tolerance. Moreover, star
networks have smaller diameter and degree while comparing
with hypercubes of comparable number of vertices [1, 2].

In this paper, we investigate the one-to-many routing
problem in star networks. This problem has been studied
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by several researchers. In particular, Dietzfelbinger, Mad-
havapeddy, and Sudborough [6] developed an algorithm that
solves the problem based on the recursive structure of the
star networks. They showed that the length of the paths gen-
erated by their algorithm for the n-star network is bounded
by 5(n � 2). Since the diameter of the n-star network is
b3(n � 1)=2c, the lengths of these paths are bounded by
10=3 times the diameter of the n-star network.

The main contribution of the current paper is an im-
proved one-to-many routing algorithm. We adopt a differ-
ent approach and develop new techniques to construct n�1
node-disjoint paths between one node and a set ofn�1 other
nodes in the n-star network. These node-disjoint paths are
proven of minimum length (plus possibly at most 6). Our al-
gorithm has an optimal time complexity. This significantly
improves the result in [6]. Moreover, our algorithm well
illustrates an application of the orthogonal partition of star
networks, which was observed by the original inventors of
the star networks [1] but seems generally overlooked in the
subsequent study. We expect that the current paper make a
contribution to motivating further important applications of
the orthogonal partition of star networks.

2. Background and definitions

A permutation of the symbols 1, 2, : : :, n can be represented
by a cycle structure [7]. For example, permutation 231546
can be given as (2 3 1)(4 5)(6). A cycle is nontrivial if it con-
tains more than one symbol, otherwise, the cycle is trivial.
In general, if the cycle structure of a permutation u contains
a cycle of form (� � � j i � � �), then i is the jth symbol in the
permutationu. In particular, if (i) is a cycle in u, then i is the
ith symbol in u, i.e., the symbol i is in its “correct” position.
A transposition�[1; i] on a permutation u is to exchange the
positions of the first symbol and the ith symbol in the permu-
tation u. More precisely, if u = a1a2 � � � ai�1aiai+1 � � � an,
then �[1; i](u) = aia2 � � � ai�1a1ai+1 � � � an.

The n-dimensional star network (or simply the n-star
network), denoted as Sn, is an undirected graph consisting
of n! nodes labeled with the n! permutations on symbols 1,
2, � � �, n. There is an edge between any two nodes u and v
if and only if �[1; i](u) = v for some 2 � i � n. The node
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labeled with the identity permutation " = 12 � � � n will be
called the identity node. We will use a node name in a star
network to refer to either the node itself or the permutation
that labels the node. The context should always make this
unambiguous.

The n-star network Sn is (n � 1)-connected [2]. By
Menger’s theorem [8], for any given node u and any set D
ofn�1 other nodes inSn, there aren�1 node-disjoint paths
that connect the node u and each of the node in the set D.
Moreover, every node in the n-star network Sn has degree
n � 1. Therefore, n � 1 is the maximum number of node-
disjoint paths we can expect to construct from a given node
u to a given set of nodes. Finally, since the n-star network
is vertex-symmetric [2], the problem of constructing n � 1
node-disjoint paths between a given node to a set of n � 1
nodes in the n-star network can be easily mapped to the
problem of constructing n� 1 node-disjoint paths between
the identity node " = 12 � � � n to a set of n� 1 nodes in the
n-star network. Therefore, in the rest of this paper, we will
concentrate on the latter problem.

Suppose that u = c1 � � � cke1 � � � em is a node in then-star
network Sn, where ci are nontrivial cycles and ej are trivial
cycles. A shortest path from the nodeu in the n-star network
Sn to the identity node " must be generated by repeatedly
using the following three simple rules [1, 5]:

(R1) If 1 is the first symbol in u, then exchange 1 with any
symbol j in a nontrivial cycle;

(R2) If i, i 6= 1, is the first symbol in u, then exchange i
with the symbol j in the ith position;

(R3) If i, i 6= 1, is the first symbol in u, then exchange i
with any symbol j in a nontrivial cycle that does not
contain the symbol i.

We describe how these rules affect the cycle structure of
the permutation u.

Suppose Rule (R1) is applied. Then the cycle structure of
u should be of form (j � � � j0)c2 � � � ck(1) (we have ignored
irrelevant trivial cycles). Thus, j is the j0th symbol in u
and Rule (R1) corresponds to the transposition �[1; j0] that
“merges” the nontrivial cycle (j � � � j0) into the trivial cycle
(1): �[1; j0](u) = (j � � � j01)c2 � � � ck.

Suppose Rule (R2) is applied. Then the cycle structure
of u should be of form (ij � � � j01)c2 � � � ck, where j is the
ith symbol in u. Rule (R2) corresponds to the transposition
�[1; i] that “deletes” the symbol i from the cycle containing
symbol 1: �[1; i](u) = (j � � � j01)c2 � � � ck.

Finally, suppose that Rule (R3) is applied. Then
the cycle structure of the node u should be of form
(i � � � 1)(j � � � j0)c3 � � � ck (note that each cycle can be cycli-
cally permuted and the order of the cycles is irrelevant).
Rule (R3) corresponds to the transposition �[1; j0] that

“merges” the nontrivial cycle (j � � � j0) into the nontrivial
cycle (i � � � 1): �[1; j0](u) = (j � � � j0i � � � 1)c3 � � � ck.

3. One-to-many parallel routing in star
networks

In this section, we will present a one-to-many parallel
routing algorithm on star networks. Given a set D =
fv2; v3; : : : ; vng of n � 1 nodes in the n-star network Sn
such that vi 6= " for all i, the algorithm constructs n � 1
node-disjoint paths P2, P3, : : :, Pn such that the path Pi

connects the nodes vi and ", for 2 � i � n.

Definition Node u in the n-star network Sn is a (1)-node
if 1 is the first symbol in the permutation u. Node v in Sn
is a (j1)-node, where 2 � j � n, if 1 is the jth symbol in
the permutation v.

We point out that the above notations essentially match
the notations of cycle structure of a permutation. The nota-
tion “(1)” hints the trivial cycle (1) in the cycle structure,
while the notation “(j1)” hints a nontrivial cycle of form
(� � � j1) in the cycle structure.

We first give an intuitive description of our algorithm.
For each i, 2 � i � n, we reserve a unique position pi for
the path Pi, 2 � pi � n, such that for all interior nodes on
Pi (except possibly for at most two), the symbol 1 is at the
pith position in the permutations. This construction ensures
that the path Pi is node-disjoint from the other constructed
paths. Finally, of course, we expect to keep the length of
these paths as short as possible.

To achieve this, we need to solve three problems: (a) we
need a procedure that constructs a short path from a node u
to the node " and keeps the symbol 1 in a fixed position along
the path; (b) for each path Pi with the reserved position
pi, we need to minimize the number of nodes on Pi that are
not (pi1)-nodes; (c) all these paths Pi, 2 � i � n, must be
node-disjoint. In particular, those nodes on Pi that are not
(pi1)-nodes should not be used by other paths.

Given a nodeu that is not a (1)-node in then-star network
Sn, constructing a shortest path from u to " that keeps the
symbol 1 in a fixed position is relatively easy. Observe that
if the node u is not a (1)-node, then applying Rule (R3) will
not change the position of symbol 1 in the permutation u,
and that if the cycle inu that contains symbol 1 has more than
two symbols, then applying Rule (R2) does not change the
position of symbol 1 in the permutation u. This observation
motivates the algorithmFix-1-Router in Figure 1, which
constructs a shortest path from a node u to " and keeps the
symbol 1 in a fixed position in all interior nodes along the
path.

For example, let u = (231)(45)(678) be a node in the



Algorithm. Fix-1-Router

Input: a node u in Sn such that u is not a (1)-node

Output: a shortest path from u to " in Sn
1. Repeatedly apply Rule (R3) to merge, in an arbitrary

order, each nontrivial cycle into the cycle containing
the symbol 1 until there is only one nontrivial cycle;

2. Repeatedly apply Rule (R2) to delete the symbol at the
first position in a permutation from the nontrivial cycle
containing symbol 1 until the node " is reached.

Figure 1: The algorithm Fix-1-Router.

8-star network. The nodeu is not a (1)-node. A path created
by the algorithm Fix-1-Router may look as follows.
u = (231)(45)(678) ! (45231)(678) ! (67845231) !
(7845231) ! (845231) ! (45231) ! (5231) !

(231)! (31)! "

Now consider the path Pi with the reserved position pi.
To minimize the number of nodes on Pi that are not (pi1)-
nodes, we observe that every node in the n-star network Sn
is connected to a (pi1)-node by a path of length at most 2,
as shownin the following lemma.

Lemma 3.1 (A) Let u be a node in the n-star network Sn
such that u is not a (1)-node. Then the node u has a unique
neighbor that is a (1)-node. This (1)-node will be called
the (1)-node associated with the node u.

(B) For any given pi, 2 � pi � n, every (1)-node v in
Sn has a neighbor that is a (pi1)-node.

Proof. See the full paper [4].

Now we are ready to describe our algorithm that
constructs n � 1 node-disjoint paths from a set D =
fv2; v3; : : : ; vng of nodes in Sn to the identity node ". For
each node vi in D, we construct a path Pi with a uniquely
reserved position pi. There are three different cases. If
the node vi is a (1)-node, then the path Pi starts with the
edge from vi to the neighbor �[1; pi](vi) of vi, which is a
(pi1)-node, and the rest nodes on Pi are all (pi1)-nodes and
are obtained by applying the algorithm Fix-1-Router on
the node �[1; pi](vi). If the node vi is a (j1)-node and the
reserved position for vi is j, then the path Pi is obtained by
directly applying the algorithmFix-1-Router on the node
vi. Finally, if the node vi is a (j1)-node and the reserved
position pi is not j, then we either go through the (1)-node
associated with vi then the (pi1)-nodes, or go through a
neighbor u of vi then the (1)-node associated with u then
the (pi1)-nodes. The algorithm, called One-To-Many

Routing, is presented formally in Figure 2.
It is easy to verify that for each i, the constructed path Pi

connects the node vi and the identity node ". Moreover, we
have the following bound on the length of the path Pi.

Algorithm. One-To-Many Routing

Input: a set D = fv2; v3; : : : ; vng of n� 1 nodes in the n-star network
Sn
Output: n� 1 node-disjoint paths connecting the nodes in D and the
identity node " in Sn

1. mark all nodes in D and mark the node ";

2. for j = 2 to n do
let Dj be the set of all (j1)-nodes in D; if Dj 6= �, pick a node wj

in Dj such that dist(wj) is the minimum among all nodes in Dj (if
there is a tie, pick any of them); call wj the representative node of
the set Dj

3. for each node vi in the set D, reserve a position pi for vi with
2 � pi � n, such that vi 6= vt implies pi 6= pt, and that for each
Dj 6= �, the representative node wj gets the position j;

fNow we start constructing a pathPi from vi to " for each i. Without
loss of generality, assume that all representative nodes appear before
all other nodes in the list D = fv2; v3; : : : ; vng.g

4. for i = 2 to n do

� case 1. vi is a (1)-node

then the first interior node on the path Pi is �[1; pi](vi),
the rest of the path Pi is obtained by calling the algorithm
Fix-1-Router on the node �[1; pi](vi);

� case 2. vi is the representative node for a set Dj

then construct the path Pi by calling the algorithm Fix-1-

Router on the node vi;

� case 3. vi is a (j1)-node for some j but not the representative
node for set Dj

if the (1)-node u associated with vi is unmarked

then the first two interior nodes on the path Pi are u and
�[1; pi](u), and the rest of the path Pi is obtained by calling
the algorithm Fix-1-Router on the node �[1; pi](u)

else find an unmarked neighbor u of vi such that the (1)-
node u0 associated with u is also unmarked; the first three
interior nodes on the path Pi are u, u0, and �[1; pi](u0), and
the rest of the path Pi is obtained by calling the algorithm
Fix-1-Router on the node �[1; pi](u0)

mark all nodes on the path Pi;

Figure 2: The algorithm One-To-Many Routing.

Lemma 3.2 For each i, 2 � i � n, the length of the pathPi

constructed by the algorithm One-To-Many Routing

is bounded by dist(vi) + 6.

Proof. For each i, 2 � i � n, there is a node ui
on the path Pi such that the subpath of Pi from ui to " is
obtained by applying the algorithm Fix-1-Router on the
node ui. Moreover, the subpath from the node vi to the
node ui has length bounded by 3. Therefore, dist(ui) �
dist(vi) + 3. Finally, since the algorithm Fix-1-Router

creates a shortest path from the node ui to " thus the path
has length exactly dist(ui). In conclusion, the length of the
path Pi is bounded by 3 + dist(ui), which is bounded by
dist(vi) + 6.

The rest of this section is for a proof of the correctness of
the algorithm One-To-Many Routing. We start with



a few simple facts on the algorithm. These facts can be
verified easily.

Fact 3.1. If vi is a (1)-node, then all interior nodes on the
path Pi are (pi1)-nodes, where pi is the position reserved
for the node vi.

Fact 3.2. If vi is the representative node wj of a set Dj ,
then all interior nodes, plus the node vi, are (j1)-nodes.
Note that in this case, j is the position reserved for the node
vi.

Fact 3.3. If vi is a (j1)-node but not the representative node
wj of the set Dj , then the path Pi starts with zero or one
interior node that is a (j1)-node, followed by a (1)-node.
The rest of the interior nodes on Pi are all (pi1)-nodes,
where pi (6= j) is the position reserved for the node vi.

We say that a node sequence fu1; u2; : : : ; usg in the n-
star network Sn is a simple circle if all nodes ui are distinct
and [us; u1], [ui; ui+1], 1 � i � s � 1, are all edges in Sn.
The following lemma will be very useful.

Lemma 3.3 There is no simple circle of length less than 6
in the n-star network Sn.

Proof. See the full paper [4].

A crucial step in AlgorithmOne-To-Many Routing

is the case 3 in step 4, in which for the given (j1)-node vi
that is not the representative node wj of the set Dj , if the
(1)-node associated with vi has been marked, we must show
that the node vi has a neighboru such that the neighboru and
the (1)-node u0 associated with u are both unmarked. Note
that each marked node is a node contained in a previously
constructed path Pt, 2 � t � i � 1.

The node vi has n � 1 neighbors, one is a (1)-node and
the others are (j1)-nodes. Without loss of generality, let
the n � 1 neighbors of vi be u02, u3, u4, : : :, un, where u02
is the (1)-node, and ut, 3 � t � n, are (j1)-nodes. By
Lemma 3.1(A), each node ut, 3 � t � n, has a unique
associated (1)-node u0t. All these (1)-nodes are distinct —
if u0t = u0s for t 6= s, then the sequence fvi; us; u0s; utg
would form a simple circle of length 4 in the n-star network,
contradicting Lemma 3.3. Similarly, the neighbor u02 of
vi is distinct from all (1)-nodes u0t, 3 � t � n, since the
n-star network Sn has no circles of length 3. Let Ni =
fu3; : : : ; ung be the set of all neighbors of vi that are (j1)-
nodes, and let Ai = fu02; u

0

3; : : : ; u
0

ng be the set of all (1)-
nodes associated with the nodes in Ni [ fvig.

Lemma 3.4 Let vi be a (j1)-node but not the representative
node of setDj and let the setsNi andAi be defined as above.
Then eachPt of the paths P2, : : :, Pi�1 contains at most one
node in the set Ni and at most one node in the set Ai.

Moreover, if the path Pt contains a node u in the set Ni

and a node u0 in the set Ai, then u0 must be the (1)-node
associated with the node u.

Proof. See the full paper [4].

Now we are ready to show that Algorithm One-To-

Many Routing is always valid in case 3 of step 4 in the
algorithm.

Lemma 3.5 Let vi be a node in case 3 of step 4 in Algorithm
One-To-Many Routing. If the (1)-node associated
with vi is marked, then there is a neighbor u of vi such that
the node u and the (1)-node u0 associated with u are both
unmarked.

Proof. See the full paper [4].

Now we are ready to show that all paths constructed by the
algorithm One-To-Many Routing are node-disjoint.
For this, the following lemma is sufficient.

Lemma 3.6 Let Pi be the path from the node vi to " con-
structed in AlgorithmOne-To-Many Routing, then the
path Pi is node-disjoint with all paths P2, � � �, Pi�1 con-
structed by the algorithm.

Proof. See the full paper [4].

Now we can conclude with the following theorem.

Theorem 3.7 Given a setD = fv2; : : : ; vngofn�1 distinct
nodes in the n-star network Sn, the algorithm One-To-

Many Routing constructs n� 1 node-disjoint paths P2,
: : :, Pn in time O(n2) such that for 2 � i � n, the path Pi

connects the node vi and the identity node " in the n-star
network Sn and has length at most dist(vi) + 6.

Proof. The fact that the constructed paths satisfy
the conditions stated in the theorem has been proved by
Lemma 3.2 and Lemma 3.6. What remains is to show the
complexity of the algorithm.

Calculating the distance from a node to the identity node
can be done in time O(n) using the formula given in Section
2. Thus, steps 1, 2, 3 of the algorithm One-To-Many

Routing totally take time O(n2). Since the diameter of
the n-star network Sn is bounded byO(n) [2], the algorithm
Fix-1-Router constructs a shortest path from a given
node to the identity node " in time O(n). For each node vi in
step 4, we may need to search among then�1 neighbors ofvi
to find a neighbor u such that u and the (1)-node associated
with u are both unmarked. This searching takes time O(n)
for each node. After this searching, the algorithm Fix-1-

Router is applied and takes time O(n). In conclusion,
step 4 of the algorithm One-To-Many Routing takes



time O(n2). Summarizing all these together, we conclude
that the algorithmOne-To-Many Routing runs in time
O(n2).

We point out that the algorithmOne-To-Many Rout-

ing has an optimal time complexity. In fact, even printing
out n�1 paths whose length can be as long as Ω(n) already
takes time Ω(n2).

4. Orthogonal partition of star networks

Like most well-known interconnection network models, star
networks enjoy a recursive structure that has been proven
very useful in network computation and communication.

Fix a position p > 1 in the permutations on 1, 2, : : :, n
(e.g., p = n is the last position in the permutations). For
each i, 1 � i � n, the nodes in the n-star network Sn whose
pth symbol is i form an (n � 1)-dimensional substar net-
work Sp;i. Then-dimensional star networkSn is partitioned
into n node-disjoint (n � 1)-dimensional substar networks
Sp;1, Sp;2, : : :, Sp;n [1]. This partition of the n-star net-
work is well-known and is called the standard partition of
the n-star network. The standard partition of star networks
has found wide applications in routing, broadcasting, emu-
lation, and fault tolerance of star networks. In particular, the
parallel one-to-many routing algorithm by Dietzfelbinger,
Madhavapeddy, and Sudborough [6] that constructs n � 1
node-disjoint paths between a given node and a set of n� 1
other nodes in the n-star network is based on the standard
partition of star networks.

If instead of fixing a position p, we fix the symbol 1
(or any of the other symbols), and consider the n� 1 node-
disjoint (n�1)-dimensional substar networksS2;1,S3;1, : : :,
Sn;1. Using our notation in the previous sections, the sub-
star network Sj;1 consists of all (j1)-nodes in Sn. The rest
nodes in Sn that are not contained in any of these (n � 1)-
dimensional substar networks are the (1)-nodes in Sn. We
say that the (n�1)! (1)-nodes of Sn from a “virtual (n�1)-
dimensional substar network S1;1” in Sn. This partition of
the n-star network is called the orthogonal partition of the
n-star network. Figure 3 illustrates the orthogonal partition
of the 4-star network. The orthogonal partition of star net-
works was observed by Akers, Harel, and Krishnamurthy
in their seminal paper on star networks [1]. However, this
important property of star networks seems overlooked in the
subsequent study of star networks.

The (1)-nodes in the virtual (n�1)-substar network S1;1

of the n-star network Sn form a very interesting set of nodes
in Sn. This set is a maximal independent set (i.e., no two
(1)-nodes are adjacent) as well as a minimal dominating
set (i.e., every other node in Sn is adjacent to a (1)-node).
Moreover, each (1)-node v provides a nice “bridge” for the
n� 1 node-disjoint (n� 1)-substar networks S2;1, S3;1, : : :,
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Figure 3: The orthogonal partition of the 4-star network.

Sn;1: v is adjacent to a node in each of the (n� 1)-substar
networks (these properties of n-star network were proven
in Lemma 3.1). These properties seem very useful in star
network communication and computation.

Our algorithm One-To-Many Routing is a good
example that well illustrates an application of the orthogonal
partition of star networks. In order to make the n � 1
constructed paths node-disjoint, the algorithm reserves for
each node vi in the set D a distinct (n� 1)-substar network
S0i in the orthogonal partition of the n-star network Sn so
that the path Pi connecting vi and " is essentially in the
substar S0i. The substar network S0i is actually the substar
network Spi;1 consisting of all (pi1)-nodes in Sn, where pi
is the position reserved for the node vi in the algorithm.

Based on the orthogonal partition of the n-star network,
Algorithm One-To-Many Routing can be interpreted
as follows. If the node vi is a (1)-node (case 1 in step 4),
then since vi is adjacent to a node in each of the substar
networks in the orthogonal partition of Sn, the path Pi can
go from vi by a single edge to the substar network S0i and the
rest part of Pi is entirely within S0i. This case is illustrated
by Case 1 in Figure 4. If the node vi is the representative
node of the set Dpi (case 2 in step 4), then the path Pi is
entirely contained in the substar network S0i. This case is
illustrated by Case 2 in Figure 4. Finally, if the node vi is
a (j1)-node but not the representative node of the set Dj ,
then either vi is adjacent to an unused (1)-node or vi has an
unused neighbor that is adjacent to an unused (1)-node (this
is formally proved by Lemma 3.5 in Section 3). Thus, we
can get out of the current substar network Sj;1 in one or two
steps and arrive the virtual substar network without hitting
any used nodes. Now again in one step we can get into the
reserved substar network S0i = Spi;1 and do the rest of the
routing. This case is illustrated by Case 3 in Figure 4

We believe that the orthogonal partition of star networks
has a great potential for further important applications in the
study of computation and communication on star networks.
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Figure 4: The algorithm One-To-Many Routing illustrated
by the orthogonal partition of Sn. Case 1: node v1 is a (1)-
node; Case 2: node v2 is the representative node for setDp2 ;
Case 3: node v3 is a (p21)-node but not the representative
node for set Dp2 .

Another interesting application of the orthogonal partition
of star networks was explained in [3], in which it is shown
that based on the orthogonal partitions, star networks can
be represented in a much more condensed way (the n-star
network is represented by a graph of n nodes) and this rep-
resentation can be used in the study of emulations of star
networks. We expect that the current paper make a contri-
bution to motivating further applications of the orthogonal
partition of star networks.
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