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Abstract

Sar networkswere proposed recently as an attractive al-
ternative to the well-known hypercube models for intercon-
nection networks. Extensive research has been performed
that showsthat star networksare as versatile as hypercubes.
This paper is an effort in the same direction. Based on the
well-known paradigms, we study the one-to-many parallel
routing problemon star networks and develop an improved
routing algorithm that finds n — 1 node-disjoint paths be-
tween one node and a set of other n — 1 nodesin the n-star
network. Theseparallel pathsare proven of minimumlength
within a small additive constant, and our algorithm has an
optimal time complexity. This result significantly improves
the previous known algorithms for the problem. Moreover,
the algorithm well illustrates an application of the orthog-
onal partition of star networks, which was observed by the
original inventors of the star networks but seems generally
overlooked in the subsequent study. e should also point
out that similar problemsarealready studied for hypercubes
and have proven useful in designing efficient and fault tol-
erant routing algorithms on hypercube networks.

1. Introduction

The star networks have received considerable attention re-
cently by researchers as a graph model for interconnection
network. Like the hypercube, the star network has rich
structural and symmetric properties, and these properties
have proven very useful in the study of network compu-
tation, communication, and fault tolerance. Moreover, star
networkshave smaller diameter and degreewhile comparing
with hypercubes of comparable number of vertices[1, 2].
In this paper, we investigate the one-to-many routing
problem in star networks. This problem has been studied
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by several researchers. In particular, Dietzfelbinger, Mad-
havapeddy, and Sudborough[6] developed an algorithm that
solves the problem based on the recursive structure of the
star networks. They showed that the length of the pathsgen-
erated by their algorithm for the n-star network is bounded
by 5(n — 2). Since the diameter of the n-star network is
[3(n — 1)/2], the lengths of these paths are bounded by
10/3 times the diameter of the n-star network.

The main contribution of the current paper is an im-
proved one-to-many routing algorithm. We adopt a differ-
ent approach and devel op new techniquesto construct n — 1
node-disjoint pathsbetween one nodeand aset of n— 1 other
nodes in the n-star network. These node-disjoint paths are
proven of minimum length (plus possibly at most 6). Our al-
gorithm has an optimal time complexity. This significantly
improves the result in [6]. Moreover, our algorithm well
illustrates an application of the orthogonal partition of star
networks, which was observed by the original inventors of
the star networks [1] but seems generally overlooked in the
subsequent study. We expect that the current paper make a
contribution to motivating further important applications of
the orthogonal partition of star networks.

2. Background and definitions

A permutation of thesymbols1, 2, .. ., n can berepresented
by a cycle structure [7]. For example, permutation 231546
canbegivenas(231)(45)(6). A cycleisnontrivial if it con-
tains more than one symbol, otherwise, the cycleis trivial.
In general, if the cycle structure of a permutation « contains
acycleof form (---j ¢---), then i isthe jth symbol in the
permutation«. In particular, if (/) isacycleinu, theni isthe
ithsymbol in u, i.e., thesymbol i isinits“ correct” position.
A transposition 71, i] on apermutation « isto exchangethe
positionsof thefirst symbol and theith symbol in the permu-
tation u. More precisdly, if u = ajaz -+ a; _1a;a;41° - an,
then 7[1,i](v) = a;az -+ a;_101Gi41+ - - an.

The n-dimensional star network (or simply the n-star
network), denoted as .S, is an undirected graph consisting
of n! nodeslabeled with the n! permutations on symbols 1,
2, ---, n. Thereis an edge between any two nodes « and v
if and only if x[1,](«) = v for some2 < ¢ < n. Thenode
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labeled with the identity permutation = = 12--- . will be
called the identity node. We will use anode name in a star
network to refer to either the node itself or the permutation
that labels the node. The context should always make this
unambiguous.

The n-star network S, is (n — 1)-connected [2]. By
Menger’s theorem [8], for any given node « and any set D
of n—21other nodesin S,,, therearen — 1 node-disjoint paths
that connect the node u and each of the node in the set D.
Moreover, every node in the n-star network S,, has degree
n — 1. Therefore, n — 1 is the maximum number of node-
digoint paths we can expect to construct from a given node
u to a given set of nodes. Finally, since the n-star network
is vertex-symmetric [2], the problem of constructingn — 1
node-disjoint paths between a given nodeto aset of n — 1
nodes in the n-star network can be easily mapped to the
problem of constructing n — 1 node-disjoint paths between
theidentity nodes = 12 - - n to aset of n — 1 nodesin the
n-star network. Therefore, in the rest of this paper, we will
concentrate on the latter problem.

Supposethat u = ¢y - -+ ¢ey - - - ey, ISAN0Odeinthen-star
network .S,,, where ¢; are nontrivial cyclesand e; aretrivial
cycles. A shortest path from the nodew inthe n-star network
S, to the identity node = must be generated by repeatedly
using the following three simplerules[1, 5]:

(R1) If Listhefirst symbol in «, then exchange 1 with any
symbol j inanontrivia cycle;

(R2) If i, # 1, isthe first symbol in «, then exchange :
with the symbol j in the ith position;

(R3) If i, ¢ # 1, isthefirst symbol in «, then exchange i
with any symbol j in a nontrivial cycle that does not
contain the symbol ;.

We describe how these rules affect the cycle structure of
the permutation .

SupposeRule (R1) isapplied. Thenthe cycle structure of
u should be of form (-« j")cz -« - ¢4 (1) (we have ignored
irrelevant trivial cycles). Thus, j is the j'th symbol in u
and Rule (R1) correspondsto the transposition =[1, j'] that
“merges’ the nontrivial cycle (5 -- - j') into the trivia cycle
(1): w1, (u) = (G- j'L)ca-- - cp.

Suppose Rule (R2) is applied. Then the cycle structure
of u should be of form (ij--- j'1)cz- - - ¢, where j is the
ith symbol in «. Rule (R2) correspondsto the transposition
n[1, 4] that “deletes’ the symbol i from the cycle containing
symbol 1: #w[1,i](u) = (j--- j'Lca-- - cy.

Finally, suppose that Rule (R3) is applied. Then
the cycle structure of the node « should be of form
(i---1)(j---j")es-- - ok (note that each cycle can be cycli-
cally permuted and the order of the cycles is irrelevant).
Rule (R3) corresponds to the transposition =[1, j'] that

“merges’ the nontrivial cycle (j---j') into the nontrivial
cycle (i---1): w[L, j')(u) = (j - j'i--- D)ez--- cp.

3. One-to-many paralle routing in star
networks

In this section, we will present a one-to-many parallel
routing algorithm on star networks. Given aset D =
{v2,v3,...,v,} Of n — 1 nodes in the n-star network S,
such that v; # ¢ for al i, the algorithm constructs n — 1
node-disoint paths I, Ps, ..., P, such that the path P;
connectsthe nodesv; and ¢, for 2 < i < n.

Definition Node  in the n-star network S, isa (1)-node
if 1 isthe first symbol in the permutation . Node v in S,
isa(jl)-node, where2 < j < n, if 1isthe jth symbol in
the permutation v.

We point out that the above notations essentially match
the notations of cycle structure of a permutation. The nota-
tion “(1)” hints the trivial cycle (1) in the cycle structure,
while the notation “(j1)" hints a nontrivial cycle of form
(---71) in the cycle structure.

We first give an intuitive description of our algorithm.
For each i, 2 < i < n, wereserve a unique position p; for
the path P;, 2 < p; < n, such that for all interior nodes on
P; (except possibly for at most two), the symbol 1 is at the
p;th position in the permutations. This construction ensures
that the path P; is node-disjoint from the other constructed
paths. Finaly, of course, we expect to keep the length of
these paths as short as possible.

To achievethis, we need to solve three problems: (a) we
need a procedure that constructs a short path from a node «
to thenode = and keepsthe symbol 1 in afixed position along
the path; (b) for each path P; with the reserved position
pi, we need to minimize the number of nodes on P; that are
not (p;1)-nodes; (c) all thesepaths P;, 2 < i < n, must be
node-disjoint. In particular, those nodes on P; that are not
(p;1)-nodes should not be used by other paths.

Givenanodew thatisnot a(1)-nodeinthen-star network
Sn, constructing a shortest path from « to = that keeps the
symbol 1 in afixed position is relatively easy. Observe that
if the node w isnot a(1)-node, then applying Rule (R3) will
not change the position of symbol 1 in the permutation w,
andthat if thecyclein v that contains symbol 1 hasmorethan
two symbols, then applying Rule (R2) does not change the
position of symbol 1 in the permutation «. This observation
motivatesthe algorithm Fix-1-RouTer inFigure 1, which
constructs a shortest path from a node « to = and keeps the
symbol 1 in afixed position in al interior nodes along the
path.

For example, let « = (231)(45)(678) be a node in the



Algorithm. Fix-1-RouTkr
INPUT: anodew in S, suchthat v isnot a(1)-node
OutpuT: ashortest pathfromwu tozin S,

1. Repeatedly apply Rule (R3) to merge, in an arbitrary
order, each nontrivial cycle into the cycle containing
the symbol 1 until there is only one nontrivial cycle;

2. Repeatedly apply Rule (R2) to delete the symbol at the
first position in a permutation from the nontrivial cycle
containing symbol 1 until the node ¢ is reached.

Figure 1: The algorithm Fix-1-Router.

8-star network. Thenodew isnota(1)-node. A path created
by the algorithm F'1x-1-RoUTER may look asfollows.
u = (231)(45)(678) — (45231)(678) — (67845231) —
(7845231) — (845231) — (45231) — (5231) —
(231) - (31) » ¢

Now consider the path P; with the reserved position p;.
To minimize the number of nodes on P; that are not (p;1)-
nodes, we observe that every node in the n-star network S,
is connected to a (p;1)-node by a path of length at most 2,
as shownin the following lemma.

Lemma3.1 (A) Letu beanodein the n-star network S,
such that « isnot a (1)-node. Then the node « has a unique
neighbor that is a (1)-node. This (1)-node will be called
the (1)-node associated with the node .

(B) For any givenp;, 2 < p; < n, every (1)-node v in
S,, has a neighbor that isa (p;1)-node.
Proor. Seethefull paper[4]. I

Now we are ready to describe our algorithm that
constructs n — 1 node-digioint paths from a set D =
{va,v3,...,v,} Of nodesin S,, to the identity node =. For
each node v; in D, we construct a path P; with a uniquely
reserved position p;. There are three different cases. If
the node v; is a (1)-node, then the path P; starts with the
edge from v; to the neighbor = [1, p;](v;) of v;, whichisa
(pi1)-node, and the rest nodeson F; areall (p;1)-nodesand
are obtained by applying the algorithm Fix-1-RoUTER on
the node 7|1, p;](v;). If the node v; is a(j1)-node and the
reserved position for v; is j, then the path P; is obtained by
directly applyingthealgorithm Frx-1-RouTER onthenode
v;. Finally, if the node v; is a (j1)-node and the reserved
position p; isnot j, then we either go through the (1)-node
associated with v; then the (p;1)-nodes, or go through a
neighbor « of v; then the (1)-node associated with « then
the (p;1)-nodes. The algorithm, called ONE-To-MANY
RouTING, ispresented formally in Figure 2.

It iseasy to verify that for each i, the constructed path P;
connects the node v; and the identity node . Moreover, we
have the following bound on the length of the path P;.

Algorithm. ONg-To-MANY ROUTING

INPUT: aset D = {v2,vs,..., v, } Of n — 1nodesin the n-star network
‘qn,
OuTtpuT: n — 1 node-digjoint paths connecting the nodesin I and the
identity node ¢ in S,

1. mark all nodesin 1) and mark the node ¢;

2. for j =2tondo

let D; betheset of al (j1)-nodesin D; if D; # ¢, pick anode w;
in D; suchthat dist(w;) istheminimum among all nodesin D (if
thereis atie, pick any of them); call w; the representative node of
theset D;

3. for each node v; in the set D, reserve a position p; for v; with
2 < p; < n,such that v; # v, implies p; # p¢, and that for each
D; # ¢, the representative node w; gets the position j;

{Now westart constructing apath £; from v, to= for eachi. Without
loss of generality, assume that all representative nodes appear before
all other nodesinthelist D = {wp, v3,...,vn }.}

4, for i =2 ton do

e casel wv;isa(l)-node
then the first interior node on the path P; is =[1, p;](v;),
the rest of the path P; is obtained by calling the algorithm
Fix-1-Rourkr on the node 7[1, p;](v;);

e case?2. wv; istherepresentative node for aset D;
then congstruct the path #; by calling the algorithm Fix-1-
ROUTER on the node v;;

e case3. v; isa(jl)-nodefor some; but not the representative
node for set D;
if the (1)-node u associated with »; is unmarked

then the first two interior nodes on the path P; are v and
7[1, ps](u), and the rest of the path P; is obtained by calling
the algorithm Fix-1-RouTER onthe node 7[1, p;](u)

else find an unmarked neighbor « of v; such that the (1)-
node u' associated with u is also unmarked; the first three
interior nodes on the path P; are u, v/, and = [1, p;](v’), and
the rest of the path P; is obtained by calling the algorithm
FIx-1-ROUTER on the node 7[1, p;](u’)

mark all nodes on the path P;;

Figure 2: The algorithm One-To-Many Routing.

Lemma 3.2 For eachi, 2 < i < n, thelength of the path P;
constructed by the algorithm ONE-To-MaNY RouTING
is bounded by dist(v;) + 6.

PROOF. For each 7, 2 < i < n, there is a node u;
on the path P; such that the subpath of P; from w; to = is
obtained by applying the algorithm Fix-1-RouTER onthe
node u;. Moreover, the subpath from the node v; to the
node u; has length bounded by 3. Therefore, dist(u;) <
dist(v;) + 3. Finally, since the algorithm Fix-1-Routkr
creates a shortest path from the node u; to  thus the path
haslength exactly dist(w;). In conclusion, the length of the
path P; is bounded by 3 + dist(u;), which is bounded by
dist(v;) + 6. LI

Therest of this sectionisfor aproof of the correctness of
the algorithm ONE-To-MaNy RouTING. We start with



a few simple facts on the algorithm. These facts can be
verified easily.

Fact 3.1. If v; isa(1)-node, then all interior nodes on the
path P; are (p;1)-nodes, where p; is the position reserved
for the node v;.

Fact 3.2. If v; isthe representative node w; of aset D;,
then al interior nodes, plus the node v;, are (j1)-nodes.
Note that in this case, j is the position reserved for the node
V.

Fact 3.3. If v; isa(;1)-nodebut not the representativenode
w; of the set D;, then the path P; starts with zero or one
interior node that is a (j1)-node, followed by a (1)-node.
The rest of the interior nodes on P; are al (p;1)-nodes,
where p; (# j) isthe position reserved for the node v;.

We say that a node sequence {uy, up, ..., us} in the n-
star network S, isasimple circleif all nodesu; are distinct
and [us, ug], [wi,uig1], 1 < i < s—1, areal edgesin S,,.
The following lemmawill be very useful.

Lemma 3.3 Thereis no simple circle of length less than 6
in the n-star network S,,.

Proor. Seethefull paper[4]. I

A crucia stepin Algorithm ONE-To-MANY RouTING
is the case 3 in step 4, in which for the given (j1)-node v;
that is not the representative node w; of the set D;, if the
(1)-node associated with »; has been marked, we must show
that thenodev; hasaneighbor « suchthat the neighbor » and
the (1)-node v’ associated with « are both unmarked. Note
that each marked node is a node contained in a previously
constructed path P;, 2 < ¢ <i — 1.

The node v; hasn — 1 neighbors, oneis a (1)-node and
the others are (j1)-nodes. Without loss of generality, let
the n — 1 neighbors of v; be ub, us, ua, ..., u,, where u)
is the (1)-node, and u;, 3 < t < n, are (j1)-nodes. By
Lemma 3.1(A), each node u;, 3 < t < n, has a unique
associated (1)-node u}. All these (1)-nodes are distinct —
if up = v, for ¢t # s, then the sequence {v;, ug, ul, u; }
would form asimplecircle of length 4 in the n-star network,
contradicting Lemma 3.3.  Similarly, the neighbor u; of
v; is distinct from al (1)-nodes v}, 3 < ¢ < n, since the
n-star network S,, has no circles of length 3. Let NV; =
{us,...,u, } betheset of al neighbors of v; that are (j1)-
nodes, and let 4; = {u, uj,...,u!,} bethe set of al (1)-
nodes associated with the nodesin V; U {v; }.

Lemma 3.4 Letv,; bea(;j1)-nodebut not therepresentative
nodeof set D ; and et the sets IV; and A; bedefined asabove.
Then each P, of the paths P, . . ., P;_; containsat most one
node in the set NV; and at most one node in the set A;.

Moreover, if the path P, contains a node « in the set IV;
and a node v’ in the set A4;, then «’ must be the (1)-node
associated with the node w.

Proor. Seethefull paper [4]. I

Now we are ready to show that Algorithm ONE-To-
ManNy RouTing isalwaysvalid in case 3 of step 4 in the
algorithm.

Lemma 3.5 Letv; beanodein case3 of step4in Algorithm
One-To-MaNy Rourina. If the (1)-node associated
with v; is marked, then thereis a neighbor u of v; such that
the node « and the (1)-node ' associated with « are both
unmarked.

Proor. Seethefull paper[4]. I

Now weareready to show that al pathsconstructed by the
algorithm One-To-MaNYy RouTING are node-digjoint.
For this, the following lemma s sufficient.

Lemma 3.6 Let P; be the path from the node v; to ¢ con-
structedin Algorithm ONe-To-MaNYy RouTING, thenthe

path P; is node-digjoint with all paths P, ---, P;_1 con-
structed by the algorithm.
Proor. Seethefull paper[4]. I

Now we can conclude with the following theorem.

Theorem 3.7 GivenasetD = {vs,...,v,} of n—1distinct
nodes in the n-star network S,,, the algorithm O~NE-To-
MaNY RouTiING constructsn — 1 node-disjoint paths P,
..., P, intime O(n?) such that for 2 < i < n, the path P;
connects the node v; and the identity node = in the n-star
network S,, and has length at most dist(v;) + 6.

Proor. The fact that the constructed paths satisfy
the conditions stated in the theorem has been proved by
Lemma 3.2 and Lemma 3.6. What remains is to show the
complexity of the algorithm.

Calculating the distance from anode to the identity node
canbedoneintime O(n) using the formulagivenin Section
2. Thus, steps 1, 2, 3 of the algorithm ONE-To-MANY
RoUTING totally take time O(n?). Since the diameter of
the n-star network .S, isboundedby O () [2], theagorithm
Frx-1-RouTER constructs a shortest path from a given
nodetotheidentity nodec intime O(n). For eachnodew; in
step 4, wemay need to search among then— 1 neighborsof v;
to find aneighbor « such that « and the (1)-node associated
with « are both unmarked. This searching takestime O(r)
for each node. After this searching, the algorithm F1x-1-
RouTER is applied and takes time O(n). In conclusion,
step 4 of the algorithm ONE-To-MaNY RouTING takes



time O(n?). Summarizing all these together, we conclude
that the algorithm ONE-To-MANY ROUTING runsintime
O(n?). 1

We point out that the algorithm ONE-To-MANY RouT-
ING has an optimal time complexity. In fact, even printing
out n — 1 pathswhoselength can be aslong as Q(n ) already
takestime Q(n?).

4. Orthogonal partition of star networks

Like most well-known interconnection network models, star
networks enjoy a recursive structure that has been proven
very useful in network computation and communication.

Fix aposition p > 1in the permutationson 1, 2, ..., n
(e.g., p = n isthelast position in the permutations). For
eachi, 1 < i < n,thenodesin the n-star network S,, whose
pth symbol is i form an (n — 1)-dimensional substar net-
work S, ;. Thern-dimensional star network S, ispartitioned
into n node-disjoint (n — 1)-dimensional substar networks
Sp1s Sp2s -- o Spn [1]. This partition of the n-star net-
work is well-known and is called the standard partition of
the n-star network. The standard partition of star networks
has found wide applicationsin routing, broadcasting, emu-
lation, and fault tolerance of star networks. In particular, the
parallel one-to-many routing algorithm by Dietzfelbinger,
Madhavapeddy, and Sudborough [6] that constructs n — 1
node-disjoint paths between agiven nodeand asetof n — 1
other nodes in the rn-star network is based on the standard
partition of star networks.

If instead of fixing a position p, we fix the symbol 1
(or any of the other symbols), and consider the n — 1 node-
disioint (n— 1)-dimensional substar networks S 1, S31, - . -,
S,.1. Using our notation in the previous sections, the sub-
star network S 1 consists of all (j1)-nodesin S,,. Therest
nodesin S,, that are not contained in any of these (n — 1)-
dimensional substar networks are the (1)-nodesin S,,. We
say that the (n —1)! (1)-nodesof S, froma“virtual (n—1)-
dimensional substar network 571" in S,,. This partition of
the n-star network is called the orthogonal partition of the
n-star network. Figure 3 illustrates the orthogonal partition
of the 4-star network. The orthogonal partition of star net-
works was observed by Akers, Harel, and Krishnamurthy
in their seminal paper on star networks [1]. However, this
important property of star networks seemsoverlooked in the
subsequent study of star networks.

The(1)-nodesin thevirtual (n — 1)-substar network St 1
of then-star network S, form avery interesting set of nodes
in S,. Thissetisamaximal independent set (i.e., no two
(1)-nodes are adjacent) as well as a minimal dominating
set (i.e., every other nodein S, is adjacent to a (1)-node).
Moreover, each (1)-nodev providesanice “bridge” for the
n — 1 node-disjoint (n — 1)-substar networks S 1, S31, . - .,

1234

Figure 3: The orthogonal partition of the 4-star network.

Sn.1: v is adjacent to anodein each of the (n — 1)-substar
networks (these properties of n-star network were proven
in Lemma 3.1). These properties seem very useful in star
network communication and computation.

Our agorithm Onk-To-MaNy RouTinG is a good
examplethat well illustrates an application of the orthogonal
partition of star networks. In order to make the n — 1
constructed paths node-disjoint, the algorithm reserves for
each node v; inthe set D adistinct (n — 1)-substar network
S’ in the orthogonal partition of the n-star network S, so
that the path P; connecting v; and ¢ is essentially in the
substar $;. The substar network S is actually the substar
network S,, 1 consisting of al (p;1)-nodesin S,,, where p;
is the position reserved for the node v; in the algorithm.

Based on the orthogonal partition of the n-star network,
Algorithm One-To-MaNY RouTING can be interpreted
as follows. If the node v; is a (1)-node (case 1 in step 4),
then since v; is adjacent to a node in each of the substar
networks in the orthogonal partition of S,,, the path P; can
go fromv; by asingle edgeto the substar network .S} and the
rest part of P; is entirely within 5. This caseisillustrated
by Case 1 in Figure 4. If the node v, is the representative
node of the set D,,, (case 2 in step 4), then the path P; is
entirely contained in the substar network S;. This caseis
illustrated by Case 2 in Figure 4. Finally, if the node v; is
a (j1)-node but not the representative node of the set D,
then either v; is adjacent to an unused (1)-node or v; hasan
unused neighbor that is adjacent to an unused (1)-node (this
is formally proved by Lemma 3.5 in Section 3). Thus, we
can get out of the current substar network .S; 1 in oneor two
steps and arrive the virtual substar network without hitting
any used nodes. Now again in one step we can get into the
reserved substar network 57 = S,,, 1 and do the rest of the
routing. This caseisillustrated by Case 3in Figure 4

We believe that the orthogonal partition of star networks
hasagreat potential for further important applicationsin the
study of computation and communication on star networks.



v €

(n-1)-substars

spy 1 Sp2, 1

Figure 4: The algorithm One-To-Many Routing illustrated
by the orthogonal partition of .S,,. Case 1: nodewvy isa(1)-
node; Case 2: nodew, isthe representative nodefor set D,,,;
Case 3: node v3 is a (p»1)-node but not the representative
node for set D,,,.

Another interesting application of the orthogonal partition
of star networks was explained in [3], in which it is shown
that based on the orthogonal partitions, star networks can
be represented in a much more condensed way (the n-star
network is represented by a graph of n nodes) and this rep-
resentation can be used in the study of emulations of star
networks. We expect that the current paper make a contri-
bution to motivating further applications of the orthogonal
partition of star networks.
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